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Abstract Modified gravity theories have the potential of
explaining the recent acceleration of the Universe without
resorting to the mysterious concept of dark energy. In partic-
ular, it has been pointed out that matter–geometry coupling
may be responsible for the recent cosmological dynamics of
the Universe, and matter itself may play a more fundamen-
tal role in the description of the gravitational processes that
usually assumed. In the present paper we study the quan-
tum cosmology of the f (R, T ) theory of gravity, in which
the effective Lagrangian of the gravitational field is given
by an arbitrary function of the Ricci scalar, and the trace of
the matter energy-momentum tensor, respectively. For the
background geometry we adopt the Friedmann–Robertson–
Walker metric, and we assume that matter content of the
Universe consists of a perfect fluid. In this framework we
obtain the general form of the gravitational Hamiltonian, of
the quantum potential, and of the canonical momenta, respec-
tively. This allows us to formulate the full Wheeler–de Witt
equation describing the quantum properties of this modified
gravity model. As a specific application we consider in detail
the quantum cosmology of the f (R, T ) = F0(R) + θRT
model, in which F0(R) is an arbitrary function of the Ricci
scalar, and θ is a function of the scale factor only. The Hamil-
tonian form of the equations of motion, and the Wheeler–de
Witt equations are obtained, and a time parameter for the
corresponding dynamical system is identified, which allows
one to formulate the Schrödinger–Wheeler–de Witt equa-
tion for the quantum-mechanical description of the model
under consideration. A perturbative approach for the study
of this equation is developed, and the energy levels of the
Universe are obtained by using a twofold degenerate per-
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turbation approach. A second quantization approach for the
description of quantum time is also proposed and briefly dis-
cussed.

1 Introduction

One of the cornerstones of theoretical physics, general rela-
tivity (GR), formulated mathematically in terms of the Ein-
stein field equations, proved to be a very successful gravita-
tional theory at the scale of the solar system. By using GR
we can describe the gravitational dynamics of the Solar sys-
tem with a high precision, and phenomena like the perihelion
precession of Mercury, the bending of light while passing the
Sun, and the gravitational redshift can be fully understood.
In GR the gravitational field equations can be obtained by
varying the Einstein–Hilbert action S = 1

16π

∫
R
√−gd4x +∫

Lm
√−gd4x , where R is the Ricci scalar, and Lm is the

matter Lagrangian, with respect to the metric gμν , and they
read Rμν − 1

2gμνR = 8πTμν , where Tμν is the energy-
momentum tensor. The energy-momentum tensor Tμν iden-
tically satisfies the mathematical relation ∇μTμν = 0, which
can be interpreted from the physical point of view as the
energy conservation. Essentially GR is a beautiful geometric
theory that establishes a deep connection between the geom-
etry of the spacetime, matter fields, and gravitational inter-
action. Considering larger scales of the Universe, using GR
we can numerically simulate galaxies’ formations and colli-
sions, and the results of these simulations can be verified by
the increasingly trustworthy data obtained due to the rapidly
improving observational techniques. The predictions of gen-
eral relativity have also been confirmed in the strong gravity
regime by the discovery of the gravitational wave emission
in the binary pulsars system PSR 1913 + 16 [1], a discovery
that has opened a new testing ground for GR and for its gen-
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eralizations. The detection by LIGO of GW150914 from the
inspiral and merger of a pair of black holes [2] will start a
new era in observational astronomy, based on the theoretical
and mathematical formalism of GR.

Thus, with a large number of astronomical observations, as
well as terrestrial experiments testing and confirming it both
at the weak and strong gravity regime, it would seem that
GR gives a full description of the gravitational interaction at
the non-quantum level. However, several recent astrophysi-
cal and cosmological observations have raised the intriguing
possibility that GR may not be able to model and explain the
gravitational dynamics at scales much larger than the one of
the solar system.

On a fundamental theoretical level the two most impor-
tant challenges GR must face are the dark energy and the dark
matter problems, respectively.Several cosmological observa-
tions, obtained initially from the study of the distant Type
Ia supernovae, have provided the unexpected result that the
expansion of the Universe did accelerate lately [3–7]. The
paradigmatic and usual explanation of the late time accel-
eration requires the existence of a mysterious and dominant
component of the Universe, called dark energy (DE). Dark
energy is responsible for the late time dynamics of the Uni-
verse [8,9], and it can explain the observed features of the
recent cosmological evolution. The second and equally mys-
terious component in the Universe, called Dark Matter, an
assumed non-baryonic and non-relativistic “substance”, is
necessary for the explanation of the flat rotation curves of
galaxies, and for the virial mass discrepancy in clusters of
galaxies [10,11]. The detection/observation of dark matter is
restricted by the fact that it interacts only gravitationally. Its
effects can be observed by observations of the motion of the
massive hydrogen clouds around galaxies, or by the motion of
the galaxies in clusters [10]. However, despite many decades
of intensive observational and experimental efforts the parti-
cle nature of dark matter still remains essentially unknown.

One interesting possibility for explaining dark energy
is based on theoretical models that contain a mixture of
cold dark matter and a slowly varying, spatially inhomo-
geneous component, called quintessence [12]. The idea of
quintessence can be implemented theoretically by assum-
ing that it is the energy associated with a scalar field Q,
having a self-interaction potential V (Q), and a pressure
p = Q̇2/2 − V (Q) associated to the quintessence Q-field.
Such a model also allows a possible theoretical interpretation
in terms of particle physics results. If the potential energy
density V (Q) of the quintessence field is much greater than
the kinetic one, then it follows that the pressure p of the field
is negative. Quintessential cosmological models have been
extensively investigated in the physical literature (for a recent
review of quintessence cosmologies see [13]).

Alternatively, the recent acceleration of the Universe can
also be explained by scalar fields φ that are minimally cou-

pled to gravity via a negative kinetic energy, known as
phantom fields, which have been proposed in [14]. Interest-
ingly enough, these cosmological models allow values of the
parameter of the equation of state w with w < −1. Hence,
real or complex scalar fields may play a fundamental role in
the cosmological processes describing the evolution of our
Universe, and they may provide a realistic description of the
observed cosmic dynamics.

However, in order to explain the observed gravitational
dynamics of the Universe a different line of thought on
dark energy was also considered. It is based on the fun-
damental idea that dark energy is not a particular physical
field, but it can be understood as a gravitational phenomenon
induced at cosmological scales by the intrinsic modifica-
tions of the gravitational interaction itself. Hence the fun-
damental assumption of this theoretical approach is that at
large astrophysical and cosmological scales standard gen-
eral relativity cannot describe correctly the dynamical evo-
lution of the Universe. In this context many modified gravity
models, all trying to extend and generalize GR, have been
proposed. Historically, in going beyond the standard grav-
itational models, the first step was to generalize the geo-
metric part of the Einstein–Hilbert action. One of the first
models of this type is f (R) gravity, in which the gravita-
tional action is an arbitrary function of the Ricci scalar R,
so that S = 1

16π

∫
f (R)

√−gd4x + ∫
Lm

√−gd4x [15–19].
However, this and many other modifications of the Einstein–
Hilbert action concentrate only on the geometric part of the
action, by implicitly assuming that the matter Lagrangian
plays a subordinate and passive role only [20], which natu-
rally follows from its minimal coupling to geometry. But a
fundamental theoretical principle forbidding a general cou-
pling between matter and geometry has not been formulated
yet, and in fact it does not exist a priori. If such matter–
geometry couplings are allowed, many theoretical gravita-
tional models with extremely interesting properties can be
constructed.

The first of these kind of models was the f (R, Lm) modi-
fied gravity theory [21–24], with a gravitational action of the
form S = 1

16π

∫
f (R, Lm)

√−gd4x . A similar geometry-
matter type coupling is assumed in the f (R, T ) [25,26] grav-
ity theory, where T is the trace of the energy-momentum
tensor. For a recent review of the generalized f (R, Lm)

and f (R, T ) type gravitational theories with non-minimal
curvature-matter coupling see [27]. Several other gravita-
tional theories involving geometry couplings have also been
proposed, and extensively investigated, like, for example,
the Weyl–Cartan–Weitzenböck (WCW) gravity theory [28],
hybrid metric–Palatini f (R,R) gravity, whereR is the Ricci
scalar formed from a connection independent of the metric
[29,30], f

(
R, T, RμνTμν

)
type models, where Rμν is the

Ricci tensor, and Tμν the matter energy-momentum tensor,
respectively [31,32], or f (T̃ , T ) gravity [33], in which a
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coupling between the torsion scalar T̃ and the trace of the
matter energy-momentum tensor is assumed. For a review of
hybrid metric–Palatini gravity see [34].

Modified gravity models with geometry-matter coupling
are important since they can provide from a fundamental the-
oretical point of view a complete theoretical explanations for
the late time acceleration of the Universe, without postulating
the existence of dark energy. They can also offer some alter-
native explanations for the nature of dark matter. Moreover,
these models show that matter itself may play a more fun-
damental role in the description of the gravitational dynam-
ics that usually assumed [20], and they can also represent
a bridge connecting the classical and the quantum worlds.
For example, the dependence of the gravitational action on
the trace of the energy-momentum tensor T may be due to
the presence of quantum effects (conformal anomaly), or of
some exotic imperfect quantum fluids [27].

Besides the difficulties presented by the present day cos-
mological observations, a central theoretical problem in
present they physics is the unification of quantum mechan-
ics and gravitation. Gravitation dominates the dynamics of
objects at large scales, while quantum mechanics describes
the microscopic behaviors of the particles. The study the Uni-
verse as a whole from the quantum mechanical point of view
is the subject of quantum cosmology [35,36], which is based
on the idea that quantum physics must apply to anything in
nature, including the whole Universe. An unification of the
electromagnetic force, of the strong force and of the weak
force, respectively, is achieved in the standard model of par-
ticle physics, leaving the gravitational force as an exception
that cannot be yet unified with the other fundamental forces.
This is related to the fact that when considering gravitation
in the framework of general relativity, we must consider not
only matter, but also space and time, as physical objects.
Space and time obey dynamical laws, and they have excita-
tion such as gravitational waves that interact with each other
and with matter. These aspects make quantizing the Universe
far from being straightforward. Since the formation of cosmic
structures is strongly dependent on the spacetime interaction,
quantum cosmology is therefore closely related to quantum
gravity, representing the quantum theory of the gravitational
force and of spacetime [37].

Even being of a speculative and controversial nature, hav-
ing several difficult conceptual problems to overcome, quan-
tum cosmology has a long history [38–40], and various pop-
ular competing attempts have been proposed to quantized the
gravitational field, like, for example, string theory, canonical
quantum gravity and loop quantum gravity [35,36]. How-
ever, the lack of related observations reduces our abilities to
resolve conceptual issues to all practical purposes. Since at
the beginning of the Universe the average radius of each
point is infinitely small, while the geometric curvature is
infinitely large, quantum gravitational effects will dominate

the dynamics of the Universe, and therefore they cannot be
neglected in the study of the very early Universe. One of the
main obstacles in the understanding of quantum cosmology is
the so-called problem of time, which comes from the Hamil-
tonian constraint in the Arnowitz–Deser–Misner (ADM) for-
malism, leading to the Wheeler–de Witt equation [38–40], a
fundamental equation in canonical quantization of cosmol-
ogy. The quantum cosmology of f (R) gravity theory with
Schutz’s fluid is discussed in [41,42], with new perspectives
to the time problem in quantum gravity considered.

It is the purpose of the present paper to study the quan-
tum cosmology of the f (R, T ) theory of gravity. Classi-
cal aspects of this theory have been extensively investigated
[43–55], but its quantum implications have not been consid-
ered yet. In order to construct the quantum cosmology of the
f (R, T ) gravity we adopt for the classical background met-
ric the Friedmann–Robertson–Walker form, and we assume
that the matter content of the very early Universe consists of
a perfect fluid, described by two thermodynamic parameters
only, the energy density, and the thermodynamic pressure,
respectively. In order to introduce the canonical quantiza-
tion scheme for the f (R, T ) gravity theory, as a first step
in our study we obtain the general form of the gravitational
Hamiltonian, of the quantum potential, and of the canonical
momenta, respectively. Once these quantities are explicitly
found we write down the full Wheeler–de Witt equation of
the f (R, T ) modified gravity theory, which describes the
quantum properties of the very early Universe, when quan-
tum effects had a dominant influence on the dynamic evo-
lution of the system. We introduce and consider in detail
the quantum cosmological properties of a particular model
of the f (R, T ) theory, namely, the quantum cosmology of
the f (R, T ) = F0(R) + θRT model, in which F0(R) is
an arbitrary function of the Ricci scalar, and θ is a function
of the scale factor only. We obtain the Hamiltonian form of
the classical equations of motion for this model, and then
we write down the Wheeler–de Witt equation, describing the
evolution of the wave function of the early Universe. Start-
ing from the Wheeler–de Witt equation we introduce a time
parameter for the corresponding quantum dynamical system,
which allows us to formulate the Schrödinger–Wheeler–de
Witt equation for the quantum-mechanical model under con-
sideration. In order to obtain the properties of the early Uni-
verse we develop perturbative approach for the study of this
cosmological equation, and the energy levels of the Uni-
verse are obtained by using a twofold degenerate perturba-
tion approach. Finally, we address the problem of the quan-
tum time by introducing a second quantization approach for
the description of the time in the quantum cosmology of the
f (R, T ) modified gravity theory.

The present paper is organized as follows. The Hamil-
tonian formulation of the f (R, T ) theory of gravity is pre-
sented in Sect. 2, where the canonical momenta associated
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to the field variables as well as the potential are obtained.
This allows us to write down the Wheeler–de Witt equa-
tion. The quantum cosmological formulation of the par-
ticular model f (R, T ) = F0(R) + θRT is presented in
Sect. 3. In particular, we identify the canonical momen-
tum associated to the time variable, which allows us to
transform the Wheeler–de Witt equation into an equivalent
Schrödinger–Wheeler–de Witt equation. The solutions of this
Schrödinger–Wheeler–de Witt equation are studied, by using
a perturbative approach, in Sect. 4. We consider the problem
of the second quantization of time in Sect. 5. In Sect. 6 we
discuss and conclude our results. The derivation of the field
equations of the f (R, T ) theory of gravity, of the energy
balance equation, as well as the canonical momenta for the
f (R, T ) = F0(R)+ θRT model, and the expressions of the
Ricci tensor for the Friedmann–Robertson–Walker metric are
presented in Appendices A–D, respectively.

2 The Wheeler–de Witt equation in f (R, T ) gravity
theory

We begin our study of the quantum cosmological aspects of
the f (R, T ) gravity theory by briefly presenting the clas-
sical field and conservation equations. Then we obtain the
Hamiltonian formulation of the theory, which allows us to
write down the Wheeler–de Witt equation in the f (R, T )

theory, which describes the quantum evolution of the very
early Universe in the presence of geometry-matter coupling.
In the present paper we use the natural system of units with
c = h̄ = 16πG = 1.

2.1 The f (R, T ) gravity theory

The gravitational action for the f (R, T ) gravity model is
[25]

S =
∫

f (R, T )
√−gd4x +

∫
Lm

√−gd4x . (1)

We define the energy-momentum tensor of the matter as

Tμν = − 2√−g

δ(
√−gLm)

δgμν
. (2)

By assuming that the matter Lagrangian Lm does not depend
on the derivative of gμν , we obtain

Tμν = gμνLm − 2
∂Lm

∂gμν
. (3)

The field equations of our model can then be obtained (see
Appendix A for details):

fR(R, T )Rμν − 1

2
f (R, T )gμν + (gμν� − ∇μ∇ν) fR R, T

= 1

2
Tμν − fT (R, T )Tμν − fT (R, T )�μν, (4)

where �μν ≡ gαβδTαβ/δgμν . Contracting the above field
equations we find

fR(R, T )R − 3� fR(R, T ) − 2 f (R, T )

= 1

2
T − fT (R, T )T − fT (R, T )�. (5)

For a perfect fluid, in the comoving frame, the energy-
momentum tensor takes the form

Tμν = (ε + p)UμUν + pgμν, (6)

where ε and p are the matter energy density and thermo-
dynamic pressure, respectively, and Uμ is the four-velocity,
satisfying the normalization condition gμνUμUν = −1.

For the perfect fluid we can fix the matter Lagrangian Lm

as Lm = p, which gives

�μν = −2Tμν + pgμν. (7)

The f (R, T ) gravity theory is a non-conservative theory, and
for the energy balance equation we obtain (see Appendix B
for the details of the calculations)

Uμ∇με + (ε + p)∇μUμ

= − fT
1
2 + fT

×
[

(ε + p)Uμ∇μ ln fT + 1

2
Uμ∇μ(ε − p)

]

.

(8)

2.2 The effective cosmological Lagrangian and the
potential in f (R, T ) gravity theory

We assume that the geometry of spacetime is described by
the Friedmann–Robertson–Walker (FRW) metric, which in
spherical coordinates is given by

ds2 = −N 2(t)dt2 + a2(t)

[
dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ2)

]

,

(9)

where N (t) is the lapse function, a(t) is the cosmological
scale factor, and k = 1, 0,−1, correspond to the closed, flat
and open Universe models, respectively. To proceed, as a first
step we obtain the effective Lagrangian for the f (R, T ) the-
ory, whose variation with respect to its dynamical variables
yields the appropriate equations of motion.

The trace of the energy-momentum tensor is T = −ε +
3p. In the comoving reference frame the components of
the four-velocity are Uμ = (N (t), 0, 0, 0) and Uμ =
(−1/N (t), 0, 0, 0), respectively. Therefore the trace of the
field equation (5) of the f (R, T ) gravity model becomes
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fR(R, T )R − 2 f (R, T ) + 3� fR(R, T )

= 1

2
T + fT (R, T )T − 4p fT (R, T ). (10)

With the use of the above identity, and by taking into account
the explicit form of the components of the Ricci tensor, given
in Appendix C, we obtain the cosmological action for the
f (R, T ) theory of gravity as

Sgrav =
∫

dt

{

Na3 f (R, T )

− λ

[

R − 6

N

(
ä

a
+

(
ȧ

a

)2

+ kN 2

a2 − Ṅ ȧ

Na

)]

−μ

[
1

2
T + fT (R, T )T − fR(R, T )R

− 3� fR(R, T ) + 2 f (R, T ) − 4p fT (R, T )

]}

.

(11)

In Eq. (11) λ and μ are Lagrange multipliers. The term with
the second Lagrange multiplier is chosen as the contracted
field equation, because it is derived directly from the action,
and no further assumptions need to be introduced. Moreover,
if we use other formulations for the action, like adopting
for the factor multiplying the second Lagrange multiplier
the form T + ε − 3p, we will lose important insights from
the geometry of the modified gravity, and we will have to
face conceptual problems when ε and p are related by the
radiation equation of state p = ε/3.

After taking the variation of Eq. (11) with respect to R
and T , we obtain the following expressions of λ and μ:

μ

Na3 = fT
1/2 + 3 fT + fT T T − fRT R − 3� fRT − 4p fT T

≡ μ̃, (12)
λ

Na3 = fR − μ( fRT T − fRR R + fR − 3� fRR − 4p fRT )

Na3

≡ λ̃. (13)

Hence we obtain the gravitational part of the Lagrangian as

Lgrav = − 6

N
aȧ2̃λ − 6

N
a2ȧ ˙̃λ + 6kNaλ̃ − Na3V, (14)

where the potential V reads

V = − f (R, T ) + λ̃R + μ̃

[
1

2
T + fT (R, T )T − fR(R, T )R

−3� fR(R, T ) + 2 f (R, T ) − 4p fT (R, T )

]

. (15)

In order to make the presentation simpler, we introduce the
following notations:

fR = A, fT = B, fRR = C, fRT = D, fT T = E,

� fRR = F,� fRT = G, T − 4p = M. (16)

Now λ̃ can be expressed using the new variables as

λ̃ = A − B(DM − CR + A − 3F)

1/2 + 3B + EM − DR − 3G
. (17)

In the following we further denote

A = 1

2
+ 3B + EM − DR − 3G, (18)

Z = DM − CR + A − 3F. (19)

Thus we have

λ̃ = A − BZ
A . (20)

After taking the time derivative, we find

˙̃λ = Ȧ − BŻ + ḂZ
A + BZȦ

A2 . (21)

2.3 The cosmological Hamiltonian in f (R, T ) gravity
theory

The canonical momentum associated to the coordinate q is
given by Pq = ∂L

∂q̇ . Hence the cosmological Hamiltonian of
the f (R, T ) gravity is given by

Hgrav = ȧ Pa + ȦPA + Ḃ PB + Ċ PC + ḊPD + Ė PE

+Ḟ PF + Ġ PG + ṘPR + Ṁ PM − Lgrav. (22)

After some simple calculations we obtain the explicit forms
of the canonical momenta in the cosmological f (R, T ),
which are presented in Appendix D. With these canonical
momenta, we obtain the cosmological Hamiltonian of the
f (R, T ) theory of gravity,

Hgrav =
(

− 6

N
aȧ2̃λ − 6kNaλ̃ + Na3V

)

− 6

N
a2ȧ

[

Ȧ − B Ȧ

A − ḂZ
A + 3B ḂZ

A2 + BRĊ

A

− BḊM

A − BZRḊ

A2 + BZ ĖM

A2 + 3BḞ

A − 3BZĠ

A2

+ BC Ṙ

A − BZDṘ

A2 − BDṀ

A + BZE Ṁ

A2

]

. (23)

In order to simplify the notation we will represent the
Hamiltonian as Hgrav = (· · · ) − 6

N a
2ȧ[· · · ]. Now we can

easily find the relation

Pa PA =
(

6

N

)2

a3ȧ2̃λ

(

1 − B

A

)

+
(

6

N

)2

a4ȧ[· · · ]

+
(

6

N

)2

a4ȧ

(

− B

A

)
˙̃λ. (24)

Since

Pa PF =
(

6

N

)2

2a3ȧ2̃λ

(

3
B

A

)

+
(

6

N

)2

a4ȧ ˙̃λ
(

3B

A

)

,

(25)
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by combining the above two equations, we obtain

− 6

N
a2ȧ[· · · ] = − N

6a2

(

Pa PA + 1

3
Pa PF

)

+ 2 · 6

N
aȧ2̃λ.

(26)

Therefore for the gravitational Hamiltonian we find

Hgrav = 6

N
aȧ2

(

A − BZ
A

)

− N

6a2

(

Pa PA + 1

3
Pa PF

)

+Na3V − 6kNaλ̃. (27)

Since we have PA = − 6
N a

2ȧ
(
1 − B

A
)
, after taking the

square of it, we have

6

N
aȧ2A =

[
P2
A

( 6
N

)2
a4ȧ2

− B2

A2 + 2B

A

]

· 6

N
aȧ2A

= N P2
A

6a3 A + 6

N
aȧ2A

(−B2

A2 + 2B

A

)

. (28)

Thus we arrive at the following form of the Hamiltonian:

Hgrav = N

6a3 P
2
A A − N

6a2

(

Pa PA + 1

3
Pa PF

)

− 6

N
aȧ2 AB

2

A2 − 6

N
aȧ2 B(Z − 2A)

A
+ Na3V − 6kNaλ̃. (29)

Since

PC PR =
(

− 6

N
a2ȧ

)2 (
B2RC

A2 − B2ZRD

A3

)

, (30)

PDPM =
(

− 6

N
a2ȧ

)2 (

− BM

A − BZR

A2

)

×
(

− BD

A + BZE

A2

)

, (31)

1

3
PE PF =

(

− 6

N
a2ȧ

)2 B2ZM

A3 , (32)

P2
G =

(

− 6

N
a2ȧ

)2 9B2Z2

A4 , (33)

PC

(

PA + PF
3

)

=
(

− 6

N
a2ȧ

)2 (
BR

A

)

, (34)

we have

− 6

N
aȧ2 B(Z − 2A)

A
= − 6

N
aȧ2 B (DM − CR + A − 3F − 2A)

1/2 + 3B + EM − DR − 3G

= N

6a3

(

PA + PF
3

)
PF
3

(A + 3F)

− N

6a3

A
B

(PC PR + PDPM ) + 6aȧ2

N

A
B

BZE

A2

×
(

− BM

A − BZR

A2

)

− 6aȧ2

N

(

−2BCR

A

)

. (35)

Therefore we obtain the gravitational part of the cosmologi-
cal Hamiltonian of the f (R, T ) theory of gravity as

Hgrav = N

6a3

(

PA + PF
3

)

(APA + FPF − aPa)

+ N

6a3

A
B

(

PC PR + PDPM + PE PF
3

E + P2
G

9
RE

)

+ N

6a3 2PC

(

PA + 1

3
PF

)

C + Na3V

− 6kNa

(

A − BZ
A

)

, (36)

where the quantum potential V is given by

V = − f + λ̃R + μ̃

(
1

2
T + fT M − fR R − 3� fR + 2 f

)

.

(37)

For the matter part of the Hamiltonian we have [56]

Hmatt = −Lmatt = −Na3 p, (38)

and thus the total Hamiltonian of the system is

H = Hgrav + Hmatt. (39)

The gravitational Hamiltonian constructed above consists
of all canonical momenta associated to all variable of the
f (R, T ) gravity theory, which can lead to the existence of
a complex dynamics of these field variables, and of their
associated canonical momenta.

2.4 The Wheeler–de Witt equation in f (R, T ) gravity

From the Hamiltonian given by Eq. (39) we immediately
obtain the Wheeler–de Witt equation in the framework of the
f (R, T ) gravity theory as

H� = (Hgrav + Hmatt)� = NH� = 0. (40)

Here the Hamiltonian operator H takes the form

H = 1

6a3

(

P2
A A + PAPF F−PAPaa + A

3
PF PA + F

3
P2
F − a

3
PF Pa

)

− 1

6a3

A
B

(

PC PR + PDPM + PE PF
3

E + P2
G

9
RE

)

+ 2

6a3 PC

(

PA + PF
3

)

C + a3V − 6ka

(

A − BZ
A

)

− a3 p.

(41)

In order to quantize the model we perform first parameter
ordering. There are various ways to do it [57], but in the
following we choose a procedure that keeps the Hamiltonian
Hermitian [41]. Hence we assume the following relations (we
let Pq = −i(∂/∂q)),
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qP2
q = 1

2

(

qu Pqq
vPqq

w + qwPqq
vPqq

u
)

= −q
∂2

∂q2 + uw
1

q
, (42)

where the parameters u, v, w satisfy u + v + w = 1, and
denote the ambiguity in the ordering of the factors q and Pq ,

qPq = 1

2

(
qr Pqq

s + qs Pqq
r ) = −i

(

q
∂

∂q
+ 1

)

, (43)

where the parameters r, s satisfy r + s = 1, and denote the
ambiguity in the ordering of factors q and Pq . Similarly we
find

q−2Pq = −i

(

− 2

q3 + 1

q2

∂

∂q

)

. (44)

Thus we obtain the quantized cosmological Hamiltonian
in f (R, T ) gravity theory as

H = − 1

6a3

[ (

A
∂

∂A
+ F

∂

∂F
+ 2C

∂

∂C
− a

∂

∂a
+ 5

)

×
(

∂

∂A
+ 1

3

∂

∂F

)

− u1w1
1

A
− u2w2

1

3F

]

+ 1

6a3

[A
B

(
∂

∂C

∂

∂R
+ ∂

∂D

∂

∂M
+ E

3

∂

∂E

∂

∂F
− RE

9

∂2

∂G2

)

+
(

− D

B

∂

∂C
− R

B

∂

∂M
+ E

B

∂

∂D
+ A + EM

3B

∂

∂F

+ RE

3BG
u3w3

)]

+ a3V − 6ka

(

A − BZ
A

)

− a3 p. (45)

Here u1, w1, u2, w2, and u3, w3 denote the ambiguity in
the ordering of factors A, PA, F, PF , and G, PG , respec-
tively.

In the next section we will investigate some particular
quantum cosmological models in the f (R, T ) theory of grav-
ity.

3 The quantum cosmology of the
f (R, T ) = F0(R) + θRT gravity model

After considering the general case of the Wheeler–de Witt
equation in the previous section, we can see that an analytic
general solution of this equation for arbitrary f (R, T ) would
be difficult to obtain. Instead, in the present section we con-
sider a specific case, in which the gravitational action is of
the simple form

f (R, T ) = F0(R) + θRT, (46)

where F0(R) is an arbitrary function of the Ricci scalar,
and θ is an arbitrary function depending on the scale factor
a(t) only. In this toy model, the coupling of the curvature
of spacetime and the trace of the matter energy-momentum

tensor can give a hint of the implications on the quantum
cosmological evolution of the existence of such a coupling.

3.1 The Hamiltonian and the Wheeler–de Witt equation

In the newly born quantum Universe, the spacetime has a
very high curvature, so that R → ∞. Accordingly, in the
present model we have

A = 1

2
+ 2θR, B = θR,

B

A = θR

1/2 + 2θR
. (47)

Similarly, the other variables become

A = F0
R + θT, C = F0

RR, D = θ, E = 0, G = �θ.

(48)

When R → ∞, B/A = 1/2. From the definition of PA

and PF , we obtain PF = [3B/ (A − B)] PA ≈ 3PA. By
assuming that in the new born quantum Universe fR �
� fRR → A � F , we obtain the gravitational Hamiltonian
of the f (R, T ) = F0(R) + θRT gravity as

Hgrav = N

6a3 P
2
A A

A
A − B

− N

6a2 Pa PA
A

A − B

− N

6a3

A
B

(PC PR + PDPM ) + 2N

6a3

A
A − B

PAPCC

+ Na3V − 6kNa

(

A − BZ
A

)

= −2
N

6a2 Pa PA

+ 2
N

6a3 P
2
A A − 2

N

6a3 (PC PR + PDPM )

+ 4N

6a3 PAPCC + Na3V − 6kNa

(

A − BZ
A

)

.

(49)

In the above equation the quantum potential is defined as

V =
(

2Rθ

1/2 + 2Rθ
− 1

) (
F0 − F0

R R
)

+ Rθ

1/2 + 2Rθ

[
1

2
T + CR2 + 3FR − 3� fR

]

. (50)

In the limit R → ∞, and by assuming that θ 	= 0, the
potential becomes

V = 1

2

[
1

2
T + CR2 + 3FR − 3� fR

]

. (51)

In this approximation the total Hamiltonian of the system
becomes

H = Hgrav + Hmatt

=
[

− 2N

6a2 Pa PA + 2N

6a3 P
2
A A − 3kNaA

]

+
[

− 2N

6a3 PC PR + Na3

2
CR2 − 3kNaCR

]
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+
[

− 2N

6a3 PDPM + Na3

4
M + 3kNaDM

]

+ 4N

6a3 PAPCC + 3Na3

2

[

FR − � fR

]

. (52)

If in the Lagrangian/Hamiltonian we have some terms that
can be omitted in the action, they can also be omitted in L and
H , without causing any physical differences in the dynamics
of the system. In Eq. (52), due to Gauss theorem, we have
∫

dt
√−g

3Na3

2
� fR =

∫

M
d4x

√−g� fR (53)

=
∮

∂M
f ;μ
R

√−gdσ 3
μ. (54)

Then the variational derivative of this term vanishes,

2√−g

δ

δgμν

∫ √−g� fRd4x = 0. (55)

Therefore this term can be omitted in the Hamiltonian func-
tion. Thus we arrive at the Wheeler–de Witt equation for the
f (R, T ) = F0(R) + θRT gravitational model, which has
the form

H� =
{ (

2

6a2

∂2

∂a∂A
− 4

6a3C
∂

∂A

∂

∂C
− 8

6a3

∂

∂A

− 2

6a3 A
∂2

∂A2 + 2

6
u1w1

1

Aa3 − 3kaA

)

+
(

2

6a3

∂

∂C

∂

∂R
+ a3

2
CR2 − 3kaCR

)

+
[

2

6a3

∂2

∂D∂M
+ a3

4
M + 3kaDM

]

+3a3

2
FR

}

� = 0. (56)

3.2 The Hamiltonian form of the field equations

In classical mechanics the total time derivative of any func-
tion can be obtained with the use of the Poisson bracket {, }
as

d

dt
f = ∂ f

∂t
+ { f, H}. (57)

If the physical variables do not depend explicitly on the time
t , we obtain

d

dt
f = { f, H}. (58)

Therefore we can formulate the classical equations of motion
of the f (R, T ) gravity theory as

ȧ = {a, H} = −2
N

6a3 PA, (59)

Ṗa = {Pa, H} = N

{ (

− 2

3a3 PAPa + 1

a4 P
2
A A + 3k A

)

+
(

− 1

a4 PC PR − 3a2

2
CR2 − 3kCR

)

+
[

− 1

a4 PDPM − 3a2

4
M + 3kDM

]

+ 12

6a4 PAPCC

}

,

(60)

Ȧ = {A, H} = N

[

− 1

3a2 Pa + 2

3a3 APA + 4

6a3 PCC

]

,

(61)

ṖA = {PA, H} = N

[

− 1

3a3 P
2
A + 3ka

]

, (62)

Ċ = {C, H} = − N

3a3

[

PR − 2PAC

]

, (63)

ṖC = {PC , H} = N

[

− a3

2
R2 + 3kaR − 4

6a3 PAPC

]

, (64)

Ṙ = {R, H} = − N

3a3 PC , (65)

ṖR = {PR, H} = N

[

− a3CR + 3kaC − 3a3

2
F

]

, (66)

Ḋ = {D, H} = −2
N

6a3 PM , (67)

ṖD = −3kNaM, (68)

Ṁ = −2
N

6a3 PD, (69)

ṖM = −N

(
a3

4
+ 3kaD

)

. (70)

Now we define a new time variable τ , which has the following
relation with the original time variable t :

τ =
∫

N (t)dt, (71)

or, equivalently, dτ/dt = N (t). From the definition of PM ,
we have

PM = 3a2ȧ

N
D = 3a3hD, (72)

where h ≡ 1
N

ȧ
a is the Hubble function. Then the Hamilton

equations of motion for a cosmological fluid become

D
′ = −hθ = −a′

a
D, P

′
D = −3kaM, (73)

M ′ = −2
1

6a3 PD, P
′
M =

(
a3

4
+ 3kaD

)

, (74)

where a prime represents the derivative with respect to τ .
The first equation of the above system gives us the coupling
constant θ = D as

D = δ

a(τ )
, δ = constant. (75)

This result tells us that the coupling between the gravitational
field and the matter field decreases as the scale of the Universe
increases. This result may be the reason why the coupling
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between matter and gravity becomes so weak in the limit of
large cosmological times, and the f (R, T ) gravity behaves
as the standard gravity nowadays.

3.3 The time problem in the quantum cosmology of the
f (R, T ) gravity

The absence of the time evolution of the wave function of
the Universe in the Wheeler–de Witt equation hinders our
efforts of understanding quantum gravity in a way similar to
standard quantum mechanics, or quantum field theory. Below
we propose a way to turn the Wheeler–de Witt equation into a
Schrödinger type equation. For the product PDPT we obtain
immediately the result

− 2

6a3 PDPM = −hDPD. (76)

In the following we make the fundamental assumption that
the above term can be interpreted as Pτ , which is the canoni-
cal momentum for time. There is a convincing reason for this
assumption: after performing quantization Pq = −i ∂

∂q , we
obtain

Pτ = −i
d

dτ
= da(τ )

dτ

(

−i
∂

∂a

)

(77)

= −a′

a

δ

a

(

−a2

δ

) (

−i
∂

∂a

)

= −hDPD. (78)

This result holds if we assume that a(t) is the only time
dependent variable in the model. The relation proved above
allows us to perform the transformation

− 2

6a3 PDPM → Pτ . (79)

The validity of this transformation shows us that the coupling
between the gravitational field and the matter field may play
an important role in the evolution of the very early Universe.
In the following we will make a further simplification of the
gravitational action, by assuming it to be

f (R, T ) = R + θRT . (80)

Then C = F = PR = 0, and for the cosmological Hamilto-
nian of the system we obtain

H = Hgrav + Hmatt = − 2N

6a2 Pa PA + 2N

6a3 P
2
A A

− 3kNaA − N

6a3 PDPM + Na3

4
M + 3kNaM. (81)

This Hamiltonian is very similar to the Hamiltonian
obtained in the f (R) model presented in [41], except for the
appearance of a new term −2 N

6a3 PDPT + N ( a
3

4 + 3ka)M ,
which shows us the effect of the coupling between spacetime
and matter. The Wheeler–de Witt equation H� = 0 for this
f (R, T ) gravity model reads

H� =
[

− 2

6a2 Pa PA + 2

6a3 P
2
A A − 3kaA − 2

6a3 PDPM

+ a3

4
M + 3kaDM

]

� = 0. (82)

After the use of the transformation introduced in Eq. (79),
we obtain

Heff� =
[

− 2

6a2 Pa PA + 2

6a3 P
2
A A − 3kaA

+ a3

4
M + 3kaDM

]

� = −Pτ�. (83)

After substituting all Pq = −i ∂
∂q to quantize the model,

we obtain the corresponding Schrödinger–Wheeler–de Witt
(SWDW) equation describing the quantum evolution of the
Universe as

Heff� =
[(

2

6a2

∂2

∂a∂A
− 4

6a3

∂

∂A
− 2

6a3 A
∂2

∂A2

+ 2

6
u1w1

1

Aa3 − 3kaA

)

+ a3

4
M + 3kaDM

]

�

= i
∂�

∂τ
, (84)

which is just of the form of the standard Schrödinger equa-
tion,

Heff� = i
∂�

∂τ
. (85)

Therefore in the f (R, T ) theory of gravity, we can gen-
erate a Schrödinger type equation from the Wheeler–de Witt
equation, which can solve the time problem in quantum grav-
ity. When dτ

dt = N (t) = 1, the WDW equation will take the
form of the Schrödinger equation we are familiar with,

H� = i
∂�

∂t
. (86)

Let us take now a deeper look into the time problem of
quantum gravity, and analyze the physical meaning of the
time τ , and of the effective Hamiltonian Heff we have intro-
duced here. In the Wheeler–de Witt equation Hψ = 0 there
seems to be no dynamics of the system. Therefore it turns
out that the wave function of the Universe (more precisely,
the physical states) do not describe states of quantum grav-
ity at a particular time, as in the standard quantum theory.
Rather, they describe states for all times, or, more precisely,
just that information as regards the state of the Universe that
is invariant under all spacetime diffeomorphisms [58]

In the modified gravity model f (R, T ) = R+ θRT , time
may be introduced locally by the coupling of the gravitational
field and the matter field, because the interaction between the
gravitational field and the matter field is also local. The pro-
found connections between thermodynamics and gravity tell
us that the arrow of time may come from the second law
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of thermodynamics, since both processes reveal irreversible
dynamics. If we only consider a small pitch of the Universe,
and think of it as an adiabatic system, withH� = 0 still valid
in it, the coupling between curvature and matter will generate
an arrow of time to measure the increase of its entropy, con-
tributed by matter. The other components of the Hamiltonian,
included in Heff , show us the dynamics of the gravitational
field, and of some matter components, so that the effective
Hamiltonian takes the form Heff ∼ b1 pi p j + b2xi x j , which
is similar to the Hamiltonian we usually meet in quantum
mechanics. Therefore one can suppose that the Schrödinger
equation in ordinary quantum mechanics might describe just
a locally effective theory of the Wheeler–de Witt equation.
In other words, we may conjecture that the Wheeler–de Witt
equation provides the global quantum description for the
Universe, while the Schrödinger equation is just the local
description for the present day microscopic regions of the
Universe.

4 A perturbative approach to the cosmological SWDW
equation in f (R, T ) gravity

In order to solve the SWDW equation Eq. (84) for the wave
function of the Universe, we look for stationary solutions,
and we separate the variables as

�(a, A, D, M, τ ) = e−i Eτψ(a, A, D, M). (87)

Here E = constant. Thus we obtain the following differential
equation describing the time evolution of the wave function
of the Universe:

Hψ =
[(

2

6a2

∂2

∂a∂A
− 4

6a3

∂

∂A
− 2

6a3 A
∂2

∂A2

+ 2

6
u1w1

1

Aa3 − 3kaA

)

+ a3

4
M + 3kaDM − E

]

ψ = 0.

(88)

By introducing the new variables x = aA
1
2 and y = A, we

obtain the differential equation for ψ

[
1

4
x2 ∂2

∂x2 − 1

4
x

∂

∂x
− 2y

∂

∂y
− y2 ∂2

∂y2 + u1w1 − 9kx4

+ 3M

(
a6

4
+ 3ka4D

)

y − 3x3y− 1
2 E

]

ψ = 0. (89)

In the following we approximate the equation of state of the
early Universe by the stiff equation of state p = ε, since
in the very high density Universe one expects the speed of
sound cs to be of the same order of magnitude as the speed
of light, cs = √

∂ε/∂p = 1. When p = ε, and since Ṙ =
− N

3a3 PC = 2 ȧ
a

1
2 R = ȧ

a R, from Eq. (8) it follows that in this
case the energy is conserved, ε′ + 3(ε + p)h = 0. Hence we
have

M = T − 4p = − w

a6 , (90)

where w > 0 is a positive constant. By substituting this result
into Eq. (89), and by letting D = δ/a(τ ), we find
[

1

4
x2 ∂2

∂x2 − 1

4
x

∂

∂x
− 2y

∂

∂y
− y2 ∂2

∂y2 + u1w1 − 9kx4

− 3w

4
y − 9wδk

y
5
2

x3 − 3x3y− 1
2 E

]

ψ = 0. (91)

4.1 Time evolution as a non-constant energy perturbation

In order to obtain a solution of the SWDW equation obtained
above, we can estimate different terms’ order of magnitude.

We know that x = aA1/2 ∼ 1/a
5
2 , y = A ∼ 1/a7, and

hence we can obtain

x4 ∼ 1/a10, y
5
2 /x3 ∼ 1/a8, x3/y

1
2 ∼ 1/a4. (92)

Since a is very small, the term x3/y
1
2 ∼ 1/a4 can be thought

of as a small perturbation. To obtain some analytic solu-
tions, we consider the case when k = 0 (flat Universe).
This choice can help us to get rid of the large coupling term

y
5
2 /x3 ∼ 1/a8. Due to the discussion by Hawking and Page

[59], we also assume that u1w1, the ordering parameter, can
be neglected. In our case this can be achieved by putting it
into the energy term, or neglecting it directly, since it is small
as compared to the variables related to a(τ ).

After making the above assumptions, we obtain the
Schrödinger–Wheeler–de Witt equation as

y
1
2

3x3

[
1

4
x2 ∂2

∂x2 − 1

4
x

∂

∂x
− 2y

∂

∂y
− y2 ∂2

∂y2 − 3w

4
y

]

� = i
∂

∂τ
�,

(93)

where � = �(x, y, τ ). In the stationary situation, we can
decompose the variables as �(x, y, τ ) = e−i Eτψ(x, y), and
thus we get

y
1
2

3x3

[
1

4
x2 ∂2

∂x2 − 1

4
x

∂

∂x
− 2y

∂

∂y
− y2 ∂2

∂y2 − 3w

4
y

]

ψ = Eψ.

(94)

Now we change the above equation into another form, and
multiply by 3x3

y
1
2

both sides. We thus have the equation
[

1

4
x2 ∂2

∂x2 − 1

4
x

∂

∂x
− 2y

∂

∂y
− y2 ∂2

∂y2 − 3w

4
y − 3Ex3

y
1
2

]

ψ = 0.

(95)

In the first formulation of the SWDW equation, given by
Eq. (94), we can think of the time evolution of the wave
function as resulting in the addition of a constant E as a per-
turbation. But what we know from the perturbation theory of
quantum mechanics tells us that a constant perturbation gives
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us no changes in the energy level and in the wave function,
which is to say that it does not affect the physical observables.
After changing the unperturbed Hamiltonian in the following
way:

y
1
2

3x3

[
1

4
x2 ∂2

∂x2 − 1

4
x

∂

∂x
− 2y

∂

∂y
− y2 ∂2

∂y2 − 3w

4
y

]

→
[

1

4
x2 ∂2

∂x2 − 1

4
x

∂

∂x
− 2y

∂

∂y
− y2 ∂2

∂y2 − 3w

4
y

]

,

we obtain the new version of the SWDW equation, where we
do not consider the constant E as induced by a time evolution
effect anymore. Instead, we consider it as a non-constant
perturbation

Vpert = −3Ex3

y
1
2

, (96)

of the system, such that the total Hamiltonian is H =
H0 + Vpert. Hence we can say that the time evolution effect
on the wave function in a non-perturbative system, like the
f (R, T ) gravity theory, is equivalent to the splitting of the
degenerate energy levels (loss of symmetries) in a perturba-
tive, static system. This result shows that the time evolution
in the quantum cosmology of f (R, T ) gravity leads to the
splitting of the degenerate energy levels, which reveals the
deep connections between energy and time.

In the new form of the Hamiltonian the unperturbed com-
ponent H0 satisfies the equation H0ψ = 0, whose eigenvalue
of energy is zero. In the unperturbed Hamiltonian we can sep-
arate the variables as ψ(x, y) = X (x)Y (y), and obtain
[

x2 ∂2

∂x2 − x
∂

∂x
+ (1 − v2)

]

X (x) = 0, (97)

[

y2 ∂2

∂y2 + 2y
∂

∂y
+ 3w

4
y − v2 − 1

4

]

Y (y) = 0, (98)

where the separation constant is denoted as v2−1
4 . Then we

obtain the expression of the wave function for the unper-
turbed Hamiltonian H0 as

�(x, y, τ ) = e−i Eτ
(
A1x

1−v + A2x
−1−v

) 1√
y

×
(
B1 Jv(

√
3wy) + B2 J−v(

√
3wy)

)
, (99)

where A1, A2, B1, B2 are integration constants. Jv(x) is the
Bessel function, and Jv(x) and J−v(x) are linearly indepen-
dent functions. Since in the early Universe, we have x → ∞,
in order to have an analytic solution in the whole plane, we
let A1 = B2 = 0, and we assume v ≥ 0.

4.2 The twofold degenerate case

In order to investigate the energy level split, we consider the
simplest case, the twofold degenerate case [60]. Assuming

that the system is twofold degenerate, at the beginning of
time τ = 0, the wave function can be written as

� = c1ψ1 + c2ψ2 (100)

where c1, c2 are constants satisfying the relation |c1|2 +
|c2|2 = 1, and

ψ1 = x−1−v1
1√
y
Jv1

(√
3wy

)
, (101)

ψ2 = x−1−v2
1√
y
Jv2

(√
3wy

)
, (102)

where v1 and v2 are positive constants. For the perturbed
system with perturbation Vpert = −3E x3

y
1
2

, we write

Vi j =
∫

ψ∗
i Vpertψ jdxdy. (103)

With the use of the unperturbed wave functions, we obtain

V11 =
∫

ψ∗
1 Vpertψ1dxdy

=
∫

(−3E)x1−2v1
1

y
3
2

[
Jv1

(√
3wy

)]2
dxdy, (104)

V22 =
∫

ψ∗
2 Vpertψ2dxdy

=
∫

(−3E)x1−2v2
1

y
3
2

[
Jv2

(√
3wy

)]2
dxdy, (105)

V12 = V ∗
21 =

∫
ψ∗

1 Vpertψ2dxdy =
∫

(−3E)x1−v1−v2

× 1

y
3
2

[
Jv1

(√
3wy

)
Jv2

(√
3wy

)]
dxdy. (106)

Since the curvature scalar and the scale factor are always
positive, we cannot define wave functions that are analytic
on whole space, thus the orthogonality and normalization are
not satisfied. In the following we define the quantities

S11 =
∫

ψ∗
1 ψ1 =

∫
x−2−2v1

1

y
[Jv1(

√
3wy)]2dxdy, (107)

S22 =
∫

ψ∗
2 ψ2 =

∫
x−2−2v2

1

y
[Jv2(

√
3wy)]2dxdy, (108)

S12 = S∗
21 =

∫
ψ∗

1 ψ2

=
∫

x−2−v1−v2
1

y
Jv1(

√
3wy)Jv2(

√
3wy)dxdy. (109)

In the special function theory, we have the Schafheitlin inte-
gral [61], which reads
∫ ∞

0

Jμ(at)Jν(bt)

tλ
dt

= �(λ)�(
μ+ν−λ+1

2 )( a2 )λ−1

2�(
μ−ν+λ+1

2 )�(
ν−μ+λ+1

2 )�(
μ+ν+λ+1

2 )
, (110)
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where a and b are positive constants, and satisfy the relations
below to make the integral convergent,

Re(μ + ν + 1) > Re(λ) > 0. (111)

For z ∈ � the Gamma function �(z) satisfies the identities
�(z + 1) = z�(z), �(1) = 1, �( 1

2 ) = √
π . In the following

we will restrict our analysis to the simplest case v1 = 3
2 , v2 =

5
2 . With the use of these values we obtain

V11 = −3E
∫

1

x2

[J 3
2
(
√

3wy)]2

y
3
2

dxdy

= η

∫ ∞

l
dx

∫ ∞

0

1

x2

[J 3
2
(z)]2

z2 dz

= η

∫ ∞

l

dx

x2

1

2π
= η

2πl
, (112)

V22 = −3E
∫

1

x4

[J 5
2
(
√

3wy)]2

y
3
2

dxdy

= η

∫ ∞

l
dx

∫ ∞

0

1

x4

[J 5
2
(z)]2

z2 dz

= η

∫ ∞

l

dx

x4

1

6π
= η

18πl3
, (113)

V12 = V21 = −3E
∫

1

x3

J 3
2
(
√

3wy)J 5
2
(
√

3wy)

y
3
2

dxdy

= η

∫ ∞

l
dx

∫ ∞

0

1

x3

J 3
2
(z)J 5

2
(z)

z2 dz

= η

∫ ∞

l

dx

x3

1

15
= η

30l2
, (114)

S11 =
∫

1

x5

[J 3
2
(
√

3wy)]2

y
dxdy

=
∫ ∞

l
dx

∫ ∞

0

2

x5

[J 3
2
(z)]2

z
dz

=
∫ ∞

l

2dx

x5

1

3
= 1

6l4
, (115)

S22 =
∫

1

x7

[J 5
2
(
√

3wy)]2

y
dxdy

=
∫ ∞

l
dx

∫ ∞

0

2

x7

[J 5
2
(z)]2

z
dz

=
∫ ∞

l

2dx

x7

1

5
= 1

15l6
, (116)

S12 = S21 =
∫

1

x6

J 3
2
(
√

3wy)J 5
2
(
√

3wy)

y
dxdy

=
∫ ∞

l
dx

∫ ∞

0

2

x6

J 3
2
(z)J 5

2
(z)

z
dz

=
∫ ∞

l

2dx

x6

1

2π
= 1

5πl5
, (117)

where we have denoted z = √
3wy → dz =

√
3w

2
√
y dy, and

η = −6E
√

3w, respectively, and we have also assumed that
x and y are independent variables. The upper limits in the
integrals are both ∞ when a(τ ) → 0. As for the lower limits
of integration we assumed them to be very small positive
numbers l and l1, which correspond to the transition from
the quantum regime to the classical regime, and thus they
describe the limit of applicability of the present quantum
model of the Universe. From the numerical evaluation of the
integrals it follows that when l1 < 0.5 the integral values
will not vary much, and therefore we let l1 = 0.

4.3 The energy levels of the quantum Universe

We use the degenerate perturbation theory to find the energy
levels in the quantum cosmology of f (R, T ) gravity. The
wave function is given by � = c1ψ + c2ψ2, and we already
know the eigenvalues and the eigenfunctions of the unper-
turbed Hamiltonian H0, which are given as solutions of the
equation

H0ψi = E (0)ψi , i = 1, 2. (118)

By substituting the above equation in the Schrödinger
equation, H� = (H0 + V )� = E�, we obtain

(H0 + V )(c1ψ1 + c2ψ2) = E(c1ψ1 + c2ψ2). (119)

After multiplying Eq. (119) with ψ∗
1 and ψ∗

2 , and integrating
over a volume V , we obtain the equations

c1

(
E (0)

1 S11 + V11 − ES11

)
+ c2

(
E (0)

2 S12 + V12 − ES12

)
= 0,

(120)

c1

(
E (0)

1 S21 + V21 − ES21

)
+ c2

(
E (0)

2 S22 + V22 − ES22

)
= 0.

(121)

In the degenerate situation, we let E = E (0) + E (1), and
cn = c(0)

n , that is, we take for these coefficients the zeroth
order (unperturbed) approximation. Then we have

c1

(
V11 − E (1)S11

)
+ c2

(
V12 − E (1)S12

)
= 0, (122)

c1

(
V21 − E (1)S21

)
+ c2

(
V22 − E (1)S22

)
= 0. (123)

From these two equations we can find the coefficients c1, c2,
after the perturbed energy E (1) is obtained. The secular equa-
tion is
∣
∣
∣
∣
V11 − E (1)S11 V12 − E (1)S12

V21 − E (1)S21 V22 − E (1)S22

∣
∣
∣
∣ = 0. (124)

Then we obtain the first-order modifications of the energy as

E (1) = −B ± √
B2 − 4AC

2A
, (125)
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where

A = S11S22 − S12S21, (126)

B = S12V21 + S21V12 − S11V22 − S22V11, (127)

C = V11V22 − V12V21. (128)

In the case analyzed earlier, where v1 = 3
2 , v2 = 5

2 , we
obtain

A =
(

1

90
− 1

25π2

)
1

l10 , B = − 79

2700π

η

l7
, (129)

C =
(

1

36π2 − 1

900

)
η2

l4
. (130)

The two modified energy levels are

E (1)
± = −B ± √

B2 − 4AC

2A

=
79

2700π
±

√
( 79

2700π

)2 − 4
(

1
90 − 1

25π2

) (
1

36π2 − 1
900

)

2
(

1
90 − 1

25π2

) ηl3

= β±ηl3 ≈ (0.660 ± 0.440)ηl3 (131)

where β± are two constants. From the above equation we
know that the modified energies have the same sign, and they
are proportional to E , as well as proportional to l3, which will
tell us the lower limit of the size of the energy gap, if we know
the numerical value of l. From Eq. (122) the wave function’s
coefficients are obtained:

c1 =

√√
√
√
√
√

(
η

30l2
− E (1)

± 1
5πl5

)2

(
η

2πl − E (1)
± 1

6l4

)2 +
(

η

30l2
− E (1)

± 1
5πl5

)2

=

√√
√
√
√
√

(
1

30 − β(±)

5π

)2

(
1

2π
− β±

6

)2
l2 +

(
1

30 − β±
5π

)2 (132)

and

c2 = ±

√√
√
√
√
√

(
1

2π
− β±

6

)2
l2

(
1

2π
− β±

6

)2
l2 +

(
1

30 − β±
5π

)2 , (133)

respectively.
The above expressions show the dependence of the coeffi-

cients c1 and c2 on l. When l is large, the Universe will have
a higher probability to be in the state ψ2, and it will have a
higher probability to be in the state ψ1 when l is small. Note
that the coefficients c − 1 and c2 do not depend on η, which
implies that the parameter E will not affect the state of the
wave function.

4.4 The transition probability in the quantum Universe

In the previous section we have considered the early Universe
as a quantum system that has twofold degenerate energy lev-
els corresponding to the wave functions ψ1, ψ2 at the time
τ = 0. In the following we will consider the probability of
a transition of the Universe, from the ψ1 state at τ = 0, to
the ψ2 state at time τ , the transition taking place due to a
perturbation of the initial state.

In the zeroth order approximation the wave functions are

ψ = c1ψ1 + c2ψ2, ψ ′ = c′
1ψ1 + c′

2ψ2, (134)

where c1, c2 and c′
1, c

′
2 are the two pair of coefficients

obtained previously. Here ψ and ψ ′ are the wave functions
corresponding to two energy states E0 + E (1)

+ and E0 + E (1)
− ,

respectively, where E0 = 0 in our case, and E (1)
+ and E (1)

−
are the modifications of the energy due to the effect of the
perturbation. From the above equation we obtain

ψ1 = c′
2ψ − c2ψ

′

c1c′
2 − c′

1c2
. (135)

After reintroducing the time factor, we obtain the time
dependent wave functions as

�1 = e− i
h̄ E0τ

c1c′
2 − c′

1c2

[

c′
2ψe− i

h̄ E
(1)
+ τ − c2ψ

′e− i
h̄ E

(1)
− τ

]

= 1

c1c′
2 − c′

1c2

[

c′
2ψe− i

h̄ E
(1)
+ τ − c2ψ

′e− i
h̄ E

(1)
− τ

]

. (136)

Note that �1 = ψ1 at τ = 0. Then we use ψ1, ψ2 to rep-
resent ψ,ψ ′, and hence �1 becomes the linear combination
of the wave functions ψ1, ψ2, with the combination coeffi-
cients time dependent. The absolute value of the coefficient
multiplying ψ2 and integrating over the volume V is (after
squaring) the transition probability w21. Therefore we have

w21 = 1

c1c′
2 − c′

1c2

[

c1c
′
2S12e

−i
E(1)
+
h̄ τ + c′

1c2S12e
−i

E(1)
−
h̄ τ

+ c2c
′
2S22

(

e−i
E(1)
+
h̄ τ − e−i

E(1)
−
h̄ τ

) ]

=
∣
∣
∣
∣
Q1

Q3

(

e−i
E(1)
+
h̄ τ − e−i

E(1)
−
h̄ τ

)

+ Q2e
−i

E(1)
−
h̄ τ

∣
∣
∣
∣

2

= 2

(
Q2

1

Q2
3

− Q1Q2

Q3

) [

1 − cos

(
E (1)

+ − E (1)
−

h̄
τ

) ]

+ Q2
2, (137)

where we have denoted

Q1 = c1c
′
2S12 + c2c

′
2S22, Q2 = S12, Q3 =c1c

′
2 − c′

1c2.

(138)
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With the use of the previous results, the transition proba-
bility in ordinary units is

w21 = 0.0106435

l10 − 0.00659062

l10 cos

(
0.880802

h̄
ηl3τ

)

.

(139)

From the above equation it follows that the transition prob-
ability is a cosine function of the time τ . When τ is very
small we have w21 proportional to τ 2. Since we know that
the probability is smaller than one, we have the restriction
0.0106/ l10 − 0.0066/ l10 ≤ 1, a condition which gives for
the upper limit of l the numerical value

l ≥ 0.666 → a(τ ) ≤ 1.177. (140)

Therefore we get the upper limit of the size of the Universe
for which our quantum model is applicable. The lower limit
of y is 0.320 < 0.5, and therefore we can approximate the
lower limit in the integral as l1 = 0.

5 The second quantization of time

In standard quantum mechanics, time is not an operator. The
energy of the system is the eigenvalue of the Hamiltonian,
which in the case of the harmonic oscillator can be written
in the form Ĥ = h̄ω(a+a + 1

2 ), where a and a+ are the cre-
ation and annihilation operators. On the other hand the deep
connections existing between energy and time suggest us to
find a way to define the creation and annihilation operators
of ’time’. After these operators are found, we can get rid of
the concept of a time singularity at the beginning of the Uni-
verse, and we can properly define the distance between each
pair of time slices. Consequently, we can obtain the quantum
frequency of the 3-space evolution and therefore investigate
from a quantum-mechanical point of view the birth of the
Universe.

In the previous section, by using the mathematical for-
malism of the f (R, T ) gravity theory we have defined a
’time’ variable in the WDW equation, and thus we have
transformed it into a Schrödinger–Wheeler–de Witt equation.
The time τ we have defined earlier is based on the relation
Pτ = − 2

6a3 PDPM , and therefore in our analysis we have
assumed that the idea of time in the f (R, T ) theory of grav-
ity is related to the field variables D and M . In the following
we want to define the creation/annihilation operators based
on the term 3kaDM − 2

6a3 PDPM in the WDW Eq. (84). The
procedure goes as follows.

We assume the existence of the classical and quantum
analogy for the f (R, T ) gravity model, which allows us to
turn the classical Poisson brackets into quantum commuta-
tors, {. . .} → [. . .]. Thus we postulate the following com-
mutation relations:

[
D̂, P̂D

]
=

[
M̂, P̂M

]
= i h̄. (141)

Since
(
D̂ + i M̂

) (
P̂D − i P̂M

)
= D̂ P̂D − i D̂ P̂M + i M̂ P̂D

+ M̂ P̂M , (142)
(
P̂D − i P̂M

) (
D̂ + i M̂

)
= P̂D D̂ − i P̂M D̂

+ i P̂D M̂ + P̂M M̂, (143)

we have
(
D̂ + i M̂

) (
P̂D − i P̂M

)
−

(
P̂D − i P̂M

) (
D̂ + i M̂

)
= 2i h̄.

(144)

In the following we denote

v̂ = D̂ + i M̂, P̂v = P̂D − i P̂M . (145)

Hence, by using the mathematical identities [P̂D, M̂] =
[P̂M , D̂] = 0, D̂ = D̂∗, M̂ = M̂∗, P̂D = P̂D

∗
, P̂M =

P̂M
∗
, where * denotes the complex conjugate, we obtain the

commutation relations

[v̂, P̂v] = 2i h̄, (146)

P̂v
∗
P̂v

∗ − P̂v P̂v =
(
P̂D + i P̂M

) (
P̂D + i P̂M

)

−
(
P̂D − i P̂M

) (
P̂D − i P̂M

)

= 4i P̂D P̂M , (147)

v̂∗v̂∗ − v̂v̂ =
(
D̂ − i M̂

) (
D̂ − i M̂

)
−

(
D̂ + i M̂

)

×
(
D̂ + i M̂

)
= −4i M̂ D̂, (148)

and

v̂v̂ − v̂∗v̂∗ + P̂v P̂v − P̂v
∗
P̂v

∗

=
(
v̂ − i P̂v

) (
v̂ + i P̂v

)
−

(
v̂∗ + i P̂v

∗) (
v̂∗ − i P̂v

∗)
,

(149)

respectively. Also
[
v̂∗, P̂v

∗] = (2i h̄)∗ . (150)

Let us assume now that there are two directions of time,
defined as

τ̂1 = v̂ − i P̂v, τ̂2 = v̂ + i P̂v. (151)

Then we have
[
τ̂1, τ̂2

] =
[
v̂ − i P̂v, v̂ + i P̂v

]
= −4h̄,

[
τ̂1, τ̂1

]

= [
τ̂2, τ̂2

] = 0. (152)

As a next step in our analysis we interpret τ̂1 as a creation
operator τ̂+ and τ̂2 as an annihilate operator τ̂ . Thus we
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further obtain

v̂v̂ − v̂∗v̂∗ + P̂v P̂v − P̂∗
v P̂

∗
v

=
(
v̂ − i P̂v

) (
v̂ + i P̂v

)
−

(
v̂∗ + i P̂v

∗) (
v̂∗ − i P̂∗

v

)

= τ̂+τ̂ − (
τ̂+τ̂

)∗ = N̂τ − N̂∗
τ = 2iImN̂τ = 2i N̂obs.

(153)

Here we define the complex time “number” operator

N̂τ ≡ τ̂+τ̂ . (154)

The above relation shows that the time “number” operator,
defined as

N̂obs ≡ ImN̂τ , (155)

is an observable in quantum mechanics. Although the com-
plex time has two directions, there is only one real time
observable that can be measured in the experiments.

Now let us consider the case of our WDW equation, where

− 2

6a3 PDPM + 3kaDM = 2

6a3

(
−P̂D P̂M + 9ka4 D̂M̂

)
.

(156)

In the following we discuss again the specific cosmological
model f (R, T ) = R + θRT . We rescale v̂ as

v̂ =
√

3a2kv̂. (157)

Thus we obtain the corresponding representation of the time-
related terms in the WDW equation as

− 2

6a3 P̂D P̂M + 3kaD̂M̂

= −i

12a3

(
v̂v̂ − v̂∗v̂∗ + P̂v P̂v − P̂∗

v P̂
∗
v

)

= −i

12a3

[

τ̂+τ̂ − (
τ̂+τ̂

)∗
]

= −1

6a3 ImN̂obs. (158)

From this relation it follows that the coupling between the
gravitational field and the matter field gives us a way to mea-
sure the quantum time number of a given Universe. With the
use of the above relations the WDW equation becomes
[

− 2aPa PA + 2P2
A A − 18ka4A − 3a6

2
M

]

� = N̂obs�.

(159)

Equation (159) gives us the possibility of further con-
structing a wave function with N quanta of time, which has
the property

N̂obs�N = N�N . (160)

Therefore the WDW equation becomes

[

− 2aPa PA + 2P2
A A − 18ka4A − 3a6

2
M

]

�N = N�N .

(161)

Equation (161) may give us a clear picture of the evolution
of the Universe when we use the Arnowitz–Deser–Misner
(ADM) formalism, since the dynamics of system will change
with the variation of the time quanta N . Therefore when
we are at different time moments, we shall have different
Schrödinger equations to describe the local dynamics of the
Universe.

Of course, we can also define the observable time vacuum
(the beginning of the Universe) as

τ |0τ 〉 = τ ∗|0τ∗〉 = 0, |0obs〉 = |0τ 〉|0τ∗〉. (162)

In the present section we have tried to introduce the Fock
space of the quantum time variable τ . If we define the time
creation/annihilation operators in the Fock space, then we
can get rid of the problem of time singularity at the begin-
ning of the Universe, and we may have a deeper under-
standing of the discrete nature of time. But this will also
require us to transform our wave function into the quantum
occupation number picture. However, we must note that this
technique works only when the canonical momentum and
its corresponding canonical position are not coupling with
each other. One of the difficulties of the canonical quanti-
zation of gravity is that it cannot define the Hilbert space.
The second quantization of time procedure may provide
a prospective way to think about the problems of quan-
tum gravity in the Fock space, instead of in the Hilbert
space.

6 Discussions and final remarks

Quantum cosmology offers a large number of challenges,
but also interesting insights into the fundamental nature of
the spacetime. The physical problems related to the birth
and very early evolution of the Universe might be better
understood by using the mathematical formalism of quantum
theory, including symmetries, discrete structures, or semi-
classical features extracted from a generally covariant, and
highly interacting quantum theory.

In this paper we have investigated the quantum cosmol-
ogy of the f (R, T ) gravity theory, a modified gravity theory
in which the gravitational action is an arbitrary function of
the Ricci scalar and of the trace of the energy-momentum
tensor. In the present paper we have considered that the
classical evolution of the Universe takes place in the back-
ground Friedmann–Robertson–Walker geometry, which we
are using systematically to investigate the quantum proper-
ties of the early Universe. As a starting point in our analy-
sis we have introduced the Hamiltonian formulation of the
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theory, which is constructed systematically from the action
given by Eq. (11). In the action we have introduced two
Lagrange multipliers λ and μ, with the first imposing the
(purely geometric) definition of the Ricci scalar, while the
second one imposes the trace constraint of the f (R, T ) the-
ory of gravity. This constraint goes beyond a simple def-
inition of the trace of the energy-momentum tensor, since
it allows the investigation of the deep connection between
matter and geometry at a more general level than the one
that follows from the simple thermodynamic definition of T .
From the cosmological gravitational action one can obtain the
gravitational cosmological Hamiltonian, which, by canoni-
cal quantization, leads immediately to the general form of
the Wheeler–de Witt equation, describing the evolution of
the wave function of the quantum Universe. In order to
obtain some physical insights in the quantum properties of
the Universe we consider a simple extension of the standard
general relativity, in which the gravitational Lagrangian is
a “deformation” of the form θRT of the general relativis-
tic Lagrange function R. We have investigated in detail the
properties of this quantum cosmological model. Its most
interesting feature is the possibility of the definition of a
quantum time, and of an associated canonical momentum
operator. This leads to the reformulation of the Wheeler–
de Witt equation as a Schrödinger type equation. We have
studied in detail the mathematical properties of this equa-
tion, by using a perturbative approach, in which the small
perturbation is proportional to the energy of the system,
in the framework of a twofold degenerate quantum sys-
tem. The probability of a transition between states is also
obtained. As a theoretical possibility we have also discussed
very briefly the second quantization of time, which leads
to the interesting possibility of the extension of the Hilbert
space of the canonical quantization method to the Fock
space description of quantum phenomena in the very early
Universe.

The initial state of the Universe is essentially unknown.
That is why the possibility that the initial geometry of the
Universe was not an isotropic and homogeneous, Friedmann–
Robertson–Walker type one, cannot be rejected a priori. This
raises the interesting question of the applicability of the for-
malism developed in the present to describe the quantum
cosmology of f (R, T ) gravity to more general geometries.
In particular, in the following we briefly consider the quan-
tum cosmology of f (R, T ) gravity in the anisotropic Bianchi
type I geometry, with the metric given by

ds2 = −N 2(t)dt2 + a2
1(t)dx2 + a2

2(t)dy2 + a2
3(t)dz2,

(163)

where ai , i = 1, 2, 3, are the directional scale factors. For
the Bianchi type I geometry the scalar curvature is obtained:

R = 2

N 2

[(
ä1

a1
+ ä2

a2
+ ä3

a3

)

+
(
ȧ1ȧ2

a1a2
+ ȧ1ȧ3

a1a3
+ ȧ2ȧ3

a2a3

)

− 2Ṅ

N

(
ȧ1

a1
+ ȧ2

a2
+ ȧ3

a3

) ]

. (164)

For the Bianchi type I geometry the gravitational action reads

Sg =
∫

dt

{

Na1a2a3 f (R, T ) − λ

[

R − 2

N 2 (· · · )
]

− μ

[
1

2
M − · · ·

] }

, (165)

while the gravitational Lagrangian can also be obtained:

Lg = − 2̃λ

N
(ȧ1ȧ2a3 + ȧ1ȧ3a2 + ȧ2ȧ3a1)

− 2

N
˙̃λ d

dt

(

a1a2a3 + a1a3

a2
+ a1a2

a3

)

− Na1a2a3V .

(166)

Note that all the definitions of λ̃, μ̃, V remain unchanged. In

the following we introduce a new variable W = (a1a2a3)
1
3 .

Then we easily obtain Ẇ = d
dt (a1a2a3)/3V 2 and 3WẆ =

d
dt (a1a2a3), respectively, as well as the relation

WẆ 2 = W 3

9

3∑

i=1

(
ȧi
ai

)2

+ 2

9
(ȧ1ȧ2a3 + ȧ1ȧ3a2 + ȧ2ȧ3a1) .

(167)

Hence the gravitational Lagrangian of the f (R, T ) theory of
gravity in a Bianchi type I geometry can be represented as

Lg = − 9̃λ

N
WẆ 2 + λ̃

N
W 3

3∑

i=1

(
ȧi
ai

)2

− 6

N
˙̃λW 2Ẇ − NW 3V . (168)

The Hamiltonian corresponding to the Lagrangian (168) now
reads

Hg = Ẇ PW + ȧ1Pa1 + ȧ2Pa2 + ȧ3Pa3 + · · · − Lg, (169)

and we obtain the canonical momenta corresponding to the
variables (W, a1, a2, a3) as

PW = −18̃λ

N
WẆ − 6

N
˙̃λW 2, Pa1 = 2

λ̃

N
W 3 ȧ1

a2
1

,

Pa2 = 2
λ̃

N
W 3 ȧ2

a2
2

, Pa3 = 2
λ̃

N
W 3 ȧ3

a2
3

. (170)

For the other canonical momenta we obtain the following
correspondence between the isotropic and anisotropic case:

Pq = −6

N
a2ȧ(· · · ) → Pq = − 2

N

d

dt
(a1a2a3)

= − 6

N
W 2Ẇ (· · · ). (171)
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Hence the gravitational Hamiltonian becomes

Hg = − 9̃λ

N
WẆ 2 + 2̃λ

N
W 3

3∑

i=1

(
ȧi
ai

)2

+ NW 3V − 6

N
W 2Ẇ [· · · ], (172)

where [· · · ] is represented by

− 6

N
W 2Ẇ [· · · ] = − N

6W 2 PW

(

PA + PF
3

)

+ 18

N
λ̃WẆ 2.

(173)

Since

2̃λ

N
W 3 ȧi

2

a2
i

= Na2
i

2W 3̃λ
P2
ai , i = 1, 2, 3, (174)

for the Hamiltonian we obtain

Hg = 9̃λ

N
WẆ 2 − N

6W 2 PW

(

PA + PF
3

)

+ N

2W 3̃λ

3∑

i=1

a2
i P

2
ai + Na1a2a3V . (175)

The anisotropic cosmological Hamiltonian (175) of the
f (R, T ) gravity theory is very similar to the one obtained
in the isotropic case.

When considering the f (R, T ) = F0(R) + θRT model
in the case of R → ∞, we obtain

Ḋ = −2
N

4W 3 PM , PM = 1

2

6

N
W 2Ẇ D, (176)

and hence we immediately arrive at Ḋ = −(3/2)
(
Ẇ/W

)
D,

and D = δ0/W 3/2, respectively, where δ0 is a constant. Since

PD = −i
∂

∂D
= −i

dW

dD

∂

∂W
= i

2W 5/2

3δ0

∂

∂W
, (177)

then we have

− 2

4W 3 PDPM = −6Ẇ

4W
PDD = −i Ẇ

∂

∂W
. (178)

By taking into account that

N

2W 3̃λ
a2
i P

2
ai = ȧi Pai = −iai

∂

∂ai
, i = 1, 2, 3, (179)

we obtain the time canonical momentum

Pτ = −i
∂

∂τ
= −i

[
dW

dτ

∂

∂W
+

3∑

i=1

dai
dτ

∂

∂ai

]

= − 2

4W 3 PDPM + 1

2W 3̃λ

3∑

i=1

a2
i P

2
ai . (180)

Finally, the transformation

− 2

4W 3 PDPM + 1

2W 3̃λ

3∑

i=1

a2
i P

2
ai → Pτ (181)

will allow us the introduce the time dependence of the
Wheeler–de Witt equation for anisotropic Bianchi type I
geometries in the f (R, T ) gravity theory. Note that here
we have assumed that a1(t), a2(t), a3(t), W (t) are indepen-
dent variables. Hence we can safely conjecture that in the
anisotropic case we can still introduce a cosmological quan-
tum time in the Wheeler- de Witt equation of f (R, T ). On
a qualitative level the overall results of the anisotropic case
will be very similar to the ones obtained for isotropic and
homogeneous geometries.

In the present paper we have introduced some basic the-
oretical tools that could be used for the investigation of the
quantum properties of the gravitational interaction, and of
the evolution and origin of the very early Universe, in which
the complex interaction of geometry and matter give birth to
time, entropy, and irreversibility.
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Appendix A: The variation of the gravitational action in
the f (R, T ) gravity theory

By varying the gravitational action (1) of the f (R, T ) theory
with respect to the metric tensor we obtain first

δS = 1

16π

∫ [

fR(R, T )δR + fT (R, T )
δT

δgμν
δgμν

− 1

2
gμν f (R, T )δgμν + 16π

1√−g

δ(
√−gLm)

δgμν

] √−gd4x .

(A1)

For the variation of the Ricci scalar we obtain

δR = δ(gμνRμν) = Rμνδg
μν + gμν(∇λδ�

λ
μν − ∇νδ�

λ
μλ).

(A2)

Since

δ�λ
μν = 1

2
gλσ (∇μδgνα + ∇νδgαμ − ∇αδgμν), (A3)

we finally obtain

δR = Rμνδg
μν + gμν�δgμν − ∇μ∇νδg

μν. (A4)
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Therefore we obtain the variation of the action as

δS = 1

16π

∫ [

fR(R, T )Rμνδgμν + fR(R, T )gμν�δgμν

− fR(R, T )∇μ∇νδgμν + fT (R, T )
δ(gαβTαβ)

δgμν
δgμν

− 1

2
gμν f (R, T )δgμν + 16π

1√−g

δ(
√−gLm)

δgμν

]√−gd4x .

(A5)

We define the variation of T with respect to the metric tensor
as

δ(gαβTαβ)

δgμν
= Tμν + �μν, (A6)

where

�μν ≡ gαβ δTαβ

δgμν
. (A7)

After partially integrating the second and the third term in
the variation of the action, we obtain the field equations for
our model as

fR(R, T )Rμν − 1

2
f (R, T )gμν + (gμν� − ∇μ∇ν) fR R, T

= −8πTμν − fT (R, T )Tμν − fT (R, T )�μν. (A8)

Appendix B: The energy balance equations in f (R, T )

gravity

With the use of the mathematical identity

∇μ

[

fR Rμν − 1

2
f gμν + (gμν� − ∇μ∇ν) fR

]

≡ −1

2
fT∇μTgμν, (B1)

by taking the covariant divergence of the field equations (4)
we obtain first

− 1

2
fT∇μTgμν = 8π∇μTμν + ∇μ fT Tμν + fT∇μTμν

− ∇μ fT pgμν − fT∇μ pgμν. (B2)

Therefore we have

∇μTμν = fT
8π + fT

[

(pgμν − Tμν)∇μ I n fT

+
(

∇μ p − 1

2
∇μT

)

gμν

]

. (B3)

In the following we adopt for the energy-momentum tensor
the perfect fluid form,

Tμν = (ε + p)UμUν + pgμν. (B4)

In the comoving reference frame Uμ = (N (t), 0, 0, 0),
Uμ = (−1/N (t), 0, 0, 0), Lm = p. and therefore �μν =

−2Tμν + pgμν . Hence we find

∇μTμν = (∇με + ∇μ p
)
UμUν + (ε + p)∇μUμUν

+ (ε + p)Uμ∇μUν + ∇μ pgμν. (B5)

Since

∇μTμν = fT
8π + fT

[

− (ε + p)UμUν∇μ I n fT

+1

2
∇μ(ε − p)gμν

]

, (B6)

we obtain
(∇με + ∇μ p

)
UμUν + (ε + p)∇μUμUν

+ (ε + p)Uμ∇μUν + ∇μ pgμν = fT
8π + fT

×
[

− (ε + p)UμUν∇μ ln fT + 1

2
∇μ(ε − p)gμν

]

.

(B7)

Multiplying U ν , and by taking into account the geodesic
equation Unu∇μUν = 0, we have

Uμ∇με + (ε + p)∇μUμ

= − fT
8π + fT

[

(ε + p)Uμ∇μ ln fT + 1

2
Uμ∇μ(ε − p)

]

.

(B8)

Appendix C: The components of the Ricci tensor and the
Ricci scalar in the FRW geometry

By simple calculations we obtain the components of the Ricci
tensor for the FRW metric (9) as

R00 = −3
ä

a
+ 3

Ṅ ȧ

Na
, (C1)

Rii = gii
N 2

[
ä

a
+ 2

(
ȧ

a

)2

+ 2kN 2

a2 − Ṅ ȧ

Na

]

, i = 1, 2, 3.

(C2)

Therefore for the Ricci scalar we obtain

R = 6

N 2

[
ä

a
+

(
ȧ

a

)2

+ kN 2

a2 − Ṅ ȧ

Na

]

. (C3)

Appendix D: The canonical momenta of the cosmological
action in f (R, T ) gravity

The canonical momenta associated to the cosmological
action Eq. (11) of the f (R, T ) gravity are given by

Pa = −2
6

N
aȧλ̃ − 6

N
a2 ˙̃λ, PA = − 6

N
a2ȧ

(

1 − B

A
)

, (D1)
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PB = − 6

N
a2ȧ

(

−Z
A + 3BZ

A2

)

, PC = − 6

N
a2ȧ

(
BR

A
)

,

(D2)

PD = − 6

N
a2ȧ

[

− B(T − 4p)

A − BZR

A2

]

, (D3)

PE = − 6

N
a2ȧ

[
BZ(T − 4p)

A2

]

, PF = − 6

N
a2ȧ

(
3B

A
)

,

(D4)

PG = − 6

N
a2ȧ

(

−3BZ
A2

)

, PR = − 6

N
a2ȧ

[
BC

A − BZD

A2

]

,

(D5)

PT = − 6

N
a2ȧ

(

− BD

A + BZE

A2

)

, (D6)

Pp = − 6

N
a2ȧ

(
4DB

A − 4BZE

A2

)

. (D7)
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