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Abstract Recently the proof of the factorization in heavy
quarkonium production in the NRQCD color octet mecha-
nism is given at next-to-next-to-leading order (NNLO) in the
coupling constant by using diagrammatic method of QCD. In
this paper we prove factorization in heavy quarkonium pro-
duction in the NRQCD color octet mechanism at all orders
in the coupling constant by using the path integral method of
QCD. Our proof is valid to all powers in the relative veloc-
ity of the heavy quark. We find that the gauge invariance
and the factorization at all orders in the coupling constant
require gauge-completed non-perturbative NRQCD matrix
elements that were introduced previously to prove factoriza-
tion at NNLO.

1 Introduction

In the last two decades, the NRQCD color octet mechanism
[1] for heavy quarkonium production has been very success-
ful in explaining experimental data at high energy colliders
such as at Tevatron [2–10] and at LHC [11–28]. In its original
formulation [1] the proof of the factorization in heavy quarko-
nium production in the NRQCD color octet mechanism was
lacking. The proof of the factorization is an essential require-
ment to study heavy quarkonium production at high energy
colliders. Factorization refers to separation of short-distance
effects from long-distance effects in quantum field theory.

Recently the proof of the factorization in heavy quarko-
nium production in the NRQCD color octet mechanism is
given at next-to-next to leading order (NLLO) in the cou-
pling constant by using diagrammatic method of QCD [29–
31]. However, the proof of factorization in heavy quarkonium
production in the NRQCD color octet mechanism at all orders
in the coupling constant is still missing. In this paper we will
prove factorization in heavy quarkonium production in the
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NRQCD color octet mechanism at all orders in the coupling
constant by using the path integral method of QCD.

The typical non-perturbative NRQCD matrix element in
heavy quarkonium production is given by [1]

〈0|On|0〉 = 〈0|χ†(0)Knξ(0)(a†
HaH )ξ†(0)K ′

nχ(0)|0〉 (1)

where ξ is the two component Dirac spinor field that anni-
hilates a heavy quark, χ is the two component Dirac spinor
field that creates a heavy quark, a†

H is the operator that creates
the heavy quarkonium H in the out state. The factors Kn and
K ′
n are products of a color matrix (either a unit matrix or T a),

a spin matrix (either a unit matrix or σ i ), and a polynomial
of the covariant derivative D. The color and spin indices on
the fields χ and ξ have been suppressed.

The production cross section for heavy quarkonium H at
transverse momentum PT in NRQCD factorizes into a sum
of perturbative functions times universal matrix elements,

dσA+B→H+X (PT ) =
∑

n

dσ̂A+B→QQ̄[n]+X (PT ) 〈On〉 (2)

where each NRQCD non-perturbative matrix element 〈On〉
represents the probability of a heavy quark–antiquark pair
in state [n], such as a color singlet or a color octet etc., to
produce the heavy quarkonium state H .

The fragmentation function for parton i to evolve into a
heavy quarkonium at large PT is factorized according to [32]

DH/ i (z,mc, μ) =
∑

n

di→QQ̄[n](z,mc, μ) 〈On〉 (3)

in terms of the same NRQCD non-perturbative matrix ele-
ments, along with perturbative functions di→QQ̄[n](z,mc, μ)

that describe the evolution of an off-shell parton into a heavy
quark–antiquark pair in state [n], such as a color singlet or a
color octet etc.

In a first glance it can easily be seen that the non-
perturbative NRQCD matrix element in Eq. (1) is not gauge
invariant unless it is a color singlet S-wave non-perturbative
matrix element. Hence one expects that any non-canceling
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infrared divergences in the perturbative Feynman diagrams of
heavy quark–antiquark production with short-distance coef-
ficient cannot be factorized into the definition of the non-
perturbative NRQCD matrix element in Eq. (1) in the study
of heavy quarkonium production at high energy colliders in
the NRQCD color octet mechanism.

This is explicitly shown in [29–31] where the NNLO
coupling constant calculation shows that the above non-
perturbative NRQCD matrix element in Eq. (1) is not con-
sistent with factorization of infrared divergences unless it is
a color singlet S-wave non-perturbative matrix element. By
using the calculation at NNLO in the coupling constant and
to all powers in the relative velocity of the heavy quark it
was shown in [29–31] that the octet S-wave non-perturbative
NRQCD matrix element which is gauge invariant and is con-
sistent with the factorization of infrared divergences is given
by

〈0|On|0〉 = 〈0|χ†(0)Kn,eξ(0)�
(A)†
l (0)eb

×(a†
HaH )�

(A)
l (0)baξ

†(0)K ′
n,aχ(0)|0〉 (4)

where

�
(A)
l (0) = Pexp

[
−igT (A)c

∫ ∞

0
dλl · Ac(lλ)

]
,

(T (A)c)ab = −i f abc (5)

is the gauge link or the non-abelian phase in the adjoint rep-
resentation of SU(3), Aμa(x) is the gluon field, P is the path
ordering and lμ is the light-like four-velocity.

Note that a necessary condition for NRQCD factoriza-
tion is that the long-distance behavior of the non-perturbative
NRQCD matrix element must be independent of the light-
like vector lμ. Such a dependence would be inconsistent with
NRQCD factorization because the infrared divergences of
〈On〉 must match those of the cross sections, in which there
is no information on lμ. In [29–31] we have verified the lμ

independence of the infrared pole at NNLO in the coupling
constant and to all powers in the relative velocity of the heavy
quark.

Since the NRQCD matrix element in Eq. (1) is a non-
perturbative quantity in QCD it cannot be calculated by using
perturbative QCD methods. It is well known that a non-
perturbative function cannot be studied by using perturbative
methods, no matter how many orders of perturbation theory
are used. Hence the path integral formulation (as opposed to
diagrammatic method using perturbation theory) is necessary
to study the properties of non-perturbative quantities in QCD
at all orders in the coupling constant. The only path integral
formulation to study factorization of soft and collinear diver-
gences at all orders in the coupling constant in quantum field
theory is given by Tucci in [33], which is exact for QED but
is not exact for QCD. We have extended this path integral
approach to QCD to prove factorization in QCD at all orders

in the coupling constant in [34]. In this paper we will extend
this path integral approach to prove NRQCD factorization
at all orders in the coupling constant in heavy quarkonium
production. We will prove that the long-distance behavior
of the non-perturbative NRQCD matrix element is indepen-
dent of the light-like vector lμ at all orders in the coupling
constant.

The paper is organized as follows. In Sect. 2 we briefly
describe the lagrangian density in NRQCD and in QCD. In
Sect. 3 we discuss infrared divergences in NRQCD and in
QCD. In Sect. 4 we include the heavy quark in the path inte-
gral formulation of QCD. In Sect. 5 we describe infrared
divergences in NRQCD and the light-like Wilson line in
QCD. In Sect. 6 we show that the eikonal current of the
light-like charge generates pure gauge field in quantum field
theory. In Sect. 7 we show how the pure gauge field in quan-
tum field theory can be used to describe soft (infrared) diver-
gences. In Sect. 8 we study the heavy quark–antiquark non-
perturbative matrix element in the presence of a light-like
Wilson line in QCD. In Sect. 9 we prove factorization in
heavy quarkonium production in the NRQCD color octet
mechanism at all orders in the coupling constant and to all
powers in the relative velocity of the heavy quark. In Sect. 10
we show that the factorization theorem is a key ingredient in
calculation of NRQCD heavy quarkonium production cross
section at collider experiments. Section 11 contains conclu-
sions.

2 Lagrangian density in NRQCD and in QCD

The lagrangian density in QCD including heavy quarks is
given by [35]

LQCD = −1

4
Fa

μνF
μνa +

3∑

l=1

ψ̄l [γ μDμ − ml ]ψl

+
̄[γ μDμ − M]
 (6)

where Fμνa is the full non-abelian gluon field tensor, ψl is
the Dirac field of the light quark (l = u, d, s), 
 is the Dirac
field of the heavy quark, Dμ is the covariant derivative, γ μ

is the Dirac matrix, ml is the mass of the light quark and M
is the mass of the heavy quark.

In NRQCD an ultraviolet cutoff � ∼ M is introduced.
The lagrangian density in NRQCD is given by [1]

LNRQCD = Llight + Lheavy + δL (7)

where

Llight = −1

4
Fa

μνF
μνa +

3∑

l=1

ψ̄l [D − ml ]ψl , (8)
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Lheavy = ξ†

[
i Dt + D2

2M

]
ξ + χ†

[
i Dt − D2

2M

]
χ, (9)

and

δL = c1

8M3 [ξ†(D2)2ξ − χ†(D2)2χ ]
+ c2

8M2 [ξ†(D · gE − gE · D)ξ

−χ†(D · gE − gE · D)χ ]
+ c3

8M2 [ξ†(iD × gE − gE × iD)

·σξ − χ†(iD × gE − gE × iD) · σχ ]
+ c4

2M
[ξ†gB · σξ − χ†gB · σχ ] + · · · (10)

where Dt and D are the time and space components of the
covariant derivative Dμ and E and B are electric and mag-
netic components of the gluon field tensor and σ is the Pauli
spin matrix. The dimensionless coefficients c1, c2, c3, c4, etc.
in Eq. (10) are obtained by matching NRQCD with QCD [1].

3 Infrared behavior in NRQCD and in QCD

Note that in order for the factorization formula to hold in
Eqs. (2) and (3) the perturbative functions have to be infrared-
safe by definition because the infrared limit corresponds to
long-distance regime [1]. However, as found in [29,30] the
NNLO infrared pole contribution to order �v2 is given by

(P, v, l) = α2
s

1

3ε

�v2

4
(11)

which is not zero where �v is the relative velocity of the
heavy quark–antiquark pair. Equation (11) is in the rest frame
of the heavy quarkonium ( �P = 0) where Pμ is the four-
momentum of the heavy quarkniuom and lμ is the four-
velocity of the light-like Wilson line which is fixed to be
lμ = δμ− along the minus light cone direction in [29–
31]. The presence of a non-zero infrared pole in Eq. (11)
implies that infrared poles will appear in perturbative func-
tions at NNLO and beyond when the factorization is car-
ried out with octet non-perturbative NRQCD matrix element
〈χ†Knξ(a†

HaH )ξ†K ′
nχ〉 in the conventional manner as given

by Eq. (1) in Eqs. (2) and (3). On the other hand, when defined
according to its gauge-completed form as given by Eq. (4)
each octet non-perturbative NRQCD matrix element itself
generates precisely the same pole terms given in Eq. (11)
above. This conclusion is valid to all powers in v at NNLO
in the coupling constant [31]. Thus NRQCD can accommo-
date these corrections. Hence our main aim in this paper is
to prove that Eq. (4) is valid at all orders in the coupling
constant.

Note that in NRQCD an ultraviolet cutoff � ∼ M is
introduced [1]. Hence the ultraviolet (UV) behavior of QCD

and NRQCD differ. However, the infrared (IR) behavior of
QCD and NRQCD remains same [36]. Hence the infrared
behavior in NRQCD can be obtained by studying the corre-
sponding infrared behavior in QCD. Since the matrix element
of the type 〈χ†Knξ(a†

HaH )ξ†K ′
nχ〉 is the non-perturbative

NRQCD matrix element, it is natural to study its infrared
behavior at all orders in the coupling constant by using the
path integral method. Hence we will use the path integral
method of QCD in this paper.

4 Heavy quarks and the path integral formulation
of QCD

The generating functional in QCD including the heavy quark
is given by [35,37]

Z [J, ηu, η̄u, ηd , η̄d , ηs, η̄s, ηh, η̄h]
=

∫
[dQ][dψ̄1][dψ1][dψ̄2][dψ2][dψ̄3][dψ3][d
̄][d
]

× det

(
δ(∂μQμa)

δωb

)

× ei
∫

d4x[−1

4
Fa2

μν[Q] − 1

2α
(∂μQ

μa)2 + J · Q

+
3∑

l=1

[ψ̄l [iγ μ∂μ − ml + gT aγ μQa
μ]ψl

+ η̄lψl + ψ̄lηl ] + 
̄[iγ μ∂μ − M

+ gT aγ μQa
μ]
 + η̄h
 + 
̄ηh] (12)

where Qμa is the quantum gluon field, the symbols l =
1, 2, 3 = u, d, s stand for three light quarks u, d, s, and the
symbol h stands for heavy quark and

Fa
μν[Q] = ∂μQ

a
ν(x) − ∂νQ

a
μ(x) + g f abcQb

μ(x)Qc
ν(x),

Fa2
μν[Q] = Fa

μν[Q]Fμνa[Q]. (13)

In Eq. (12) the η̄u, η̄d , η̄s are external sources for u, d, s
quark fields, respectively, and η̄h is the external source for

the heavy quark field and the term δ(∂μQμa)

δωb is the deriva-
tive of the gauge fixing term under an infinitesimal gauge
transformation [35,37]

δQμa = g f abcQμbωc + ∂μωa . (14)

Note that the determinant det( δ(∂μQμa)

δωb ) in Eq. (12) can be
expressed in terms of path integration over the ghost fields
[35]. However, we will directly work with the determinant

det( δ(∂μQμa)

δωb ) in Eq. (12).
For the heavy quark Dirac field 
(x), the non-perturbative

matrix element of the type 〈0|
̄(x)On
(x)
̄(x ′)O ′
n
(x ′)|0〉

in QCD is given by [33]
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〈0|
̄(x)On
(x)
̄(x ′)O ′
n
(x ′)|0〉

= δ

δηh(x)
On

δ

δη̄h(x)

δ

δηh(x ′)
O ′
n

δ

δη̄h(x ′)
× Z [J, ηu, η̄u, ηd , η̄d , ηs, η̄s, ηh, η̄h]
× |J=ηu=η̄u=ηd=η̄d=ηs=η̄s=ηh=ηh=0 (15)

if the factors On and O ′
n are independent of quantum fields

where the suppression of the normalization factor Z [0] is
understood as it will cancel in the final result (see Eq. (133)).

5 Infrared divergences in NRQCD and light-like Wilson
line in QCD

The gauge transformation of the quark field in QCD is given
by

ψ ′(x) = eigT
aωa(x)ψ(x). (16)

Hence one finds that the issue of gauge invariance and factor-
ization of infrared divergences in QCD can be simultaneously
explained if ωa(x) can be related to the gluon field Aμa(x).

Before proceeding to the issue of gauge invariance and
the factorization of infrared divergences in QCD let us first
discuss the corresponding situation in QED. The gauge trans-
formation of the Dirac field of the electron in QED is given
by

ψ ′(x) = eieω(x)ψ(x). (17)

Hence we can expect to address the issue of gauge invariance
and factorization of infrared divergences in QED simultane-
ously if we can relate the ω(x) to the photon field Aμ(x).

In QED the infrared (or soft) divergence arises only from
the emission of a photon for which all components of the
four-momentum are small. The eikonal propagator times the
eikonal vertex for a soft photon with momentum k interacting
with a light-like electron moving with four-momentum pμ

is given by [33,34,38–47]

e
pμ

p · k + iε
= e

lμ

l · k + iε
(18)

where lμ is the four-velocity of the light-like electron. Note
that when we say the “light-like electron” we mean the elec-
tron that is traveling at its highest speed which is arbitrarily
close to the speed of light (|�l| ∼ 1) as it cannot travel exactly
at the speed of light (|�l| = 1) because it has finite mass even
if the mass of the electron is very small. From Eq. (18) we
find

e
∫

d4k

(2π)4

l · A(k)

l · k + iε
= −ei

∫ ∞

0
dλ

×
∫

d4k

(2π)4 e
il·kλl · A(k) = ie

∫ ∞

0
dλl · A(lλ) (19)

where the photon field Aμ(x) and its Fourier transform Aμ(k)
are related by

Aμ(x) =
∫

d4k

(2π)4 A
μ(k)eik·x . (20)

From Eq. (19) we find

ie
∫ ∞

0
dλl · A(lλ) = i

∫
d4x Jμ(x)Aμ(x) (21)

where the eikonal current density Jμ(x) for the light-like
charge e is given by

Jμ(x) = elμ
∫

dλδ(4)(x − lλ). (22)

Now consider the corresponding Feynman diagram for
the infrared divergences in QED due to the exchange of two
soft photons of four-momenta kμ

1 and kμ
2 . The corresponding

eikonal contribution due to the exchange of two soft photons
is analogously given by

e2
∫

d4k1

(2π)4

d4k2

(2π)4

l · A(k2)l · A(k1)

(l · (k1 + k2) + iε)(l · k1 + iε)

= e2i2
∫ ∞

0
dλ2

∫ ∞

λ2

dλ1l · A(lλ2)l · A(lλ1)

= e2i2

2!
∫ ∞

0
dλ2

∫ ∞

0
dλ1l · A(lλ2)l · A(lλ1). (23)

Extending this calculation up to infinite number of soft pho-
tons we find that the eikonal contribution for the infrared
divergences due to soft photons exchange with the light-like
electron in QED is given by the exponential

eie
∫ ∞

0 dλl·A(lλ) (24)

where lμ is the light-like four-velocity of the electron. The
Wilson line in QED is given by

eie
∫ x f
xi dxμAμ(x). (25)

When Aμ(x) = Aμ(lλ) as in Eq. (24) then one finds from
Eq. (25) that the light-like Wilson line in QED for infrared
divergences is given by [48]

eie
∫ x

0 dxμAμ(x) = e−ie
∫ ∞

0 dλl·A(x+lλ)eie
∫ ∞

0 dλl·A(lλ). (26)

Note that a light-like electron traveling with light-like four-
velocity lμ produces U(1) pure gauge potential Aμ(x) at all
the time-space position xμ except at the position �x perpendic-
ular to the direction of motion of the electron (�l · �x = 0) at the
time of closest approach [40,49,50]. When Aμ(x) = Aμ(λl)
as in Eq. (24) we find �l · �x = λ�l · �l = λ 	= 0, which implies
that the light-like Wilson line finds the photon field Aμ(x)
in Eq. (24) as the U(1) pure gauge. The U(1) pure gauge is
given by

Aμ(x) = ∂μω(x), (27)
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which gives from Eq. (26) the light-like Wilson line in QED
for infrared divergences

eieω(x)e−ieω(0) = eie
∫ x

0 dxμAμ(x)

= e−ie
∫ ∞

0 dλl·A(x+lλ)eie
∫ ∞

0 dλl·A(lλ), (28)

which depends only on the end points 0 and xμ but is inde-
pendent of the path. The path independence can also be found
from Stokes’ theorem because for pure gauge

Fμν(x) = ∂μAν(x) − ∂ν Aμ(x) = 0, (29)

which gives from Stokes’ theorem

eie
∮
C dxμAμ(x) = eie

∫
S dyμdxνFμν(x) = 1 (30)

where C is a closed path and S is the surface enclosing C .
Now considering two different paths L and M with the com-
mon end points 0 and xμ we find

eie
∮
C dxμAμ(x) = eie

∫
L dxμAμ(x)−ie

∫
M dxμAμ(x) = 1, (31)

which implies that

eie
∫ x

0 dxμAμ(x) (32)

depends only on the end points 0 and xμ but is independent of
the path, which can also be seen from Eq. (28). Hence from
Eq. (28) we find that the abelian phase or the gauge link in
QED is given by

e−ie
∫ ∞

0 dλl·A(x+lλ) = eieω(x). (33)

From Eqs. (17) and (33) one expects that the gauge invari-
ance and factorization of infrared divergences in QED can
be explained simultaneously.

One can recall that the gauge invariant greens function in
QED

G(x1, x2) =
〈
0|ψ̄(x2) × exp

[
ie

∫ x2

x1

dxμAμ(x)

]

×ψ(x1)|0
〉

(34)

in the presence of a background field Aμ(x) was formulated
by Schwinger long time ago [51,52]. When this background
field Aμ(x) is replaced by the U(1) pure gauge background
field as given by Eq. (27) then one finds by using the path
integral method of QED that [33]

eieω(x2)〈0|ψ̄(x2) ψ(x1)|0〉Ae−ieω(x1)

= 〈0|ψ̄(x2) ψ(x1)|0〉
= e−ie

∫ ∞
0 dλl·A(x2+lλ)〈0|ψ̄(x2) ψ(x1)|0〉A

×eie
∫ ∞

0 dλl·A(x1+lλ), (35)

which proves the gauge invariance and factorization of
infrared divergences in QED simultaneously. In Eq. (35) the
〈0|ψ̄(x2) ψ(x1)|0〉 is the full Green’s function in QED and
〈0|ψ̄(x2) ψ(x1)|0〉A is the corresponding Green’s function in

the background field method of QED. This path integral tech-
nique is also used in [44] to prove factorization of infrared
divergences in non-equilibrium QED.

Hence we find that the gauge invariance and factorization
of infrared divergences in QED can be studied by using the
path integral method of QED in the presence of a U(1) pure
gauge background field. Therefore one expects that the gauge
invariance and factorization of infrared divergences in QCD
can be studied by using the path integral method of QCD in
the presence of a SU(3) pure gauge background field.

Now let us proceed to QCD. In QCD the infrared (or soft)
divergence arises only from the emission of a gluon for which
all components of the four-momentum are small. The eikonal
propagator times the eikonal vertex for a soft gluon with
momentum k interacting with a light-like quark moving with
four-momentum pμ is given by [33,34,38–44,47]

gT a pμ

p · k + iε
= gT a lμ

l · k + iε
(36)

where lμ is the four-velocity of the light-like quark. Note that
when we talk about the “light-like quark” we mean the quark
that is traveling at its highest speed, which is arbitrarily close
to the speed of light (|�l| ∼ 1) as it cannot travel exactly at the
speed of light (|�l| = 1) because it has a finite mass even if
the mass of the light quark is very small. On the other hand
the gluon is massless and hence it always travels at the speed
of light and is exactly light-like. From Eq. (36) we find

gT a
∫

d4k

(2π)4

l · Aa(k)

l · k + iε
= −gT ai

∫ ∞

0
dλ

×
∫

d4k

(2π)4 e
il·kλl · Aa(k) = igT a

∫ ∞

0
dλl · Aa(lλ)

(37)

where the gluon field Aμa(x) and its Fourier transform
Aμa(k) are related by

Aμa(x) =
∫

d4k

(2π)4 A
μa(k)eik·x . (38)

Note that a path ordering in QCD is required, which can be
seen as follows; see also [46]. The eikonal contribution for
the infrared divergence in QCD arising from a single soft-
gluon exchange in Feynman diagram is given by Eq. (37).
Now consider the corresponding Feynman diagram for the
infrared divergences in QCD due to the exchange of two
soft gluons of four-momenta kμ

1 and kμ
2 . The corresponding

eikonal contribution due to the exchange of two soft gluons
is analogously given by

g2
∫

d4k1

(2π)4

d4k2

(2π)4

T al · Aa(k2)T bl · Ab(k1)

(l · (k1 + k2) + iε)(l · k1 + iε)

= g2i2
∫ ∞

0
dλ2

∫ ∞

λ2

dλ1T
al · Aa(lλ2)T

bl · Ab(lλ1)
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= g2i2

2! P
∫ ∞

0
dλ2

∫ ∞

0
dλ1T

al · Aa(lλ2)T
bl · Ab(lλ1)

(39)

where P is the path ordering. Extending this calculation up
to an infinite number of soft gluons we find that the eikonal
contribution for the infrared divergences due to soft gluons
exchange with the light-like quark in QCD is given by the
path ordered exponential

P exp

[
ig

∫ ∞

0
dλl · Aa(lλ)T a

]
(40)

where lμ is the light-like four-velocity of the quark. The
Wilson line in QCD is given by

Peig
∫ x f
xi dxμAa

μ(x)T a
, (41)

which is the solution of the equation [53]

∂μS(x) = igT a Aa
μ(x)S(x) (42)

with initial condition

S(xi ) = 1. (43)

When Aμa(x) = Aμa(lλ) as in Eq. (40) we find from Eq. (41)
that the light-like Wilson line in QCD for infrared diver-
gences is given by [48]

Peig
∫ x

0 dxμAa
μ(x)T a =

[
Pe−ig

∫ ∞
0 dλl·Aa(x+lλ)T a

]

×Peig
∫ ∞

0 dλl·Ab(lλ)T b
. (44)

A light-like quark traveling with light-like four-velocity
lμ produces a SU(3) pure gauge potential Aμa(x) at all the
time-space position xμ except at the position �x perpendicular
to the direction of motion of the quark (�l · �x = 0) at the time
of closest approach [40,49,50]. When Aμa(x) = Aμa(λl) as
in Eq. (40) we find �l · �x = λ�l · �l = λ 	= 0, which implies
that the light-like Wilson line finds the gluon field Aμa(x) in
Eq. (40) as the SU(3) pure gauge. The SU(3) pure gauge is
given by

T a Aa
μ(x) = 1

ig
[∂μU (x)] U−1(x), U (x) = eigT

aωa(x),

(45)

which gives

U (x f ) = Peig
∫ x f
xi dxμAa

μ(x)T a
U (xi ) = eigT

aωa(x f ). (46)

Hence when Aμa(x) = Aμa(λl) as in Eq. (40) we find from
Eqs. (44) and (46) that the light-like Wilson line in QCD for
infrared divergences is given by

Peig
∫ x

0 dxμAa
μ(x)T a = eigT

aωa(x)e−igT bωb(0)

=
[
Pe−ig

∫ ∞
0 dλl·Aa(x+lλ)T a

]
Peig

∫ ∞
0 dλl·Ab(lλ)T b

, (47)

which depends only on the end points 0 and xμ but is inde-
pendent of the path. The path independence can also be found
from the non-abelian Stokes theorem, which can be seen as
follows. The SU(3) pure gauge in Eq. (45) gives

Fa
μν[A] = ∂μA

a
ν(x) − ∂ν A

a
μ(x) + g f abc Ab

μ(x)Ac
ν(x) = 0.

(48)

Note that from Eq. (48) we find the vanishing physical gauge
invariant field strength square Fμνa[A]Fa

μν[A] when Aμa(x)
is the SU(3) pure gauge as given by Eq. (45). Hence in classi-
cal mechanics the SU(3) pure gauge potential does not have
an effect on color charged particle and one expects the effect
of exchange of soft gluons to simply vanish. However, in
quantum mechanics the situation is a little more compli-
cated, because the gauge potential does have an effect on
color charged particle even if it is a SU(3) pure gauge poten-
tial and hence one should not expect the effect of exchange
of soft gluons to simply vanish [40]. This can be verified by
studying the non-perturbative matrix element in QCD such
as 〈
̄(x)
(x ′)
̄(x ′′)
(x ′′′) · · · 〉 in the presence of a SU(3)
pure gauge background field.

Using Eq. (48) in the non-abelian Stokes theorem [54] we
find

Peig
∮
C dxμAa

μ(x)T a = Pexp

[
ig

∫

S
dxμdxν

×
[
Peig

∫ x
y dx ′λAb

λ(x ′)T b]

×Fa
μν(x)T

a
[
Peig

∫ y
x dx ′′δ Ac

δ(x
′′)T c

] ]
= 1 (49)

where C is a closed path and S is the surface enclosing C .
Now considering two different paths L and M with the com-
mon end points 0 and xμ we find from Eq. (49)

Peig
∮
C dxμAa

μ(x)T a

= Pexp

[
ig

∫

L
dxμAa

μ(x)T a − ig
∫

M
dxμAa

μ(x)T a
]

=
[
Peig

∫
L dxμAa

μ(x)T a
] [

Pe−ig
∫
M dxν Ab

ν (x)T b
]

= 1, (50)

which implies that the light-like Wilson line in QCD

Peig
∫ x

0 dxμAa
μ(x)T a

(51)

depends only on the end points 0 and xμ but is independent of
the path, which can also be seen from Eq. (47). Hence from
Eq. (47) we find that the non-abelian phase or the gauge link
in QCD is given by

�(x) = Pe−ig
∫ ∞

0 dλl·Aa(x+lλ)T a = eigT
aωa(x). (52)

In the adjoint representation of SU(3) the corresponding path
ordered exponential is given by
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Pexp

[
−ig

∫ ∞

0
dλl · Ac(x + lλ)T (A)c

]
= eigT

(A)cωc(x),

(T (A)c)ab = −i f abc. (53)

To summarize this, we find that the infrared divergences in
the perturbative Feynman diagrams due to soft-gluon inter-
action with the light-like Wilson line in QCD is given by
the path ordered exponential in Eq. (40), which is nothing
but the non-abelian phase or the gauge link in QCD as given
by Eq. (52) where the gluon field Aμa(x) is the SU(3) pure
gauge; see Eqs. (45), (46), (47). This implies that the effect of
soft-gluons interaction between the partons and the light-like
Wilson line in QCD can be studied by putting the partons in
the SU(3) pure gauge background field. Hence we find that
the infrared behavior of a non-perturbative matrix element
such as 〈0|
̄(x)
(x ′)
̄(x ′′)
(x ′′′) · · · |0〉 in QCD due to
the presence of a light-like Wilson line in QCD can be stud-
ied by using the path integral method of QCD in the presence
of a SU(3) pure gauge background field.

It can be mentioned here that in soft collinear effective
theory (SCET) [55–57] it is also necessary to use the idea
of background fields [37] to give a well-defined meaning to
several distinct gluon fields [41].

As mentioned earlier, in NRQCD an ultraviolet cutoff
� ∼ M is introduced [1]. Hence the ultraviolet (UV) behav-
ior of QCD and NRQCD differ. However, the infrared (IR)
behavior of QCD and NRQCD remains same [36]. Hence
the infrared behavior in NRQCD can be studied by study-
ing the corresponding infrared behavior in QCD. Hence
we find that the infrared behavior of the non-perturbative
NRQCD matrix element 〈0|χ†Knξ(a†

HaH )ξ†K ′
nχ |0〉 in

Eq. (1) can be obtained by studying the infrared behavior
of the non-perturbative matrix element in QCD of the type
〈0|
̄(x)On
(x)
̄(x ′)O ′

n
(x ′)|0〉where On, O ′
n are appro-

priate factors which identify the state of the heavy quark–
antiquark system such as the color singlet state or color octet
state etc.

Note that a massive color source traveling at a speed much
less than the speed of light cannot produce a SU(3) pure gauge
field [40,49,50]. Hence when one replaces a light-like Wilson
line with a massive Wilson line one expects the factorization
of infrared divergences to break down. This is in confirma-
tion with the finding in [58,59] which used the diagrammatic
method of QCD. In the case of a massive Wilson line in QCD
the color transfer occurs and the factorization breaks down.

6 Eikonal current of the light-like charge generates
pure gauge field in quantum field theory

In order to study factorization of infrared divergences by
using the background field method of QED, the soft-photon
cloud traversed by the electron is represented by the pure

gauge background field Aμ(x) [33] due to the presence of
the light-like Wilson line, where one represents the quantum
photon field by Qμ(x). As mentioned above, in classical
mechanics we have the assertion that the gauge field that is
produced by a highly relativistic (light-like) particle is a pure
gauge [40,49,50]. One may ask if this assertion is correct
in quantum field theory. In this section we will show that
this assertion is correct in quantum field theory. We will use
the path integral formulation of quantum field theory for this
purpose.

The generating functional for the gauge field in quantum
field theory in the presence of an external source Jμ(x) in
the path integral formulation is given by

Z [J ] =
∫

[dQ]ei
∫

d4x[− 1
4 F

2
μν [Q]− 1

2α
(∂μQμ)2+J ·Q] (54)

where Qμ(x) is the quantum photon field and

Fμν[Q] = ∂μQν(x) − ∂νQμ(x),

F2
μν[Q] = Fμν[Q]Fμν[Q]. (55)

The effective action Seff [J ] is given by [60,61]

〈0|0〉J = Z [J ]
Z [0] = ei Seff [J ] (56)

where

Seff [J ] = −1

2

∫
d4xd4x ′ Jμ(x)Dμν(x − x ′)J ν(x ′) (57)

where Dμν(x − x ′) is the photon propagator.
The photon propagator in the coordinate space is given by

Dμν(x − x ′) = 1

∂2

[
gμν + (α − 1)

∂2 ∂μ∂ν

]
δ(4)(x − x ′).

(58)

Using Eq. (58) in (57) we find

Seff [J ] = −1

2

∫
d4x Jμ(x)

1

∂2

[
gμν+ (α − 1)

∂2 ∂μ∂ν

]
J ν(x).

(59)

From the continuity equation we have

∂μ J
μ(x) = 0. (60)

Using Eq. (60) in (59) we find

Seff [J ] = −1

2

∫
d4x Jμ(x)

1

∂2 Jμ(x). (61)

6.1 Derivation of Coulomb’s law for static charge
in quantum field theory

First of all, by using the path integral formulation of the
quantum field theory we will derive Coulomb’s law for static
charge. Note that the derivation of the Coulomb law by using
the path integral formulation of quantum field theory is not

123



448 Page 8 of 18 Eur. Phys. J. C (2016) 76 :448

necessary to prove factorization theorem. We have included it
here only to demonstrate the correctness of the prediction of
the path integral formulation in quantum field theory which
we will use (see below) to show that the eikonal current of
the light-like charge generates pure gauge field in quantum
field theory.

In order to derive Coulomb’s law by using the path integral
formulation of quantum field theory we consider two static
charges at positions �X and �X ′, respectively. The current den-
sity for this two static charges is given by

Jμ(x) = eδμ0δ(3)(�x − �X) + eδμ0δ(3)(�x − �X ′). (62)

Using Eq. (62) in (61) and neglecting the self energies we
find in the time interval t that

Sint
eff [J ] = e2

∫
dt

1

∇2
X

δ(3)( �X − �X ′)

= −te2 1

∇2
X

∇2
X

(
1

| �X − �X ′|
)

= −tV int
eff [J ], (63)

which gives the (effective) potential energy Veff [J ] of the
interaction between two static charges to be

V int
eff [J ] = e2

| �X − �X ′| , (64)

which reproduces the Coulomb law. Hence we have shown
that the assertion that a charge at rest generates a Coulomb
gauge field is correct in quantum field theory.

6.2 Effective lagrangian density of light-like eikonal
current in quantum field theory

Similarly using the above procedure in quantum field theory
we will show that the assertion that a light-like charge gener-
ates pure gauge field is correct in quantum field theory. This
can be shown as follows.

The eikonal current density of the charge e with light-
like four-velocity lμ is given by Eq. (22). By using the path
integral formulation of quantum field theory we find by using
Eq. (22) in (61) that for light-like eikonal current the effective
lagrangian density is given by

Leff(x) = e2

2

(l2)2

(l · x)4 . (65)

For light-like four-velocity we have

l2 = lμlμ = 0. (66)

Hence from (65) and (66) we find that for light-like eikonal
current the effective lagrangian density is given by

Le f f (x) = 0, l · x 	= 0 (67)

at all the time-space positions xμ except at the spatial position
perpendicular to the motion of the charge (�l · �x = 0) at the
time of closest approach (x0 = 0).

6.3 Interaction between non-eikonal current and the gauge
field generated by light-like eikonal current in quantum
field theory

Similarly by using the above path integral formulation cal-
culation we find from Eq. (A5) that the interaction between
the (light-like or non-light-like) non-eikonal current and the
gauge field generated by the light-like eikonal current gives
the effective (interaction) lagrangian density

Lint
eff(x) = l2

e2

2

(l · q)(q · x) − (l · x)q2

(l · x)3[(q · x)2 − q2x2] 3
2

(68)

where qμ is the (light-like or non-light-like) four-momentum
of non-eikonal current of charge e and lμ is the light-like
four-velocity of the eikonal current of charge e.

For light-like eikonal current we find from Eqs. (66) and
(68) that effective (interaction) lagrangian density due to the
interaction between the (light-like or non-light-like) non-
eikonal current of four-momentum qμ and the gauge field
generated by the light-like eikonal current of four-velocity
lμ is given by

Lint
eff(x) = 0, for q · x 	= 0, l · x 	= 0. (69)

This is also obvious from Eq. (81).

6.4 Pure gauge field generated by eikonal current
of light-like charge in quantum field theory

Hence from Eqs. (67) and (69) we find that the eikonal current
for light-like charge generates pure gauge field in quantum
field theory. From Eqs. (67) and (69) we find that the asser-
tion that a light-like charge generates a pure gauge field is
correct in quantum field theory which is consistent with the
corresponding result in classical mechanics [40,49,50].

7 Pure gauge field in quantum field theory describes
soft (infrared) divergence

In this section we will show how the pure gauge field is used in
quantum field theory to describe soft (infrared) divergences.
Consider an incoming electron of four-momentum qμ and
mass m emitting a real photon of four-momentum kμ. The
corresponding Feynman diagram contribution is given by
[62]

M = 1

γνqν − γνkν − m
γμεμ(k)u(q)

= −q · ε(k)

q · k u(q) + kνγνγμεμ(k)

2q · k u(q) (70)

where we write

Meikonal = −q · ε(k)

q · k u(q) (71)
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and

Mnon-eikonal = kνγνγμεμ(k)

2q · k u(q). (72)

From Eq. (3.2) of [62] we write the gauge field as

εμ(k) =
[
εμ(k) − kμ q · ε(k)

q · k
]

+ kμ q · ε(k)

q · k
= ε

μ
phys(k) + εμ

pure(k) (73)

where

ε
μ
phys(k) =

[
εμ(k) − kμ q · ε(k)

q · k
]

(74)

is the physical gauge field [corresponding to transverse polar-
ization of the gauge field] and

εμ
pure(k) = kμ q · ε(k)

q · k (75)

is the pure gauge field [corresponding to longitudinal polar-
ization of the gauge field].

Now using Eq. (73) in Eq. (70) we find that the total con-
tribution of the Feynman diagram is given by

M = Meikonal + Mnon-eikonal (76)

where

Meikonal = −q · εphys(k)

q · k u(q) − q · εpure(k)

q · k u(q)

= −q · εpure(k)

q · k u(q) (77)

and

Mnon-eikonal = kνγνγμε
μ
phys(k)

2q · k u(q) + kνγνγμε
μ
pure(k)

2q · k u(q)

= kνγνγμε
μ
phys(k)

2q · k u(q). (78)

Hence in the soft-photon limit (k0, k1, k2, k3) → 0 we
find from the Eqs. (70) and (77) that

−Meikonal = q · ε(k)

q · k u(q) = q · εpure(k)

q · k u(q)

→ ∞ as (k0, k1, k2, k3) → 0, (79)

which implies that the physical gauge field [corresponding
to transverse polarization] does not contribute to the soft
(infrared) divergences in quantum field theory and the soft
(infrared) divergences can be calculated by using pure gauge
field [corresponding to longitudinal polarization] in quantum
field theory.

Similarly from Eqs. (70) and (78) we find that

Mnon−eikonal = kνγνγμεμ(k)

2q · k u(q) = kνγνγμε
μ
phys(k)

2q · k u(q)

→ finite as (k0, k1, k2, k3) → 0, (80)

which contributes to the finite part of the cross section which
implies that pure gauge field [corresponding to longitudinal
polarization] does not contribute to the finite cross section
and the finite cross section can be calculated by using physical
gauge field [corresponding to transverse polarization].

Hence we find that the non-eikonal-line part of the diagram
as given by Eq. (80) is necessary if we are calculating the
finite value of the cross section but it is not necessary if
we are calculating the relevant infrared divergence behavior.
The relevant infrared divergence behavior can be calculated
by using the eikonal-line part of the diagram as given by
Eq. (79).

For this reason, in the proof of NRQCD factorization of
infrared divergences for heavy quarkonium production at
NNLO in the coupling constant, the non-eikonal-line part
of the diagram as given by Eq. (80) is not considered as the
full calculation of the cross section or fragmentation function
at NNLO will be daunting but fortunately the analysis of rel-
evant infrared behavior at NNLO requires only the eikonal
approximation as given by Eq. (79); see the discussion in the
last paragraph of section 4 of [29]. Similarly the full calcu-
lation of the cross section or fragmentation function at all
orders in the coupling constant by using the non-eikonal-line
part of the diagram as given by Eq. (80) will require non-
perturbative QCD which is not solved yet but fortunately
the analysis of relevant infrared behavior at all orders in the
coupling constant requires only the eikonal approximation
as given by Eq. (79).

Hence we find that we do not need to calculate the finite
value of the cross section (or the full cross section) [which
will require the non-eikonal-line part of the diagram as given
by Eq. (80)] to study the relevant infrared divergence behav-
ior. The relevant infrared divergence behavior can be calcu-
lated by using eikonal approximation as given by Eq. (79).

From Eq. (80) we find that

Mpure gauge field
non-eikonal = kνγνγμε

μ
pure(k)

2q · k u(q) = 0. (81)

We are interested in the infrared divergence behavior due to
the presence of the light-like Wilson line. We have shown in
Eqs. (67) and (69) that the eikonal current of the light-like
charge generates pure gauge field in quantum field theory.
Hence from Eqs. (67), (79), (69), and (81) we find that the
soft (infrared) divergence behavior due to the presence light-
like Wilson line can be studied by using pure gauge field in
quantum field theory without modifying the finite value of
the cross section.
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8 Heavy quark–antiquark non-perturbative matrix
element in the presence of a light-like Wilson line
in QCD

We have seen in Sect. 5 that the infrared behavior of the non-
perturbative NRQCD matrix element 〈0|χ†Knξ(a†

HaH )ξ†

K ′
nχ |0〉 in Eq. (1) can be obtained by studying the infrared

behavior of the non-perturbative matrix element in QCD of
the type 〈0|
̄(x)On
(x)
̄(x ′)O ′

n
(x ′)|0〉 where On, O ′
n

are appropriate factors which identify the state of the heavy
quark–antiquark system such as the color singlet state or the
color octet state etc. Similarly, we have also seen in Sect. 5
that the infrared behavior of the non-perturbative matrix ele-
ment in QCD of the type 〈0|
̄(x)On
(x)
̄(x ′)O ′

n
(x ′)|0〉
due to the presence of a light-like Wilson line in QCD can
be studied by using the path integral method of QCD in the
presence of a SU(3) pure gauge background field. Hence
we use the path integral formulation of the background field
method of QCD to study non-perturbative matrix element
〈0|
̄(x)On
(x)
̄(x ′)O ′

n
(x ′)|0〉 in QCD in the presence
of a SU(3) pure gauge background field as given by Eq. (45).

The background field method of QCD was originally for-
mulated by ’t Hooft [63] and later extended by Klueberg-
Stern and Zuber [64,65] and by Abbott [37]. This is an elegant
formalism which can be useful to construct gauge invariant
non-perturbative green’s functions in QCD. This formalism
is also useful to study quark and gluon production from the
classical chromofield [60,61] via the Schwinger mechanism
[66], to compute β function in QCD [67], to perform calcu-
lations in lattice gauge theories [68] and to study evolution of
QCD coupling constant in the presence of a chromofield [69].

In the background field method of QCD the generating
functional is given by [37,63–65]

Z [A, J, η, η̄] =
∫

[dQ][dψ̄][dψ] det

(
δGa(Q)

δωb

)
ei

∫
d4x[− 1

4 F
a2
μν [A+Q]− 1

2α
(Ga(Q))2+ψ̄[iγ μ∂μ−m+gT aγ μ(A+Q)aμ]ψ+J ·Q+η̄ψ+ψ̄η]

(82)

where Qμa(x) is the quantum gluon field and the gauge fixing
term is given by

Ga(Q) = ∂μQ
μa + g f abc Ab

μQ
μc = Dμ[A]Qμa, (83)

which depends on the background field Aμa and

Fa
μν[A + Q] = ∂μ[Aa

ν + Qa
ν ] − ∂ν[Aa

μ + Qa
μ]

+g f abc[Ab
μ + Qb

μ][Ac
ν + Qc

ν]. (84)

We have followed the notations of [37,63–65] and accord-
ingly we have denoted the quantum gluon field by Qμa and

the background field by Aμa . The determinant det( δGa(Q)

δωb )

in Eq. (82) can be expressed in terms of path integration over
the ghost fields [35,64,65]. However, we will directly work
with the determinant det( δGa(Q)

δωb ) in Eq. (82).

Note that the gauge fixing term 1
2α

(Ga(Q))2 in Eq. (82)
[where Ga(Q) is given by Eq. (83)] is invariant for gauge
transformation of Aa

μ:

δAa
μ = g f abc Ab

μωc + ∂μωa, (type I transformation),

(85)

provided one also performs a homogeneous transformation
of Qa

μ [37,64,65]:

δQa
μ = g f abcQb

μωc. (86)

The gauge transformation of the background field Aa
μ as

given by Eq. (85) along with the homogeneous transforma-
tion of Qa

μ in Eq. (86) gives

δ(Aa
μ + Qa

μ) = g f abc(Ab
μ + Qb

μ)ωc + ∂μωa, (87)

which leaves − 1
4 F

a2
μν[A + Q] invariant in Eq. (82).

For fixed Aa
μ, i.e., for

δAa
μ = 0, (type II transformation) (88)

the gauge transformation of Qa
μ [37,64,65]:

δQa
μ = g f abc(Ab

μ + Qb
μ)ωc + ∂μωa (89)

gives Eq. (87), which leaves − 1
4 F

a2
μν[A + Q] invariant in

Eq. (82).
Extending Eq. (82) to include the heavy quark [by using

the lagrangian density from Eq. (6)] we find that the gener-
ating functional in the background field method of QCD is
given by

Z [A, J, ηu, η̄u, ηd , η̄d , ηs, η̄s, ηh, η̄h]
=

∫
[dQ][dψ̄1][dψ1][dψ̄2][dψ2][dψ̄3][dψ3][d
̄][d
]

×det

(
δGa(Q)

δωb

)

×exp

[
i
∫

d4x

[
− 1

4
Fa2

μν[A + Q] − 1

2α
(Ga(Q))2

+J · Q +
3∑

l=1

[
ψ̄l [iγ μ∂μ − ml + gT aγ μ(A + Q)aμ]ψl

+η̄lψl + ψ̄lηl
] + 
̄[iγ μ∂μ − M

+gT aγ μ(A + Q)aμ]
 + η̄h
 + 
̄ηh

]]
. (90)
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Note that in the absence of external sources a pure
gauge can be gauged away from the generating func-
tional. However, in the presence of external sources a pure
gauge cannot be gauged away from the generating func-
tional. It is useful to remember that, unlike QED [33],
finding an exact relation between the generating functional
Z [J, ηu, η̄u, ηd , η̄d , ηs, η̄s, ηh, ηh] in QCD in Eq. (12) and
the generating functional Z [A, J, ηu, η̄u, ηd , η̄d , ηs, η̄s, ηh,
ηh] in the background field method of QCD in Eq. (90) in the
presence of a SU(3) pure gauge background field is not easy.
The main difficulty is due to the gauge fixing terms, which
are different in the two cases. While the Lorentz (covari-
ant) gauge fixing term − 1

2α
(∂μQμa)2 in Eq. (12) in QCD is

independent of the background field Aμa(x), the background
field gauge fixing term − 1

2α
(Ga(Q))2 in Eq. (90) in the back-

ground field method of QCD depends on the background
field Aμa(x) where Ga(Q) is given by Eq. (83) [37,63–
65]. Hence in order to study the non-perturbative matrix ele-
ment in the background field method of QCD in the pres-
ence of a SU(3) pure gauge background field we proceed as
follows.

By changing Q → Q − A in Eq. (90) we find that

Z [A, J, ηu, η̄u, ηd , η̄d , ηs, η̄s, ηh, η̄h] = e−i
∫

d4x J ·A
∫

[dQ][dψ̄1][dψ1][dψ̄2][dψ2][dψ̄3][dψ3][d
̄][d
] det

(
δGa

f (Q)

δωb

)

× e
i
∫

d4x
[
− 1

4 F
a2
μν [Q]− 1

2α
(Ga

f (Q))2+J ·Q+∑3
l=1

[
ψ̄l [iγ μ∂μ−ml+gT aγ μQa

μ]ψl+η̄lψl+ηl ψ̄l

]
+ 
̄[iγ μ∂μ−M+gT aγ μQa

μ]
+η̄h
+
̄ηh

]

(91)

where the gauge fixing term from Eq. (83) becomes

Ga
f (Q) = ∂μQ

μa + g f abc Ab
μQ

μc − ∂μA
μa

= Dμ[A]Qμa − ∂μA
μa, (92)

and Eq. (86) [by using Eq. (85), a type I transformation [37,
64,65]] becomes

δQa
μ = g f abcQb

μωc + ∂μωa . (93)

Equations (92) and (93) can also be derived by using a type II
transformation, which can be seen as follows. By changing
Q → Q − A in Eq. (90) we find Eq. (91) where the gauge
fixing term from Eq. (83) becomes Eq. (92) and Eq. (89) [by
using Eq. (88)] becomes Eq. (93). Hence we obtain Eqs. (91),
(92), and (93) whether we use the type I transformation or
type II transformation. Hence we find that we will obtain the
same Eq. (120) whether we use the type I transformation or
type II transformation.

Note that

A′a
μ (x) = Aa

μ(x) + g f abcωc(x)Ab
μ(x) + ∂μωa(x) (94)

in Eq. (85) is valid for an infinitesimal transformation (ω <<

1), which is obtained from the finite equation

T a A′a
μ (x) = U (x)T a Aa

μ(x)U−1(x) + 1

ig
[∂μU (x)]U−1(x),

U (x) = eigT
aωa(x). (95)

Simplifying infinite numbers of non-commuting terms we
find
[
e−igT bωb(x) T a eigT

cωc(x)
]

i j
= [e−gM(x)]abT b

i j (96)

where

Mab(x) = f abcωc(x). (97)

Hence from Eqs. (95), (96), and [49] we find that

A′a
μ(x) = [egM(x)]ab Ab

μ(x)

+
[
egM(x) − 1

gM(x)

]

ab

[∂μωb(x)] (98)

where Mab(x) is given by Eq. (97). Similarly, the equation

Q′a
μ (x) = Qa

μ(x) + g f abcωc(x)Qb
μ(x) + ∂μωa(x) (99)

in Eq. (93) is valid for an infinitesimal transformation (ω <<

1), which is obtained from the finite equation

T aQ′a
μ (x) = U (x)T aQa

μ(x)U−1(x)

+ 1

ig
[∂μU (x)]U−1(x), (100)

which gives

Q′a
μ(x) = [egM(x)]abQb

μ(x)

+
[
egM(x) − 1

gM(x)

]

ab

[∂μωb(x)] (101)

where Mab(x) is given by Eq. (97).
Changing the integration variables from unprimed to

primed variables in Eq. (91) we find

123
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Z [A, J, ηu, η̄u, ηd , η̄d , ηs, η̄s, ηh, η̄h] = e−i
∫

d4x J ·A
∫

[dQ′][dψ̄ ′
1][dψ ′

1][dψ̄ ′
2][dψ ′

2][dψ̄ ′
3][dψ ′

3][d
̄ ′][d
 ′] det

(
δGa

f (Q
′)

δωb

)

× e
i
∫

d4x
[
− 1

4 F
a2
μν [Q′]− 1

2α
(Ga

f (Q
′))2+J ·Q′+∑3

l=1

[
ψ̄ ′
l [iγ μ∂μ−ml+gT aγ μQ′a

μ ]ψ ′
l+η̄lψ

′
l+ψ̄ ′

l ηl

]
+ 
̄ ′[iγ μ∂μ−M+gT aγ μQ′a

μ ]
 ′+η̄h

′+
̄ ′ηh

]
.

(102)

This is because a change of variables from unprimed to
primed variables does not change the value of the integration.

Under the finite transformation, using Eq. (101), we find

[dQ′] = [dQ] det

[
∂Q′a

∂Qb

]
= [dQ] det[egM(x)]

= [dQ]exp[Tr(ln[egM(x)])] = [dQ] (103)

where we have used (for any matrix H )

detH = exp[Tr(lnH)]. (104)

Similarly the fermion fields transform accordingly, see
Eq. (16), i.e.,

ψ ′
l (x) = eigT

aωa(x)ψl(x), 
 ′(x) = eigT
aωa(x)
(x).

(105)

Using Eqs. (101) and (105) we find

[dψ̄ ′
1][dψ ′

1] = [dψ̄1][dψ1], [dψ̄ ′
2][dψ ′

2] = [dψ̄2][dψ2],
[dψ̄ ′

3][dψ ′
3] = [dψ̄3][dψ3], [d
̄ ′][d
 ′] = [d
̄][d
],

ψ̄ ′
l [iγ μ∂μ − ml + gT aγ μQ′a

μ ]ψ ′
l

= ψ̄l [iγ μ∂μ − ml + gT aγ μQa
μ]ψl ,


̄ ′[iγ μ∂μ − M + gT aγ μQ′a
μ ]
 ′

= 
̄[iγ μ∂μ − ml + gT aγ μQa
μ]
,

Fa2
μν[Q′] = Fa2

μν[Q]. (106)

Using Eqs. (103) and (106) in Eq. (102) we find

Z [A, J, ηu, η̄u, ηd , η̄d , ηs, η̄s, ηh, η̄h] = e−i
∫
d4x J ·A

∫
[dQ][dψ̄1][dψ1][dψ̄2][dψ2][dψ̄3][dψ3][d
̄][d
] det

(
δGa

f (Q
′)

δωb

)

e
i
∫
d4x[− 1

4 F
a2
μν [Q]− 1

2α
(Ga

f (Q
′))2+J ·Q′+∑3

l=1

[
ψ̄l [iγ μ∂μ−ml+gT aγ μQa

μ]ψl+η̄lψ
′
l+ψ̄ ′

l ηl

]
+
̄[iγ μ∂μ−M+gT aγ μQa

μ]
+η̄h

′+
̄ ′ηh ]

. (107)

From Eq. (92) we find

Ga
f (Q

′) = ∂μQ
′μa + g f abc Ab

μQ
′μc − ∂μA

μa . (108)

By simplifying the infinite number of non-commuting terms
in the SU(3) pure gauge in Eq. (45) we find [49]

Aμa(x) = ∂μωb(x)

[
egM(x) − 1

gM(x)

]

ab

(109)

where Mab(x) is given by Eq. (97). By using Eqs. (101) and
(109) in Eq. (108) we find

Ga
f (Q

′) = ∂μ

[
[egM(x)]abQb

μ(x)

+
[
egM(x) − 1

gM(x)

]

ab
[∂μωb(x)]

]

+ g f abc
[
∂μωe(x)

[
egM(x) − 1

gM(x)

]

be

]

×
[
[egM(x)]cd Qd

μ(x)

+
[
egM(x) − 1

gM(x)

]

cd
[∂μωd(x)]

]

−∂μ

[
∂μωb(x)

[
egM(x) − 1

gM(x)

]

ab

]
, (110)

which gives

Ga
f (Q

′) = ∂μ[[egM(x)]abQb
μ(x)]

+ g f abc
[
∂μωe(x)

[
egM(x) − 1

gM(x)

]

be

][
[egM(x)]cd Qd

μ(x)

+
[
egM(x) − 1

gM(x)

]

cd
[∂μωd(x)]

]
. (111)

From Eq. (111) we find

Ga
f (Q

′) = ∂μ[[egM(x)]abQb
μ(x)] + g f abc

[
∂μωe(x)

×
[
egM(x) − 1

gM(x)

]

be

]
[[egM(x)]cd Qd

μ(x)], (112)

123
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which gives

Ga
f (Q

′) = [egM(x)]ab∂μQb
μ(x)

+ Qb
μ(x)∂μ[[egM(x)]ab] +

[
∂μωe(x)

[
egM(x) − 1

gM(x)

]

be

]

g f abc[[egM(x)]cd Qd
μ(x)]. (113)

From [49] we find

∂μ[eigT aωa(x)]i j = ig[∂μωb(x)]
[
egM(x) − 1

gM(x)

]

ab

×T a
ik[eigT

cωc(x)]k j , (114)

which in the adjoint representation of SU(3) gives (by using
T a
bc = −i f abc)

[∂μegM(x)]ad=[∂μωe(x)]
[
egM(x) − 1

gM(x)

]

be

g f bac[eM(x)]cd
(115)

where Mab(x) is given by Eq. (97). Using Eq. (115) in (113)
we find

Ga
f (Q

′) = [egM(x)]ab∂μQb
μ(x), (116)

which gives

(Ga
f (Q

′))2 = (∂μQ
μa(x))2. (117)

Since for n × n matrices A and B we have

det(AB) = (detA)(detB), (118)

we find from Eq. (116) that

det

[
δGa

f (Q
′)

δωb

]
= det

[
δ[[egM(x)]ac∂μQc

μ(x)]
δωb

]

= det

[
[egM(x)]ac

δ(∂μQc
μ(x))

δωb

]

=
[
det[[egM(x)]ac]

] [
det

[
δ(∂μQc

μ(x))

δωb

]]

= exp[Tr(ln[egM(x)])] det

[
δ(∂μQμa(x))

δωb

]

= det

[
δ(∂μQμa(x))

δωb

]
. (119)

Using Eqs. (117) and (119) in Eq. (107) we find

Z [A, J, ηu, η̄u, ηd , η̄d , ηs , η̄s, ηh, η̄h] = e−i
∫

d4x J ·A
∫

[dQ][dψ̄1][dψ1][dψ̄2][dψ2][dψ̄3][dψ3][d
̄][d
] det

[
δ(∂μQμa(x))

δωb

]

× e
i
∫

d4x
[
− 1

4 F
a2
μν [Q]− 1

2α
(∂μQμa)2+J ·Q′+∑3

l=1

[
ψ̄l [iγ μ∂μ−ml+gT aγ μQa

μ]ψl+η̄lψ
′
l+ψ̄ ′

l ηl

]
+ 
̄[iγ μ∂μ−M+gT aγ μQa

μ]
+η̄h

′+
̄ ′ηh

]
.

(120)

From Eqs. (109) and (101) we find

Q′a
μ(x) − Aa

μ(x) = [egM(x)]abQb
μ(x) (121)

where Mab(x) is given by Eq. (97).
Note that Eqs. (120), (121), and (16) are valid whether we

use type I transformation [see Eqs. (85) and (86)] or type II
transformation [see Eqs. (88) and (89)].

However, since Eq. (95) is used to study the gauge trans-
formation of the Wilson line in QCD, we will use type I trans-
formation [see Eqs. (85) and (86)] in the rest of the paper,
which for the finite transformation gives [37,64,65]

J ′a
μ (x) = [egM(x)]ab J bμ(x) (122)

where Mab(x) is given by Eq. (97). From Eqs. (120), (121),
and (122) we find

Z [A, J ′, ηu, η̄u, ηd , η̄d , ηs, η̄s, ηh, η̄h] =
∫

[dQ][dψ̄1][dψ1][dψ̄2][dψ2][dψ̄3][dψ3][d
̄][d
] det

[
δ(∂μQμa(x))

δωb

]

× e
i
∫

d4x
[
− 1

4 F
a2
μν [Q]− 1

2α
(∂μQμa)2+J ·Q+∑3

l=1

[
ψ̄l [iγ μ∂μ−ml+gT aγ μQa

μ]ψl+η̄lψ
′
l+ψ̄ ′

l ηl

]
+ 
̄[iγ μ∂μ−M+gT aγ μQa

μ]
+η̄h

′+
̄ ′ηh

]
.

(123)
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Under the non-abelian gauge transformation the fermion
sources transform as [37,64,65]

η′
l(x) = eigT

aωa(x)ηl(x), η′
h(x) = eigT

aωa(x)ηh(x). (124)

From Eqs. (105) and (124) we find

η̄′
lψ

′
l = η̄lψl , ψ̄ ′

lη
′
l = ψ̄lηl , η̄′

h

′ = η̄h
,


̄ ′η′
h = 
̄ηh, (125)

which gives from Eq. (123)

Z [A, J ′, η′
u, η̄

′
u, η

′
d , η̄

′
d , η

′
s, η̄

′
s, η

′
h, η̄

′
h] =

∫
[dQ][dψ̄1][dψ1][dψ̄2][dψ2][dψ̄3][dψ3][d
̄][d
] det

[
δ(∂μQμa(x))

δωb

]

× e
i
∫
d4x

[
− 1

4 F
a2
μν [Q]− 1

2α
(∂μQμa)2+J ·Q+∑3

l=1

[
ψ̄l [iγ μ∂μ−ml+gT aγ μQa

μ]ψl+η̄lψl+ψ̄lηl

]
+ 
̄[iγ μ∂μ−M+gT aγ μQa

μ]
+η̄h
+
̄ηh

]
.

(126)

Hence from Eqs. (126) and (12) we find

Z [J, ηu, η̄u, ηd , η̄d , ηs, η̄s, ηh, η̄h]
= Z [A, J ′, η′

u, η̄
′
u, η

′
d , η̄

′
d , η

′
s, η̄

′
s, η

′
h, η̄

′
h] (127)

when the background field Aμa(x) is the SU(3) pure gauge
field as given by Eq. (45).

Hence we find that Eq. (127) is the relation between the
generating functional Z [J, ηu, η̄u, ηd , η̄d , ηs, η̄s, ηh, η̄h] in
QCD and the generating functional Z [A, J, ηu, η̄u, ηd , η̄d ,
ηs, η̄s, ηh, η̄h] in the background field method of QCD in the
presence of a SU(3) pure gauge background field Aμa(x) as
given by Eq. (45).

Note that in QED the corresponding result is [33,44]

Z [J, η, η̄] = Z [A, J, η′, η̄′] (128)

when the background field Aμ(x) is the U(1) pure gauge field
given by Aμ(x) = ∂μω(x). Equation (35) in QED is obtained
from Eq. (128). Note that unlike Eq. (127) in QCD there is no
J ′ in Eq. (128) in QED because, while the (quantum) gluon
directly interacts with the classical chromo-electromagnetic
field, the (quantum) photon does not directly interact with
the classical electromagnetic field.

Equation (127) is the main result of this paper.
For the heavy quark Dirac field 
(x), the non-perturbative

matrix element of the type 〈0|
̄(x)On
(x)
̄(x ′)O ′
n


(x ′)|0〉 in QCD is given by Eq. (15) if the factors On and O ′
n

are independent of quantum fields. Similarly for the heavy
quark Dirac field 
(x), the corresponding non-perturbative
matrix element of the type 〈0|
̄(x)On
(x)
̄(x ′)O ′

n
(x ′)|0〉

in the background field method of QCD is given by [33]

〈0|
̄(x)On
(x)
̄(x ′)O ′
n
(x ′)|0〉A

= δ

δηh(x)
On

δ

δη̄h(x)

δ

δηh(x ′)
O ′
n

δ

δη̄h(x ′)
× Z [A, J, ηu, η̄u, ηd , η̄d , ηs,

η̄s, ηh, η̄h]|J=ηu=η̄u=ηd=η̄d=ηs=η̄s=ηh=ηh=0 (129)

where the suppression of the normalization factor Z [0] is
understood as it will cancel in the final result (see Eq. (133)).

When the background field Aμa(x) is the SU(3) pure
gauge as given by Eq. (45) we find from Eqs. (15), (129),
(127), (124), and (122) that

〈0|
̄(x)On
(x)
̄(x ′)O ′
n
(x ′)|0〉

= 〈0|
̄(x)�(x)On�
†(x)
(x)
̄(x ′)�(x ′)

×O ′
n�

†(x ′)
(x ′)|0〉A (130)

if the factors On and O ′
n are independent of quantum fields

where, see Eq. (52),

�(x) = exp[igT aωa(x)] = Pe−ig
∫ ∞

0 dλl·Aa(x+lλ)T a
. (131)

Note that the creation operator a†
q and the annihilation oper-

ator aq of the quark are related to the quark field via the
equation [70]

ψ(x) =
∑

spin

∑

p

√
m

V Ep
[aq(p)u(p)e−i p·x

+a†
q̄(p)v(p)eip·x ] (132)

where color indices are suppressed. Hence one finds that the
quark field ψ(x) or 
(x) depends on the creation (annihi-
lation) operator a†

q (aq) of the quark but is independent of

the creation (annihilation) operator a†
H (aH ) of the hadron.

Similarly the gluon field Qμa(x) is independent of the cre-
ation (annihilation) operator a†

H (aH ) of the hadron. Since

a†
HaH is independent of ψ(x),
(x), Qμa(x) one can per-

form exactly similar steps to the path integral calculation as
above to find from Eq. (130) that

〈0|
̄(x)On
(x)a†
HaH 
̄(x ′)O ′

n
(x ′)|0〉
= 〈0|
̄(x)�(x)On�

†(x)
(x)a†
HaH 
̄(x ′)

×�(x ′)O ′
n�

†(x ′)
(x ′)|0〉A (133)

where �(x) is given by Eq. (131).
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Under non-abelian gauge transformation as given by
Eq. (95) the Wilson line in QCD transforms as

Peig
∫ x f
xi dxμA′a

μ (x)T a

= U (x f )

[
Peig

∫ x f
xi dxμAa

μ(x)T a
]
U−1(xi ). (134)

From Eqs. (47) and (134) we find

Pe−ig
∫ ∞

0 dλl·A′a(x+lλ)T a = U (x)Pe−ig
∫ ∞

0 dλl·Aa(x+lλ)T a
,

U (x) = exp[igT aωa(x)], (135)

which gives from Eq. (131)

�′(x) = U (x)�(x), �′†(x) = �†(x)U−1(x). (136)

Hence we find that 〈0|
̄(x)�(x)On�
†(x)
(x)a†

HaH 
̄(x ′)
�(x ′)O ′

n�
†(x ′)
(x ′)|0〉A in Eq. (133) is gauge invariant and

Eq. (133) is consistent with the factorization of infrared diver-
gences in QCD.

9 Proof of the factorization in heavy quarkonium
production in the NRQCD color octet mechanism at
all orders in the coupling constant

The non-perturbative matrix element 〈0|
̄(x)On
(x)a†
H

aH 
̄(x ′)O ′
n
(x ′)|0〉 in QCD in Eq. (133) is obtained from

the exact generating functional in QCD as given by Eq. (12);
see Eq. (15). Similarly, the non-perturbative matrix ele-
ment 〈0|
̄(x)On
(x)a†

HaH 
̄(x ′)O ′
n
(x ′)|0〉A in the back-

ground field method of QCD in Eq. (133) is obtained from the
exact generating functional in the background field method
of QCD as given by Eq. (90); see Eq. (129). Hence we find
that Eq. (133) is valid at all orders in the coupling constant
in QCD.

Note that in [29,30] the proof of the factorization is pre-
sented at NNLO in the coupling constant and to v2 order in
the relative velocity of the heavy quark–antiquark pair. This
is done by restricting the result to v2 order by using

pμ
1 = Pμ

2
+ pμ

r , pμ
2 = Pμ

2
− pμ

r (137)

where pμ
1 is the momentum of the heavy quark, pμ

2 is the
momentum of the heavy antiquark, Pμ is the total momen-
tum of the heavy quark–antiquark pair and pμ

r is the relative
momentum of the heavy quark–antiquark pair. In the rest
frame of the heavy quark–antiquark pair �pr = M �v where M
is the mass of the heavy quark.

Similarly in [31] the proof of the factorization is presented
at NNLO in the coupling constant and to all powers in the
relative velocity v of the heavy quark–antiquark pair. This is
done by obtaining the result for arbitrary pμ

1 and pμ
2 without

restricting to order p2
r . Hence in order to be consistent with

the proof of the factorization of [31] to all powers of the

relative velocity v it is necessary to present the final result
for arbitrary pμ

1 and pμ
2 .

It can be seen that the non-perturbative matrix ele-
ment 〈0|
̄(x)On
(x)a†

HaH 
̄(x ′)O ′
n
(x ′)|0〉 in QCD in

Eq. (133) is obtained from the exact generating func-
tional in QCD as given by Eq. (12) without putting any
restrictions on the heavy quark and antiquark momenta;
see Eq. (15). Similarly, the non-perturbative matrix ele-
ment 〈0|
̄(x)On
(x)a†

HaH 
̄(x ′)O ′
n
(x ′)|0〉A in the back-

ground field method of QCD in Eq. (133) is obtained from the
exact generating functional in the background field method
of QCD as given by Eq. (90) without putting any restrictions
on the heavy quark and antiquark momenta; see Eq. (129).
Hence we find that Eq. (133) is valid for any arbitrary
momenta pμ

1 and pμ
2 of the heavy quark and antiquark,

respectively. This implies that Eq. (133) is valid to all powers
in the relative velocity of the heavy quark.

Hence we find that Eq. (133) is valid at all orders in the
coupling constant in QCD and to all powers in the relative
velocity of the heavy quark.

As mentioned earlier, in NRQCD an ultraviolet cut-
off � ∼ M is introduced [1]. Hence the ultraviolet
(UV) behavior of QCD and NRQCD differ. However, the
infrared (IR) behavior of QCD and NRQCD remains same
[36]. Hence the infrared behavior of the non-perturbative
NRQCD matrix element 〈0|χ†Knξ(a†

HaH )ξ†K ′
nχ |0〉 in

Eq. (1) can be obtained by studying the infrared behavior
of the non-perturbative matrix element in QCD of the type
〈0|
̄(x)On
(x)a†

HaH 
̄(x ′)O ′
n
(x ′)|0〉 where On, O ′

n are
appropriate factors which identify the state of the heavy
quark–antiquark system such as the color singlet state or the
color octet state etc.

We are interested in the effect of exchange of soft glu-
ons between the light-like Wilson line and the heavy quark
(and/or antiquark) in the NRQCD color octet mechanism
[29–31]. Hence for the color singlet S-wave non-perturbative
matrix element we find from Eq. (133) that

〈0|On|0〉 = 〈0|χ†(0)Knξ(0)(a†
HaH )ξ†(0)K ′

nχ(0)|0〉 (138)

at all orders in the coupling constant which is consistent with
Eq. (1).

When the factors On , O ′
n contain the color matrix T a we

find by simplifying infinite numbers of non-commuting terms
[see Eq. (96)] that Eqs. (133) and (131) give

〈0|
̄(x)On,a
(x)a†
HaH 
̄(x ′)O ′

n,a
(x ′)|0〉
= 〈0|
̄(x)On,e
(x)�(A)†

eb (x)a†
HaH�(A)(x ′)ba


̄(x ′)O ′
n,a
(x ′)|0〉A (139)

where

�(A)(x) = Pe−ig
∫ ∞

0 dλl·Aa(x+lλ)T (A)a
,

(T (A)c)ab = −i f abc. (140)
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Hence from Eqs. (139) and (140) we find that the gauge
invariant octet S-wave non-perturbative NRQCD matrix ele-
ment which is consistent with factorization of infrared diver-
gences at all orders in the coupling constant and to all powers
in the relative velocity of the heavy quark is given by

〈0|On|0〉 = 〈0|χ†(0)Kn,eξ(0)�
(A)†
l (0)eb(a

†
HaH )

�
(A)
l (0)baξ

†(0)K ′
n,aχ(0)|0〉 (141)

where

�
(A)
l (0) = Pexp

[
−igT (A)c

∫ ∞

0
dλl · Ac(lλ)

]
,

(T (A)c)ab = −i f abc. (142)

Note that the non-perturbative matrix element 〈0|
̄(x)On


(x)a†
HaH 
̄(x ′)O ′

n
(x ′)|0〉 in the left hand side of Eq. (133)
is independent of lμ. Hence all the lμ dependence in �(x)
defined by Eq. (131) in the non-perturbative matrix element
〈0|
̄(x)�(x)On�

†(x)
(x)a†
HaH 
̄(x ′)�(x ′)O ′

n�
†(x ′)


(x ′)|0〉A in the right hand side of Eq. (133) is canceled by the
use of background field Aμa(x) in the expectation value of the
non-perturbative matrix element 〈0|
̄(x)On
(x)a†

HaH 
̄

(x ′)O ′
n
(x ′)|0〉A as defined in Eq. (129) in the background

field method of QCD. This proves that the long-distance
behavior of the non-perturbative NRQCD matrix element
〈0|χ†(0)Kn,eξ(0)�

(A)†
l (0)eb(a

†
HaH )�

(A)
l (0)baξ

†(0)K ′
n,aχ

(0)|0〉 in Eq. (141) is independent of the light-like vector
lμ at all orders in the coupling constant and to all powers in
the relative velocity of the heavy quark.

To summarize this, we find that Eq. (141), which is found
by using the path integral method of QCD, is valid at all
orders in the coupling constant and to all powers in the rel-
ative velocity of the heavy quark. We have also shown that
the long-distance behavior of the non-perturbative NRQCD
matrix element is independent of the light-like vector lμ at
all orders in the coupling constant and to all powers in the
relative velocity of the heavy quark. Equation (4), which is
found by using diagrammatic method of QCD at NNLO in
the coupling constant and to all powers in the relative veloc-
ity of the heavy quark shows that long-distance behavior of
the non-perturbative NRQCD matrix element is independent
of the light-like vector lμ at NNLO in the coupling constant
and to all powers in the relative velocity of the heavy quark.
This implies that the gauge invariance and the factorization at
all orders in the coupling constant require gauge-completed
octet S-wave non-perturbative NRQCD matrix element that
was introduced previously to prove factorization at NNLO.

Hence we find that Eq. (4) is valid at all orders in the
coupling constant and to all powers in the relative velocity
of the heavy quark.

10 Factorization theorem is a key ingredient in
calculation of NRQCD heavy quarkonium
production cross section

As mentioned earlier the definition of the NRQCD heavy
quarkonium production matrix element from heavy quark–
antiquark pair is a non-perturbative quantity, which cannot
be calculated by using perturbation theory no matter how
many orders of perturbation theory is used. From this point
of view the path integral formulation (as opposed to diagram-
matic methods in perturbation theory) is useful to study the
properties of the NRQCD non-perturbative matrix element
of heavy quarkonium production at all orders in the coupling
constant. As mentioned earlier the only path integral formu-
lation to study factorization of soft and collinear divergences
at all orders in the coupling constant in quantum field theory
available is by Tucci [33]. However, the calculation of Tucci
[33] was exact for QED but was not exact for QCD. We have
extended the exact path integral calculation of the proof of
the factorization of Tucci in QED [33] to the proof of the
factorization in QCD at all orders in the coupling constant in
[34] and to the proof of the factorization in NRQCD heavy
quarkonium production at all orders in the coupling constant
in the previous section.

In this section we will show how the factorization theorem
as given by Eqs. (130) and (139) are actually a key ingredients
in calculation of NRQCD heavy quarkonium production by
using Eqs. (2) and (3) where the NRQCD non-perturbative
matrix element of heavy quarkonium production in the color
octet mechanism is given by Eq. (141).

Let us prove how the Eqs. (130) and (139) are key ingredi-
ents to prove Eqs. (2) and (3) to calculate the NRQCD heavy
quarkonium production in the color octet mechanism. Sup-
pose we calculate the cross section of heavy quark–antiquark
production in the color octet state in the presence of a light-
like quark (or gluon). Then from Eq. (130) we find

〈0|
̄(x)On
(x)
̄(x ′)O ′
n
(x ′)|0〉A

= 〈0|
̄(x)�†(x)On�(x)
(x)
̄(x ′)�†(x ′)
×O ′

n�(x ′)
(x ′)|0〉. (143)

Hence from Eq. (143) we find that the A dependence which
arises due to the soft gluon exchanges with light-like quark
(or gluon) is factorized and only appears in the gauge-links
�(x) in the right hand side where �(x) is given by Eq. (131).
Equation (143) implies that in the cross section for QQ̄ pro-
duction in the color octet state at all orders in the coupling
constant the infrared divergences due to the presence of a
light-like quark (or gluon) are factorized only to the gauge
links �(x).

Equation (143) is the exact extension of eq. (1.6) of [33]
of the factorization in QED.
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Hence from Eq. (143) we find that the non-perturbative
matrix element of NRQCD heavy quarkonium production
in the color octet mechanism which cancels these infrared
divergences and is consistent with the factorization theorem
is obtained from Eq. (139) and is given by Eq. (141). This
proves that the factorization theorem as given by Eqs. (130)
and (139) is actually a key ingredient to prove Eqs. (2) and
(3) to calculate the NRQCD heavy quarkonium production
cross section in the color octet mechanism at all orders in the
coupling constant.

11 Conclusions

Recently the proof of the factorization in heavy quarkonium
production in the NRQCD color octet mechanism is given at
next-to-next-to-leading order (NNLO) in the coupling con-
stant by using diagrammatic method of QCD. In this paper
we have proved factorization in heavy quarkonium produc-
tion in the NRQCD color octet mechanism at all orders in
the coupling constant by using the path integral method of
QCD. Our proof is valid to all powers in the relative velocity
of the heavy quark. We have found that the gauge invariance
and the factorization at all orders in the coupling constant
require gauge-completed non-perturbative NRQCD matrix
elements that were introduced previously to prove factoriza-
tion at NNLO.
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Appendix A: Interaction between non-eikonal current
and the gauge field generated by light-like eikonal cur-
rent in quantum field theory

From the non-eikonal part of the diagram in Eq. (72) we find

e
∫

d4k

(2π)4

kνγνγμAμ(k)

2q · k + iε
=

∫
d4x Jμ(x)Aμ(x) (A1)

where the non-eikonal current density Jμ(x)of the (light-like
or non-light-like) charge e of four-momentum qμ is given by

Jμ(x) = e

2
γνγ

μ

∫ ∞

0
dλ

∂

∂xν

δ(4)(x − qλ). (A2)

Hence using Eqs. (A2) and (22) in Eq. (61) we find that the
interaction between the non-eikonal current and the gauge
field generated by the light-like eikonal current in quantum

field theory gives the effective (interaction) action

Sint
eff [J ] = lμ

e2

4

∫
d4xγνγ

μ

∫ ∞

0
dλδ(4)(x − qλ)

× ∂

∂xν

1

∂2

∫
dλ′ δ(4)(x − lλ′)

= l2
e2

2

∫
d4x

[
l · ∂[q · (x − qλ0)]
[q · (x − qλ0)]2

] [
1

(l · x)3

]
(A3)

where λ0 is the solution of the equation

(x − qλ0)
μ(x − qλ0)μ = 0. (A4)

From Eqs. (A3) and (A4) we find that the interaction between
the non-light-like non-eikonal current and the gauge field
generated by the light-like eikonal current in quantum field
theory gives the effective (interaction) lagrangian density

Lint
eff(x) = l2

e2

2

(l · q)(q · x) − (l · x)q2

(l · x)3[(q · x)2 − q2x2] 3
2

. (A5)

From Eq. (A5) we find that the interaction between the light-
like non-eikonal current and the gauge field generated by the
light-like eikonal current in quantum field theory gives the
effective (interaction) lagrangian density

Lint
eff(x) = e2

2

l2(q · l)
(q · x)2(l · x)3 . (A6)
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