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Abstract In this work, we explore wormhole solutions in
f (R, T ) theory of gravity, where R is the scalar curvature and
T is the trace of stress-energy tensor of matter. To investigate
this, we consider a static spherically symmetric geometry
with matter contents as anisotropic, isotropic, and barotropic
fluids in three separate cases. By taking into account the
Starobinsky f (R) model, we analyze the behavior of energy
conditions for these different kinds of fluids. It is shown that
the wormhole solutions can be constructed without exotic
matter in few regions of space-time. We also give the graphi-
cal illustration of the results obtained and discuss the equilib-
rium picture for the anisotropic case only. It is concluded that
the wormhole solutions with anisotropic matter are realistic
and stable in this theory of gravity.

1 Introduction

After Hubble’s theory of the expanding universe, current
observations from Supernovae Type Ia and CMBR (Cosmic
Microwave Background Radiation) [1–3] have confirmed
the phenomenon of the accelerated expanding universe. The
modified theories are quite useful in the present era because
these theories can help to explain the possible cosmic expan-
sion history and its related concepts. In this context, f (R)

theory has appeared as one of the first and simplest modifi-
cations to the Einstein–Hilbert action. This theory has been
extensively employed to discuss the dark energy (DE) and
mainly the accelerating cosmic expansion [4]. Furthermore,
the f (R) theory of gravitation provides us with the scenarios
of early time inflation and late time expansion of the accel-
erated universe [5]. The features of DE and late time cosmic
acceleration are also explained in some other modified the-
ories of gravity such as f (τ ) (where “τ” is for the torsion)
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[6,7], Gauss–Bonnet gravity [8,9], Brans–Dicke theory [10]
and f (T, TG), [11], etc.

A few years ago, Harko et al. [12] introduced a modifi-
cation to Einstein’s gravity and named it the f (R, T ) theory
of gravity. This was basically an extension to f (R) grav-
ity obtained by introducing the trace “T ” of the energy-
momentum tensor together with the Ricci scalar “R”. Fur-
thermore, they derived the corresponding field equations
from the coupling of matter and geometry in the met-
ric formalism for some specific cases. Recently, Houndjo
[13] reconstructed some cosmological models of the form
f (R, T ) = f1(R) + f2(T ), in the presence of an auxiliary
scalar field with two known examples of the scale factor that
correspond to an expanding universe. In [14], the authors con-
sidered cosmological scenarios based on f (R, T ) theories of
gravity and numerically reconstructed the function f (R, T )

for a holographic DE model that can reproduce the same
expansion history as generated in general relativity (GR).
Till the present time, different cosmological aspects have
been addressed in f (R, T ) gravity including reconstruction
schemes, anisotropic solutions, energy conditions, thermo-
dynamics, viscous solutions, phase space perturbations and
stability, etc. [15–32].

Wormholes are hypothetical topological features that pro-
vide a subway for different space-times apart from each
other. In 1935, Einstein and Rosen [33] were first to obtain
the wormhole solutions known as Lorentzian wormholes
or Schwarzschild wormholes. Wormholes are of two kinds:
static wormholes and dynamic wormholes. Normally, an
exotic fluid is needed for the formation of static worm-
holes which violates the NEC in GR. Lobo and Oliveira [34]
explained the fact that wormhole solutions can be formed
without violation of energy conditions, i.e., WEC and NEC,
in f (R) theory of gravity. They reconstructed f (R) by con-
sidering a trace-less fluid and equations of state for some
particular shape function, to discuss the evolution of energy
conditions.
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In [35], the behavior of ordinary matter was studied to
check whether it can support wormholes in f (R) theory. For
this purpose, WEC and NEC were analyzed in anisotropic,
barotropic, and isotropic fluids and it was observed that the
barotropic fluid satisfies these conditions in some certain
regions of the space-time, while for the other two fluids,
these conditions were violated. So, wormhole solutions can
be obtained without exotic matter in a few regions of space-
time only, without violating the energy conditions which are
necessary for the existence of wormhole solutions in GR
[36,37]. Recently, the wormhole geometries were studied in
f (R, T ) gravity [38] by taking a particular equation of state
(EoS) for the matter field into account. They showed that an
effective stress-energy is responsible for the violation of the
NEC.

Here, we are interested in finding wormhole solutions
by introducing additional matter contributions in the f (R)

model (without involving any form of exotic matter). We ana-
lyze the behavior of the shape function, WEC, and NEC to
explore the suitable regions for existence of wormhole solu-
tions using anisotropic, barotropic, and isotropic fluids. This
paper has the following organization. In Sect. 2, we present a
short introduction of f (R, T ) gravity by developing the field
equations. Section 3 relates to the discussion of wormhole
geometries in the f (R, T ) theory of gravity for three types
of fluids. Finally, Sect. 4 comprises the concluding remarks.

2 f (R, T ) Gravity

Here, we will give a short introduction to f (R, T ) theory of
gravity. In his pioneering work, Harko et al. presented a new
generalization of f (R) gravity by taking the coupling of the
Ricci scalar with the matter field into account as follows [12]:

I =
∫

dx4√−g [ f (R, T ) + Lm]. (1)

In the above action, f (R, T ) represents a generic function
of the Ricci scalar R and the energy-momentum tensor trace
T = Tμ

μ . Here, in the action, we have assumed gravitational
units, i.e., c = 8πG = 1 and also the matter ingredients are
introduced by the Lagrangian densityL(matter). This theory is
considered as more successful as compared to f (R) gravity
in the sense that such a theory can include quantum effects or
imperfect fluids that are neglected in a simple f (R) general-
ization of GR. The variation of the metric gμν of the above
action leads to the following set of field equations:

Rμν fR(R, T ) − 1

2
gμν f (R, T )+(

gμν�−∇μ∇ν

)
fR(R, T )

= Tμν − fT (R, T )�μν − fT (R, T )Tμν. (2)

This set involves derivative operators like ∇ and �, which
represent the covariant derivative and the four-dimensional
Levi-Civita covariant derivative also known as the
d’Alembert operator, respectively. Also, the notations fR(R,

T ) and fT (R, T ) correspond to derivatives of f (R, T ) with
respect to the Ricci scalar, i.e., ∂ f (R,T )

∂R and the energy-

momentum, i.e., the trace ∂ f (R,T )
∂T , respectively. The term

�μν is defined by

�μν = gαβδTαβ

δgμν
= −2Tμν + gμνLm − 2gαβ ∂2Lm

∂gμν∂gαβ
,

where the matter energy-momentum tensor is introduced
which is given by the following equation [39]:

T (m)
μν = − 2√−g

δ(
√−gLm)

δgμν
= gμνLm − 2∂Lm

∂gμν
. (3)

Here the second part of the above equation can be obtained,
if the matter Lagrangian is assumed to depend only on the
metric tensor rather than on its derivatives.

The source of the anisotropic fluid is defined by the fol-
lowing energy-momentum tensor:

Tμν = (ρ + pr )VμVν − pt gμν + (pr − pt )χμχν,

whereVμ is the 4-velocity of the fluid defined asV μ = e−aδ
μ
0

satisfying VμVμ = 1 and χμ = e−bδ
μ
1 gives χμχμ = −1.

Herein, we chooseL(matter) = ρ, then the expression for �μν

takes the following form:

�μν = −2Tμν + ρgμν.

Consequently, the field equation (2) can be expressed as
effective Einstein field equations of the form

Rμν − 1

2
Rgμν = T eff

μν , (4)

where T eff
μν is the effective energy-momentum tensor in

f (R, T ) gravity which is defined by

T ef f
μν = 1

fR(R, T )

[
(1 + fT (R, T ))Tμν − ρgμν fT (R, T )

+ 1

2
( f (R, T ) − R fR(R, T ))gμν

+ (∇μ∇ν − gμν�) fR(R, T )
]
. (5)

3 Wormhole geometries with three different matter
contents

In this section, we will discuss static spherically symmetric
wormholes with three types of matter contents: anisotropic,
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isotropic, and barotropic. Consider a line element that
describes a static spherically symmetric geometry of the form

ds2 = ea(r)dt2 − eb(r)dr2 − r2(dθ2 + sin2θdφ2), (6)

where a(r) is an arbitrary function of r and for the wormhole
geometry, we have e−b(r) = 1 −β(r)/r . The terms a(r) and
β(r) represent the redshift function, and the shape function,
respectively [36,37]. For the surface vertical to the wormhole
throat, we must have a minimum radius at r = β(r0) = r0,
then it increases from r0 to r → ∞. An important condition
to have a typical wormhole solution is the flaring out condi-
tion of the throat, given by (β−β ′r)

β2 > 0 and, moreover, β(r)

needs to meet the condition β ′(r0) < 1, which is imposed at
the throat β(r0) = r = r0. In GR, these conditions give hints
for to the existence of an exotic form of matter which requires
the violation of the NEC. Also, the condition 1−β(r)/r > 0
needs to be satisfied.

The field equations can be rearranged to find the expres-
sions for ρ, pr and pt as follows:

ρ = 1

eb

[(
a′

r
− a′b′

4
+ a′′

2
+ a′2

4

)
fR(R, T )

+
(
b′

2
− 2

r

)
f ′
R(R, T ) − f ′′

R(R, T ) − f (R, T )

2
eb

]
,

(7)

pr = 1

eb(1+ fT (R, T ))

[(
b′

r
− a′b′

4
− a′′

2
− a′2

4

)
fR(R, T )

+
(
a′

2
+ 2

r

)
f ′
R(R, T ) + f (R, T )

2
eb

]

− ρ fT (R, T )

(1 + fT (R, T ))
, (8)

pt = 1

eb(1+ fT (R, T ))

[(
(b′ − a′)r

2
− eb+1

)
fR(R, T )

r2

+
(
a′ − b′

2
+ 1

r

)
f ′
R(R, T ) + f ′′

R(R, T )

+ f (R, T )

2
eb(r)

]
− ρ fT (R, T )

(1 + fT (R, T ))
. (9)

It can be observed that the above equations appeared to
be much complicated to find the explicit expressions of ρ,
pr , and pt , since f (R, T ) has a direct dependence on the
trace of the stress-energy tensor. In this scenario, we find
that the only possibility left is to choose the function as
f (R, T ) = f (R) + f (T ) with f (T ) = λT , λ being the
coupling parameter. Here, we set this choice for f (R, T )

and simplify Eqs. (7)–(9) as follows:

ρ = 1

2(1 + 2λ)

[
2 + 5λ

(1 + λ)
Z1 + λZ2 + 2λZ3

]
, (10)

pr = −1

2(1 + 2λ)

[
λ

(1 + λ)
Z1 − (2 + 3λ)Z2 + 2λZ3

]
,

(11)

pt = −1

2(1 + 2λ)

[
λ

(1 + λ)
Z1 − (2 + 3λ)Z2 + 2λZ3

]
,

(12)

where

Z1 = 1

eb

[(
a′

r
− a′b′

4
+ a′′

2
+ a′2

4

)
fR +

(
b′

2
− 2

r

)
f ′
R

− f ′′
R − f

2
eb

]
,

Z2 = 1

eb(1 + λ)

[(
b′

r
+ a′b′

4
− a′′

2
− a′2

4

)
fR

+
(
a′

2
+ 2

r

)
f ′
R + f

2
eb

]
,

Z3 = 1

eb(1 + λ)

[(
(a′ − b′)r

2
− eb + 1

)− fR
r2

+
(
a′ − b′

2
+ 1

r

)
f ′
R + f ′′

R + f

2
eb

]
.

In [40,41], the authors have presented the study of energy
conditions in f (R, T ) gravity. We recommend the readers to
study to these papers for gaining an overview of this subject.
As for the other modified theories, the violation of the NEC in
f (R, T ) gravity imposes the condition T ef f

μν κμκν < 0, that
is, ρe f f + peff < 0. Here, we find the following expression:

ρeff + peff
r = 1

fR
(ρ + pr )(1 + λ) + 1

fR

(
1 − β

r

)

×
(
f ′′
RR + f ′

R
β − β ′r

2r2(1 − β
r )

)
.

Using the field equations, this leads to

ρeff + pef fr = 1

r3

(
β ′r − β

)
,

which is similar to that in f (R) gravity. Here, if we use the
flaring out condition (β−β ′r)

β2 > 0, it results in ρeff + peff < 0.
In this case, we have kept NEC satisfied for matter energy
tensor; however, the additional curvature components which
arise due to the modification of Einstein’s gravity play a role
for the violation of the NEC.

In this study, we take a specific f (R) model representing
an Rn extension of the well-known Starobinsky model, and
is it given by [42]

f (R) = R + αR2 + γ Rn,

where n � 3, α, and γ are arbitrary constants. The choice of
α = γ = 0 implies the � correction to GR. Basically, we
want to take a power law model that should be singularity free
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Table 1 Shape functions
corresponding to different
choices of parameter m

m m = 1 m = 1/2 m = 1/5 m = 0 m = −1/2 m = −3

Shape Functions β(r) r2
0 /r r0

√
r0/r r6/5

0 r−1/5 r0
√
r0r r2

0 r
3

as well as it should be the generalization of linear models that
are used in most of the literature for wormhole discussions. In
the literature [43], it is pointed out that the power law models
are always of great interest, e.g., f (R) = ξ Rn with ξ, n any
constants. In this model, there exists big rip singularities for a
negative range of n. They also argued that if we impose n > 1
with positive ξ , then f (R) → ∞ only when R → ∞. Thus,
under these conditions, the possible presence of a singular-
ity can be avoided. Further, in the literature, another form of
Starobinsky model with disappearing cosmological constant
is defined, f (R) = R + λR0[(1 + R2

R0
)−n − 1] [45]. Clearly,

this model suffers the singularity problem. However, they
also claimed that this singularity can be cured by adding a
term ∝ R2 [44]. It can easily be seen that present Starobinsky
model has a different form involving one R2 term, therefore
our used model does not suffer from any singularity prob-
lem. One can explore another viable f (R) model, named
the Hu–Sawicki model to present interesting cosmic features
[46].

For this model, the field equations (10)–(12) take the form

ρ = e−b

4r2(1 + λ)(1 + 2λ)

[
(1 + 2αR + nγ Rn−1)(2r2a′′

×(1 + 2λ) − a′r(1 + 2λ)

× (
rb′ − 4) + r2a′2(1 + λ) + 4rb′λ + 4λ(eb − 1))

+ (2α + n(n − 1)γ Rn−2)

× (
3r2a′λ + r(2 + 3λ)(rb′ − 4)R′

−2r2Reb(1 + λ)(R + αR2 + γ Rn) − 2r2

× (
2 + 3λ)(γ n(n − 1)(n − 2)Rn−3R′2 + 2αR′′

+ γ n(n − 1)Rn−2R′′
]
, (13)

pr = e−b

4r2(1 + λ)(1 + 2λ)

×
[(

1 + 2αR + nγ Rn−1)( − 4
( − 1 + eb

)
λ

+r
( − (r + 2rλ)a′2 + 4(1 + λ)b′ + r(1 + 2λ)a′b′

− 2r(1 + 2λ)a′′)) + r
((

2α + n(n − 1)γ Rn−2)
× (

8 + 12λ + r(2 + λ)a′ + rλb′)R′

+ 2r
(
eb(1 + λ)

(
R + αR2 + γ Rn)

−2αλR′′ − n(n − 1)γ λRn−3((n − 2)R′2 + RR′′)))],

(14)

pt = e−b

4r2
(
1 + 3λ + 2λ2

)
[

2
(
1 + 2αR + nγ Rn−1)

× (
2
(
eb − 1

)
(1 + λ) − (r + 2rλ)a′ + rb′)

+ r
((

2α + n(n − 1)γ Rn−2)
× (

4(1 + λ) + r(2 + λ)a′ − r(2 + 3λ)b′)R′ + 2r

× (
eb(1 + λ)

(
R + αR2 + γ Rn) + (2 + 3λ)

(
n(n − 1)

× (n − 2)γ Rn−3R′2+2αR′′+n(n−1)γ Rn−2R′′)))].

(15)

In the further discussion, we take a particular value for n, n =
3. Moreover, the redshift function is chosen to be constant
with a′(r) = 0. In coming sections, we discuss the energy
bounds for three different fluid configurations.

3.1 Anisotropic fluid

Initially, we consider the anisotropic fluid model with the
following choice of the shape function [47–54]:

b(r) = −ln

[
1 −

(
r0

r

)m+1]
, (16)

where m and r0 are arbitrary constants. Since e−b(r) = 1 −
β(r)/r , in our case, Eq. (16) implies the following form of
the shape function:

β(r) = (r0)
m+1

rm
. (17)

Clearly, β(r) is characterized on the basis ofm and can result
in different forms, which have been explored in the literature
as shown in Table 1. Here, β(r) satisfies the necessary con-
ditions for the existence of the shape function. To meet the
flaring out condition β ′(r) < 1, one needs to setm < 1. Also,
the constraint β(r0) = r0 is trivially satisfied. Moreover, this
shape function also satisfies the condition for an asymptot-
ically flat space-time, i.e., β(r)/r = r1−m

0 rm−1 → 0 as
r → ∞.

In [35], Lobo and Oliveira discussed the wormhole geome-
tries in f (R) gravity using the above defined shape function
for the choices: m = 1 and m = −1/2. Recently, Pavlovic
and Sossich [49] discussed the existence of wormholes with-
out exotic matter in different f (R) models employing this
shape function (16) with m = 1/2.
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Substituting b(r) in Eqs. (13)–(15), we obtain

ρ = r0m

r9(1 + λ)(1 + 2λ)

(r0

r

)m [
− r4

(
r2(1 + 2λ) + 2(2

+m)(3 + m)α(2 + 3λ)

)

+ r0

(r0

r

)m
r

(
− 12m(3 + m)(5 + 2m)γ (2 + 3λ)

+ r2α

(
30 + 26m + 6m2 + 45λ + 9mλ(4 + m)

))

+ 2γ r2
0m

(r0

r

)2m
(
m(154 + 226λ) + (15m2 + 99)

× (2 + 3λ)

)]
, (18)

pr = r0

r9(1 + λ)(1 + 2λ)

(r0

r

)m

×
[

− r4
(
r2(1+2λ)+2mα(3+m)(4+10λ+mλ)

)

+ 2r2
0m

2
(r0

r

)2m
γ

×
(

33(2 + 7λ) + m(20 + (122 + 15m)λ)

)

+ r0m
(r0

r

)m
r

(
− 12mγ (3 + m)(4 + (13 + 2m)λ)

+ r2α

(
20 + 55λ + m(6 + (28 + 3m)λ)

))]
, (19)

pt = r0

2r9(1 + λ)(1 + 2λ)

(r0

r

)m [
− 4r2

0m
2
(r0

r

)2m
γ

×
(

231 + 169m + 30m2 + (3 + m)

× (121 + 45m)λ

)
+ r4

(
(1 + m)r2(1 + 2λ) + 4m(3

+m)α(6 + 10λ + m(2 + 3λ))

)

+ 2r0m
(r0

r

)m
r

(
− r2α

(
40 + 65λ + m(16

+ 3m)(2 + 3λ)

)

+ 12mγ (3 + m)

(
12 + 19λ + m(4 + 6λ)

))]
. (20)

In the following discussion, we present the suitable choice
of the parameters for the viability of WEC: ρ > 0 and NECs:
ρ + pr > 0, ρ + pt > 0. We compare the different shape
functions depending on the choice of parameter m.

• β(r) = r0

√
r0
r

Here, we fix r0 = 1 and m = 1/2 and discuss the viability
ranges of α, γ , and r for two cases of the coupling constant,

λ > −1 and λ < −1. In the case of the WEC, we find the
following constraints:

• For λ < −1, WEC is valid if r ≥ 3 and α ≥ 15, here
r depends on the choice of α, for very large α, we can
increase the validity region. However, r obeys the initial
bound r ≥ 1.3 for greater values of α. In the left plot of
Fig. 1, we show the evolution of WEC versus α, γ , and r
for λ = −2. One can see that there are some small regions
where WEC is also valid for α < 0. For the choice of a
small of r , we refer the reader to the right plot in Fig. 1.
We have shown the plot for λ = −2, it can be seen that
there some small regions of validity involving α < 0 and
a very small range of r .

– For a small region like 0 < r ≤ 1, we require γ ≤
−30 and for 1 < r < 3, we require α > 0 with
γ ≥ 30.

• For λ > −1, the validity of WEC needs α ≤ −20 and
r ≥ 2.8. In left plot of Fig. 2, we have shown the validity
regions for λ = 2, it can be seen that there some small
regions of validity involving α > 0 and a very small range
of r . In the right plot of Fig. 2, we show the evolution for
small ranges of r and find the following constraints:

– For a small region, like 0 < r < 1, we require γ ≥ 20
and for 1.2 ≤ r < 2.8, the validity needs negative
values of both α and γ .

Now we discuss the validity regions for ρ + pr > 0 and
ρ + pt > 0. Again we develop two cases, depending on the
choice of λ.

• For λ < −1, ρ+ pr > 0 is valid in the following regions:
0 < r < 1 with γ ≤ −13; r ≥ 1.1 with α > 0 and
γ > −1; r ≥ 3 with α ≥ 10.

• The validity of ρ + pt > 0 can be met for three cases,
i.e.,
0 < r < 1 with γ ≥ 15; r ≥ 1.1 with α ≤ −10, and
γ < 0; if r ≥ 3 with α ≤ −10.

Now we present the constraints for λ > −1.

• Here, ρ+ pr > 0 can be satisfied for four different ranges
depending on the choice of r : if 0 < r < 1 with γ ≥ 15;
if r ≥ 2.9, α ≤ −15; if 1 < r < 2.9, α < 0, γ < 0 and
if r ≥ 1.1 with γ < 0 and α ≤ −10.

• In the case of ρ + pt > 0, we can find the validity for the
following choices of the parameters: For 0 < r < 1 with
γ ≤ −16; for r ≥ 2.9 with α ≥ 10; for 1 ≤ r < 2.9
with α > 0, γ > 0, and for r ≥ 1.1 with (α, γ ) > 0.
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Fig. 1 Validity of WEC for λ = −2 with c = 1 and m = 1/2. In the right plot, we present the evolution for small r , which is as clear in the left
plot

Fig. 2 Validity of WEC for λ = −2 with c = 1 and m = 1/2. In the right plot, we present the evolution for small r , which is as clear in the left
plot

In Figs. 3 and 4, we present the evolution of ρ + pr > 0 and
ρ + pt > 0 for λ = 2 and λ = −2, respectively. We find
that there is no region of similarity between ρ + pr > 0 and
ρ + pt > 0, though one can find the same validity range for
both ρ > 0 and ρ + pr > 0. In Fig. 5, we show the plots of
the ρ, pr , and pt for c = 1, n = 0.5, λ = 2, α = −2, and
γ = −0.1. It can be seen that both ρ > 0 and pr > 0 are
satisfied but pt > 0 is violated. Thus, in the anisotropic case,
the normal matter threading the wormhole does not satisfy
ρ + pt > 0.

• β(r) = r2
0 /r

For this choice of the shape function, one has to set m = 1.
The results for this choice are very similar, as the inequalities

remain the same, with only a difference with the bounds of
the parameters.

• For λ < −1, WEC is valid if r ≥ 3 and α ≥ 20. For
small region like 0 < r ≤ 1, we require γ ≤ −10 and
for 1 < r < 3, we require α > 0 with γ ≥ 10. ρ+pr > 0
is valid in the following regions:
0 < r < 1 with γ ≤ −15; r ≥ 1.1 with α > 0 and
γ > 0; r ≥ 3 with α ≥ 15.
The validity of ρ + pt > 0 can be met for three cases,
i.e.,
0 < r < 1 with γ ≥ 15; r ≥ 1.1 with α ≤ −5 and
γ < 0; r ≥ 3 with α ≤ −15.

• For λ > −1, the validity of WEC needs α ≤ −20 and
r ≥ 3. For a small region like 0 < r < 1, we require
γ ≥ 10 and for 1.1 ≤ r < 3, the validity needs negative
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Fig. 3 Validity of ρ + pr > 0 and ρ + pt > 0 for λ = 2 with c = 1 and m = 1/2

Fig. 4 Validity of ρ + pr > 0 and ρ + pt > 0 for λ = −2 with c = 1 and m = 1/2

Fig. 5 Evolution of ρ, pr , and pt for the anisotropic case with λ = 2

values of both α and γ , i.e., α ≤ −5 and γ ≤ −20. NEC
with radial pressure can be satisfied for the following
ranges depending on the choice of r : if 0 < r < 1 with

γ ≥ 15; if r ≥ 3, α ≤ −15; if 1 < r < 3, α < −5,
γ < 0.
In the case of ρ + pt > 0, we can find the validity for
the following choices of the parameters: For 0 < r < 1
with γ ≤ −16; for r ≥ 3 with α ≥ 10; for 1 ≤ r < 3
with α > 0, γ > 0.

We would like to mention here that all the choices, like m =
1, 1/2,−1/2, 1/5 [47–54], imply the same sort of results as
presented in detail for the case of m = 1/2. However, the
parameter m = −3 gives significantly different results.

• β(r) = r2
0r

3

For m = −3, we find the shape function of the form β(r) =
r2

0r
3, in this case ρ, pr , and pt appear to be independent

of r . Here, the choice of λ < −1 results in the following
constraints: WEC, ρ + pr > 0 and ρ + pt > 0 are valid
only if γ ≤ −20 for all values of α. If one sets λ > −1 then
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the energy conditions are valid only if γ ≥ 15 for all values
of α. Hence, for this choice the normal matter threading the
wormhole is on cards.

3.2 Equilibrium condition

Now we present some discussion of the equilibrium pic-
ture of wormhole solutions. For wormhole solutions, the
equilibrium picture can be discussed by taking Tolman–
Oppenheimer–Volkov equation given by

dpr
dr

+ σ ′

2
(ρ + pr ) + 2

r
(pr − pt ) = 0, (21)

which is defined for the metric

ds2 = eσ(r)dt2 − ebdr2 − r2(dθ2 + sin2 θdφ2),

where σ(r) = 2a(r). This equation describes the equilib-
rium picture by considering an anisotropic force, arising from
anisotropic matter, hydrostatic and gravitational forces that
are identified as follows:

Fg f =−σ ′(σ + pr )

2
, Fh f =−dpr

dr
, Fa f =2

(pt − pr )

r
,

and the equilibrium equation takes the form

Fh f + Fg f + Fa f = 0.

In our case, since we have taken a′(r) = 0, therefore Fg f
turns out to be zero and hence the previous equation takes
the form

Fh f + Fa f = 0.

In our case, these forces takes the following form:

Fh f = 7

2
r−9/2 +

(
11

2

) (
59.5

3

)
αr−13/2

−21

12
(515.5γ )r−23/2 + 3

2
(504γ )r−10

− 7

6
(116.5α)r−8, (22)

Fa f = 2

r

[
681.5γ

6
r−21/2 − 4.5

6
r−7/2 − 112α

6
r−11/2

+ 125α

6
r−7 − 630γ

6
r−9 − r−7/2

− 59.5α

3
r−11/2 + 515.5γ

6
r−21/2 − 1

6
r−9(504γ

− 116.5αr2)

]
, (23)

where we have used Eqs. (18), (19), and (20) with m =
1/2, n = 3, c = 1, and λ = −2. For the second case, i.e.,
λ = 2, these forces are given by

Fh f = −35

42
r−9/2− 11

42
(87.5α)r−13/2+ 21

84
(667.5γ )r−23/2

−672

2
(9γ )r−10 + 7

2
(162.5)r−8, (24)

Fa f = 2

r

[
− 1

30
(1327.5γ )r−21/2+ 7.5

30
r−7/2+ 210α

30
r−11/2

−240α

30
r−7+ 1218γ

30
r−9+ 5

21
r−7/2+ 87.5α

21
r−11/2

−667.5γ

42
r−21/2 + 672γ

42
r−9 − 162.5α

42
r−7

]
. (25)

The graphical behavior of these forces is given in Fig. 6.
Here we have taken α = 15 and γ = 30 for which the WEC
is compatible as discussed previously. The right plot corre-
sponds to the case λ = 2, while the left plot corresponds to
λ = −2. It can be seen that these forces show similar behav-
iors but their behaviors are in opposite direction. Therefore,
these forces can cancel each other’s effect and hence lead
to the stability of total configuration. Thus we can conclude
that in the case of f (R, T ) gravity with anisotropic matter,
the wormhole solutions remain stable.

3.3 Isotropic fluid

For this case, we consider pr = pt = p. Hence, the isotropic
condition results in the following equation:

1

r(1 + λ)
e−b

[
− 12r3

(
eb

(
r2α−6γ

)−γ

)
b′3+120r4γ b′4

− 12r2b′2
(
eb

(
r2α − 28γ

)
+ 36γ + 22r2γ b′′

)

+ rb′
(

− e2br4+28ebr2α−12e2br2α−204γ +120ebγ

+ 84e2bγ +4r2
(

7eb
(
r2α − 6γ

)+18γ

)
b′′ + 48r3γ b(3)

)

+ 2

((
eb − 1

)( − 4eb
(
7r2α − 66γ

) − 276γ + e2b(r4

− 4r2α + 12γ
)) + 8r2

(
eb

(
r2α − 18γ

) + 18γ

)
b′′

+ 24r4γ b′′2 − 4r3
(
eb

(
r2α − 6γ

) + 6γ

)
b(3)

)]
= 0.

(26)

Here, one can present the above equation in terms of the shape
function β(r). It can be seen that Eq. (26) is highly non-linear,
which cannot be solved analytically. We use the numerical
scheme to solve the above equation and present the results
in Figs. 7, 8, and 9. In the left plot of Fig. 7, the evolution of
the shape function is shown, which indicates an increasing
behavior and the condition β(r) < r is obeyed, whereas the
right plot represents one of the fundamental wormhole condi-
tions, i.e., the space-time is asymptotically flat, β(r)/r → 0
as r → ∞. The throat is located at r0 = 0.0932726 so that
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Fig. 6 Evolution of Fa f and Fh f versus r . Herein, we choose m = 1/2, c = 1, n = 3, α = 15, and γ = 30. The right and left plots correspond
to λ = 2 and λ = −2, respectively
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Fig. 7 Evolution of β(r) and β(r)/r versus r . Herein, for the isotropic case, we set λ = 2, α = 0.6, γ = −0.2

β(r0) = r0. The derivative of the shape function is shown in
the right plot of Fig. 8, it can be seen that β ′(r0) = 0.0027559
so that the condition β ′(r0) < 1 is satisfied. In the right plot
of Fig. 8, we plot the function β(r) − r , and it is found that
β(r)−r < 0, which validates the condition 1−β(r)/r > 0.
The behavior of WEC and NEC is shown in Fig. 9. It can be
seen that ρ > 0 throughout the evolution but ρ + p > 0 can
be met in some particular regions. Thus, a micro wormhole
can be formed for this case.

3.4 Specific EoS pr = kρ

In this case, we apply an EoS involving an energy density
and radial pressure, i.e., pr = kρ. Such an EoS has been
applied in f (R) and f (T ) gravities [35,47,48] to discuss

the wormhole solutions. Using the above defined EoS along
with the dynamical equation, we find the following constraint
to calculate the shape function:

1

r(1 + λ)(1 + 2λ)
e−b

[
4γ (23 + 62λ − k(37 + 58λ))

+ e3b(1 + k)

(
r4(1 + 2λ)

− 2r2(α + 3αλ) + 4(γ + 4γ λ)

)

− 2eb
(

− 30γ (−3 + 5k + 8(k − 1)λ) + r2

×α
( − 7 − 15λ + k(5 + 9λ)

))
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Fig. 8 Evolution of β ′(r) and β(r) − r versus r
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Fig. 9 Evolution of ρ and ρ + p for the isotropic case

Fig. 10 Evolution of β(r) and β ′(r) versus r . Herein, for the EoS pr = kρ we set λ = −2, α = 0.1, β = −30, k = 0.001
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− e2b
(

− 12r2α(k − 1)(1 + 2λ) + r4(1 + k)

× (1 + 2λ) + 12γ (k(13 + 22λ) − 7 − 18λ)

)

+ r

(
r2

(
3eb

(
r2α − 6γ

)(
k(3λ + 2) − λ

)

+ 2γ

(
20 + 29λ + k

(
32 + 53λ)

))
b′3

+ 30r3γ

(
λ − k(2 + 3λ)

)
b′4

+ 6rb′2
(

2γ (11k − 3 + 14(k − 1)λ)

− eb
(
r2α(1 + k)(1 + 2λ) + 2γ (7k − 12

× λ + 8kλ − 3)

)
+ 11r2γ

(
k(2 + 3λ) − λ

)
b′′

)

+ b′
(

12
(
eb − 1

)
γ

(
8 + k

(
eb − 1

)
(λ − 1) + 13λ + 3ebλ

)

+ ebr2
(

− 2α

(
k(4 + 3λ) − 5λ

)

+ eb
(

− 6α(1 + k)λ + r2(k + 2kλ)

))

+ r2
(

− 7eb
(
r2α − 6γ

)(
k(2 + 3λ) − λ

)
− 6γ

(
8

+ 7λ + 9k(2 + 3λ)
))

b′′ + 12r3γ (λ − k(2 + 3λ))b(3)

)

+ 2r

((
6γ (4 + 11λ − 3k(2 + 3λ)) + eb

×
(
r2α(4+2k+7λ+3kλ)+6γ (6k−4−11λ + 9kλ)

))

× b′′ + 6r2γ

(
λ − k(2 + 3λ)

)
b′′2 + r

(
eb

(
r2α − 6γ

)

+ 6γ

)(
− λ + k(2 + 3λ

)
b(3)

))]
= 0. (27)

Again we transform the above equation in terms of the shape
function β(r) and employ the numerical approach to show
the behavior of flaring out condition and asymptotic flatness.
The left plot of Fig. 10 shows β(r) as an increasing function
of r . In this case, the throat is located at r = 0.0093117
with β(r0) = r0 and β ′(r0) < 1, the behavior of β ′(r) is
shown in the right plot of Fig. 10. Moreover, Fig. 11 shows
that our solutions satisfy the flaring out condition, but this
solution does not satisfy the asymptotically flat condition,
i.e., β(r)/r → 0 as r → ∞. The qualitative behavior of ρ

and ρ + pt is shown in Fig. 12. Here, we find that the WEC
and NEC are not satisfied, so in this case a realistic wormhole
is not possible. Hence, the effective curvature contributions

Fig. 11 Evolution of β(r) − r for EoS pr = kρ

in the form of exotic matter help to sustain the wormhole
solution.

4 Summary

In GR, wormhole solutions contain a fundamental ingre-
dient, that is, the violation of energy condition in a given
space-time. It is taken into consideration that one may
impose the principle of a modified Einstein field equa-
tion by an effective stress energy-momentum tensor thread-
ing the wormholes satisfying the energy conditions and
the higher order curvature derivative terms can support
the geometries of the non-standard wormholes. In this
manuscript, we have investigated whether the ordinary mat-
ter can support wormholes in f (R, T ) modified gravity.
For this purpose, we have examined the behavior of the
energy conditions, i.e., WEC and NEC, for three different
fluids: barotropic, isotropic, and anisotropic fluids in sepa-
rate cases.

In the literature, it is pointed out that the theoretical
advances in the last decades indicate that pressures within
highly compact astrophysical objects are anisotropic, i.e., the
radial pressure pr is not equal to the tangential pressure pt in
such objects. Anisotropic matter is a more general case than
the isotropic/barotropic case, so it is interesting to examine
the existence of wormholes using such matter contents. In
this paper, we examined the existence of wormhole solutions
using different matter sources. In the literature, different tech-
niques have been used to discuss wormhole solutions. One
technique is to consider the shape function and explore the
behavior of the energy conditions and the other technique
is to calculate the shape function by taking some assump-
tion for the matter ingredients. In this paper, we are using
f (R, T ) gravity, which involves coupling of matter and the
Ricci scalar; therefore the resulting equations are quite com-
plicated being highly non-linear with six unknowns, namely
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Fig. 12 Evolution of ρ and ρ + pt

ρ, pt , pr , b, a, and f (R). Therefore we should make some
assumptions.

In the anisotropic case, it is very difficult to explore the
form of the shape function from field equations, therefore we
explore the behavior of energy condition bounds to check the
possible existence of wormholes by assuming a viable form
of the shape function. In the other two cases, that is, the
barotropic and isotropic matter sources, the equations are
less complicated, therefore we have explored the physical
behavior of the shape function also. Basically, our purpose
is to check whether the coupling of the Ricci scalar with
matter field can support the existence of wormhole geome-
tries in such theory. In order to discuss wormhole geome-
tries, we have taken some viable conditions. In all cases,
we have assumed a well-defined f (R) model defined as
f (R, T ) = f1(R) + λT , where λ ∈ R. In the anisotropic
case, we have discussed the existence of wormhole solutions
by taking a particular choice of the shape function, whereas
for the other two cases we have solved the field equation
numerically to investigate the behavior of the shape func-
tion. In the case of an anisotropic fluid, the behaviors of the
energy constraints have been discussed for two cases of the
coupling parameter: λ > 0 and λ < −1. For λ < −1, it
is observed that the WEC is valid for positive values of α,
while the small validity regions can be found when α < 0.
For λ < −1, it is observed that the validity regions for WEC
can be increased by taking large values of α. For λ > 0,
the validity of WEC requires a negative range of α, whereas
small validity regions can be found for α > 0.

First, in our result, wormhole solutions exist but these
are not realistic or physically reasonable as one cannot find
the similarity regions for the compatibility of the energy
bounds, although it is a mathematically well-defined prob-
lem. Our results are consistent with the work already avail-

able in the literature [55,56]. Our results are also similar to
that obtained in simple f (R) gravity [35] (that is, the case
λ = 0). It is interesting to mention here that in these studies,
both energy bounds, i.e., WEC and DEC, are violated in the
anisotropic and isotropic cases; only in the barotropic case
there are some regions where these conditions are compat-
ible, while in our case, only the DEC energy bound is vio-
lated for the anisotropic case. In other cases, these conditions
remain compatible for some specific ranges of parameters.
This difference of result may have arisen due to the presence
of a curvature–matter coupling term.

In the literature, the existence of wormhole solutions
in curvature–matter coupled gravity has been discussed by
Bertolami and Ferreira [57] and Garcia and Lobo [58]. In both
these studies, one has presented a very restricted analysis in
this sense that the authors have used linear functions as f (R)

model, and also very specific ranges of free parameters have
been discussed. They showed that the wormhole solutions
obtained are well behaved, satisfying DEC when λ is posi-
tive and increasing. It is interesting to mention here that our
results are more comprehensive than these previous works, as
we have explored the behavior of the functions involved and
the existence of a wormhole by taking all possible ranges of
the involved parameters (specifically λ can take any value).
Furthermore, we have used the Starobinsky model that rep-
resents Rn extension (n ≥ 3) instead of linear functions.
Garcia and Lobo [59] also discussed the wormhole existence
in curvature–matter coupling gravity by taking a linear f (R)

model with positive increasing ansatz for density, which is
not a physically reasonable choice for the density on cosmo-
logical grounds (as it should be a decreasing function).

We have also investigated the equilibrium picture of the
wormhole solutions found with anisotropic matter in this the-
ory of gravity. It is seen that the wormhole solutions are sta-
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ble as the equilibrium condition involving hydrostatic and
anisotropic forces is satisfied. In the case of barotropic and
isotropic fluids, we have explored the dynamics of the shape
function by solving equations numerically. From the graph-
ical illustrations of the shape function, it is seen that in the
isotropic case, all the necessary conditions like asymptoti-
cally flatness and the flaring out constraint are satisfied, which
indicates that the obtained micro wormhole is realistic and
viable. In the case of a barotropic fluid, the asymptotic flat-
ness condition is incompatible; therefore, a realistic worm-
hole solution does not exist. It is interesting to find wormhole
solutions without exotic matter by considering some other
different f (R, T ) models in this theory of gravity.
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