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Abstract A (n + 1)-dimensional gravitational model with
Gauss–Bonnet term and a cosmological constant term is con-
sidered. When ansatz with diagonal cosmological metrics is
adopted, the solutions with an exponential dependence of
the scale factors, ai ∼ exp (vi t), i = 1, . . . , n, are ana-
lyzed for n > 3. We study the stability of the solutions with
non-static volume factor, i.e. if K (v) = ∑n

k=1 vk �= 0. We
prove that under a certain restriction R imposed solutions
with K (v) > 0 are stable, while solutions with K (v) < 0 are
unstable. Certain examples of stable solutions are presented.
We show that the solutions with v1 = v2 = v3 = H > 0
and zero variation of the effective gravitational constant are
stable if the restriction R is obeyed.

1 Introduction

This paper is devoted to a D-dimensional gravitational model
with the so-called Gauss–Bonnet term. It is governed by the
action

S =
∫

M
dDz

√|g|{α1(R[g] − 2�) + α2L2[g]}, (1.1)

where g = gMNdzM ⊗ dzN is the metric defined on the
manifold M , dim M = D, |g| = | det(gMN )| and

L2 = RMN PQ RMN PQ − 4RMN RMN + R2 (1.2)

is the quadratic “Gauss–Bonnet term” and � is the cosmolog-
ical term. Here α1 and α2 are non-zero constants. The appear-
ance of the Gauss–Bonnet term was motivated by string the-
ory [1–3].

At present, the so-called Einstein–Gauss–Bonnet (EGB)
gravitational model which is governed by the action (1.1)

a e-mail: ivashchuk@mail.ru

and its modifications are intensively used in cosmology; see
[4–23] and references therein, e.g. for explanation of acceler-
ating expansion of the Universe following from supernovae
(type Ia) observational data [24–26].

Here we consider the cosmological solutions with diago-
nal metrics governed by n scale factors depending upon one
variable, where n > 3; D = n + 1. We study the stability of
solutions with an exponential dependence of the scale factors
with respect to the synchronous time variable t ,

ai (t) ∼ exp (vi t), (1.3)

i = 1, . . . , n. In our analysis we restrict ourselves to a class
of perturbations which depend on t and do not touch the
diagonal form of the metric.

For possible physical applications solutions describing an
exponential isotropic expansion of 3-dimensional flat factor-
space, i.e. with

v1 = v2 = v3 = H > 0, (1.4)

and small enough variation of the effective gravitational con-
stant G are of interest. We recall that G (for 4d metric in
Jordan frame; see Remark 4 in Sect. 4) is proportional to
the inverse volume scale factor of the internal space; see
[27–29] and the references therein. Due to experimental
data, the variation of G is allowed at the level of 10−13

per year and less. The most stringent limitation on G-dot
(coming from the set of ephemerides) was obtained in Ref.
[30],

Ġ/G = (0.16 ± 0.6) · 10−13 year−1, (1.5)

allowed at 95 % confidence (2σ ).
Here we reduce the set of cosmological equations to the

(mixed) set of algebraic and differential equations

f0(h) = 0, (1.6)

fi (ḣ, h) = 0, (1.7)
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where h = h(t) = (hi (t) = ȧi (t)/ai (t)) is the set of so-
called “Hubble-like” parameters, corresponding to scale fac-
tors ai (t); f0(h) and fi (ḣ, h) are polynomials of the fourth
order in hi ; fi (ḣ, h) are polynomials of the first order in ḣi .
The fixed point solutions hi (t) = vi (i = 1, . . . , n) cor-
respond to exponential solutions of (1.3). They obey a set
of n + 1 polynomial equations of the fourth order. We ana-
lyze the stability of the fixed point solutions by imposing the
following restriction:

(R) det

(
∂ fi
∂ ḣ j

(0, v)

)

�= 0, (1.8)

which guarantees the local resolution of Eq. (1.7) in the vicin-
ity of the point (0, v) ∈ R

2n : ḣi = ϕi (h) with ϕi (v) = 0,
i = 1, . . . , n. Here 0 = (0, . . . , 0) ∈ R

n .
We also impose another restriction on v:

n∑

k=1

vk �= 0, (1.9)

which means that the solutions with constant volume scale
factor are not considered here. We note that a solution with
∑n

k=1 vk = 0 obeying (1.4) gives an enormously big value
of the variation of G: Ġ/G = 3H , where H is the Hubble
parameter; see Remark 5 in Sect. 4 below. This value ofG-dot
contradicts the observational restrictions, e.g. (1.5). We recall
that the present value of H is (6.929±0.157) ·10−11 year−1

[31] (with 95 % confidence level).
The main result of the paper is the following one: fixed

point solutions h(t) = v to Eqs. (1.6) and (1.7), which
obey restrictions (1.8) and (1.9), are stable if and only if∑n

k=1 vk > 0. This result is in agreement with the approach
of Pavluchenko from Ref. [22]; see Remark 2 in Sect. 3 below.

The paper is organized as follows. In Sect. 2 the equa-
tions of motion for a D-dimensional EGB model are con-
sidered. For diagonal cosmological metrics the equations
of motion are equivalent to a set of Lagrange equations
corresponding to a certain “effective” Lagrangian. The
Lagrange equations for a certain choice of the lapse func-
tion (corresponding to the synchronous time variable) are
reduced to the set of equations (1.6) and (1.7). Section 3
is devoted to an analysis of the stability of the exponen-
tial solutions with constant Hubble-like parameters: here a
set of equations for perturbations δhi (t) (obtained in linear
approximation) is studied and a general solution to these
equations is found. The main proposition on the stabil-
ity of the exponential solutions (Proposition 2) is proved.
In Sect. 4 some examples of stable cosmological solu-
tions with exponential behavior of the scale factors are pre-
sented.

2 The model

2.1 The set-up

Here we consider the manifold

M = (t−, t+) × M1 × · · · × Mn, (2.1)

with the metric

g = −e2γ (t)dt ⊗ dt +
n∑

i=1

e2βi (t)dyi ⊗ dyi , (2.2)

where i = 1, . . . , n; M1, . . . , Mn are 1-dimensional mani-
folds (either R or S1) and n > 3. The functions γ (t) and
β i (t), i = 1, . . . , n, are smooth on (t−, t+).

For physical applications we put M1 = M2 = M3 = R,
while M4, . . . , Mn may be considered to be compact ones
(i.e. coinciding with S1).

The integrand in (1.1), when the metric (2.2) is substituted,
reads as follows:

√|g|{α1R[g] + α2L2[g]} = L + d f

dt
, (2.3)

where

L = α1(e
−γ+γ0Gi j β̇

i β̇ j − 2�eγ+γ0)

−1

3
α2e

−3γ+γ0Gi jkl β̇
i β̇ j β̇k β̇l , (2.4)

γ0 = ∑n
i=1 β i and

Gi j = δi j − 1, (2.5)

Gi jkl = Gi jGikGilG jkG jlGkl (2.6)

are, respectively, the components of two metrics on R
n

[15,16]. The first one is the “minisupermetric” – 2-metric of
pseudo-Euclidean signature and the second one is the Fins-
lerian 4-metric [15,16]. Here we denote Ȧ = dA/dt etc. The
function f (t) in (2.3) is irrelevant for our consideration (see
[15,16]).

In the derivation of (2.4) the following identities [15,16]
were used:

Gi jv
iv j =

n∑

i=1

(vi )2 −
(

n∑

i=1

vi

)2

= S2 − S2
1 , (2.7)

Gi jklv
iv jvkvl = S4

1 − 6S2
1 S2 + 3S2

2 + 8S1S3 − 6S4. (2.8)

Here and in the following Sk = Sk(v) = ∑n
i=1(v

i )k .
The definitions (2.5) and (2.6) imply

Gi jv
iv j = −2

∑

i< j

viv j , (2.9)

Gi jklv
iv jvkvl = 24

∑

i< j<k<l

viv jvkvl . (2.10)
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The equations of motion corresponding to the action (1.1)
have the following form:

EMN = α1E (1)
MN + α2E (2)

MN = 0, (2.11)

where

E (1)
MN = RMN − 1

2
RgMN + �gMN , (2.12)

E (2)
MN = 2(RMPQS R

PQS
N − 2RMP R

P
N

−2RMPNQ RPQ + RRMN ) − 1

2
L2gMN . (2.13)

It may be shown (along lines as in [16] for the case
� = 0) that the field equations (2.11) for the metric (2.2)
are equivalent to the Lagrange equations corresponding to
the Lagrangian L from (2.4).

Thus, Eqs. (2.11) read as follows:

α1(Gi j β̇
i β̇ j + 2�e2γ ) − α2e

−2γ Gi jkl β̇
i β̇ j β̇k β̇l = 0,

(2.14)

d

dt
[2α1Gi j e

−γ+γ0 β̇ j − 4

3
α2e

−3γ+γ0Gi jkl β̇
j β̇k β̇l ]−L = 0,

(2.15)

i = 1, . . . , n; and L is defined in (2.4).
Now we put γ = 0. By introducing “Hubble-like” vari-

ables hi = β̇ i , Eqs. (2.14) and (2.15) may be rewritten as
follows:

E = E(h) ≡ Gi j h
i h j + 2� − αGi jklh

i h j hkhl = 0,

(2.16)

Ui = Ui (ḣ, h) ≡ dLi

dt
+

⎛

⎝
n∑

j=1

h j

⎞

⎠ Li − L0 = 0, (2.17)

where α = α1/α2,

L0 = Gi j h
i h j − 2� − 1

3
αGi jklh

i h j hkhl , (2.18)

and

Li = Li (h) = 2Gi j h
j − 4

3
αGi jklh

j hkhl , (2.19)

i = 1, . . . , n. Thus, we are led to the autonomous system
of first-order differential equations on h1(t), . . . , hn(t) (see
[15,16] for � = 0).

Due to (2.16) we have

L0 = 2

3
(Gi j h

i h j − 4�). (2.20)

In the following we will use instead of (2.16), (2.17) an
equivalent set of equations: (2.16) and

Yi = Yi (ḣ, h) ≡ dLi

dt
+

⎛

⎝
n∑

j=1

h j

⎞

⎠ Li

−2

3
(Gi j h

i h j − 4�) = 0. (2.21)

We note that the following identity is valid:

Ui (ḣ, h) = Yi (ḣ, h) − 1

3
E(h), (2.22)

i = 1, . . . , n.
Equations (2.16) and (2.21) are dependent, since

hiYi = dE

dt
+ 4

3

⎛

⎝
n∑

j=1

h j

⎞

⎠ E . (2.23)

This identity may be proved by using two relations:

hi
dLi

dt
= dE

dt
, (2.24)

hi Li = L0 + 4

3
E, (2.25)

following from (2.16) and (2.19).

2.2 Useful relations

In the following we use the definitions

B = B(v) = Gi jksv
iv jvkvs,

Ai = Ai (v) = Gi jklv
jvkvl . (2.26)

For the isotropic case

v = (vi ) = (H, . . . , H) (2.27)

we get

B = n(n − 1)(n − 2)(n − 3)H4,

Ai = (n − 1)(n − 2)(n − 3)H3, (2.28)

i = 1, . . . , n.
Here we deal with the ansatz which contains two Hubble

parameters,

v = (vi ) = (H, . . . , H, h, . . . , h), (2.29)

where H appears m times and h appears l times, n = m +
l. In the following we adopt the following for the indices:
μ, ν, . . . = 1, . . . ,m; α, β, · · · = m + 1, . . . , n. Thus, vμ =
H and vα = h.
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We obtain

B = m(m − 1)(m − 2)(m − 3)H4

+ 4m(m − 1)(m − 2)lH3h

+ 6m(m − 1)l(l − 1)H2h2

+ 4ml(l − 1)(l − 2)Hh3

+ l(l − 1)(l − 2)(l − 3)h4 (2.30)

and

AH ≡ Aμ = (m − 1)(m − 2)(m − 3)H3

+ 3(m − 1)(m − 2)lH2h

+ 3(m − 1)l(l − 1)Hh2 + l(l − 1)(l − 2)h3,

(2.31)

Ah ≡ Aα = m(m − 1)(m − 2)H3

+ 3m(m − 1)(l − 1)H2h

+ 3m(l − 1)(l − 2)Hh2 + (l − 1)(l − 2)(l − 3)h3.

(2.32)

We also denote

Si j = Gi jksv
kvs, (2.33)

We note that Si j = S ji and Sii = 0. For the isotropic case
(2.27) we obtain

Si j = (n − 2)(n − 3)H2, i �= j. (2.34)

For the ansatz (2.29) we obtain

SHH = (m − 2)(m − 3)H2 + 2(m − 2)lHh

+ l(l − 1)h2, (2.35)

SHh = (m − 1)(m − 2)H2 + 2(m − 1)(l − 1)Hh

+ (l − 1)(l − 2)h2, (2.36)

Shh = m(m − 1)H2 + 2m(l − 2)Hh

+ (l − 2)(l − 3)h2. (2.37)

Here we denote Sμν = SHH for μ �= ν; Sμα = Sαμ = SHh ;
Sαβ = Shh for α �= β.

2.3 Polynomial equations for solutions with constant hi

Let us consider the following solutions to Eqs. (2.16) and
(2.21):

hi (t) = vi , (2.38)

with constant vi , which corresponds to the solutions

β i = vi t + β i
0, (2.39)

where β i
0 are constants, i = 1, . . . , n.

In this case we obtain the metric (2.2) with the exponential
dependence of the scale factors

g = −dt ⊗ dt +
n∑

i=1

B2
i e

2vi tdyi ⊗ dyi , (2.40)

where the Bi > 0 are arbitrary constants.
For the fixed point v = (vi ) we have the set of polynomial

equations

E = E(v) = Gi jv
iv j + 2� − αGi jklv

iv jvkvl = 0,

(2.41)

Yi = Yi (0, v) =
⎛

⎝
n∑

j=1

v j

⎞

⎠ Li (v) − 2

3
Gkjv

kv j + 8

3
� = 0,

(2.42)

where Li is defined in (2.19), i = 1, . . . , n. For n > 3 this
is the set of fourth-order polynomial equations.

Here and in the following we use Eqs. (2.7), (2.8), and the
following formulas:

vi = Gi jv
j = vi − S1, (2.43)

Ai = Gi jklv
jvkvl = S3

1 + 2S3 − 3S1S2

+ 3(S2 − S2
1 )vi + 6S1(v

i )2 − 6(vi )3, (2.44)

i = 1, . . . , n (Sk = ∑n
i=1(v

i )k).

Proposition 1 For any solution v = (v1, . . . , vn) to the
polynomial equations (2.41), (2.42) with n > 3 there are
no more than three different numbers among v1, . . . , vn, if∑n

i=1 vi �= 0.

Proof Let us suppose that there exists a non-trivial solution
v = (v1, . . . , vn) with more than three different numbers
among v1, . . . , vn . Due to (2.44), (2.42), and

∑n
i=1 vi �= 0

we get C0 + C1v
i + C2(v

i )2 + C3(v
i )3 = 0, i = 1, . . . , n,

with some real numbers C0, C1, C2, and C3 �= 0. Let us
consider the cubic equation C0 + C1x + C2x2 + C3x3 = 0.
Any number vi obeys this equation and hence at most three
numbers among the vi may be different. Thus, we are led to
a contradiction. The proposition is proved. The case � = 0
was considered earlier in [15,16]. ��
Remark 1 In the pure Einstein case (α = 0) with � > 0
we get two exponential solutions with v1 = · · · = vn = H
and n(n − 1)H2 = 2� > 0; a solution with H > 0 is an
attractor for cosmological solutions with diagonal metrics, as
t → +∞, see [32,33] (for ϕ = 0). Thus in this case (α = 0)
we have an isotropization for t → +∞, while for t → +0 we
have a Kasner-like behavior of scale factors near the singular-
ity: ai (t) ∼ t pi with Kasner parameters p1, . . . , pn obeying∑n

i=1 pi = ∑n
i=1 p2

i = 1. In the case of the EGB model
with �-term we have for certain � and α isotropic exponen-
tial solutions with v1 = · · · = vn = H (see Sect. 4 below),
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but we also may have partially anisotropic (PA) solutions,
which obey

∑n
i=1 vi �= 0, with v = (H, . . . , H, h, . . . , h) or

v = (H, . . . , H, h, . . . , h, z, . . . , z), and also solutions with∑n
i=1 vi = 0 may occur. For

∑n
i=1 vi = 0 (and certain �

and α) one may obtain examples of totally anisotropic expo-
nential solutions with non-coinciding parameters among
v1, . . . , vn . Some of the exponential PA solutions are sta-
ble (see below) and they are attractors of certain subclasses
of general solutions. The appearance of three (or less) inde-
pendent scale factors in the model under consideration is
a feature of exponential (e.g. attractor) solutions, when the
restriction

∑n
i=1 vi �= 0 is imposed. We also note that the

metric (2.40) may be analyzed on symmetries (apparent or
hidden) by using the results of Ref. [34], i.e. Killing vectors,
isometry group, coset structure G/H etc., may be presented.
Proposition 2 may also be generalized to the Lovelock case
[35], which may be a subject of a separate publication.

Now let us consider the ansatz (2.29) with two Hubble
parameters H and h with two restrictions imposed,

mH + lh �= 0, H �= h. (2.45)

In this case the set of n + 1 equations (2.16), (2.17) is
equivalent to the set of three equations

E = 0, YH = 0, Yh = 0, (2.46)

where YH = Yμ, Yh = Yα (μ = 1, . . . ,m, α = m +
1, . . . , n).

Due to (2.44) we have

AH − Ah = (H − h)[3(S2 − S2
1 ) + 6S1(H + h)

− 6(H2 + Hh + h2)], (2.47)

and hence, by using (2.19), (2.43), we obtain

YH − Yh = (H − h)(mH + lh)[2 + 4αQ(H, h)], (2.48)

where

Q(H, h) = (m − 1)(m − 2)H2

+2(m − 1)(l − 1)Hh + (l − 1)(l − 2)h2.

(2.49)

For m > 1 and l > 1 the quadratic form has the signature
(−,+). Due to mH + lh �= 0 the set of equations (2.46) is
equivalent to another set of equations

E = 0, YH − Yh = 0, mHYH + lhYh = 0, (2.50)

According to (2.23) E = 0 implies hiYi = mHYH +lhYh =
0 and hence the third equation in (2.50) may be omitted.
Using the restrictions (2.45), Eqs. (2.30) and (2.48), we

reduce the set of equations (2.50) to the following set of
equations:

E = mH2 + lh2 − (mH + lh)2

+ 2� − α[m(m − 1)(m − 2)(m − 3)H4

+ 4m(m − 1)(m − 2)lH3h + 6m(m − 1)l(l−1)H2h2

+ 4ml(l − 1)(l − 2)Hh3

+ l(l − 1)(l − 2)(l − 3)h4] = 0, (2.51)

1 + 2αQ(H, h) = 0, (2.52)

where Q(H, h) is defined in (2.49). 1 Thus, for the anisotropic
solutions with two different Hubble parameters H and h and
non-static volume factor (see (2.29) and (2.45)) the set (n+1)

polynomial equations of fourth order (2.41) and (2.42) is
equivalent to the set of the two equations (2.51) and (2.52)
of fourth and second order, respectively.

3 Stability of fixed point solutions hi (t) = v i

Here we study the stability of static solutions hi (t) = vi

to Eqs. (2.16) and (2.17) in a linear approximation in the
perturbations. We put

hi (t) = vi + δhi (t), (3.1)

i = 1, . . . , n. By substitution of (3.1) into Eqs. (2.16) and
(2.17) we obtain in linear approximation the following rela-
tions for the perturbations δhi :

Ci (v)δhi = 0, (3.2)

Li j (v)δḣ j = Bi j (v)δh j , (3.3)

where

Ci = Ci (v) = 2vi − 4αGi jksv
jvkvs, (3.4)

Li j = Li j (v) = 2Gi j − 4αGi jksv
kvs, (3.5)

Bi j = Bi j (v) = −
(

n∑

k=1

vk

)

Li j (v) − Li (v) + 4

3
v j . (3.6)

We recall that vi = Gi jv
j , Li (v) = 2vi − 4

3αGi jksv
jvkvs

and i, j, k, s = 1, . . . , n.
We put the following restriction on the matrix L =

(Li j (v))

(R) det(Li j (v)) �= 0, (3.7)

i.e. the matrix L should be invertible.
Here we restrict ourselves to exponential solutions (2.40)

with non-static volume factor, proportional to exp(
∑n

i=1 vi t),

1 For the general reduction scheme see [20].
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i.e. we put

K = K (v) =
n∑

i=1

vi �= 0. (3.8)

Then we get from Eq. (2.42)

Li (v) = L1 = 2

3

(
n∑

k=1

vk

)−1

(Gi jv
iv j − 4�). (3.9)

Due to definition (2.19) we have

αAi = αGi jksv
jvkvs = 3

4
(2vi − L1), (3.10)

and hence

Ci (v) = 2vi − 4αAi = −4vi + 3L1. (3.11)

We rewrite Eq. (3.6) as

Bi j = −
(

n∑

k=1

vk

)

Li j (v) + B̂i j , B̂i j = −Li (v) + 4

3
v j .

(3.12)

Due to Li (v) = L1 and (3.2) we get

B̂i jδh
j = −L1

n∑

j=1

δh j + 4

3
v jδh

j = −1

3
C j (v)δh j = 0.

(3.13)

Hence Eq. (3.3) reads

Li j (v)δḣ j = −
(

n∑

k=1

vk

)

Li jδh
j , (3.14)

or, equivalently,

δḣi = −
(

n∑

k=1

vk

)

δhi , (3.15)

i = 1, . . . , n. Here we used the restriction (3.7).
Thus, the set of linear equations on perturbations (3.2),

(3.3) is equivalent to the set of linear equations (3.2), (3.15),
which has the following solution:

δhi = Ai exp(−K (v)t), (3.16)
n∑

i=1

Ci (v)Ai = 0, (3.17)

i = 1, . . . , n. We recall that K (v) = ∑n
k=1 vk .

Due to (3.16) the following proposition is valid.

Proposition 2 The fixed point solution (hi (t)) = (vi ) (i =
1, . . . , n; n > 3) to Eqs. (2.16), (2.17) obeying the restric-
tions (3.7), (3.8) is stable under perturbations (3.1) (as
t → +∞) if K (v) = ∑n

k=1 vk > 0 and it is unstable (as
t → +∞) if K (v) = ∑n

k=1 vk < 0.

It follows from (2.34) that in the isotropic case the matrix
(3.5) reads

Li j = ϕ(H)Gi j , ϕ(H) = 2 + 4α(n − 2)(n − 3)H2.

(3.18)

Since the matrix (Gi j ) = (δi j − 1) is invertible (or non-
degenerate) for n > 1 (its inverse is (Gi j ) = (δi j − 1

n−1 )),
the matrix (Li j ) is invertible if and only if ϕ(H) �= 0.

Now let us consider the matrix (3.5) for the anisotropic
case (2.29) with the two Hubble parameters obeying (2.45).

For the ansatz (2.29) we obtain

Lμν = Gμν(2 + 4αSHH ), (3.19)

Lμα = Lαμ = −2 − 4αSHh, (3.20)

Lαβ = Gαβ(2 + 4αShh). (3.21)

Here SHH , SHh and Shh are defined in (2.35), (2.36), and
(2.37), respectively. But here we have a remarkable coinci-
dence (see (2.49)):

Q(H, h) = SHh, (3.22)

which implies Lμα = Lαμ = 0 due to Eq. (2.52). Thus
under the assumed restrictions (2.45) the matrix (Li j ) has a
block-diagonal form

(Li j ) = diag(Lμν, Lαβ). (3.23)

This matrix is invertible if and only if m > 1, l > 1, and

SHH �= − 1

2α
, Shh �= − 1

2α
. (3.24)

We recall that them×m matrix (Gμν) and l×l matrix (Gαβ)

are invertible only for m > 1 and l > 1, respectively.

Remark 2 Recently, in Ref. [22] a criterion for the stability
of fixed point solutions in the model under consideration (and
its extension to the Lovelock case) was used. In our notations
(see Sect. 1) it reads

∂ ḣi

∂hi
(v) = ∂ϕi

∂hi
(v) < 0, (3.25)

i = 1, . . . , n. It can readily be verified that for generic func-
tions f0, fi in Eqs. (1.6), (1.7) the criterion (3.25) is not a
necessary and/or a sufficient condition for the stability of the
fixed point solutions. Fortunately, for a special choice of func-
tions, e.g. for f0(h) = E(h), fi (ḣ, h) = Yi (ḣ, h)+ 1

3 E(h) =
Ui (ḣ, h) (see (2.22) and (3.13)), it gives a correct result since
in this case

∂ ḣi

∂hi
(v) = −

n∑

k=1

vk, (3.26)

i = 1, . . . , n. Equation (3.26) is also valid for fi (ḣ, h) =
λUi (ḣ, h) with λ �= 0, e.g. for the choice λ = −1 used in
[22]. We also note that in our notations 2� = �P , where
�P is the �-term from Ref. [22].
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4 Examples

Here we consider several examples of exponential solutions
and analyze their stability.

4.1 Isotropic solution

Let us consider the isotropic solution v = (vi )= (H, . . . , H)

to Eqs. (2.41), (2.42) for n > 3. Due to Gi jv
iv j = n(1 −

n)H2 and (2.28), Eq. (2.41) reads as follows:

2F(H2) = n(n−1)H2+αn(n−1)(n−2)(n−3)H4 =2�.

(4.1)

Equation (2.42) is also equivalent to (4.1) due to the relation

Li = −2(n − 1)H + 4

3
α(n − 1)(n − 2)(n − 3)H3, (4.2)

i = 1, . . . , n, which follows from (2.19), (2.28), and (2.43).
Let � = 0. The trivial solution H = 0 is valid for any α.

This is the unique solution for α > 0. For α < 0 we have
two non-trivial solutions [15,16] with

H2 = 1

|α|(n − 2)(n − 3)
. (4.3)

This solution was generalized in [19] to the case � �= 0.
Let us consider the case of generic � in detail. First, we

put α > 0. Then a solution to Eq. (4.1) does exist if and only
if � ≥ 0. For � = 0 we get H = 0, while for � > 0 we
have two non-zero solutions for H with H2 > 0:

H2 = −n(n − 1) + √
�

2αn(n − 1)(n − 2)(n − 3)
, (4.4)

where

� = n2(n − 1)2 + 8�αn(n − 1)(n − 2)(n − 3). (4.5)

Now we put α < 0. A solution to Eq. (4.1) exists only if
� ≤ �cr , where

�cr = − n(n − 1)

8α(n − 2)(n − 3)
(4.6)

is the maximum value of the function F(H2) from (4.1). For
0 < � < �cr (and α < 0) we have two solutions for H2 (or
four solutions for H ), which are given by the relation

H2 = −n(n − 1) ± √
�

2αn(n − 1)(n − 2)(n − 3)
. (4.7)

For � = �cr and α < 0 we get one solution for H2 (or two
solutions for H ):

H2 = H2
cr = − 1

2α(n − 2)(n − 3)
. (4.8)

The case � = 0 (and α < 0) was mentioned above (two
solutions for H2, or three for H ). For � < 0 (and α < 0) we

obtain one solution for H2 (or two solutions for H ):

H2 = −n(n − 1) − √
�

2αn(n − 1)(n − 2)(n − 3)
. (4.9)

Due to (3.18) the matrix (Li j ) is invertible for all solutions
but H = Hcr from (4.8) for α < 0, since only in this case
ϕ(H) = 0. The relation H = Hcr takes place only for � =
�cr and α < 0 and hence this case will be excluded from
our analysis. Since K (v) = nH , the trivial solution H = 0
for � = 0 should also be excluded from our consideration.
It follows from Proposition 2 that all isotropic solutions v =
(vi ) = (H, . . . , H) obeying H > 0 and H �= Hcr for α < 0
are stable while all isotropic solutions obeying H < 0 and
H �= Hcr for α < 0 are unstable.

Using (2.28), (2.43), and (3.4) we obtain Ci (v) = −(n −
1)Hϕ(H) �= 0, i = 1, . . . , n, for H �= 0 and H �= Hcr

for α < 0. Under these restrictions on H , the solution for
perturbations (3.16), (3.17) reads as follows:

δhi = Ai exp(−nHt), (4.10)
n∑

i=1

Ai = 0, (4.11)

i = 1, . . . , n. Equation (4.10) was obtained earlier in [22].

4.2 Anisotropic solutions with two Hubble parameters

In this subsection we consider several examples of anisotro-
pic solutions to Eqs. (2.41), (2.42) of the form v =
(H, . . . , H, h, . . . , h), where H is the Hubble-like param-
eter corresponding to the m-dimensional isotropic subspace
with m ≥ 3 and h is the Hubble-like parameter correspond-
ing to the l-dimensional isotropic subspace with l > 1. Here
we put H > 0.

4.2.1 Solution for m = 3, l = 2, and � = 0.

Let us consider the case m = 3, l = 2, � = 0. We have the
following solution to the set of polynomial equations (2.51),
(2.52) with H > 0:

H = 1

6
(7+4 · 101/3+102/3)1/2α−1/2 ≈ 0.750173α−1/2,

(4.12)

h = −1

6
(7−0.5 · 101/3+102/3)1/2α−1/2

≈ −0.541715α−1/2. (4.13)

In the approximate form this solution was found earlier in
[17], in analytic form (different from (4.12), (4.13)) it was
obtained in [19].
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Using (2.35) and (2.37) we get

SHH = 2h(2H + h) ≈ −1.038610α−1,

Shh = 6H2 ≈ 3.376557α−1. (4.14)

Equations (3.24) are valid and hence the first restriction (3.7)
is satisfied. The second restriction (3.8) is also satisfied since
K (v) = 3H + 2h > 0. Thus, due to Proposition 2, the
solution is stable, in agreement with [22].

4.2.2 Solution for m = l = 3 and � = 0

Now we consider solutions with m = 3, l = 3, and � = 0.
There are two solutions to Eqs. (2.51), (2.52) with H > 0:

H1 = 1

4
(
√

5 − 1)α−1/2, h1 = 1

4
(−√

5 − 1)α−1/2

(4.15)

and

H2 = 1

4
(
√

5 + 1)α−1/2, h2 = 1

4
(−√

5 + 1)α−1/2.

(4.16)

For the first solution we get

SHH = 3

4
(
√

5 + 1)α−1, Shh = 3

4
(−√

5 + 1)α−1,

(4.17)

while for the second one we obtain

SHH = 3

4
(−√

5 + 1)α−1, Shh = 3

4
(
√

5 + 1)α−1.

(4.18)

In both cases Eqs. (3.24) are satisfied and hence the first
restriction (3.7) is valid. The second restriction (3.8) is also
valid for any of these solutions since K (v1) = 3H1 + 3h1 =
− 3

2α−1/2 < 0 and K (v2) = 3H2 + 3h2 = 3
2α−1/2 > 0.

According to Proposition 2 the first solution (4.15) is unsta-
ble, while the second one (4.16) is stable.

4.2.3 Solution for m = 11, l = 16 and � = 0

For � = 0 the solution (2.40) with v = (vi ) from (2.29),
m = 11, l = 16, and

H = 1√
15α

, h = − 1

2
√

15α
(4.19)

was found in [21]. This solution describes the zero variation
of the effective cosmological constant G.

The calculations give us

SHH = −4

5
α−1, Shh = 1

10
α−1. (4.20)

Due to (3.24) the symmetric matrix (Li j ), which has a block-
diagonal form, is invertible, i.e. the condition (3.7) is satis-
fied.

Using (3.9) and (3.11) we find (Ci ) = (Cμ = 12H,Cα =
18H). From (3.16) we get the following solution for pertur-
bations:

δhi = Ai exp(−3Ht), (4.21)

2
11∑

μ=1

Aμ + 3
27∑

α=12

Aα = 0, (4.22)

where H = 1√
15α

, i = 1, . . . , 27. Thus, the solution (4.19)
is stable, as t → +∞.

4.2.4 Solution for m = 15, l = 6, and � = 0

Now we consider another exponential solution (2.40) from
[21] with v = (vi ) from (2.29), m = 15, l = 6, � = 0, and

H = 1

6
α−1/2, h = −1

3
α−1/2. (4.23)

We get

SHH = −α−1, Shh = 1

2
α−1. (4.24)

According to (3.24) the symmetric block-diagonal matrix
(Li j ) is non-degenerate.

By using (3.9) and (3.11) we get (Ci ) = (Cμ = 14
3 α−1/2,

Cα = 20
3 α−1/2). Due to (3.16) the solution for perturbations

reads

δhi = Ai exp(−3Ht) = Ai exp

(

−1

2
α−1/2t

)

, (4.25)

7
15∑

μ=1

Aμ + 10
21∑

α=16

Aα = 0, (4.26)

i = 1, . . . , 21. Hence, the solution (4.23) is stable as t →
+∞.

Remark 3 The stability of this solution as well as the previ-
ous one was also proved in Ref. [23] by using rather tedious
calculations based on Eqs. (3.3) and (3.6) without using the
identity (3.13).

4.2.5 Solutions with m ≥ 3, l > 1 and certain � > 0

Here we consider the following solution to Eqs. (2.51), (2.52)
for m > 2, l > 1 and α < 0:

H2 = − 1

2α(m − 1)(m − 2)
, h = 0, (4.27)

which is valid for

� = − m(m + 1)

8α(m − 1)(m − 2)
> 0. (4.28)
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We get from (2.35) and (2.37)

SHH = (m − 2)(m − 3)H2 = − m − 3

2α(m − 1)
�= − 1

2α

(4.29)

and

Shh = m(m − 1)H2 = − m

2α(m − 2)
�= − 1

2α
, (4.30)

which implies the fulfilment of the restriction (3.7) (herem >

2 and l > 1). Since K (v) = mH we see from Proposition 2
that the cosmological solution (2.40) with H , h from (4.27)
is stable for H > 0 and unstable for H < 0.

4.3 A subclass of solutions with zero variation of G

The 4d effective gravitational constant is proportional to the
inverse volume scale factor of the internal space (see [27–
29]), i.e.

G ∼
n∏

i=4

[ai (t)]−1, (4.31)

where ai (t) = exp(β i (t)).

Remark 4 Here G = GJ
eff(t) is the 4-dimensional effec-

tive gravitational constant which appears in (the multi-
dimensional analog of) the so-called Brans–Dicke–Jordan
(or simply Jordan) frame [36]. In this case the physical 4-
dimensional metric g(4) is defined as a 4-dimensional sec-
tion of the multi-dimensional metric g, i.e. g(4) = g(4,J ),
where g = g(4,J ) + ∑n

i=4 a
2
i (t)dy

i ⊗ dyi . When the
Einstein–Pauli (or simply Einstein) frame is used, we put
g(4) = g(4,E) = (

∏n
i=4 ai (t))g

(4,J ) [36,37] and hence we
get the effective gravitational constant to be an exact con-
stant: GE

eff = GJ
eff(t)

∏n
i=4 ai (t) = const [36].

For the solutions (2.40) we obtain the following relations:

G(t) = G(0) exp (−Kintt), Kint(v) =
n∑

i=4

vi , (4.32)

which imply

Ġ

G
= −Kint(v). (4.33)

Now, let us consider a subclass of cosmological solutions
(2.40) which obey restriction (3.7) and describe an expo-
nential isotropic expansion of a 3-dimensional flat factor-
space with v1 = v2 = v3 = H > 0 with zero variation
of G. Then we get from (4.33) Kint(v) = 0 and hence
K (v) = ∑n

i=1 vi = 3H + Kint(v) = 3H > 0. Accord-
ing to Proposition 2 any solution from this subclass is stable.
Three solutions from the previous subsection: (4.19), (4.23),
and (4.27) with m = 3 (and l > 1) belong to this subclass.

Remark 5 It should be noted that for K (v) = 0 and v1 =
v2 = v3 = H > 0 we obtain Kint(v) = −3H and hence
Ġ
G = 3H > 0.

5 Conclusions

We have considered the (n + 1)-dimensional Einstein–
Gauss–Bonnet (EGB) model with the �-term. By using the
ansatz with diagonal cosmological metrics, we have studied
the stability of solutions with exponential dependence of the
scale factors ai ∼ exp (vi t), i = 1, . . . , n, with respect to
the synchronous time variable t in dimensions D > 4.

The problem was reduced to the analysis of the stability of
the fixed point solutions hi (t) = vi to Eqs. (2.16) and (2.21),
where hi (t) are Hubble-like parameters.

In this paper a set of equations for perturbations δhi was
considered (in linear approximation) and the general solution
to these equations was found. We have proved (in Proposition
2) that the solutions with non-static volume factor, i.e. with
K (v) = ∑n

k=1 vk �= 0, which obey restriction (3.7), are
stable if K (v) > 0, while they are unstable if K (v) < 0.

We have also proved (in Proposition 1) that for any expo-
nential solution with v = (v1, . . . , vn) there are no more than
three different numbers among v1, . . . , vn , if

∑n
i=1 vi �= 0.

Here we have presented several examples of stable cos-
mological solutions with exponential behavior of the scale
factors. Among them the isotropic solution v = (H, . . . , H)

and several anisotropic solutions with two Hubble parameters
v = (H, . . . , H, h, . . . , h) were considered. The isotropic
solution is stable if H > 0 and H �= Hcr for α < 0
(see (4.8)). For the anisotropic case our examples deal with
the Hubble-like parameter H > 0 corresponding to m-
dimensional flat subspace with m ≥ 3 and the Hubble-like
parameter h corresponding to l-dimensional flat subspace
with l > 1. This subclass of (anisotropic) solutions contains
the following cases: (i) m = 3, l = 2, � = 0; (ii) m = l = 3,
� = 0; (iii) m = 11, l = 16, � = 0; (iv) m = 15, l = 6,
� = 0; (v) m ≥ 3, l > 1, � > 0. We have also shown that
general solutions with v1 = v2 = v3 = H > 0 and zero
variation of the effective gravitational constant are stable if
the restriction (3.7) is obeyed.
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