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Abstract We study the conditions of restoring supersym-
metry (SUSY) after inflation in the supergravity-based cos-
mological models with a single chiral superfield and a quartic
stabilization term in the Kähler potential. Some new, explicit,
and viable inflationary models satisfying those conditions
are found. The inflaton’s scalar superpartner is dynamically
stabilized during and after inflation. We also demonstrate a
possibility of having small and adjustable SUSY breaking
with a tiny cosmological constant.

1 Introduction

Inflation is the excellent scenario to solve the fundamen-
tal difficulties of the hot big-bang cosmology such as the
horizon, flatness, and monopole problems [1–6]. Moreover,
it predicts generation of the curvature perturbations from
quantum fluctuations of a scalar called inflaton. Its adiabatic,
scale-invariant, and Gaussian features have been precisely
measured by the cosmic microwave background (CMB)
observations like WMAP [7,8] and Planck [9,10]. The
observed small deviation from the scale invariance of CMB is
measured by the spectral index ns = 0.9666±0.0062 [9,10],
and the relative magnitude of tensor perturbations is param-
eterized by the tensor-to-scalar ratio r < 0.07 [11].

Inflation should be described not only phenomenologi-
cally but also consistently with particle physics expected
beyond the Standard Model. One of the most motivated
approaches is supersymmetry (SUSY), or its gauged version
called supergravity [12–15]. In supergravity, it is known to be
non-trivial to obtain a sufficiently flat inflaton scalar poten-
tial needed to trigger slow-roll inflation [16]. It is called the
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η problem, and its primary cause is the presence of the expo-
nential factor eK in the scalar potential (see Appendix A).
For a small-field inflation, one may attempt to tune the
parameters of the model to make the potential flat, but it
becomes much more difficult for large-field inflationary mod-
els. A simple way to suppress the exponential steepness is to
invoke an (approximate) shift symmetry of the Kähler poten-
tial [17,18],1 though it often leads to a potential unbounded
from below [17,18].

Apart from tuning of the superpotential [24–26], there are
two known generic solutions to the unboundedness prob-
lem. The first one is to introduce a stabilizer superfield S
whose value is required to vanish on-shell [17,18,27,28].
The superpotential is taken to be proportional to that super-
field, so that the negative contribution −3|W |2 is effectively
removed. This approach can also be used by assuming the
S to be a nilpotent superfield, thus effectively eliminating
the need of its stabilization and invoking non-linear realiza-
tions of local supersymmetry and its breaking [29–33], see
e.g. Refs. [34–36] and references therein for more recent
contributions. The other approach is to introduce a (shift-
symmetric)2 quartic term of the inflaton in the Kähler poten-
tial [23,37,41,42], instead.3 The quartic term plays the role

1 The shift symmetry may be viewed as a non-linear realization of U(1)
symmetry. The U(1)-symmetric formulation of inflation in supergravity
was studied in Refs. [19–22] with a stabilizer field, and in Ref. [23]
without a stabilizer field.
2 A model without shift symmetry was proposed in Ref. [37]. It is
related to the single-superfield α-attractor proposed in Refs. [25,26,38].
See also Refs. [39,40] for more.
3 Some tuned and complicated Kähler potentials with a similar sta-
bilization mechanism were used in Ref. [41]. Their (shift-symmetric)
simplifications were proposed in Refs. [37,42] where the quartic stabi-
lization mechanism was pointed out to be applicable to generic inflaton
potentials with appropriate superpotentials. As regards further develop-
ments of this approach, see Refs. [43–46]. The importance of Kähler
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of a SUSY breaking mass term for the scalar superpartner of
the inflaton (we call it sinflaton). It also has another impor-
tant (dual) role by lifting up the inflaton potential to make it
positive, and fixing the value of the sinflaton during inflation,
in order to make inflationary dynamics to be the single-field
one (not just the single-superfield one). The latter approach
reduces the matter degrees of freedom (needed for inflation
and supersymmetry) to half of the former approach with a
stabilizer (super)field. In this sense, it is a minimal approach
to (large-field) inflation in supergravity. Therefore, it is worth
studying the properties of those relatively new supergravity-
based inflationary models in more detail.

Generic models with a single chiral superfield (in other
words, without a stabilizer) were introduced in Ref. [37],
where it was found that SUSY is generically not restored after
inflation. Hence, without a hierarchically small parameter,
SUSY tends to be broken in vacuum at a scale comparable to
the inflation scale, i.e. the gravitino mass is approximately of
the same order as the inflaton mass. The conditions to restore
SUSY after inflation were not addressed in Ref. [37]. Besides,
in Ref. [42], we introduced the special logarithmic Kähler
potential that allows an approximate embedding of arbitrary
positive semi-definite scalar potentials. In that class of mod-
els, it is also possible to fine-tune the cosmological constant
and SUSY breaking after inflation to zero. So, it can be a good
starting point of the model building to obtain a small posi-
tive cosmological constant and SUSY breaking that would
be parametrically smaller than the inflation scale. It is also
worth investigating whether this feature is maintained after
taking into account corrections of the order 1/ζ , with ζ being
the strength of the quartic stabilisation term. Whether SUSY
is restored after inflation (in the absence of the hidden SUSY
breaking sector) is quite important, being related to the grand
unification of the gauge coupling constants and to the gauge
hierarchy problem of the Standard Model of particle physics.
Should SUSY be broken at a scale higher than the interme-
diate scale, the electroweak vacuum may be unstable [48].
Moreover, gravitino production from inflaton decay in the
early Universe is enhanced when inflaton breaks SUSY in
vacuum [49–53], which leads to a cosmological disaster.

In this paper, we study SUSY breaking (and its preser-
vation) in vacuum, by using the supergravity setup utilis-
ing a quartic stabilisation term in the Kähler potential. More
specifically, we study the conditions to restore SUSY after
inflation. We find that SUSY restoration is intact in the pres-
ence of finite corrections in 1/ζ . In Sect. 2, we discuss a
general setup. A specific model is introduced and studied in
Sect. 3. We find a new two-parametric generalization of the
α-attractor potential [54–56], which leads to slightly different

Footnote 3 continued
curvature (represented by a quartic term in our Kähler potential) was
emphasized in Ref. [47].

predictions compared to the original α-attractor’s. In Sect. 4
we outline how to get an adjustable cosmological constant
with SUSY breaking. Section 5 is our Conclusion. Our setup
is described in Appendix A. Various models which restore
SUSY after inflation are presented in Appendix B. We adopt
the natural units, c = h̄ = MPl/

√
8π = 1.

2 SUSY restoration in a generic case

We consider the “generic”4 shift-symmetric Kähler potential
of Ref. [37]. We take the convention that the real part φ of the
leading component of a chiral superfield, Φ| = (φ+iχ)/

√
2,

defines the shift-symmetric direction, i.e.

K = ic
(
Φ − Φ̄

) − 1

2

(
Φ − Φ̄

)2 − ζ

4

(
Φ − Φ̄

)4
, (1)

where c is a real constant and ζ is a real positive constant.
Inflaton is identified with φ that enters a superpotential. The
sinflaton χ is stabilized by the quartic term during infla-
tion [37,40]. We choose the origin of sinflaton χ in such
a way that it coincides with its stabilized value, i.e. 〈χ〉 → 0
as ζ → ∞. That is why the cubic term in Eq. (1), which
would induce unsuppressed 〈χ〉, is assumed to be negligible.
With this choice, the higher order terms in i(Φ − Φ̄) have
negligible effects because of the suppression 〈χ〉 � 0. It is
worth mentioning that these choices are different from those
in Ref. [37], though being equivalent via a field redefinition.
The quartic term is needed only for the stabilization of the sin-
flaton and, hence, the related uplifting of the inflaton potential
via the linear term. During inflation, the sinflaton χ can be
integrated out, while the impact of the quartic term results
in the appearance of the terms inversely proportional to ζ in
the effective single-field potential for inflaton φ, due to the
sinflaton value 〈χ〉 ∼ ζ−1. This is because the quartic term
itself is multiplied by the power of the sinflaton value, and
vanishes in the limit ζ → ∞. Though we take into account
the corrections in 1/ζ in our calculations of the inflationary
observables, essential features of our models can be already
seen in the leading (zeroth) order in 1/ζ .

The effective single-field inflaton potential (in the leading
order) is given by

V = |WΦ |2 + ic
(
WW̄Φ̄ − W̄WΦ

) + (c2 − 3)|W |2. (2)

Note that the coefficient of the last term is only positive for
c >

√
3. In the presence of corrections of the order 1/ζ ,

the critical value of the lower bound increases, as is shown
below. When assuming for simplicity that all parameters in

4 For instance, the Kähler potential of Ref. [42]—see Eq. (6)—can
be approximately expressed by Eq. (1) as a Taylor series. Then the
linear coefficient is c = −√

3, the quartic coefficients are related as
ζ = ξ − 1/3, and a small cubic term, i(Φ − Φ̄)3/(3

√
3) is needed,

whose presence merely results in subdominant effects.
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the superpotential are real, the second term in the V given
above vanishes, so we get a simplified formula,

V = |WΦ |2 + (c2 − 3)|W |2. (3)

The requirement of SUSY preservation in vacuum with
the vanishing cosmological constant is not a severe condition,
since it merely requires

W = WΦ = 0 (in vacuum). (4)

This leads to the vanishing F-term, DΦW = WΦ +KΦW =
0, and V = 0. (We discuss small SUSY breaking and a
cosmological constant in Sect. 4.) As follows from Eqs. (1)
and (4), it is self-consistent to assume χ = 0 exactly in
vacuum for arbitrary c and ζ . Namely,

V = Vφ = Vχ = 0 (in vacuum with χ = 0), (5)

with the SUSY mass squared for φ and χ given by |WΦΦ |2
(i.e. no tachyon). Both φ and χ are canonically normalized at
χ = 0, including the vacuum state. Those facts simplify our
analysis. Moreover, they prevent large field excursion of χ at
the final phase of inflation, as observed in Ref. [43], because
the relevant expectation values (both in vacuum and during
inflation) are close to each other.

In summary, we established the following statement: once
one constructs an inflationary model in the ideal stabilization
limit ζ → ∞ in such a way that the vacuum is at φ = φ0

(here φ0 is a constant) and χ = 0, the vacuum position
is unchanged when ζ becomes finite. In fact, this is valid
for general shift-symmetric Kähler potentials, K (Φ, Φ̄) =
K (i(Φ −Φ̄)). It is straightforward to show that Eq. (5) holds
under the assumption (4). In the general case, the squared
mass of φ and χ is given by eK (0)|WΦΦ |2/K ′′(0), where the
primes denote the differentiation with respect to the given
argument. Note that the value of χ = 0 in a SUSY vacuum
is not guaranteed by the quartic stabilization term because
the SUSY breaking mass stabilizing χ vanishes in a SUSY
vacuum.

The important corollary of our statement exists for a class
of the inflationary models with the special Kähler potential

K = −3 log
(

1 + i(Φ − Φ̄)/
√

3 + ξ(Φ − Φ̄)4/12
)

. (6)

It makes possible to incorporate an arbitrary positive semi-
definite inflaton potential via the formula

V = |WΦ |2 + √
3i

(
W̄WΦ + WW̄Φ̄

)

= |WΦ |2, (7)

where the second equality holds when one assumes all the
coefficients in the superpotential to be real. It was shown in
Ref. [42] that one can always fine-tune both a cosmological
constant and SUSY breaking in vacuum to zero in the infinite
ξ limit. The above statement generalizes it to the case of
arbitrary ξ .

3 An example

Let us study in more detail the conditions (4) for SUSY
preservation and the vanishing cosmological constant. By
shifting Φ with a real constant, we can set φ0 = 0 without
changing the form of the Kähler potential. Without loss of
generality, we set it first and study the structure of the super-
potential satisfying Eq. (4). Then the vacuum is at the origin
Φ = 0. The superpotential can be written down as a Taylor
expansion without the zeroth and first order terms,

W =
∑

n≥2

cnΦ
n . (8)

This satisfies Eq. (4), while any holomorphic function sat-
isfying Eq. (4) can be expressed as above. Given an even
function W (−Φ) = W (Φ) satisfying WΦ = 0 at the ori-
gin, it is always possible to subtract a constant to obey the
remaining condition W = 0.

We focus on a particular example in this section, though
there exist many models with SUSY restoration after infla-
tion. Their possible classification within our approach is out-
lined in Appendix B.

The CMB data favours a flat potential similar to the poten-
tial of the R2 model [1] or Higgs inflation model [57]. It
is, therefore, reasonable to consider a potential that asymp-
totes to a constant at the infinite inflaton field, φ → ∞. An
asymptotically constant potential is generated by an asymp-
totically constant superpotential. Such a superpotential can
be expanded as

W =
∑

n≥0

ane
−bnΦ, (9)

where b0 = 0 and bn > bm for n > m. The condition (4)
then reads
∑

n≥0

an = 0 and
∑

n≥1

anbn = 0. (10)

It does not have a non-trivial solution when there are only two
terms in the expansion. Hence, let us consider the simplest
non-trivial case with

W = a0 + a1e
−b1Φ + a2e

−b2Φ. (11)

This superpotential is the same as that in the so-called race-
track model [58], though our Kähler potential is different. By
solving the constraint (10), we can eliminate a1 and a2 as

a1 = − a0b2

b2 − b1
and a2 = a0b1

b2 − b1
. (12)

Then the potential (3) in the leading order takes the form

V = a2
0

(b2 − b1)2

[
b2

1b
2
2

(
e−b̃1φ − e−b̃2φ

)2

+ (c2 − 3)
(
b2 − b1 + b1e

−b̃2φ − b2e
−b̃1φ

)2
]

, (13)
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(a) (b)

Fig. 1 The examples of the potential in the model (11).
a The parameters are chosen to be (a0, b1, b2, c) =
(1, 1, 2, 1.8), (1, 1, 2, 2), (1, 1, 2, 2.2), (1, 1, 4, 2), and (1, 1, 8, 2)

for the red solid, yellow long-dashed, green dashed, blue short-dashed,

and purple dot-dashed lines, respectively. b The potential (15) with
b = √

2/3. The Starobinsky potential is shown by the dashed line for
comparison

where b̃i = bi/
√

2 (i = 1, 2). Some visual examples of the
potential are shown in Fig. 1.

A shape of the contribution to the potential, coming from
the derivative term WΦ , is not suitable for a plateau inflation.
In fact, when c is closer to the critical value

√
3 and/or b1 and

b2 are large (the rough criterium is b2
1b

2
2 � (c2 − 3)(b2 −

b1)
2), a bump in the potential appears. The red solid and

purple dot-dashed lines in Fig. 1a are such examples.
To study the bi -dependence in our models, we consider

the large c limit in which the first term in Eq. (13), originat-
ing from the derivative of the superpotential, is negligible.
When b2 becomes much larger than b1, the terms with the
higher-order exponentials also become negligible. It means
that the potential is Starobinsky-like. More precisely, it coin-
cides with the E-model-type realization of the α-attractor
potential [59]. Actually, a large b with a fixed c implies that
the neglected term becomes important. When b2 is closer to
b1, the situation is more complicated. The most nontrivial
case is the limit b2 → b1. Then, the superpotential and the
potential become

W = a0

[
1 − (1 + b1Φ)e−b1Φ

]
, (14)

V = a2
0(c2 − 3)

[
1 − (1 + bφ)e−bφ

]2
, (15)

where b ≡ b1/
√

2. This potential is different from the
Starobinsky one, as is shown in Fig. 1b. In this limit, the
neglected derivative-originated term is

√
2a2

0b
2φe−bφ , so

that the above approximation is valid for b � c. As a
rough estimate of the inflationary observables for these cases
including the Starobinsky-like limit, we have

ns � 1 − 1

2N
, and r � 8

b2N 2 . (16)

In our numerical calculations we took into account a shift
of the sinflaton χ from the origin up to the first order. For this
purpose, we expanded the potential in terms of χ up to the

second order and minimized it. After integrating out χ , we
obtained the effective single-field potential of the inflaton φ,
including the corrections having the ζ -dependent terms. So,
we neglected the time derivatives of χ . To do those calcula-
tions efficiently, we approximated the potential by an inter-
polation method of Mathematica, and solved the equation of
motion to obtain the inflaton trajectory as well as the infla-
tionary observables. For a reduction of the multi-parameter
space, we set the stabilization parameter to be ζ = 1. The
overall scale of the potential merely affects the time-scale of
simulations, so we set a0 = 1.

With those corrections, the critical value of c, needed to
obtain a potential bounded from below, increases a bit. The
critical value of c is also dependent on the other parameters,
in particular b1 and b2. One may also study the critical values
of bi at a fixed c. Near their critical values, the effect of the
derivative-induced term is not negligible. When decreasing
c from a large value to the critical value, the potential around
the origin is gradually deformed, a short flat region appears,
and finally it becomes a bump to trap inflaton into a local
minimum. Some of these features can be seen in Fig. 1a.
Around that small parameter range of c, the e-folding num-
ber earned in the short flat region changes rapidly, and it is
reflected in a rapid change of the corresponding predictions
for (ns, r). This is demonstrated in Fig. 2 where one looses
predictability against flexibility of predictions in this very
special case.

For larger values of c, observational predictions vary less
rapidly, as usual. The predictions of our models are shown
in Fig. 3 where we have fixed the relation b2 = 2b1 for
definiteness, and have taken c = 2, 3, 4, and 5. The value
of b1 is varied from 0.01 to 3.0 at c = 3, 4, and 5. When
c = 2, the maximum value is taken to be 1.2 that is almost
the critical value for c = 2. For this reason, only the red solid
line for c = 2 is deflected to the lower ns region.
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Fig. 2 A rapid change of predictions near the critical value of the
parameter c. The value of c is varied from 1.98359 to 1.98500 with a
0.00001 step each. The points circulate counter-clockwise with increas-
ing c. The other parameters are set to ζ = a0 = 1, b1 = 2/

√
3,

b2 = 2b1, and N = 60

Fig. 3 The bi -dependence in the model with two exponentials (11).
The set of right (left) lines with darker (lighter) colors corresponds to
N = 60 (50). In each set, the red solid (the very left), yellow long-
dashed, blue dashed, and purple short-dashed (the very right) lines
show the cases of c = 2, 3, 4, and 5, respectively. The lines with c =
3, 4, and 5 are almost degenerate. We set b2 = 2b1 and ζ = a0 = 1,
and vary b1 from 0.01 above in the figure to 3.0 (1.2 for c = 2) below
in the figure. For comparison, the result of the b2 → b1 limit with
large ζ and c (see Eq. (15)) is shown as the gray dot-dashed line. The
green contours are 1σ and 2σ Planck constraints combined with other
observations (Planck TT+lowP+BKP+lensing+BAO+JLA+H0) [9]

4 SUSY breaking and cosmological constant

It is worthwhile to comment on the related issue, as to how to
obtain small SUSY breaking and a very small cosmological
constant, by some minimalistic extension of our approach.
For simplicity, let us consider a nilpotent F-term SUSY
breaking superfield S [30], which is essentially a Polonyi
superfield [60] subject to the nilpotent condition S2 = 0.5

We take the minimal Kähler potential of the nilpotent super-
field, and combine the two sectors as follows:

5 One may impose further constraints, S̄S(Φ−Φ̄) = 0 and S̄SDαΦ =
0, to eliminate sinflaton and inflatino, respectively [34].

K (Φ, S, Φ̄, S̄) = K (inf)(i(Φ − Φ̄)) + S̄S, (17)

W (Φ, S) = W (inf)(Φ) + W0 + μ2S, (18)

where W0 and μ2 are constants, and (inf) denotes the quanti-
ties in the inflation sector discussed in this paper. In particular,
W (inf) satisfies Eq. (4), and we set K (inf)(0) = 0 as our con-
vention by using a Kähler transformation. In the presence of
the superfield S, the VEV of the inflaton gets shifted as

〈Φ〉 = −W0K
(inf)
Φ

W (inf)
ΦΦ

, (19)

where we have taken the convention 〈Φ〉 = 0 before intro-
ducing W0 and S, and the terms of the higher order in |W0| or
|μ|2 have been neglected. Accordingly, the vacuum energy
becomes

V = |μ|4 − 3|W0|2, (20)

in the leading order of |W0| or |μ|2. Therefore, the SUSY
breaking scale |DSW | = |μ2| can be chosen freely, while
the cosmological constant can be chosen arbitrarily small by
fine-tuning between |μ|4 and 3|W0|2. For many purposes, we
may simply set |μ|2 ≈ √

3|W0|, so that the gravitino mass is
m3/2 = |W0| = |μ2|/√3.

The role of the superfield S in our approach is limited to
uplifting the vacuum energy. The inflaton potential is solely
constructed from the inflaton superfield Φ. If the SUSY
breaking scale is much lower than the inflation scale, the
effects of S or W0 on the inflationary dynamics are negligi-
ble.

Our results are consistent with the argument in Ref. [43]
and the “no-go” statement in Ref. [61], which claim that any
SUSY preserving Minkowski vacuum without flat directions
cannot be uplifted to a de Sitter vacuum by a small continuous
deformation of the model. However, there exists a loophole
in those arguments, also noticed in Ref. [61], namely, via
adding a massless superfield (a flat direction) and increasing
its mass, i.e. exactly as we did above.

5 Conclusion

In this paper we investigated the SUSY breaking proper-
ties of the supergravity-based inflationary models without a
stabilizer superfield by using a shift-symmetric quartic sta-
bilization term in the Kähler potential. The shift symmetry
is a global symmetry imposed on the Kähler potential at the
tree level, which is likely to be broken by quantum (gravity)
corrections. Though quantum corrections from the superpo-
tential are suppressed due to the relatively small scale con-
trolling the amplitude of CMB perturbations, one may expect
non-negligible quantum corrections from the inflaton-matter
couplings, depending upon the reheating temperature. We
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assumed those terms to be suppressed in our phenomeno-
logical approach. Possible origins of our superpotentials and
Kähler potential, and, in particular, measuring quality of the
shift symmetry, are beyond the scope of our investigation.

In Sect. 2, we found that the vacuum expectation value
(VEV) of the inflaton multiplet is not sensitive to the param-
eters of the Kähler potential as far as the condition (4) is
satisfied. This demonstrates robustness of the SUSY preser-
vation property in our models. In addition, we showed that
the large-field excursion of sinflaton at the end of inflation,
observed in Ref. [43], can be suppressed by tuning the sin-
flaton VEV to be equal to its stabilized value during inflation
(i.e. zero in our conventions).

A relatively simple, racetrack-like model was studied in
Sect. 3. It shares the essential qualitative features with some
other models in Appendix B. The observational aspects of
the model extend those of the α-attractor, including the R2

model and the Higgs inflation—see e.g., Eqs. (13) and (15),
and Figs. 1b and 3 for details.

In summary, our single-superfield model building with the
quartic stabilization is a powerful tool to construct inflation-
ary models in supergravity, which are consistent with obser-
vations. Its inflationary sector has the minimal number of
physical degrees of freedom, i.e. has the inflaton supermulti-
plet only. Since sinflaton is stabilized, isocurvature perturba-
tions and non-Gaussianity are negligible in our models, see
e.g., Ref. [62] for more. The SUSY breaking by the infla-
ton supermultiplet driving inflation is restored after inflation
when the condition (4) is satisfied. On top of that, we found
that it is possible to obtain a tunable SUSY breaking and a
tiny cosmological constant in vacuum. It fills a gap in our
earlier work on the single-superfield approach to inflation
in supergravity, as regards its SUSY breaking structure after
inflation.
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Appendix A: Basic facts about inflationary model
building

The most important inflationary observables are (i) the ampli-
tude of the curvature perturbations As, (ii) the scalar spec-
tral index ns, and (iii) the tensor-to-scalar ratio r . They
can be expressed in terms of the slow-roll parameters as
follows:

As = V

24π2ε
, ns = 1 − 6ε + 2η, r = 16ε, (A.1)

at the horizon exit, in terms of the inflaton scalar potential
V . The slow-roll parameters are defined as

ε = 1

2

(
V ′

V

)2

, η = V ′′

V
, (A.2)

where the primes denotes the differentiation with respect to
the canonical inflaton field φ. The e-foldings number N ≡
log(aend/a∗) can be expressed in terms of the inflaton field
as

N =
∫ φ∗

φend

1√
2ε

dφ, (A.3)

where a is the scale factor of the FLRW metric, the subscript
“end” denotes the end of inflation (at ε = 1), the subscript
(∗) stands for the horizon exit of the observed scale, and we
set φend < φ∗ without loss of generality.

In four-dimensional N = 1 supergravity, an inflationary
model is specified by a Kähler potential K = K (φi , φ̄ j̄ ),
a superpotential W = W (φi ), and a gauge kinetic function
hAB = hAB(φi ) of chiral superfields φi . The kinetic and
potential terms of their leading scalar field components φi

and φ̄ j̄ (where a bar denotes complex conjugation, and we
use the same notation for chiral superfields and their leading
field components) in Einstein frame are given by
√−g−1Lkinetic = −Ki j̄∂

μφi∂μφ̄ j̄ , (A.4)

V = eK
(
Ki j̄ DiW D̄ j̄ W̄ − 3|W |2

)
+ 1

2
hR
ABD

ADB,

(A.5)

where the subscripts i , j̄ , etc. denote the differentiation with
respect to the corresponding fields φi , φ̄ j̄ , etc., and DiW ≡
Wi+KiW . The D-term (proportional to DADB) is irrelevant
for our investigation in this paper.

The minimal Kähler potential K = φ̄φ leads to a
scalar potential having the overall exponentially steep fac-
tor eφ̄φ in large-field inflationary models. A detailed review
of the η-problem in supergravity can be found, e.g., in
Ref. [63].
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Appendix B: Towards a classification of inflationary
models in supergravity with SUSY restoration

Type 1a: the single-term-model
The simplest option is merely a single term in Eq. (8),

W = c2Φ
2. (B.1)

Then the leading-order scalar potential is a sum of quadratic
and quartic terms,

V = |c2|2
4

φ2[8 + (c2 − 3)φ2]. (B.2)

However, both quadratic and quartic potentials are too steep
to be consistent with observations. Tensions with observa-
tions become milder when a small negative quartic term is
added to a quadratic potential [64]. Though the potential then
becomes unbounded from below in the large-field limit, it
may not be a problem if the tunnelling time is longer than
the age of the Universe.

Type 1b: the two-terms-model
After adding a cubic term to the previous model, we get

W = c2Φ
2 + c3Φ

3. (B.3)

The potential in the leading order is polynomial,

V = 2c2
2φ

2 + 3
√

2c2c3φ
3 + 9

4
c2

3φ
4

+ 1

8
(c2 − 3)φ4

(
2c2

2 + 2
√

2c2c3φ + c2
3φ

4
)

, (B.4)

where we have taken c2 and c3 to be real for simplicity.
Some examples of such potential are shown in Fig. 4. In
the limit of c = √

3, the potential is a quartic function
and has the double-well form. The positions of the min-
ima (with the vanishing cosmological constant) are φ0 = 0
and φ0 = −2

√
2c2/(3c3). SUSY is preserved in the for-

mer minimum and is broken in the latter. A hilltop inflation
of the quartic order is possible between the minima, but it

Fig. 4 The examples of the potential (B.4). The parameters are chosen
as (c, c3) = (1.75,−0.25), (2.0,−0.25), and (1.8,−0.13) for the red
solid, blue dashed, and green dot-dashed lines, respectively. In all cases
we set c2 = 1

gives ns � 0.94 ∼ 0.95 which is smaller than the observa-
tional bound. When we increase c, the nontrivial minimum
is uplifted, but the local minimum still exists.

In the two examples above, we merely considered the
simplest options. Next, we require that the potential asymp-
totes to a constant in the large-field limit (with some values
of the parameters). The leading-order potential (3) has two
parts: the derivative part and the non-derivative part. Accord-
ingly, there exist two possibilities where one of the two parts
becomes dominant.

If the value of c is close to the critical value
√

3, the poten-
tial is dominated by the derivative term. To obtain an asymp-
totically flat potential, the superpotential has to approach a
linear function asymptotically. Besides, the value and the
slope of the superpotential at the origin should vanish. Those
superpotentials are shown in Fig. 5a.

A good example is given by

Type 2a: the log cosh model

W = m
(

log
(

cosh
√

2aΦ
))

, (B.5)

where a is a real parameter, m sets the scale of the inflation-
ary potential. The leading-order scalar potential (3) takes the
form

V/m2 = a2 tanh2 aφ + (c2 − 3)(log(cosh aφ))2. (B.6)

This potential is shown in Fig. 5b. When the second term
is negligible, the potential is that of the T-model [59,65].
When the second term dominates, the potential becomes a
quadratic function. It is also possible to interpolate between
the plateau potential and the quadratic one, as the limiting
cases. Taking the small a limit, we get the potential that is
close to a quartic one near the origin. Those potentials have
a rich structure depending on the values of the parameters.

Yet another case is

Type 2b: the square-root-model
with

W = m
(√

1 + 2a2Φ2 − 1
)

, (B.7)

which are similar to the previous type-2a (log cosh) model,
see Fig. 5a. The potential (3) in this case reads

V/m2 = 2a4φ2

1 + a2φ2 +(c2 − 3)
(
a2φ2 − 2

√
1 + a2φ2 + 2

)
.

(B.8)

The last two types have a singularity and/or a branch cut off
the inflationary trajectory. There exist infinitely many super-
potentials with similar predictions in the field region relevant
to observations.

Next, we consider the case when c is sufficiently large
so that the non-derivative term dominates and asymptotes to
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(a) (b)

Fig. 5 The examples of asymptotically linear superpotentials and the
corresponding potentials. a The yellow solid (blue dashed) line corre-
sponds to W = log(cosh

√
2Φ) (W = √

1 + 2Φ2 − 1). b The poten-

tial (B.6). The red solid, green dashed, and purple dot-dashed lines
correspond to (c, a) = (1.74, 1), (1.75, 1), and (1.75, 3), respectively,
with m = 1/a

a constant in the large-field region. For example, it is well
represented by the following model:

Type 3a: the tanh model
with

W = m tanh2
√

2aΦ, (B.9)

where m sets the scale of inflation, and a is a real parameter.
The potential (3) becomes

V/m2 = tanh2 aφ

[
4a2

cosh2 aφ
+

(
c2 − 3

)
tanh2 aφ

]
.

(B.10)

It yields a flat potential for inflation, V ∼ tanh4 aφ, but in
the c → √

3 limit it does not lead to a plateau potential.
The small a limit leads to a quartic potential. This is because
the first term in the expansion of the SUSY-restoring super-
potential (8) is quadratic, while the main part of the scalar
potential is proportional to its square.

One may also expand an asymptotically constant super-
potential as a constant plus a series of decaying functions.

Type 3b: the models with exponentials

W = a0 + a1e
−b1Φ + a2e

−b2Φ. (B.11)

This case was studied in Sect. 3 in detail.
Finally, we consider the following type of models.

Type 3c: the models with a rational function

W = a2Φ
2 + a3Φ

3 + · · · + anΦn

1 + b1Φ + b2Φ2 + · · · + bmΦm
. (B.12)

This can be viewed as the Padé approximation of order [n/m]
of some holomorphic function. The numerator begins with
the quadratic term to satisfy (4). Here, we take n = m to
obtain an asymptotically constant potential, and set n = 2 as

the simplest choice. Then, the leading-order potential is

V/a2
2 = 4(2

√
2 + b1φ)2φ2

(2 + √
2b1φ + b2φ2)4

+ (c2 − 3)
φ4

(2 + √
2b1 + b2φ2)2

. (B.13)

To further simplify the model, consider the case of b1 = 0.
The asymptotic form of the potential is a constant plus a fall-
off like φ−2. This inverse-hilltop potential yields ns � 1− 3

2N

and r � 2
√

2
b2

1
N3/2 .

Needless to say, our classification here is incomplete,
being the first step in that direction.
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