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Abstract The proton charge radius inferred from muonic
hydrogen spectroscopy is not compatible with the previous
value given by CODATA-2010, which, on its turn, essentially
relies on measurements of the electron–proton interaction.
The proton’s new size was extracted from the 2S–2P Lamb
shift in the muonic hydrogen, which showed an energy excess
of 0.3 meV in comparison to the theoretical prediction, eval-
uated with the CODATA radius. Higher-dimensional gravity
is a candidate to explain this discrepancy, since the muon–
proton gravitational interaction is stronger than the electron–
proton interaction and, in the context of braneworld models,
the gravitational potential can be hugely amplified in short
distances when compared to the Newtonian potential. Moti-
vated by these ideas, we study a muonic hydrogen confined
in a thick brane. We show that the muon–proton gravita-
tional interaction modified by extra dimensions can provide
the additional separation of 0.3 meV between the 2S and 2P
states. In this scenario, the gravitational energy depends on
the higher-dimensional Planck mass and indirectly on the
brane thickness. Studying the behavior of the gravitational
energy with respect to the brane thickness in a realistic range,
we find constraints for the fundamental Planck mass that
solve the proton radius puzzle and are consistent with previ-
ous experimental bounds.

1 Introduction

The proton charge radius was determined with unprece-
dented precision by recent measurements of the Lamb shift
in muonic hydrogen [1,2], the atom formed by a muon and
a proton (μp). It happens that the deduced radius rp =
0.84184(67) fm is 4 % smaller than CODATA-2010 value,
rCD
p = 0.8775(51) fm [3] — which is inferred from hydro-

gen and deuteron spectroscopy [4–11] and from measure-
ments of differential cross section in elastic electron–proton
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scattering [12–14]. This discrepancy of 7 standard deviations
is known as the proton radius puzzle.

The proton charge radius is defined as 〈r2
p〉 = ∫

r2ρE (r)
d3r, where ρE is the normalized electric charge density of the
proton. Based on the standard theory of bound-state quantum
electrodynamics (QED), the effects of the proton internal
structure on the atomic energy spectrum can be predicted.
For instance, in the muonic hydrogen, it is expected that the
contribution for the 2S1/2–2P1/2 Lamb shift is given by [2,
15]

�Eth
L =

[

206.0668(25) − 5.2275(10)
r2
p

fm2

]

meV (1)

where rp must be expressed in femtometer. According to this

formula, the energy shift is �Eth
L

(
rCD
p

)
= 202.0416(469)

meV, when it is calculated with the CODATA-2010 radius.
On the other hand, the experimental value is extracted from
the measurement of the (2PF=1

3/2 − 2SF=0
1/2 ) and (2PF=2

3/2 −
2SF=1

1/2 ) transitions frequencies, νs and νt , respectively, and
from the formula [2,15]

�Eexp
L = 1

4
hνs + 3

4
hνt − 8.8123 (2) meV, (2)

where the numeric term comes from the explicit calcula-
tion of the 2P fine and hyperfine splitting. By using the
measured frequencies, νs = 54611.16 (1.05) GHz [2,15]
and νt = 49881.35(65) GHz [1,2,15], we find �Eexp

L =
202.3706(23) meV. The difference of 0.3290(469) meV,
between the measured Lamb shift and the predicted value,
has no explanation within the standard framework of physics.
Thus the puzzle may be an indication of a missing term in
Eq. (1), associated with an unknown proton–muon interac-
tion that differs from the electron–proton interaction. New
interactions beyond the standard model have been proposed
to explain the energy excess [16–29], but there is no final
conclusion yet.
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Here we want to discuss an alternative explanation. As
the muon is around 207 times heavier than the electron, it is
reasonable to conjecture that gravity is the missing piece in
this puzzle. The problem is that the Newtonian potential is
negligible in atomic system. However, in the context of the
braneworld with a large extra dimension, the gravitational
potential can be much greater in short distances. This fact
has motivated us to address this issue in the context of the
braneworld models.

In the braneworld scenario, our visible Universe is a sub-
manifold with three spatial dimensions (the 3-brane) embed-
ded in an ambient space of higher dimensions (the bulk) [30–
33]. Matter and standard model fields are confined to the
brane while gravity can propagate in every direction of the
bulk. Although gravity has access to whole ambient space, the
existence of a bound zero-mode (due to a compact topology
or to an appropriate curvature of the bulk), guarantees that the
Newtonian behavior is recovered for distances greater than
a characteristic length scale � of the extra space, making the
model phenomenologically viable. In the case of a compact
topology, � is the size of the supplementary space, while in
the case of non-compact topology, � is related to the curva-
ture radius of the ambient space. It follows from this picture
that gravity may feel directly the effects of extra dimensions
in a length scale that could be much greater than the scale
in which matter and other fields experience the influence of
extra dimensions.

Tests of the inverse square law in laboratory establish that
the radius of the extra dimension should be smaller than
44 µm [34–38]. This is the tightest constraint for models
with only one extra dimension. When the number of extra
dimensions is greater, the most stringent constraints come
from astrophysics [39,40] and high energy particle collisions
[41–45].

If the gravitational field obeys the Gauss law in the bulk,
in the weak field limit, then the gravitational potential of a
point-like mass behaves as (Gnm) /rn+1 for r << �, where
Gn is the gravitational constant defined in a space with n
extra dimensions. The relation between the Newtonian con-
stant, G, and Gn is given by Gn ∼ G�n , in magnitude order.
Therefore, in comparison with the Newtonian potential, the
extra-dimensional version is amplified by a factor of the order
of (�/r)n in short distances. This property has motivated the
study of the gravitational interaction in atomic and molecu-
lar systems as a way of obtaining empirical bounds for the
number and size of the extra dimensions [46–53]. Consid-
ering that the gravitational interaction is a small term of the
atomic Hamiltonian, we find that the gravitational energy is
proportional to the mean value of r−(n+1) in the atomic state.
However, this average diverges for S-states, when n > 2. To
avoid this problem, some authors introduce a cut-off radius
to perform the calculations [46–51]. As a consequence, the
results become dependent on an arbitrary parameter. Previ-

ous attempts of solving the proton radius puzzle by means of
the extra-dimensional gravity also resorted to a cut-off radius
[49,50].

In a thick brane scenario the divergence problem is natu-
rally solved. The origin of the divergences is the fact that a
delta-like confinement in the brane is a singular distribution
from the viewpoint of the bulk [53,54]. However, in a thick
brane scenario, the confined particles are described by a reg-
ular wave function with a non-null width in the transversal
directions. This width should be less than the brane thickness
and its value is related to the strength of the confinement. As
the width is non-null, the divergence problem naturally dis-
appears.

Considering the muonic hydrogen in this scenario, we find
the energy shift of the atomic states caused by the muon–
proton gravitational interaction. Based on these calculations,
we show that the gravitational energy can account for the
energy excess of the measured Lamb shift, solving, in this
way, the proton radius puzzle. This condition determines
some constraints for the higher-dimensional Planck mass
which are consistent with previous empirical bounds.

2 The gravitational energy of an atom in a thick brane

In the field-theory framework, the brane can be seen as a
topological defect capable of trapping matter inside its core
[55]. As an illustration, we can mention a domain wall in
(4+1) dimensions that separates two vacuum states of a scalar
field φ along the extra dimension z [55]. In this configuration,
the scalar field can confine matter in the center of the wall
by means of a Yukawa-type interaction with Dirac spinors.
Under the influence of this interaction, the zero-mode state
is described by the following wave function:

� (x, z) = exp

[

−β

∫ z

0
φ0 (y) dy

]

ψ (x) , (3)

where β is the coupling constant, ψ (x) represents a free
spinor in the (3 + 1) dimensions, φ0 = η tanh (z/ε) is the
scalar in a domain wall configuration interpolating between
two vacua ±η of the scalar field. This wave function has a
peak at the center of the brane (z = 0) and decreases expo-
nentially in the transverse direction. The parameter ε can
be seen as a measure of the brane thickness, which must be
smaller than 10−19 m to be consistent with current experi-
mental constraints [30,42,43].

The confinement mechanism for matter in topological
defects of greater codimension can be formulated in a sim-
ilar away. Based on the previous example, it is reasonable
to expect that the wave function of localized particles can
be written as � (r, z) = χ (z) ψ (r), where χ (z) is some
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normalized function defined in the supplementary space of
n dimensions, concentrated around the origin.

In this context, let us now study the gravitational potential
produced by a confined particle in the thick brane. As we
are assuming that � >> ε, then we have to consider the
direct effects of the extra dimensions on the gravitational
potential. To take this into account, we will admit that the
static gravitational field satisfies the Gauss law in the bulk.
Thus, in the case of a flat supplementary space with a compact
topology, the exact potential of a point-like mass M lying
in the origin of the coordinate system and evaluated at the
position R = (r, z) can be written [56]

V (R) = −GnM

Rn+1 −
∑

i

GnM
∣
∣R − R′

i

∣
∣n+1 , (4)

where the sum spans the topological images of M in the cov-
ering space of the extra-dimensional manifold and R = |R|.
The exact position R′

i of the mirror images depends on the
topology of the supplementary space. For instance, in the
case of a flat n-torus with size �, we haveRi = � (0, 0, 0,ki ),
where ki is a vector with n integer number as components.
The gravitational potential (4) reduces to the Newtonian
potential −GM/r in the far zone (r >> �) [56].

Regarding the influence of the gravitational potential on
the energy spectrum of the muonic hydrogen, the topological
images can be neglected, since the contribution they give is
lesser than the empirical error of the μp experiment (see the
appendix). Therefore, to calculate the proton gravitational
potential, φ, we may use the approximate Green function
−GM/Rn+1, which is weaker than the real potential of a
point-like mass. So, assuming that the proton mass mp is
distributed on the spatial extension of the nucleus, the proton
gravitational potential is

φ (R) = −Gn

∫
ρM

(
R′)

|R − R′|n+1 d3+nR′, (5)

where the mass density is ρM = ∣
∣�p

∣
∣2
mp and �p (r, z) =

χp (z) ψp (r) is the higher-dimensional wave function of the
proton.

The muon–proton gravitational interaction, which is
described by the Hamiltonian HG = mμφ (where mμ is
the muon mass), modifies the muonic hydrogen spectrum.
Assuming that HG is a small term of the atomic Hamilto-
nian, the energy shift can be calculated by the perturbation
method for each state. In the first order, the energy correction
is

〈
mμφ

〉
�

, i.e., the mean value of the gravitational energy in
the state �. By using Eq. (5), we can write the energy shift

δEg
ψ = −Gnmpmμ

∫ ∣
∣�p

∣
∣2 ∣

∣�μ

∣
∣2

|R − R′|n+1 d3+nRd3+nR′, (6)

where the higher-dimensional wave function of the muon
(more precisely, the reduced particle) �μ (r, z) is the product
of the extra-dimensional part χμ (z) and the solutions ψμ (r)
of the Schrödinger equation for the muonic hydrogen.

To calculate (6), we shall assume that the proton mass
is uniformly distributed inside the nucleus. This means that
the three-dimensional part, ψp (r), is constant in the spatial

extension of the nucleus and zero outside
(
r > rCD

p

)
. In Eq.

(6), the major contribution comes from the integral in the
interior region of the nucleus. For S-states, Eq. (6) yields

δEg
S = −γn

Gnm pmμ

σ n−2
|ψS (0)|2

[

1 − 3

2

rp
a0

+ O
(
r2
p/a

2
0

)]

× [
1 + O

(
σ/rp

)]
, (7)

where a0 is the Bohr radius of the muonic hydrogen, ψS (0) is
the wave function of a S-state evaluated in the origin and γn is
a numeric factor whose value depends on the number of extra
dimensions. For instance, γ3 = 2π3/2, γ4 = 4π/3, γ5 =
π3/2/3 and γ6 = 4π/15. The gravitational energy depends
on how tight the confinement in the thick brane is. In fact, σ

is associated to the spatial distribution of the particles in the
transverse direction. This parameter is defined by

1

σm
≡ � (n/2)

�
( n−m

2

)
∫ ∣

∣χp (z1)
∣
∣2 ∣

∣χμ (z2)
∣
∣2

|z1 − z2|m dnz1dnz2, (8)

where m is a positive integer that should satisfy the condition
m ≤ (n − 1) and � stands for the gamma function. If χ is a
Gaussian function, then σ coincides with the standard devia-
tion of the Gaussian distribution. For the sake of consistency,
σ should be smaller than the brane thickness.

Equation (7) is valid for n > 2. Here we do not discuss
the cases n = 1 and n = 2, once the atomic gravitational
energy are not strong enough to explain the proton radius
puzzle in those dimensions. The integral of Eq. (6) in the
external region is smaller than (7) by a factor of the order
of σ/rp, which is lesser than 10−5 for realistic branes with
ε ≤ 10−20 m. On its turn, for P-states, the gravitational con-
tribution is smaller than (7) by a factor of the order of r2

p/a
2
0 .

3 The additional energy in the Lamb shift

As we have already mentioned, in comparison with the

predicted Lamb shift �Eth
L

(
rCD
p

)
, the measured value

�Eexp
L has an excess of 0.3290(469) meV. The higher-

dimensional gravity can explain this excess in a consistent
way. Due to the gravitational proton–muon interaction, the
energy of the 2S-level decreases by the amount δEg

2S =
−γnGnm pmμ

(
1 − 3rp/2a0

)
/(8πa3

0σ n−2), according to
Eq. (7). On the other hand, the effect on the 2P-level is
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Fig. 1 The required values of higher-dimensional Planck mass (in nat-
ural units) to explain the proton radius puzzle, in terms of the confine-
ment parameter σ . The region below the 2 TeV line is excluded from
the analysis of monophoton events in proton–proton collision at LHC.
The + signs are lower bounds from data on the monojet events at LHC

smaller by a factor of the order of 10−5; therefore, it is neg-
ligible within the precision of 10−7 eV of the muonic hydro-
gen experiment [15]. Thus, the gravitational interaction is
responsible for an additional enlargement between the 2P
and 2S levels given by

∣
∣δEg

2S

∣
∣. The puzzle would be solved

if
∣
∣δEg

2S

∣
∣ = 0.3290(469) meV. This condition implies a rela-

tion between Gn and σ , which, in terms of the fundamental
Planck mass MD of the higher-dimensional space, as defined
in Ref. [41], can be written
[

(h̄/c)n h̄c

(n + 2)

�
( n+3

2

)

2π(n+3)/2

(2π)n

Mn+2
D

]
γn

8π

mpmμ

a3
0σ n−2

(

1 − 3rp
2a0

)

= 0.3290(469) meV, (9)

where Gn was substituted by the term in the bracket. Figure
1 shows a numerical analysis of Eq. (9) for four cases n =
3, 4, 5 and 6. The constraints yield the required values of MD ,
in the range 10−35 m ≤ σ ≤ 10−20 m, in order to solve the
proton radius puzzle. As we can see, thinner branes—which
imply tighter confinements, i.e., smaller σ—require higher
values for the fundamental Planck mass. The uncertainty on
the higher-dimensional Planck mass at 1 standard deviation
level is δMD/MD = 0.1426/(n + 2) for fixed σ , and it is
too narrow to be seen in Fig. 1.

Let us now compare these constraints with other experi-
mental bounds. Direct tests on deviation of the inverse square
law at short distances, based on modern versions of torsion-
balance instrument, have been used with the purpose of
searching for signals of extra dimensions. In these experi-
ments, the modified gravitational potential is parameterized
as GM/r

(
1 + αe−r/λ

)
, where, in the ADD model, α =

8n/3 and λ is equal to the radius R of the extra dimensions

[35–38]. From the empirical constraints on α and λ, upper
bounds for R are inferred for each value of n. For instance,
for n = 1 and n = 2, the data imply that R < 44μm and R <

37μm, respectively, which corresponds (see, the relation
between R and MD in the appendix) to MD > 3.6 TeV for
n = 2 [37,57]. For greater codimensions, the experimental
limits are much below than TeV scale and, therefore, compat-
ible with constraints of Fig. 1. If the modification of the grav-
itational potential is due to radion exchange between matter,
instead of graviton exchange, the parameters have different
meaning. In this case, α = n/ (n + 2) and λ is the Compton
wavelength of the radion, which is related to M∗ (the unifi-
cation scale [58]) by the formula λ2 ∼ (

h̄3/cGM4∗
)

[58–60].
According to Ref. [58], the limits go from M∗ > 5.7 TeV
(n = 1) to M∗ > 6.4 TeV (n = 6). Although the exact rela-
tion between λ and the fundamental Planck mass depends on
the stabilization mechanism of the radion [60], there is plenty
of space to accommodate these bounds in Fig. 1, for n > 3.

Astrophysical and cosmological constraints are strong for
n ≤ 4 and are derived from the implications of the supposed
production of the KK gravitons in stars [39,40,57,61]. In this
context, the most stringent bound is obtained from the anal-
ysis of this process in supernovae explosions. In the ADD
higher-dimensional model, an old remnant neutron star is
surrounded by trapped KK gravitons which slowly decay
into photons. A fraction of them is absorbed by the neutron
star causing its heating. As the excess heat is not observed,
constraints can be obtained. Data from PSR J09521 + 0755
demand that MD > 76 TeV for n = 3 [40,57]. In principle,
this limit would rule out the case n = 3 of our analysis in Fig.
1. However, it is important to have in mind that astrophysics
bounds could be evaded by some mechanism that provides
an extra mass for KK gravitons [61–64].

When the number of extra dimensions is greater than
four, the tightest constraints of the fundamental Planck
mass comes from high-energy collisions. Recent analysis on
monophoton events in proton–proton collision at

√
s = 7

TeV and
√
s = 8 TeV in the LHC [42,43] determines that

MD > 2 TeV, for n = 3, . . . , 6. In Fig. 1, this lower bound
is represented by the horizontal line. On its turn, the analysis
of monojet events in proton–proton collision at

√
s = 8 TeV

provides stronger constraints. Considering the LO cross sec-
tion for direct graviton emission in the collision, the lower
bounds for MD in TeV are: 4.38 (n = 3), 3.86 (n = 4) , 3.55
(n = 5), and 3.26 (n = 6) [44,45]. The bounds are indicated
in Fig. 1 by a + sign. Above these values, constraints of Fig.
1 are compatible with the collider limits too.

Finally let us now compare our results with other spec-
troscopy data. In a previous work [53], considering a hydro-
gen stuck in a thick brane, we determined lower bounds for
the higher-dimensional Planck mass from the 2S–1S transi-
tion. The limits from H spectroscopy are weaker than those
necessary to solve the proton radius puzzle. This means that,
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considering the current constraints of MD as shown in Fig.
1, the gravitational energy is capable of explaining the addi-
tional difference between the 2S1/2 and 2P1/2 states of μp,
but it is still hidden in the H spectrum. The reason is that,
according to Eq. (7), the atomic energy due to the gravita-
tional interaction depends on the lepton mass to the fourth
order, m4, approximately, since the energy is proportional to
m/a3

0 and a0 is defined in terms of atomic reduced mass.
Thus, the gravitational energy of the hydrogen is almost
(200)4 times smaller than that of μp, assuming that the con-
finement of both atoms is similar, i.e., σH 
 σμp. Therefore,
the constraints from the muonic hydrogen are also compati-
ble with the most precise spectroscopic data available, which
is provided by the hydrogen spectrum.

So, based on these considerations, we can conclude that
there are regions in Fig. 1 in which the required values of
MD to solve the proton radius puzzle satisfy all previous
experimental bounds.

At this point, it is important to emphasize that the calcula-
tions we have done here are based on the classical behavior
of gravity. However, as pointed out in Ref. [41], quantum-
gravity effects may become significant in a length scale of
the order of lD (the Planck length defined in the higher-
dimensional space, which is given by lD = (h̄/c) M−1

D ) or
even in a greater scale, depending on the fundamental theory
of gravity, not yet known. If this is the case, then unpredicted
phenomena could distort or even overshadow the classical
effects we have investigated here.

However, according to [65], if the theory of General Rel-
ativity is considered as an effective theory, then it is possible
to estimate quantum corrections to the gravitational poten-
tial energy. In three-dimensional space, if d is the distance
between particles with mass M and m, then the classical
potential energy is given by the Newtonian term GMm/d
and quantum contributions are smaller by a factor of the
order of

(
l p/d

)2, where l p is the usual Planck length. In the
higher-dimensional case, the classical term is GnMm/dn+1,
and, according to dimensional analysis, the quantum correc-
tions would be of the order of (lD/d)n+2. Of course, in the
muonic hydrogen, proton and muon cannot be considered as
point-like particles. Nevertheless, it is instructive to define
an effective distance between them, in the extra-dimensional
space, deff , by writing the atomic gravitational energy as
Gnmpmμ/dn+1

eff . Now, from Eq. (9), deff can be estimated.
Comparing it with the fundamental Planck length, we ver-
ify that the ratio (lD/deff)

n+2 depends on n and σ , but, for
any dimension and for any value of σ investigated here, it is
smaller than 10−4. Thus, if deff is the relevant characteristic
length scale of the system concerning its gravitational inter-
action, then we can expect that the classical contribution will
be the leading gravitational influence in this system within
the braneworld scenario we are considering here. However,

as the fundamental quantum-gravity theory is not known,
only experiments can answer this question.

4 Final remarks

In the thick brane scenario, the direct influence of extra
dimensions on gravity arises in a length scale � that may be
much greater than the scale in which standard model fields
feel directly the effects of supplementary space. It happens
that the modified gravitational potential is amplified in small
distances (r << �) when compared to the Newtonian poten-
tial. In this context, we found that the proton–muon gravita-
tional interaction can explain the excess of 0.3 meV in the
Lamb shift of muonic hydrogen, provided that the fundamen-
tal Planck mass satisfies some constraints. In Fig. 1, we can
find constraints for MD which solve the proton radius puzzle
without violating any previous empirical bound.

In the muonic hydrogen experiment, the 2S hyperfine
splitting (2S-HFS) was investigated too [15]. In the lead-
ing order, the proton structure affects 2S-HFS by means of
the so-called Zemach radius, which is defined in terms of the
convolution between the electric and magnetic distribution of
proton. Within the current precision, the gravitational energy
does not change 2S-HFS. This result is consistent with the
fact that measurements of Zemach radius extracted from the
muonic hydrogen and from H spectroscopy are compatible.

The proton radius puzzle may be the first empirical evi-
dence of the existence of hidden dimensions. In view of this
exciting implication, the model must be tested further. It is
important to investigate the theoretical predictions for other
transitions. As an example, let us mention the 2S–1S tran-
sition. In the muonic hydrogen, there is expected an extra
energy of 2.1 meV in this transition. On its turn, in the elec-
tronic hydrogen, assuming that σH 
 σμp, this model pre-
dicts that the 2S–1S transition frequency should exhibit an
excess of 420 Hz, which is greater than the experimental error
of 10 Hz [4]. In spite of this, the extra-dimensional effect is
still hidden in H spectroscopy because of uncertainties related
to the measurement of the proton radius, which corresponds
to 32 kHz [66]. Thus, to reveal the traces of extra dimensions
in the 2S–1S transition of the hydrogen, the precision of rCD

should be improved.
In contrast with other alternatives, a distinguishable char-

acteristic of this model is the universality of the effects. All
atoms are affected by extra dimensions through the modifi-
cation of the gravitational interaction. Moreover, in the case
of hydrogen-like atoms, Eq. (7) predicts a peculiar depen-
dence of the gravitational energy on the mass of the atomic
particles. The energy shift of any S-state is proportional to
(Mm)4 / (m + M)3, where M is the nucleus mass and m
is the mass of the orbiting particle. Assuming the confine-
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ment in the brane is similar for all atoms, we can estimate
the energy shift caused by extra dimensions in any exotic
hydrogen-like atom. Experimental confirmation of the pre-
dicted behavior could be an indication of the existence of
extra dimensions.
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Appendix

Let us consider Eq. (4). Here we want to demonstrate that
the potential generated by the topological images, Vim , is
negligible within the μp experiment precision. The value of
Vim depends on the point R = (r, z). We obtain an upper
bound for |Vim | by evaluating each term of the series in an
appropriate point Rmin of the ambient space of least distance
from the corresponding topological image (located in the
covering space). First, notice that for all the points Rmin, we
should have r = 0. Thus,

|Vim | =
∑

i

GnM
∣
∣R − R′

i

∣
∣n+1 ≤

∑

i

GnM

|z − �ki |(n+1)
. (10)

If the supplementary space is a flat n-torus with sides of
length �, then −�/2 ≤ zi ≤ �/2. Let us consider that the
real mass M is in the center of this space, which we will
denote by T0 (�). The covering space, Rn , can be viewed
as if it were filled by cells that are copies of T0 (�). Now
consider a mirror image i of M that belongs to another cell.
We want to determine the least distance from i to T0 (�).
Notice that the fundamental cell T0 (�) is inside a ball B of
radius d = √

n�/2 (the semi-diagonal of T0 (�)). For n < 8,
only the first neighbors, whose distance to the center of T0 (�)

is �, are inside this ball. And, with respect to them, the least
distance to T0 (�) is �/2.

Now let us consider images which are outside B. The
distance from i , whose position is �ki , to any point of T0 (�)

is greater than the radial distance from i to the surface of B,
i.e., |z − �ki | ≥ �ki − d, for any z ∈ T0 and ki = |ki | > 1.
Therefore, �ki − d is a lower estimate of the least distance
from i to T0 (�). There are 2n images with ki = 1. The next
neighbors have ki = √

2. Thus, separating the contributions
from first neighbors (ki = 1), we may write

|Vim | ≤ 2nGnM

(�/2)n+1 + GnM

�n+1

∑

ki�
√

2

1
(
ki − √

n/2
)(n+1)

. (11)

To estimate this quantity, let us define Ti (1)—the symmet-
ric n-torus of unity size with center at the image i . Each
term within the summation sign can be interpreted as the
volume of a column above Ti (1) and whose height is given
by the step function f (ki ) ≡ (

ki − √
n/2

)−(n+1). Now we

introduce the continuous function g (x) = (
x − √

n
)−(n+1),

where x is the position vector in the covering space. The
semi-diagonal of Ti (1) measures

√
n/2. Therefore, for every

x ∈ Ti (1), x ≤ (
ki + √

n/2
)
. Now, as g (x) is a decreasing

function, then g (x) ≥ g
(
ki + √

n/2
) = f (ki ) inside the

cell Ti (1). Thus, the integral of g (x) in the region Ti (1) is
an upper estimate for f (ki ). For the sake of consistency, we
should have x >

√
n, according to the definition of g (x).

On the other hand, as x ≥ (
ki − √

n/2
)

for x ∈ Ti (1),
then we may conclude that the previous analysis are valid
for ki > 3

√
n/2, i.e., only for cells whose center is sepa-

rated from the origin by a distance greater than 3
√
n/2. A

possible choice is ki = 2
√
n. Closer cells should be taken

separately. Thus, computing the contributions given by the
first neighbors (ki = 1), by the images at intermediary posi-

tions
(√

2 ≤ ki ≤ 2
√
n
)

and from the most distant images
(
ki > 2

√
n
)
, we may write the potential Vim

|Vim | ≤ GnM

�n+1

⎛

⎝2n+2n +
∑

√
2≤ki≤2

√
n

1
(
ki − √

n/2
)(n+1)

+ 1

n3/2

2πn/2

� (n/2)

(
3n − 1

)
)

, (12)

where we have employed the following estimation:

∑

ki>2
√
n

1
(
ki − √

n/2
)(n+1)

≤
∫

x>3
√
n/2

dnx
(
x − √

n
)(n+1)

= 1

n3/2

2πn/2

� (n/2)

(
3n − 1

)
. (13)

Therefore, in the case of muonic hydrogen, the gravi-
tational energy due to the topological images is less than(
Gnmpmμ/�n+1

)
Fn , where Fn is the function defined from

(12), which depends only on the number of extra dimensions
and that can be explicitly calculated for n < 8. In magnitude
order, Gn ∼ G�n ; then, in terms of the Newtonian gravita-
tional constant, we may write |Vim | ≤ (

Gmpmμ/�
)
F̃n . As

the precision of the muonic hydrogen experiment is 10−7 eV,
the effect of the topological images would be detectable
only if � � 10−36 m. However, as we shall see, the order
of � is much greater according to our constraints. To ver-
ify this, let us estimate the size of the extra dimensions.
The relation between � and the higher-dimensional Planck
mass (M2+n

D ) is given by G−1 = 8πRnM2+n
D , where

R = (�/2π) is the radius of the extra dimensions and
M2+n

D = M2+n
D /[(h̄/c)n h̄c]. This relation allows us to esti-

mate the size of extra dimensions from the constraints of MD
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Fig. 2 Constraints for the radius (R = �/2π) of the supplementary
space (a flat n-torus) in terms of the confinement parameter σ

given by Fig. 1. Empirical bounds for the torus radius (�/2π)

in the cases n = 3, . . ., 6 are shown in Fig. 2. By using these
values, we can explicitly check that the contribution of the
topological images is negligible indeed.
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