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Abstract In search of the extra dimensions in the ongoing
LHC experiments, the signatures of the Randall–Sundrum
(RS) lightest KK graviton have been in the main focus in
recent years. The recent data from the dilepton decay channel
at the LHC has determined the experimental lower bound on
the mass of the RS lightest Kaluza–Klein (KK) graviton for
different choices of the underlying parameters of the theory.
In this work we explore the effects of the back-reaction of the
bulk scalar field, which is employed to stabilise the RS model,
in modifying the couplings of the lightest KK graviton with
the standard model matter fields located on the visible brane.
In such a modified background geometry we show that the
coupling of the lightest KK graviton with the SM matter fields
gets a significant suppression due to the inclusion of the back-
reaction of the bulk stabilising scalar field. This implies that
the back-reaction parameter weakens the signals from the RS
scenario in collider experiments, which in turn explains the
non-visibility of KK graviton in colliders. Thus we show that
the modulus stabilisation plays a crucial role in the search of
warped extra dimensions in collider experiments.

1 Introduction

Till date, the world of subatomic particles is best described
by the standard model (SM) of elementary particles. The
validity of the SM has been confirmed with a great accuracy
in several experiments up to TeV scale. The recent discov-
ery of the Higgs boson in the large hadron collider (LHC)
indeed is a major success story in this endeavour. Such a
successful theory, however, continues to encounter a long-
standing but unresolved question in the context of the stabil-
ity of the mass of Higgs boson against a large radiative cor-
rection, known as the gauge hierarchy/fine tuning problem.
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The two most popular models, proposed in the context of this
problem, are supersymmtery and extra-dimensional models
[1–24]. In the absence of any signature of supersymmetry
near the TeV scale so far, the significance of the presence of
the extra dimension continues to grow. Among these models
the warped geometry model proposed by Randall and Sun-
drum [12,13] assumed a special significance, because: (a)
it resolves the gauge hierarchy problem without introducing
any other intermediate scale in the theory, (b) the modulus
of the extra dimension can be stabilised by introducing a
bulk scalar field [25] without any unnatural fine tuning of the
parameter of the model.

It may also be mentioned that a warped solution, though
not exactly the same as the RS model, can be found from
string theory which as a fundamental theory predicts the
inevitable existence of the extra dimensions [26,27].

Due to these features, the detectors in LHC are designed to
explore possible signatures of the warped extra dimensions
through various decay channels of RS Kaluza–Klein (KK)
graviton. While the CMS detector searches the signal of the
extra dimension through the final states of the decay into lep-
tons and hadrons, the ATLAS detector is designed to capture
the dileptonic decay of the KK gravitons.

2 Brief description of RS model

The RS model is characterised by the non-factorisable back-
ground metric,

ds2 = e−2k|y|ημνdxμdxν − dy2. (1)

The extra-dimensional coordinate is denoted by y and ranges
from −r0 to +r0 following a S1/Z2 orbifolding. Here, r0 is
the compactification radius of the extra dimension. Two 3-
branes are located at the orbifold fixed points y = (0, r0).
The standard model fields are residing on the visible brane
and only gravity can propagate in the bulk. The quantity
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k =
√

−�
24M3 is of the order of the 4-dimensional Planck

scale MPl. Thus k relates the 5D Planck scale M to the 5D
cosmological constant �.

The visible and Planck brane tensions are Vhid = −Vvis =
24M3k2. All the dimensionful parameters described above
are related to the reduced 4-dimensional Planck scale MPl by

M2
Pl = M3

k
(1 − e−2kr0). (2)

For kr0 ≈ 36, the exponential factor present in the back-
ground metric, which is often called the warp factor, pro-
duces a large suppression so that a mass scale of the order of
Planck scale is reduced to TeV scale on the visible brane. A
scalar mass, say the mass of Higgs, is given by

mH = m0e
−kr0 . (3)

Here, mH is Higgs mass parameter on the visible brane and
m0 is the natural scale of the theory above which new physics
beyond SM is expected to appear [12,13].

In RS model, the expressions for the mass of first graviton
KK mode m1 and the coupling λ with the SM matter fields
on the TeV brane as [28]

m1 = x1ke
−kr0 (4)

where x1 can be obtained from J1(xn) = 0 [28], and

λ = ekr0

MPl
. (5)

It has been argued in [28] that the value of k/MPl should be
0.1 or less for the validity of the classical 5-D solution for
the metric in RS model. Keeping this constraint in mind, the
ATLAS group in LHC estimated the lower bound on the mass
of the lightest KK graviton for different values of k/MPl.
The absence of the KK graviton in dileptonic decay channels
puts a stringent lower bound on KK graviton masses [29,30].
According to the most recent experimental data [30] at 8
TeV centre of mass energy and 20 fb−1 luminosity, the 95 %
confidence level lower limit on the RS lightest KK graviton
mass is further restricted to 2.68 TeV for k/MPl = 0.1.

We write Eq. (4)

m1 = x1
k

MPl
MPle

−kr0 . (6)

From Eq. (6), the mass of the RS lightest KK graviton can
be tuned accordingly by increasing the warping parameter
e−kr0 from 10−16, so that it goes above the recent experimen-
tal lower bound proposed by ATLAS for a fixed parameter
k/MPl, which is related to coupling parameter in the original
RS scenario.

However, from Eq. (3), it can be seen that if we increase the
warping parameter in order to raise the theoretically calcu-
lated graviton mass well above the experimental lower bound,

then one needs to set the fundamental Planck scale of the the-
ory (m0) a few orders lower than the 4-D Planck scale (MPl)
to obtain a Higgs mass of the order of 125 GeV. Therefore
the increment of the warp factor with the rise of this experi-
mental lower bound on the mass of the RS lightest KK gravi-
ton implies the inclusion of an intermediate energy scale in
between the Planck and TeV scale.

It has been mentioned earlier that the extra-dimensional
modulus in the RS model can be stabilised to a value of the
order of the inverse Planck length by introducing a massive
scalar field in the bulk [25]. In this stabilising mechanism, the
effect of the back-reaction of the bulk scalar field on the back-
ground geometry is neglected. Later such a warped geometry
model was generalised by incorporating the back-reaction of
the stabilising scalar field on the background metric [31–35].
We therefore re-examine the mass of the lightest KK graviton
and its coupling to the SM matter fields in such a modified
warped geometry model endowed with a back-reacted met-
ric due to the stabilising bulk scalar field. In this work we
demonstrate that due to the back-reaction of the bulk stabil-
ising scalar field on the background geometry, the effective
coupling of the lightest KK graviton with the SM matter fields
becomes weaker, which in turn can explain the invisibility of
RS lightest KK graviton, even if its lower mass bound is as
low as a few hundred GeV, which is much below the value
of 2.8 TeV as predicted by ATLAS.

Thus in this scenario we can explain the invisibility of
the KK graviton without modifying the value of the warping
parameter and m0 from their respective values in the original
RS model.

We organise our work as follows.
In Sect. 3, we describe a five-dimensional warped geom-

etry model which includes the effect of the back-reaction of
the bulk stabilising scalar field on the background geome-
try. Section 4 deals with the KK mass modes of the graviton
in this modified RS background. In Sect. 5, we discuss the
lightest KK graviton interaction with the SM matter fields
localised on the visible brane. Section 6 addresses the phe-
nomenological implications and estimates the lower bound
on the lightest graviton mass in the background of this back-
reacted warped geometry model. Section 7 ends with some
concluding remarks.

3 Back-reaction of the stabilising scalar field on the
background geometry

We consider the five-dimensional action [33]

S = − M3
∫

d5x
√
gR(5) +

∫
d5x

√
g(

1

2
∇φ∇φ − V (φ))

−
∫

d4x
√
g4λP (φ) −

∫
d4x

√
g4λT (φ) (7)
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where R(5) is the five-dimensional Ricci scalar, φ is the bulk
scalar field and V (φ) is the bulk potential term for the scalar
field φ, g4 is the induced metric on the brane and λP , λT are
the potential terms on the Planck and TeV branes, respec-
tively, due to the bulk scalar field. The scalar field φ in
general is a function of both xμ and y. Here, we consider
the background VEV of the field φ(xμ, y) ≡ φ(y). The
5-dimensional metric ansatz is [33]

ds2 = e−2A(y)ημνdxμdxν − dy2 (8)

which preserves 4-D Lorentz invariance. The function e−A(y)

is the modified warp factor.
As shown in [33], the 5-D coupled equations for the metric

and the scalar field are

4A′2 − A′′ = −2κ2

3
V (φ) − κ2

3

∑
i

λi (φ)δ(y − yi ), (9)

A′2 = κ2φ
′2

12
− κ2

6
V (φ)x, (10)

φ
′′ = 4A′φ ′ + ∂V (φ)

∂φ
+

∑
i

∂λi (φ)

∂φ
δ(y − yi ), (11)

where κ is the five-dimensional Newton constant which is
related to the five-dimensional Planck mass M by κ2 =
1/(2M3). Here a prime and ∂μ denote the derivatives with
respect to y and the 4-D space time coordinate, i.e., xμ,
respectively.

Following the procedure as illustrated in [32,33], integrat-
ing Eqs. (9), (11) on a small interval [(yi − ε), (yi + ε)], one
finds the jump conditions

A′|i = κ2

3
λi (φ), (12)

φ
′ |i = ∂λi (φ)

∂φ
. (13)

As stated in [32], to find the solutions for the above equations
of motion we actually need to reduce Eqs. (9)–(11) to three
decoupled first order differential equations such that two of
them are separable. The authors of [32] considered a definite
form of the potential:

V (φ) = 1

8

(
∂W (φ)

∂φ

)2

− κ2

6
W (φ)2x (14)

for some W (φ).
It is evident that if we implement the two boundary con-

ditions [Eqs. (15) and (16)], it solves the two first order dif-
ferential equations φ′ = 1

2
∂W
∂φ

, A′ = κ2

6 W (φ) along with
the Einstein and scalar field equations of motions in Eqs.
(9)–(11),

1

2
W (φ)|yi+ε

yi−ε = λi (φ), (15)

1

2

∂W (φ)

∂φ
|yi+ε
yi−ε = ∂λi

∂φ
(φ). (16)

At this stage we need to make a choice for W to solve for
the back-reaction of the bulk scalar field on the metric. It
has been shown in [33] that inclusion of the back-reaction
of the stabilising field generates a TeV order mass term for
the radion, which may have interesting phenomenological
consequences.

Considering the form of W (φ), chosen by the author of
[32,33],

W (φ) = 6k

κ2 − uφ2, (17)

the brane potential terms become

λ(φ)+ = W (φ+) + W ′(φ+)(φ − φ+) + γ+(φ − φ+)2,

(18)

λ(φ)− = W (φ−) + W ′(φ−)(φ − φ−) + γ−(φ − φ−)2.

(19)

Here +/− are used to represent the Planck/TeV brane.
Choosing a definite form of W (φ), the solution for the sta-
bilising scalar field (φ) and the modified warp factor A(y)
can be obtained [32,33]:

φ(y) = φP e−uy, (20)

A(y) = ky + κ2φ2
P

12
e−2uy . (21)

Here r0 is the distance between the two 3-branes which can
be stabilised by matching the VEV φP and φT of the stabil-
ising scalar field φ at 0 (location of the Planck brane) and r0

(location of the TeV brane). This implies ur0 = ln (φP/φT ).
Therefore,

e−ur0 = φT

φP
. (22)

From Eq. (21), we observe that the warp factor has been
modified from that in the five-dimensional Randall–Sundrum
model due to the back-reaction of the stabilising scalar field.
As expected, in the limit κ2φ2

P , κ2φ2
T � 1 we retrieve the

original 5-D RS model.
All the dimensionful parameters described in this model

are related to the reduced 4-dimensional Planck scale MPl,

M2
Pl = M3

k

[{
1 −

(
φP

φT

)− 2k
u
}

− l2

3

(
1 + u

k

)−1
{

1 −
(

φP

φT

)−2(1+k/u)
}]

(23)

where l = κφP√
2

.

123



423 Page 4 of 7 Eur. Phys. J. C (2016) 76 :423

It was shown in [33] that the factor e−ur0 appears in the
final expression for the radion mass, which may have a sig-
nificant influence on radion phenomenology.

The questions that arise now are: Does the effect of the
back-reaction significantly modify the KK graviton phe-
nomenology also? Can one explain the rise in the value of
experimental lower mass bound for the lightest graviton KK
mode from the effect of the back-reaction of the stabilising
field? We try to address these questions in the following sec-
tions.

4 Lightest KK mass mode of graviton in a back-reacted
warped geometry

The effective 4-D theory contains a massless as well as a mas-
sive KK tower of the gravitons and all these higher excited
states are coupled to the standard model fields, located on
the TeV brane. Our objective is to determine the mass of
the first excited state of the graviton and its coupling with
the SM matter fields in a back-reacted RS geometry due to
the stabilising bulk scalar field. In this context we wish to
explore a possible explanation for the hitherto non-visibility
of the RS lightest KK graviton in the collider experiments.
The KK mass modes of the graviton and its coupling with the
SM matter fields in the background of the original RS model
have been evaluated by the authors of [28]. Here we extend
this work by incorporating the back-reaction of the bulk sta-
bilising scalar field. The tensor fluctuations hαβ of the flat
metric about its Minkowski value can be expressed through
a linear expansion, G̃αβ = e−2A(y)(ηαβ + κ∗hαβ), where
κ∗ is related to the higher-dimensional Newton constant. In
order to find the graviton KK mass modes we expand the
5-dimensional graviton field in terms of the Kaluza–Klein
mode expansion,

hαβ(x, y) =
∞∑
n=0

h(n)
αβ (x)

χn(y)√
r0

, (24)

where h(n)
αβ (x) are the KK modes of the graviton on the vis-

ible 3-brane and χn(φ) are the corresponding internal wave
functions for the graviton. Imposing the gauge condition,
∂αhαβ = 0, and compactifying the extra dimension, we
obtain the effective 4-D theory for the graviton,

S4 =
∫

d4x[ημν∂μh
(n)
αβ (x)∂νh

αβ(n)(x)

−m2
nh

(n)
αβ (x)hαβ(n)(x)] (25)

provided

∂y[e−4A(y)∂yχ
n(y)] + m2

ne
−2A(y)χn(y) = 0 (26)

and the orthonormality conditions

1

r0

∫ +r0

−r0

e−2A(y)χn1(y)χn2(y)dy = δn1δn2 (27)

are satisfied.
Using l = κφP√

2
the warp factor can be expressed as

A(y) = ky + l2

6
e−2uy . (28)

For l <
√

6, we use a leading order approximation for the

series expansion of e
l2
6 e−2uy

.
For n = 0, i.e., the zeroth mode of the graviton, the dif-

ferential equation for χ0 turns out to be

∂y[e−4A(y)∂yχ
0(y)] = 0. (29)

Solving the above differential equation and applying the con-
tinuity condition for the graviton wave function at the two
orbifold fixed points we obtain

χ0 = c1 = constant. (30)

Normalising the resulting wave function from Eq. (27), we
finally get

χ0 = √
kr0

[(
1 − e−2kr0

)(
1 − l2

3

)]−1/2

. (31)

In order to find the solution for the higher KK graviton modes
we define a set of new variables χn(y) = e2A(y)χ̃n and zn =
mn
k eA(y) = mn

k eky(1 + l2
6 e

−2uy). At y = r0 the exponential

series contains the factor e−ur0 = φT
φP

< 1, for u > 0.
In terms of these new variables we obtain the following

differential equation for the graviton higher mode wave func-
tion:

z2
n

d2χ̃n

dz2
n

+ zn
dχ̃n

dzn
+

[
z2
n − 4

]
χ̃n = 0. (32)

Solving the above equation we finally arrive at the solution
for χn ,

χn(y) = e2A(y)

Nn

[
J2

(mn

k
eA(y)

)
+ αnY2

(mn

k
eA(y)

) ]
,

(33)

where Nn is the normalisation constant for the wave function
χn . J2, Y2 are the Bessel function and Neumann function of
order 2 and αn is an arbitrary constant. The KK mass modes
of the graviton (i.e. mn) and αn can be found from the conti-
nuity condition of the wave function at the two orbifold fixed
points, i.e., at y = r0 and y = 0. The continuity condition at
y = 0 implies αn � 1 as mn/k � 1. This leads to

χn(y) = e2A(y)

Nn
J2

(mn

k
eA(y)

)
. (34)

The continuity condition at y = r0 provides

J1(xn) = 0 (35)
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where

xn = mn

k
eA(r0). (36)

All this finally results in the expression for the KK mass
modes of graviton,

mn = xnke
−A(r0). (37)

The normalisation constant Nn for the graviton wave function
(34), can now be determined by using the orthonormality
condition in Eq. (27), as

Nn = 1√
kr0

eA(r0) J2(xn). (38)

5 Coupling of the lightest KK graviton with standard
model matter fields on the visible brane

Let us consider the interaction of the first excited Kaluza–
Klein mode of the graviton with the standard model mat-
ter fields residing on our universe i.e.. on the visible brane,
located at y = r0. The solution for tensor fluctuations that
appear on our visible brane can be obtained by substituting
the solution for χn(y) for n = 0 and higher modes (see Eqs.
(31) and (34), (38)) in Eq. (24), at y = r0,

hαβ(x, y = r0) =
∞∑
n=0

h(n)
αβ (x)

χn(r0)√
r0

= √
k

{(
1 − l2

3

)
(1 − e−2kr0)

}−1/2

h0
αβ(xμ)

+
∞∑
n=1

√
keA(r0)hnαβ(xμ). (39)

The interaction Lagrangian in the effective 4-D theory can
be written

L |int = − 1

M3/2 T
αβ(x)hαβ(x, y = r0) (40)

where T αβ is the energy-momentum tensor of the SM matter
fields on the visible brane and we use the relation between
the 5-D Planck mass (M5) and the 4-D Planck mass (MPl) as
shown in Eq. (23).

This leads to

L |int = − 1

MPl
T αβh0

αβ(xμ)

−eA(r0)

MPl

[{
1 −

(
φP

φT

)− 2k
u
}

− l2

3

(
1 + u

k

)−1

×
{

1 −
(

φP

φT

)−2(1+k/u)
}]1/2 ∞∑

n=1

T αβhnαβ(xμ).

(41)

If we concentrate on the first excited KK mass mode of the
graviton and its interaction with SM matter fields on the TeV
brane, the mass term can be identified as

m1 = x1ke
−A(r0), (42)

while the interaction term of the first excited KK mode of the
graviton with the SM matter fields on the TeV brane is

�|int ∼= eA(r0)

MPl

[{
1 −

(
φP

φT

)− 2k
u
}

− l2

3

(
1 + u

k

)−1

×
{

1 −
(

φP

φT

)−2(1+k/u)
}]1/2

. (43)

6 Phenomenological implications

In the previous section we have given a description of the
KK mass modes of the graviton and the interaction of the
first excited KK mode of the graviton with the SM matter
fields on the visible brane in the context of the back-reacted
RS model. In Eq. (43), we have the term
[{

1 −
(

φP

φT

)− 2k
u
}

× − l2

3

(
1 + u

k

)−1
{

1 −
(

φP

φT

)−2(1+k/u)
}]1/2

= β.

(44)

The parameter β gives the modification of the coupling of the
KK graviton with the SM matter fields from that evaluated
in the original five-dimensional RS model.
In order to address the gauge hierarchy problem we assume
that the modified warp factor produces the same warping as
in the original RS scenario. Therefore,

A(0) − A(r0) = −37. (45)

The above condition produces the following correlation
among the parameters l, k/u and φP

φT
:

k

u
= 1

ln(
φP
φT

)

[
37 + l2

6

(
1 − φ2

T

φ2
P

)]
. (46)

Equation (46) dictates that, for a particular choice of φP/φT

and l, one fixes the value of the parameter k/u, the value of
l <

√
6 and φP/φT > 1. We explore the parameter space by

varying the back-reaction parameter l = 1.68, 1.7, 1.71 . . .,
and for each l by varying φP/φT = 1.5, 2.5, 3.5 . . . one
can obtain the corresponding values of k/u from Eq. (46).
After that we evaluate the parameter β from Eq. (44), which
varies over the values 0.17, 0.20, 0.22 . . ., corresponding to
our different choices of the parameters of the model.
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Fig. 1 Dependence of the new mass bound of first KK graviton on the
parameter l for different choices of k/MPl

The values of β clearly point out that there is a significant
amount of suppression in the dilepton decay channel of the
lightest KK graviton over that evaluated in the original RS
scenario. This implies that for an appropriate choice of the
parameters, the effect of the back-reaction of the bulk stabil-
ising scalar field on the background geometry of a warped
extra-dimensional model can effectively suppress the cou-
pling parameter of the lightest KK graviton with the SM
matter fields. This in turn reduces the value of the lower
bound on the mass of the lightest KK graviton. For example,
the lower bound on the mass of the RS lightest KK gravi-
ton, say for k

MPl
= 0.1, now can be substantially lower than

∼2.8 TeV (lower mass bound without back-reaction) for an
appropriate choice of the parameter l.

Figure 1 clearly shows the dependence of the lower mass
bound of the first KK mode of the graviton with parameter l,
for different choices of k/MPl, which indicates a significant
suppression from the lower mass bound proposed by ATLAS
for the original RS model.

We fix φP/φT = 1.5 and write β in terms of l by replacing
k/u from Eq. (46). We then plot the modified lower mass
bound of the first excited KK mode of the graviton with l.

In summary, the modulus stabilisation mechanism effec-
tively reduces the lower bound of the mass of the lightest KK
graviton by a factor β, which for an appropriate choice of the
parameter values can be 5–10 times lower than that in the
original RS scenario.

7 Conclusion

We consider a generalised version of RS model where the
effect of the back-reaction due to the stabilising bulk scalar
field on the background spacetime has been taken into consid-
eration. We aim to study the contribution of this back-reaction

on the mass of the lightest KK graviton and its couplings to
the SM matter fields.

Since the modulus stabilisation in the braneworld model is
an important requirement to make the prediction of the model
more robust, it is worthwhile to look for experimental support
for the model in its stabilised version. Our study strongly
suggests that due to the inclusion of the back-reaction of
the stabilising scalar field, the estimated value of the lower
bound of the mass of the lightest KK graviton, by the ongoing
collider experiments (m1 =∼2.8 TeV for k/MPl = 0.1), may
get reduced by approximately 5–10 times for a fixed k/MPl.
In summary, the back-reaction of the bulk stabilising scalar
field inevitably suppresses the lower bound of the mass of the
lightest KK graviton, implying that there is no requirement
to fine tune any parameter like the warp factor or m0 (natural
scale of the theory) to justify the estimated lower bound on the
mass of RS lightest KK graviton from the ongoing collider
experiments.
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