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Abstract The Wigner distributions for the u and the d
quarks in a proton are calculated using the light-front wave
functions of the scalar quark–diquark model for a nucleon
constructed from the soft-wall AdS/QCD correspondence.
We present a detailed study of the quark orbital angular
momentum and its correlation with the quark spin and the
proton spin. The quark density distributions, considering the
different polarizations of quarks and proton, in transverse
momentum plane as well as in transverse impact parameter
plane are presented for both u and d quarks.

1 Introduction

A complete understanding of the partonic structure of the
nucleon is one of the challenging tasks in particle physics.
Both theoretical and experimental efforts are going on to
unravel the three-dimensional distributions of the partons and
their contributions to the nucleon spin and angular momen-
tum. Because of the nonperturbative nature of QCD, it is very
difficult to perform first principle calculations of the hadron
properties. However, a perturbative approach in the light-
cone framework allows us to calculate the parton distribution
function (PDF), f (x), which gives the probability of having
a parton with light-cone longitudinal momentum fraction x
inside a nucleon, but it contains no information as regards the
transverse structure or angular momentum distributions. The
spin correlations of partons are described by the helicity dis-
tribution, g1(x), and the transversity distributions, h1(x). The
generalized parton distributions (GPDs) and the transverse
momentum dependent distributions (TMDs) encode infor-
mations about the three-dimensional structure of the nucle-
ons. In deeply virtual Compton scattering (DVCS), deeply
virtual meson electroproduction (DVMPs), a more general
views of parton distributions, in the collinear frame, is studied
by GPDs [1–4] which are functions of longitudinal momen-
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tum and two transverse impact parameter coordinates. TMDs
[5–8] are functions of the transverse momentum of the par-
ton and appear in semi-inclusive deep inelastic scattering
(SIDIS) where the collinear picture is no longer sufficient to
explain the single spin asymmetry (SSA).

Wigner distributions are six-dimensional distributions
containing more general informations about the nucleon
structure. Wigner distributions do not have a probabilistic
interpretation, but in certain limits they reduce to GPDs and
TMDs. The Wigner distributions are defined as functions
of three momenta and three positions of a parton inside a
nucleon. The concept of Wigner distributions was first intro-
duced in [9,10]. In [11], five-dimensional Wigner distribu-
tions were proposed in the light-front formalism with three
momentum and two position components of a parton. Wigner
distributions integrated over transverse momentum give the
GPDs at zero skewness, the TMDs are obtained by integrat-
ing over transverse impact parameters with zero momentum
transfer and the integration over transverse momentum and
transverse positions provide the PDFs. The Wigner distribu-
tions after integrating over the light-cone energy of the par-
ton are interpreted as a Fourier transform of the correspond-
ing generalized transverse momentum dependent distribu-
tions (GTMDs), which are functions of the light-cone three-
momentum of the parton as well as the momentum transfer to
the nucleon. The angular momentum of a quark is extracted
from the Wigner distributions taking the phase space average.
The spin–spin and spin–orbital angular momentum (OAM)
correlations between a nucleon and a quark inside the nucleon
can also be described from a phase space average of Wigner
distributions. Wigner distributions have been studied in dif-
ferent models, e.g., in the light-cone constituent quark model
[12–17], in the chiral soliton model [18–22], the light-front
dressed quark model [23,24], and the light-cone spectator
model [25]. In this work, we investigate the Wigner distri-
butions for unpolarized and polarized proton and the orbital
angular momentum (OAM) and spin–spin and spin–OAM
correlations in a scalar diquark model of the proton [26] with
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the light-front wavefunctions modeled from AdS/QCD pre-
diction.

The paper is organized as follows. We first introduce the
light-front scalar diquark model in Sect. 2 and the Wigner dis-
tributions in Sect. 3. The different definitions of the orbital
angular momentum are discussed in Sect. 4. Then in Sect.
5, both analytical and numerical results in our model are
discussed in detail. The correlation between the quark and
proton spins and quark spin and OAM correlations are dis-
cussed in Sect. 6. The results are also compared with other
models. The GTMDs in this model are briefly discussed in
Sect. 7, and finally we conclude in Sect. 8.

2 Light-front diquark model

In the diquark spectator model, one of the three valence
quarks interacts with an external photon and other two
valence quarks are considered as a diquark state of spin
0 (scalar diquark) or spin 1 (vector diquark). Therefore
the proton state |P ; S〉 can be treated as a two-particle
state in the Fock-state expansion. In this paper we consider
the scalar diquark model developed in [26,27]. The aver-
age light-front momentum of the scalar diquark is PX =(
(1− x)P+, P−

X ,−p⊥
)
, where x is the longitudinal momen-

tum fraction carried by the struck quark.
The two-particle Fock-state expansions for J z = ± 1

2 are
given by

|P;±〉 =
∑

q

∫
dx d2p⊥

2(2π)3
√
x(1 − x)

×
[
ψ±
q+(x,p⊥)| + 1

2
, 0; x P+,p⊥〉

+ψ±
q−(x,p⊥)| − 1

2
, 0; x P+,p⊥〉

]
, (1)

where |λq , λs; x P+,p⊥〉 represents a two-particle state with
a quark of helicity λq , and a diquark (spectator) of helicity
λs . The x P+ and p⊥ are the longitudinal momentum and
transverse momentum of the active quark, respectively. The
ψ

λN
qλq

are the light-front wave functions corresponding to the
nucleon helicity λN = ± and quark helicity λq = ±. We
adopt the generic ansatz for the quark–diquark model of the
valence Fock state of the nucleon LFWFs [26], assuming a
vanishing quark mass,

ψ+
q+(x,p⊥) = φ(1)

q (x,p⊥),

ψ+
q−(x,p⊥) = − p1 + i p2

xM
φ(2)
q (x,p⊥),

ψ−
q+(x,p⊥) = p1 − i p2

xM
φ(2)
q (x,p⊥),

ψ−
q−(x,p⊥) = φ(1)

q (x,p⊥), (2)

where ϕ
(1)
q (x,p⊥) and ϕ

(2)
q (x,p⊥) are the wave functions

predicted by soft-wall AdS/QCD in [28] with the AdS/QCD
scale parameter κ = 0.4 GeV,

ϕ(i)
q (x,p⊥) = N (i)

q
4π

κ

√
log(1/x)

1 − x
xa

(i)
q (1 − x)b

(i)
q

× exp

[
− p2⊥

2κ2

log(1/x)

(1 − x)2

]
. (3)

The values of the parameters a(i)
q , b(i)

q , and N (i)
q are fixed

in [29,30] by fitting the nucleon form-factor data. For com-
pleteness, we list the parameters in Table 1. This is a very
simplistic model of the proton. It describes the proton by a
scalar diquark and a quark and does not assume the SU (4)

symmetry of the usual diquark models [31] where both scalar
and axial vector diquarks are considered.

3 Wigner distribution

In the light-front framework, the five-dimensional Wigner
distribution is defined as [32–34]

ρq[	](b⊥,p⊥, x; S) =
∫

d2
⊥
(2π)2 e

−i
⊥.b⊥Wq[	](
⊥, p⊥, x; S)

(4)

where the correlator W [	], at 
+ = 0 and fixed light-cone
time z+ = 0, is given by [11]

Wq[	](
⊥,p⊥, x; S) = 1

2

∫
dz−

(2π)

d2zT
(2π)2 e

ip.z

〈P ′′; S|ψ̄q(−z/2) 	W[−z/2,z/2]ψq(z/2)|P ′; S〉
∣∣∣∣
z+=0

(5)

with the Dirac structure 	, e.g., γ +, γ +γ 5. The P ′ =
(P+, P ′−, 
⊥

2 ) and the P ′′ = (P+, P ′′− − 
⊥
2 ) are the ini-

tial and final momentum of proton. W [	] depends on the
average momentum P = 1

2 (P ′′ + P ′) of the proton, the
average quark momentum p⊥ = 1

2 (p′′⊥ + p′⊥), the proton
helicity S, and the transverse momentum transfer to the pro-
ton 
⊥ = (P ′′⊥ − P ′⊥). The Wilson line W[−z/2,z/2] ensures
the gauge invariance of the operator. We choose the symmet-
ric frame where the components of the four-momenta, with

Table 1 The parameters in the
light-front diquark model for
κ = 0.4 GeV

Parameters a(1) a(2) b(1) b(2) N (1) N (2)

u quark 0.02 1.05 0.022 −0.15 2.055 1.322

d quark 0.1 1.07 0.38 −0.2 1.7618 −2.4827
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skewness ξ = 0, are

P = [P+, P−, 0⊥], (6)

p = [x P+, p−,p⊥], (7)


 = [0, 0,
⊥], (8)

with P− = 1
2 (P ′′− + P ′−) = 4M2+
2⊥

4P+ (we use the notation
v± = v0 ±v3). We calculate the matrix element of Eq. (5) in
the scalar diquark model using the wave functions predicted
by soft-wall AdS/QCD. The Wigner distributions, with the
proton helicity  and the quark helicity λ, for unpolarized
and longitudinally polarized proton, are defined as

ρ
q
λ(b⊥,p⊥, x) = 1

2

[
ρq[γ +](b⊥,p⊥, x;Ŝz)

+ λρq[γ +γ 5](b⊥,p⊥, x;Ŝz)

]
, (9)

which can be decomposed as

ρ
q
λ(b⊥,p⊥, x) = 1

2

[
ρ
q
UU (b⊥,p⊥, x)

+ρ
q
LU (b⊥,p⊥, x) + λρ

q
UL(b⊥,p⊥, x)

+λρ
q
LL(b⊥,p⊥, x)

]
, (10)

corresponding to the proton spin  =↑,↓ and quark spin
λ =↑,↓ (where ↑ and ↓ correspond to +1 and −1, respec-
tively). Here the Wigner distribution ρ

q
UU (b⊥,p⊥, x) of the

unpolarized quarks in an unpolarized proton, and the distor-
tions ρ

q
LU (b⊥,p⊥, x) due to unpolarized quarks in a lon-

gitudinally polarized proton, ρ
q
UL(b⊥,p⊥, x) due to lon-

gitudinally polarized quarks in an unpolarized proton, and
ρ
q
LL(b⊥,p⊥, x) due to longitudinally polarized quark in a

longitudinally polarized proton, are defined as

ρ
q
UU (b⊥,p⊥, x) = 1

2

[
ρq[γ +](b⊥,p⊥, x;+Ŝz)

+ ρq[γ +](b⊥,p⊥, x;−Ŝz)

]
, (11)

ρ
q
LU (b⊥,p⊥, x) = 1

2

[
ρq[γ +](b⊥,p⊥, x;+Ŝz)

− ρq[γ +](b⊥,p⊥, x;−Ŝz)

]
, (12)

ρ
q
UL(b⊥,p⊥, x) = 1

2

[
ρq[γ +γ 5](b⊥,p⊥, x;+Ŝz)

+ ρq[γ +γ 5](b⊥,p⊥, x;−Ŝz)

]
, (13)

ρ
q
LL(b⊥,p⊥, x) = 1

2

[
ρq[γ +γ 5](b⊥,p⊥, x;+Ŝz)

− ρq[γ +γ 5](b⊥,p⊥, x;−Ŝz)

]
. (14)

These four distributions are related with the Fourier trans-
forms of the GTMDs as

ρ
q
UU (b⊥,p⊥, x) = Fq

1,1(x, 0,p2⊥,p⊥.b⊥,b2⊥), (15)

ρ
q
LU (b⊥,p⊥, x) = − 1

M2 ε
i j
⊥ pi⊥

× ∂

∂b j
⊥
Fq

1,4(x, 0,p2⊥,p⊥.b⊥,b2⊥), (16)

ρ
q
UL(b⊥,p⊥, x) = 1

M2 ε
i j
⊥ pi⊥

× ∂

∂b j
⊥
Gq

1,1(x, 0,p2⊥,p⊥.b⊥,b2⊥), (17)

ρ
q
LL(b⊥,p⊥, x) = Gq

1,4(x, 0,p2⊥,p⊥.b⊥,b2⊥), (18)

where the χq = Fq
1,1,Fq

1,4,Gq
1,1,Gq

1,4 can be expressed as
the Fourier transform of the corresponding GTMDs Xq =
Fq

1,1, F
q
1,4,G

q
1,1,G

q
1,4,

χq(x, 0,p2⊥,p⊥.b⊥,b2⊥) =
∫

d2
⊥
(2π)2 e

−i
⊥.b⊥

× Xq(x, 0,p2⊥,p⊥.
⊥,
2⊥).

(19)

Integrating over all the variables, the Wigner distributions
give
∫

dxd2p⊥d2b⊥ρ
q
UU (b⊥,p⊥, x) = nq , (20)

∫
dxd2p⊥d2b⊥ρ

q
LU (b⊥,p⊥, x) = 0, (21)

∫
dxd2p⊥d2b⊥ρ

q
UL(b⊥,p⊥, x) = 0, (22)

∫
dxd2p⊥d2b⊥ρ

q
LL(b⊥,p⊥, x) = 
q, (23)

where the nq is the flavor factors, nu = 2, nd = 1, and 
q
is the axial charge.

The Wigner distributions cannot have a direct probabilis-
tic interpretation, however, integrating over momentum and
position, the Wigner distributions can be reduced to proba-
bility distributions. Integrating over b⊥ with 
⊥ = 0, the
Wigner distributions reduce to the transverse momentum
dependent parton distributions (TMDs). At z⊥ = 0, the p⊥
integration of the Wigner distributions give generalized par-
ton distributions (GPDs). The unpolarized TMD f q1 (x,p2⊥)

and GPD Hq(x, 0,
2⊥) can be extracted as

f q1 (x,p2⊥) = Fq
1,1(x, 0,p2⊥, 0, 0), (24)

Hq(x, 0,
2⊥) =
∫

d2p⊥Fq
1,1(x, 0,p2⊥,p⊥.
⊥,
2⊥), (25)

and the TMD gq1L(x,p2⊥) and GPD H̃q(x, 0,
2⊥) can be
expressed as

123



409 Page 4 of 16 Eur. Phys. J. C (2016) 76 :409

gq1L(x,p2⊥) = Gq
1,4(x, 0,p2⊥, 0, 0), (26)

H̃q(x, 0,
2⊥) =
∫

d2p⊥Gq
1,4(x, 0,p2⊥,p⊥.
⊥,
2⊥). (27)

The p⊥ and b⊥ integration of the ρ
q
LU and ρ

q
UL give zero.

So, there are no TMD and GPD corresponding to F1,4 and
G1,1 GTMDs.

The Wigner distributions can also be reduced to three-
dimensional quark densities by integrating over two mutually
orthogonal components of transverse position and momen-
tum, e.g. by and px (bx and py), which are not constrained
by the Heisenberg uncertainty principle:

∫
dbydpxρ

q[	](b⊥,p⊥, x; S) = ρ̃q[	](bx , py, x; S), (28)

with 
y = zx = 0. Note that the integration over other
mixed transverse components bx and py gives the same
quark density as Eq. (28), with an opposite momentum i.e.,
ρ̃q[	](by, px , x; S) = ρ̃q[	](bx ,−py, x; S). These relations
are true only when there is axial symmetry, i.e., for an unpo-
larized or a longitudinally polarized proton.

4 Orbital angular momentum

Jaffe and Manohar showed in the light-cone gauge that the
spin of the nucleon can be decomposed into the quark spin,
quark OAM, gluon spin, and gluon OAM [35],

Sq + �q + Sg + �g = 1

2
. (29)

For the diquark model, the above sum rule can be written as

Sq + �q + SD + �D = 1

2
, (30)

where the super-script D is for the diquark, and for the scalar
diquark SD = 0. The canonical OAM operator for quark is
defined as

�̂
q
z (b

−,b⊥, p+,p⊥) = 1

2

∫
dz−d2z⊥
(2π)3 eip.z

ψ̄q
(
b−− z−

2
,b⊥

)
γ +

(
b⊥×(−i

↔
∂ ⊥))ψq(b−+ z−

2
,b⊥

)
.

(31)

From the definition of the Wigner operator (Eq. (5)), the
OAM density operator can be expressed as

�̂
q
z = 2(b⊥ × p⊥)Ŵ q[γ +]. (32)

Thus in the light-front gauge the average canonical OAM for
a quark is written in terms of Wigner distribution as

�
q
z =

∫
d
+d2
⊥
2P+(2π)3 〈P ′′; S|�̂qz |P ′; S〉

=
∫

dxd2p⊥d2b⊥(b⊥ × p⊥)zρ
q[γ +](b⊥,p⊥, x, Ŝz).

(33)

Here the distribution ρq[γ +](b⊥,p⊥, x, Ŝz) can be written
from Eqs. (11,12) as

ρq[γ +](b⊥,p⊥, x,+Ŝz) = ρ
q
UU (b⊥,p⊥, x)

+ ρ
q
LU (b⊥,p⊥, x). (34)

From Eq. (15) we see that
∫

dxd2p⊥d2b⊥(b⊥ × p⊥)zρ
q
UU (b⊥,p⊥, x) = 0, (35)

which satisfies the angular momentum sum rule for an unpo-
larized proton, the total angular momentum of constituents
sum up to zero. Using Eqs. (16) and (19), the twist-2 canon-
ical quark OAM in the light-front gauge is

�
q
z = −

∫
dxd2p⊥

p2⊥
M2 F

q
1,4(x, 0,p2⊥, 0, 0). (36)

The Jaffe–Manohar decomposition (Eq. (29)) is not gauge
invariant. Ji proposed a gauge invariant decomposition of the
nucleon spin as [36]

Sq + Lq + J g = 1

2
, (37)

where Lq is the kinetic OAM for the quark q. However,
Chen et al. [37] proposed an idea to decompose the gauge
field Aμ into a pure gauge part, Apure

μ , and a physical part,

Aphy
μ to give a gauge invariant definition of the Jaffe-Manohar

decomposition.
The kinetic OAM of quark appearing in the Ji sum rule is

defined in terms of GPDs as [36]

Lq
z = 1

2

∫
dx

[
x

(
Hq(x, 0, 0) + Eq(x, 0, 0)

)

−H̃q(x, 0, 0)

]
, (38)

where Hq(x, ξ, t) and Eq(x, ξ, t) are unpolarized GPDs and
H̃q(x, ξ, t) is the helicity dependent GPD. In our model cal-
culation, the explicit expressions are given in Sect. 5. A com-
parative study between the longitudinal component of the
canonical OAM and the kinetic OAM is shown in Fig. 1 and
the values are given in Table 2. Note that the above relation
(Eq. 38) does not hold for the density level interpretation in
the transverse plane [38].

The spin–orbit correlation is given by the operator

Cq
z (b−,b⊥, p+,p⊥) = 1

2

∫
dz−d2z⊥
(2π)3 eip.z

ψ̄q
(
b−− z−

2
,b⊥

)
γ +γ 5(b⊥×(−i

↔
∂ ⊥))ψq

(
b−+ z−

2
,b⊥

)
.

(39)
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(a) (b)

Fig. 1 The variation of canonical OAM �
q
z (x) and kinetic OAM Lq

z (x) with longitudinal momentum fraction x , for a u quark and b d quark

Table 2 In the light-front AdS/QCD scalar diquark model, the values
of canonical OAM �

q
z and the kinetic OAM Lq

z for the u and the d quark

q-OAM u d

Canonical �
q
z 0.0348 0.1201

Kinetic Lq
z −0.3812 −0.4258

The correlation between quark spin and quark OAM can be
expressed with Wigner distributions ρ

q
UL and equivalently in

terms of GTMD as

Cq
z =

∫
dxd2p⊥d2b⊥(b⊥ × p⊥)zρ

q
UL(b⊥,p⊥, x)

=
∫

dxd2p⊥
p2⊥
M2 G

q
1,1(x, 0,p2⊥, 0, 0), (40)

where Cq
z > 0 implies the quark spin and OAM tend to be

aligned and Cq
z < 0 implies they are anti-aligned. In our

model, the quark spin and OAM tend to be anti-aligned for
both u and d quarks.

One can see from Eq. (18) that a similar correlator with
ρ
q
LL vanishes,

∫
dxd2p⊥d2b⊥(b⊥ × p⊥)zρ

q
LL(b⊥,p⊥, x) = 0. (41)

5 Results

We calculate the Wigner distributions of the proton in the
light-front AdS/QCD quark–diquark model. Using Eq. (1)
in Eq. (5) the quark–quark correlator, Wq[	](
⊥,p⊥, x; S),
can be expressed in terms of LFWFs as

Wq[γ +](
⊥,p⊥, x;±Ŝz) = 1

16π3

[
ψ

±†
q+(x,p′′⊥)ψ±

q+(x,p′⊥)

+ψ
±†
q−(x,p′′⊥)ψ±

q−(x,p′⊥)

]
, (42)

Wq[γ +γ 5](
⊥,p⊥, x;±Ŝz) = 1

16π3

[
ψ

±†
q+(x,p′′⊥)ψ±

q+(x,p′⊥)

−ψ
±†
q−(x,p′′⊥)ψ±

q−(x,p′⊥)

]
(43)

for the Dirac structures 	 = γ +, γ +γ 5. In the symmetric
frame the initial and final momenta of the struck quark are

p′⊥ = p⊥ − (1 − x)

⊥
2

, (44)

p′′⊥ = p⊥ + (1 − x)

⊥
2

, (45)

respectively. Using the wave functions from Eqs. (2, 3) in
Eqs. (42, 43), the explicit expressions for the Wigner distri-
butions are

ρ
q
UU (b⊥,p⊥, x) = 1

16π3

∫
d
⊥
2π


⊥J0(|
⊥||b⊥|)

× exp
( − 2ã(x)p̃2⊥

)[|A(1)
q (x)|2

+
(
p2⊥ − 
2⊥

4
(1 − x)2

)
1

M2x2 |A(2)
q (x)|2

]
, (46)

ρ
q
LU (b⊥,p⊥, x) = − 1

M2 ε
i j
⊥ pi⊥

∂

∂b j
⊥

[
− 1

16π3

∫
d
⊥
2π

×
⊥J0(|
⊥||b⊥|) exp
( − 2ã(x)p̃2⊥

) (1 − x)

x2 |A(2)
q (x)|2

]
,

(47)

ρ
q
UL(b⊥,p⊥, x) = 1

M2 ε
i j
⊥ pi⊥

∂

∂b j
⊥

[
− 1

16π3

∫
d
⊥
2π

×
⊥J0(|
⊥||b⊥|) exp
( − 2ã(x)p̃2⊥

) (1 − x)

x2 |A(2)
q (x)|2

]
,

(48)

ρ
q
LL(b⊥,p⊥, x) = 1

16π3

∫
d
⊥
2π


⊥J0(|
⊥||b⊥|)
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× exp
( − 2ã(x)p̃2⊥

)[|A(1)
q (x)|2

−
(
p2⊥ − 
2⊥

4
(1 − x)2

)
1

M2x2 |A(2)
q (x)|2

]
, (49)

where

A(i)
q (x) = N (i)

q
4π

κ

√
log(1/x)

(1 − x)
xa

(i)
q (1 − x)b

(i)
q , (50)

ã(x) = log(1/x)

2κ2(1 − x)2 , (51)

p̃2⊥ = p2⊥ + 
2⊥
4

(1 − x)2. (52)

In the limit ξ = 0, the GTMDs are

Fq
1,1(x,


2⊥,p2⊥) = 1

16π3

[
|A(1)

q (x)|2 +
(
p2⊥ − 
2⊥

4
(1 − x)2

)

× 1

M2x2 |A(2)
q (x)|2

]
exp

[ − 2ã(x)p̃2⊥
]
, (53)

Fq
1,4(x,
⊥, p2⊥) = − 1

16π3

[
(1 − x)

x2 |A(2)
q (x)|2

]

× exp
[ − 2ã(x)p̃2⊥

]
, (54)

Gq
1,1(x,


2⊥,p2⊥) = − 1

16π3

[
(1 − x)

x2 |A(2)
q (x)|2

]

× exp
[ − 2ã(x)p̃2⊥

]
, (55)

Gq
1,4(x,
⊥, p2⊥) = 1

16π3

[
|A(1)

q (x)|2 −
(
p2⊥ − 
2⊥

4
(1 − x)2

)

× 1

M2x2 |A(2)
q (x)|2

]
exp

[ − 2ã(x)p̃2⊥
]
. (56)

We find Fq
1,4 = Gq

1,1 to the leading order as found in [39]
for the scalar diquark model. Thus the distributions ρ

q
LU =

−ρ
q
UL .
From Eq. (36), the canonical OAM can be written as

�
q
z =

∫
dx�qz (x). (57)

Using Eq. (54), �
q
z (x) can be written as

�
q
z (x) = κ2

M2 log(1/x)
Fq

2 (x)(1 − x)5. (58)

In this model, �qz can also be related with the pretzelosity h⊥
1T

as

�
q
z = −

∫
dxd2p⊥

p2⊥
2M2 (1 − x)hq⊥

1T (x,p2⊥). (59)

hq⊥
1T (x,p2⊥) is one of the eight leading twist TMDs. In this

light-front scalar diquark model hq⊥
1T (x,p2⊥) is written as [30]

hq⊥
1T (x,p2⊥) = −2 log(1/x)

πκ2 exp

[
−p2⊥ log(1/x)

κ2(1−x)2

]
Fq

2 (x),

(60)

where Fq
2 (x) is given in Eq. (67). Using Eq. (53) and Eq. (56)

in Eqs. (25) and (27), the GPDs H and H̃ can be expressed
as

Hq(x, 0, t) =
[
Fq

1 (x)(1 − x)2 + Fq
2 (x)(1 − x)4 κ2

M2 log(1/x)

]

×
(

1 − |t |
4κ2 log(1/x)

)
exp

[
− |t |

4κ2 log(1/x)

]
,

(61)

H̃q(x, 0, t) =
[
Fq

1 (x)(1 − x)2 − Fq
2 (x)(1 − x)4 κ2

M2 log(1/x)

]

×
(

1 − |t |
4κ2 log(1/x)

)
exp

[
− |t |

4κ2 log(1/x)

]
.

(62)

In the AdS/QCD light-front scalar diquark model the helicity
flip GPD E is given [27] as

Eq(x, 0, t) = 2Fq
3 (x)(1−x)3 exp

[
− |t |

4κ2 log(1/x)

]
, (63)

where Q2 = −q2 = −t , the square of the momentum trans-
ferred in the process, and it is taken to be zero for the OAM
calculation.

The kinetic OAM of quarks (Eq. (38)) can be written as

Lq
z =

∫
dxLq

z (x). (64)

In this model, using Eqs. (61), (62), and (63) in the t = 0
limit, the Lq

z (x) reads

Lq
z (x) = 1

2

[
− Fq

1 (x)(1 − x)3 + Fq
2 (x)(1 − x)4(1 + x)

× κ2

M2 log(1/x)
+ 2Fq

3 (x)x(1 − x)3
]
, (65)

where

Fq
1 (x) = |N (1)

q |2x2a(1)
q (1 − x)2b(1)

q −1, (66)

Fq
2 (x) = |N (2)

q |2x2a(2)
q −2(1 − x)2b(2)

q −1, (67)

Fq
3 (x) = N (1)

q N (2)
q xa

(1)+a(2)
q −1(1 − x)b

(1)
q +b(2)

q −1. (68)

The variation of the quark OAMs �
q
z (x) and Lq

z (x) with lon-
gitudinal momentum fraction x is shown in Fig. 1 for the u
and the d quark.

5.1 Unpolarized proton

In our numerical study, we have considered the active quark to
be either a u or d quark, the spectator always being a diquark.
In other words, when we calculate the Wigner distribution
for the u quark, we have not incorporated any contribution
from the u quark that is part of the diquark. The first Mellin
moment of ρ

q
UU (b⊥,p⊥, x) is shown in Fig. 2. Figure 2a,

b represent the distributions in transverse momentum plane
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(a) (b)

(c) (d)

Fig. 2 The Wigner distributions of unpolarized quarks in an unpolarized proton in the transverse momentum plane (a, b) with b⊥ = 0.4ŷ f m and
in the transverse impact parameter plane (c, d) with p⊥ = 0.3ŷ GeV for the u quarks (left column) and d quarks (right column)

for the u quark and d quark, respectively. The fixed impact
parameter b⊥ is taken along ŷ and by = 0.4 f m.

The variation of ρ
q
UU (b⊥,p⊥) in the transverse impact

parameter plane are shown in Fig. 2c, d for the u and the
d quark, respectively, with fixed transverse momentum p⊥
along ŷ for py = 0.3 GeV. The distributions ρu

UU and ρd
UU

are circularly symmetric, in transverse momentum plane as
well as transverse impact parameter plane, with a positive
maximum at the center (px = py = 0), (bx = by = 0) and
gradually decrease toward the periphery, for both u and d
quarks. The peak of the distribution for the u quark is large
compared to the d quark in the two planes.

The average quadrupole distortions Qi j
b (p⊥) and Qi j

p (b⊥)

are defined as [11]

Qi j
b (p⊥) =

∫
d2b⊥(2bi⊥b

j
⊥ − δi jb2⊥)ρUU (b⊥,p⊥)

∫
d2b⊥b2⊥ρUU (b⊥,p⊥)

(69)

Qi j
p (b⊥) =

∫
d2p⊥(2pi⊥ p j

⊥ − δi jp2⊥)ρUU (b⊥,p⊥)
∫

d2p⊥p2⊥ρUU (b⊥,p⊥)
. (70)

In this model, the average quadrupole distortion is found to be
zero. Since the wave functions in soft-wall AdS/QCD model
are of gaussian type, ρUU and ρLL are even in p⊥ and b⊥,
resulting in a zero quadrupole distortion.

As we discussed before, the three dimensional quark den-
sities can be extracted from the Wigner distributions by inte-
grating over one transverse momentum px and one trans-
verse position by variables (see Eq. (28)). The ρ̃UU (bx , py)
in the mixed transverse plane are shown in Fig. 3 for the
u and the d quarks. We find that the distributions are axi-
ally symmetric. Therefore, there is no favored configura-
tion between b⊥ ⊥ p⊥ and b⊥ ‖ p⊥ unlike the light-
cone constituent quark model (LCCQM) [12–16] or chiral
quark soliton model (χQSM) [18–20]. At bx = py = 0,
the probability density for the u and the d quark is maxi-

123



409 Page 8 of 16 Eur. Phys. J. C (2016) 76 :409

(a) (b)

Fig. 3 ρ̃
q
UU (bx , py) in mixed transverse plane for the u quark (a) and the d quark (b)

mum and decreases as e−αp2
y and e−βb2

x . Here α and β are
positive constants and we observe α > β for both u and d
quarks.

The Wigner distributions ρ
q
UL(b⊥,p⊥), in the transverse

momentum plane, are shown in Fig. 4a, b for the u and the d
quarks, respectively. The fixed transverse impact parameter
b⊥ is along ŷ with by = 0.4 f m. Figure 4c, d represent the
distribution ρ

q
UL(b⊥,p⊥) in the transverse impact parameter

plane, for the u and the d quark for p⊥ = py ŷ = 0.3 GeV.
We observe dipolar distributions having the same polarity for
the u and the d quarks.

The ρ̃
q
UL(bx , py) in the transverse mixed plane are shown

in Fig. 5. We find a quadrupole distribution for the u and the
d quarks. Using Eq. (55) in Eq. (40) we calculate the Cq

z , the
correlation between quark spin and quark OAM. The values
are: Cu

z = −0.0348 for u quark and Cd
z = −0.1201 for the

d quarks. Therefore in this model, the quark OAM tends to
be anti-aligned (Cu

z < 0,Cd
z < 0) to the quark spin for both

u and d quarks.

5.2 Longitudinally polarized proton

The Wigner distributions ρ
q
LU (b⊥,p⊥) are shown in Fig.

6 for the u and the d quarks. Figure 6a, b show the vari-
ation of ρ

q
LU (b⊥,p⊥) in transverse momentum plane for

the u and the d quarks, respectively, with b⊥ along ŷ and
by = 0.4 f m. The variation of ρ

q
LU (b⊥,p⊥) in the trans-

verse impact parameter plane is shown in Fig. 6c, d with
fixed p⊥ along ŷ, py = 0.3 GeV. We find dipolar distribu-
tions for the u and the d quarks. The polarity of the dipolar
distribution ρ

q
LU is opposite to the polarity of ρ

q
UL . The max-

imum value of ρ
q
LU (b⊥,p⊥) for the u quark is less than that

for the d quarks in the two planes.
Figure 7a, b represent the distribution ρ̃

q
LU (bx , py) in the

mixed transverse plane for the u and the d quarks, respec-

tively. We observe quadrupole distributions for both u and
d quarks. The quadrupole structures in ρ

q
LU (b⊥,p⊥) and

ρ
q
UL(b⊥,p⊥) are found due to the presence of the derivative

terms in Eqs. (16) and (17).
From Eqs. (57) and (64), we calculate the canonical OAM

and kinetic OAM of the quarks in this model. The values of
quark OAM are given in Table 2. Note that in quark–diquark
model, the total proton OAM is given by the sum of quark
and diquark angular momenta, so unlike the quark models
the u and d quark contributions do not add up to the total
proton OAM and hence the sum of kinetic OAM of u and d
in Table 2 is not the same as total canonical OAM of the u
and d. The correlation between the canonical OAM of quark
and proton spin can be understood from the sign of the �

q
z .

In our model calculation, the positive values of �
q
z for both u

and d imply that the proton spin tends to be aligned to quark
OAM for both u and d quarks. The spin contribution of the
quark to the proton spin is given by [11]

sq = 1

2

q = 1

2

∫
dx H̃q(x, 0, 0)

= 1

2

∫
dx d2 p⊥Gq

1,4(x, 0,p2⊥, 0, 0) (71)

where 
q is the axial charge. In our model, we get su =
0.946 and sd = 0.396. It is well known that the specta-
tor diquark model has its own limitations [40]. Though the
functional behaviors of the GPDs and GTMDs are well repro-
duced in our model, the axial charges for both u and d quarks
are over estimated. The model is defined at a very low scale
Q2

0 ≈ 0.09 GeV2. The axial charge is scale dependent and
known to be negative at larger scales. In [26], the authors
have extended the result to an arbitrary scale Q2 and stud-
ied the evolution of unpolarized PDFs in this model. Our
result agrees closely with theirs, in spite of the fact that
the fit parameters are slightly different. In their model [41],
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(a) (b)

(c) (d)

Fig. 4 The dipolar behavior of ρ
q
UL in the transverse momentum plane (a, b) with b⊥ = 0.4ŷ f m and in the transverse impact parameter plane

(c, d) with p⊥ = 0.3ŷ GeV for the u quarks (left column) and d quarks (right column)

(a) (b)

Fig. 5 ρ̃
q
UL (bx , py) in mixed transverse plane corresponding to u quark (a) and d quark (b)
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(a) (b)

(c) (d)

Fig. 6 The dipolar behavior of ρ
q
LU in the transverse momentum plane (a, b) with b⊥ = 0.4ŷ f m and in the transverse impact parameter plane

(c, d) with p⊥ = 0.3ŷ GeV for the u quarks (left column) and d quarks (right column)

the PDFs are slightly smaller in magnitude. When polarized
PDFs or helicity distributions are computed, the d quark
helicity distribution turns out to be positive, although it is
expected to be negative from the recent fit of the data [42]. In
[43,44], it has been shown that NNPDF allows for a positive
total 
d(x)/d(x) (where 
d(x) stands for helicity distribu-
tion) for larger values of x , this is also obtained in some other
models; for example in [45] the above ratio was calculated
in perturbative QCD taking into account the valence Fock
components with non-vanishing orbital angular momentum
and it was found that 
d(x)/d(x) is positive as x ≈ 0.75 and
approaches 1 as x → 1. Positive values of this ratio were also
found in an SU(6) breaking quark model calculation in [46].
Another way to parametrize the model would be to fit the
data of the helicity distributions with the model parameters,
instead of the form factors and the GPDs. Since in the scalar
diquark model, �qz + sq +�Dz = 1/2 (as sD = 0), the diquark
contribution to the canonical OAM is �Dz = −0.484 for the
u struck quark and �z = −0.016 for the d struck quark. The

contributions of different partial waves to the quark OAM in
LCCQM have been studied in [17].

The Wigner distributions for a longitudinally polarized
quark in a longitudinally polarized proton, ρq

LL(b⊥,p⊥), are
shown in Fig. 8. Figure 8a, b represent ρq

LL(b⊥,p⊥) in trans-
verse momentum plane with fixed b⊥ = 0.4 f m ŷ and
Fig. 8c, d show the plots in the transverse impact parame-
ter plane with p⊥ = 0.3 GeV ŷ. The distributions are cir-
cularly symmetric for the u and the d quarks in the two
planes. The circular symmetry implies that the ρLL cannot
contribute to the quark OAM as shown in Eq. (41). The picks
of the distributions are at the center (0, 0) in the two planes.
Therefore the quark polarization and the proton polarization
tend to be parallel for u and d quarks. Figure 9 represents
the distribution ρ̃

q
LL(bx , py) in a mixed transverse plane.

The distributions are axially symmetric for both u and d
quarks.

The distributions ρ
q
λ(b⊥,p⊥) are shown in Figs. 10 and

11 with the polarization of the proton  =↑ and quark polar-
ization λ =↑,↓ (Eq. (10)). Figure 10a–d represent the vari-
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(a) (b)

Fig. 7 The ρ̃
q
LU (bx , py) in the mixed transverse plane corresponding to the u quark (a) and the d quark (b)

(a) (b)

(c) (d)

Fig. 8 The ρ
q
LL (b⊥,p⊥) in the transverse momentum plane (a, b) with b⊥ = 0.4ŷ f m and in the transverse impact parameter plane (c, d) with

p⊥ = 0.3ŷ GeV for the u and the d quarks, respectively
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(a) (b)

Fig. 9 The ρ̃
q
LL (bx , py) in mixed transverse plane for the u and the d quarks

ation of ρ
q
λ(b⊥,p⊥) in the transverse momentum plane for

the u and the d quarks. We observe a circular symmetry for
 = λ, but for  = λ the distributions get distorted along px
for both u and d quarks. This is because in Eq. (9) the con-
tributions from ρLU and ρUL (ρLU = −ρUL ) get canceled
for  = λ, whereas for  = λ the contributions add up and
cause the distortion.

We have shown the distributions for  =↑, the other pos-
sible spin combinations in the transverse momentum plane
can be found from ρ

q
↓λ′(b⊥, px , py) = ρ

q
↑λ(b⊥,−px , py),

where λ′ = λ. Figure 10e–h show the variation of
ρ
q
λ(b⊥,p⊥) in the transverse impact parameter plane for the

u and the d quarks. The distributions are circularly symmetric
in the transverse impact parameter space for  = λ but the
distributions get distorted for  = λ, due to the same reason
as described in the case of the transverse momentum plane.
Similar to the momentum space, the other possible spin com-
binations in the transverse impact parameter plane are found
as ρ

q
↓λ′(bx , by,p⊥) = ρ

q
↑λ(−bx , by,p⊥), where λ′ = λ. The

mixed transverse densities ρ̃
q
λ(bx , py) are shown in Fig. 11

for the u and the d quarks. Again, for  = λ the contribution
from quadrupole distortions (Figs. 5, 7) ρ̃UL and ρ̃LU get
canceled resulting from the axial symmetry but for  = λ

the contributions add up. The maxima of ρ̃UU and ρ̃LL are
nearly equal (Figs. 3, 9). As a result, for  = λ, the destruc-
tive interference of these two distributions give almost zero
at the center (bx = 0, py = 0) in Fig. 11c, d.

6 Spin–spin and spin–OAM correlation

In Figs. 4 and 6, we observe that the quark OAM tends to
be anti-aligned with the quark spin and aligned to the pro-
ton spin for both u and d quarks. The correlation strength
between proton spin and quark OAM is equal to the corre-

lation between quark spin and quark OAM. Therefore, if the
quark spin is parallel to the proton spin, i.e.,  =↑, λ =↑, the
contributions of ρUL and ρLU interfere destructively result-
ing from the circular symmetry for u and d quarks; see Figs.
10a, b, e, f. If the quark spin is anti-parallel to the proton spin,
i.e.,  =↑, λ =↓, the contributions of ρUL and ρLU interfere
constructively resulting from a significant shift for u and d
quarks; see Figs. 10c, d, g, h. One can notice that from Fig.
10, the direction of the shift flips with the polarization flip
when  = λ.

We compare our results with the light-cone constituent
quark model (LCCQM) [11] and the light-cone spectator
model [25] in Tables 3 and 4. The polarities of the ρUL dis-
tributions are opposite to LCCQM but similar to the spec-
tator model, whereas for ρLU , all the three models agree
for the u quark, but the agreement is lost for the d quark.
In our model, the average quadrupole distortion Qi j

b (p⊥)

and Qi j
p (b⊥), in both the transverse momentum plane and

the transverse impact parameter plane, are found to be zero,
whereas a nonzero small quadrupole distortion is found in
[11]. This may be due to the simple scalar diquark model
considered here; inclusion of the axial vector diquark might
improve the result. The quark OAM tends to be anti-aligned
(Cu

z < 0,Cd
z < 0) to the quark spin for both u and d quarks

in our model, in LCCQM the quark OAM and quark spin tend
to be aligned for both u and d quarks (Cu

z > 0, Cd
z > 0). In

our model, the quark OAM tends to be aligned to the proton
spin for both u and d quarks (�uz > 0, �dz > 0), whereas in
[11], the quark OAM tends to be aligned (�uz > 0) to the pro-
ton spin for the u quark and anti-aligned (�dz < 0) for d quark.
For a proton spin anti-aligned with the quark spin, the distri-
butions ρ

q
↑↓ for both u and d quarks show a stronger dipolar

structure in our model compared to the LCCQM. QCD or
some model independent calculations are required to resolve
the differences.
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Fig. 10 The ρ
q
λ(b⊥,p⊥) for

 =↑ and λ =↑,↓ in transverse
momentum plane (a–d) with
b⊥ = 0.4ŷ f m and in transverse
impact parameter plane (e–h)
with p⊥ = 0.3ŷ GeV for u and
d quarks

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)
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(a) (b)

(c) (d)

Fig. 11 The ρ̃
q
λ(bx , py) for  =↑ and λ =↑,↓ in mixed transverse plane for the u and the d quarks

Table 3 Comparison of ρUL in different models in momentum space (left panel) and in impact parameter space (right panel). + -/- + represent the
polarity of the dipolar distributions and the maxima of the distributions are given within the bracket

ρUL (p⊥) Our model Ref. [11] Ref. [25] ρUL (b⊥) Our model Ref. [11] Ref. [25]

u - + (0.1) + - (0.6) - + (0.010) u + - (0.06) - + (0.5) + - (0.010)

d - + (0.3) + - (0.6) - + (0.005) d + - (0.2) - + (0.5) + - (0.005)

Table 4 Comparison of ρLU in different models in momentum space (left panel) and in impact parameter space (right panel). + -/- + represent the
polarity of the dipolar distributions and the maxima of the distributions are given within the bracket

ρLU (p⊥) Our model Ref. [11] Ref. [25] ρLU (b⊥) Our model Ref. [11] Ref. [25]

u + - (0.1) + - (0.35) + - (0.010) u - + (0.06) - + (0.3) - + (0.005)

d + - (0.3) - + (0.03) - + (0.002) d - + (0.2) + - (0.015) + - (0.0005)

7 GTMDs

At leading twist, there are 16 GMDs. The variation of
GTMDs (Eqs. (53–56)) for the u and the d quarks are shown
in Fig. 12. The left column is for different values of 
2⊥ with

a fixed p⊥ = 0.3 GeV and the right column is for different
values of p⊥ with a fixed 
2⊥ = 1.0 GeV2. We observe
that the peaks of the distributions decrease with increas-
ing 
⊥ and shift toward higher x . Thus, the distributions
Fq

1,1, F
q
1,4,G

q
1,1,G

q
1,4, having a quark with fixed transverse
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(a)

(c)

(e)

(b)

(d)

(f)

Fig. 12 GTMDs as functions of x for both u and d quarks at different fixed values of p⊥ and 
⊥

p⊥, highly depend on the momentum transfer 
⊥ between
initial and final proton. The behavior of F1,1 for u and d
quarks are almost the same except in magnitude which is
larger for the u quark than the d quark. In F1,4(= G1,1), the
maximum for the d quark is greater than the maximum for
the u quark and opposite to F1,1 and G1,4. The GTMDs as
functions of x are shown in the right column of Fig. 12 for the
different values of p⊥ with a fixed value of 
2⊥ = 1.0 GeV2.
In this case, the peaks of the distributions shift toward lower
x and decrease as p⊥ increases.

8 Conclusions

We have calculated the Wigner distributions in a quark–scalar
diquark model of the proton. We have used the light-front
wave functions for the state that are predicted by the soft-
wall ADS/QCD. The Wigner distributions of both unpo-

larized quark in unpolarized proton as well as the distor-
tions in momentum and position space due to the polar-
ization of the quark/proton are calculated. The results are
compared and contrasted with other model estimates, in par-
ticular with those models that assume a confining poten-
tial. The Wigner functions are related to GTMDs that give
information on the canonical OAM as well as the spin–orbit
correlation of the quarks. The kinetic OAM can be calcu-
lated in terms of the GPDs in this model. We have calcu-
lated both the canonical and the kinetic OAM and compared
with other model calculations. In our case the proton state
consists of an active quark which can be either a u or a d
quark, and a scalar diquark. So the sum of the OAM of the
u and the d quark is not expected to be the same. In fact the
kinetic and canonical OAM of the u quark are positive in
this model, whereas those of the d quark are negative. We
have also calculated the pretzelosity in this model using a
model-dependent relation. As x → 1 the difference between
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kinetic and canonical OAM vanishes as all the momentum is
carried by the active quark. Further work would involve a cal-
culation of the Wigner distributions incorporating transverse
polarization.
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