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Abstract The continuous spontaneous localization (CSL)
model has been proposed as a possible solution to the quan-
tum measurement problem by modifying the Schrödinger
equation. In this work, we apply the CSL model to two cos-
mological models of the early Universe: the matter bounce
scenario and slow roll inflation. In particular, we focus on the
generation of the classical primordial inhomogeneities and
anisotropies that arise from the dynamical evolution, pro-
vided by the CSL mechanism, of the quantum state asso-
ciated to the quantum fields. In each case, we obtained a
prediction for the shape and the parameters characterizing
the primordial spectra (scalar and tensor), i.e. the amplitude,
the spectral index and the tensor-to-scalar ratio. We found
that there exist CSL parameter values, allowed by other non-
cosmological experiments, for which our predictions for the
angular power spectrum of the CMB temperature anisotropy
are consistent with the best fit canonical model to the latest
data released by the Planck Collaboration.

1 Introduction

After approximately three decades since the cosmological
inflationary paradigm was conceived [1–4], all of its generic
predictions have withstood the confrontation with observa-
tional data, in particular, those coming from the Cosmic
Microwave Background (CMB) radiation [5–7]. That has led
a large group of cosmologists to consider inflation as a well
established theory of the early Universe. Inflation was origi-
nally proposed to provide a solution to the puzzles of the hot
Big Bang theory (e.g. the horizon and flatness problems).
However, the modern success of inflation is that, allegedly, it
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can offer us an explanation about the origin of the primordial
inhomogeneities [8–11]. The standard argument is also rather
pictorial: the quantum fluctuations of the vacuum associated
to the inflaton are stretched out to cosmological scales due to
the accelerated expansion of the spacetime; those fluctuations
are considered the seeds of all large scale structures observed
in the Universe. Furthermore, in Ref. [12] the detectability
of possible traces of the quantum nature concerning the pri-
mordial perturbations was investigated.

On the other hand, proponents of alternative scenarios to
inflation argue that even if it is the most fashionable model of
the early Universe, that does not mean it is necessarily true
[13,14]. Furthermore, another feature that would make alter-
native models worthwhile of study is that they might avoid
some long standing puzzles of the inflationary paradigm.
Among those issues, we can mention: the subject of eternal
inflation, a feature that is present in almost every model of
inflation [15] and which also leads to the controversial topic
of the multiverse; the initial singularity problem and the trans-
Planckian problem for primordial perturbations [16], which
are related by the fact that one is interpolating the solutions
provided by General Relativity in regimes where it may no
longer be valid; and finally, it has been argued that the poten-
tials associated to the inflaton, that best fit the latest observed
data, need to be fine-tuned [17,18]. Although the aforemen-
tioned problems are not considered real problems by some
scientists [19,20], others seem to disagree [18,21]. However,
we think that if other alternative models can reproduce the
main results linked to inflation, we should make use of the
observational data available to test them.

One of the alternative models to inflation that seems to be
consistent with the latest data is the so called matter bounce
scenario (MBS) [21–28]. In this cosmological model, the
initial singularity of the standard model is replaced by a non-
singular bounce. That is, instead of an ever-expanding Uni-
verse, it assumes an early contracting matter-dominated Uni-
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verse, which continues to evolve towards a bouncing phase
and, later, enters into the expanding-phase of standard cos-
mology. The Universe described by the MBS relies on a sin-
gle scalar field satisfying an equation of state that mimics
that of a dust-like fluid. Additionally, in order to describe
successfully a bouncing phase with a single scalar field, one
needs to use cosmologies beyond the realm of general rela-
tivity, such as, loop quantum cosmologies, teleparallel F(T )

gravity or F(R) gravity. Proponents of the MBS claim that
the potential associated to the scalar field is less fine-tuned
than that of inflation, and also solves the historical prob-
lem of requiring very special initial conditions for the Big
Bang model [22,23], which originally motivated the devel-
opment of the inflationary framework. However, the MBS
is not exactly problem free. A complete assessment of the
present conceptual issues is provided in Ref. [23]. In spite
of not being completely finished from a theoretical point of
view, the MBS is quite simple in its treatment of the primor-
dial perturbations. That makes it an interesting case of study
for the purpose of this article. In particular, the generation of
the primordial perturbations is depicted during the contract-
ing phase, i.e. in a regime where gravity is well described by
general relativity, and the perturbations correspond to inho-
mogeneities of a single scalar field.

In addition to the prior puzzles and successes of inflation
and the MBS, there remains an important question: what is
the precise physical mechanism that converts quantum fluctu-
ations of the vacuum into classical perturbations of the space-
time? This question has been the subject of numerous works
in the past and the consensus seems to favor the decoher-
ence framework [29–33].1 Nevertheless, decoherence can-
not address that question by itself.2 In other words, even
if one would choose (or not) to embrace the decoherence
program, a particular interpretation of Quantum Mechanics
must be selected (implicitly or explicitly). The Copenhagen
−orthodox− interpretation requires to identify a notion of
observer that performs a measurement on the system; which,
in the decoherence framework, is equivalent to identify the
unobservables or external degrees of freedom of the system.
It is not clear how to do such identifications if the system is the
early Universe. Other interpretations such as many-worlds,
consistent histories and hidden variables formulations, might
be adopted with varying degrees of success (see for instance
[38–40]).

In the present article, in order to address the quantum to
classical transition of the primordial perturbations, we will
choose to work with the continuous spontaneous localization
(CSL) model. The CSL model belongs to a large class of mod-

1 Although for the reasons exposed in Refs. [34,35] we do not find such
posture satisfactory.
2 See comments by Mukhanov on pages 347–348 of Ref. [36] and by
Weinberg on page 476 of Ref. [37].

els known as objective dynamical reduction models or simply
called collapse models. Collapse models attempt to provide a
solution to the measurement problem of Quantum Mechan-
ics [41–45]. The proponents of these models state that the
measurement problem originates from the linear character
of the quantum dynamics encoded in the Schrödinger equa-
tion. The common idea shared in these collapse models is
to introduce some nonlinear stochastic corrections to the
Schrödinger equation that breaks its linearity. According to
the collapse models, a noise field couples nonlinearly with
the system (usually with the spatial degree of freedom of
the system), inducing a spontaneous random localization
of the wave function in a sufficiently small region of the
space. Suitably chosen collapse parameters make sure that
micro-systems evolve essentially (but not exactly) following
the dynamics provided by the Schrödinger equation, while
macro-systems are extremely sensible to the nonlinear effects
resulting in a perfectly localization of the wave function. Fur-
thermore, there is no need to mention or to introduce a notion
of an observer/measurement device as in the Copenhagen
interpretation, which is a desired feature in the context of the
early Universe and cosmology in general.

The CSL model has been applied before to the inflation-
ary Universe in an attempt to explain the quantum to classi-
cal transition of the primordial perturbations [46–50]. Also,
recently a new effective collapse mechanism, independent
of the CSL model, has been proposed to deal with the mea-
surement problem during the inflationary era [51]. However,
among those works, the key role played by the collapse mech-
anism varies and also yields different predictions for the pri-
mordial power spectrum, some of which might be consis-
tent with the observational data. In the present article, we
will subscribe to the conceptual point of view first presented
in [47,52], which was developed within the semiclassical
gravity framework, and latter in [50,53] was extended to the
standard quantization procedure of the primordial perturba-
tions using the so called Mukhanov-Sasaki variable [8,54].
The main role that we advocate for the dynamical reduction
mechanism of the state vector, modeled in this paper by the
CSL model, is to directly generate the primordial curvature
perturbations. Specifically, the initial state of the quantum
field–the vacuum state–evolves dynamically according to the
modified Schrödinger equation provided by the CSL model.
This evolution leads to a final state that does not share the ini-
tial symmetry of the vacuum, i.e. it is not homogeneous and
isotropic.3 In this way, the collapse mechanism generates the
inhomogeneities and anisotropies of the matter fields. These
asymmetries are codified in the evolved quantum state and,

3 For a formal proof of this statement see Appendix A of Ref. [35] and
Appendix A of Ref. [50].
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thus, are responsible for generating the perturbations of the
spacetime.4

Note that the previous prescription, regarding our approach
to address the birth of the primordial perturbations, does not
require the inclusion of an exponential expansion phase in
the Universe that “stretches out” the quantum fluctuations of
the vacuum (or the squeezing of the field variables as usu-
ally argued). Therefore, in principle, it should be possible to
extend our picture to alternative scenarios dealing with the
origin of the cosmological perturbations. Moreover, since the
cosmic observations are well constrained, it should also be
feasible to test the predictions that result from applying our
framework in those alternative cosmological models. In the
present article, we focus on the implementation of the CSL
model within the framework of the MBS and, in parallel, we
present the same appliance of the CSL model to the slow
roll inflationary model of the early Universe. In this way,
we can appreciate more clearly where the CSL model enters
into the picture; particularly at the moment when computing
the theoretical predictions. The main motivation behind the
present work is that if the CSL model can be truly consid-
ered as a physical model of the quantum world, which also
avoids the standard quantum measurement problem, then it
should also be possible to use it in different contexts from
the traditional laboratory settings. The cosmological context
provides a rich avenue to explore such foundational issues
and, more important, there exist sufficient precise data to test
the initial hypotheses. As a consequence, we will analyze the
predictions resulting from implementing the CSL model in
the MBS and in the inflationary model of the early Universe,
and we will compare the corresponding results with the one
provided by the best fit standard cosmological model. Addi-
tionally, we will focus on the range of values allowed for the
parameters of the CSL model, experimentally tested [55,56]
in non-cosmological frameworks.

The paper is organized as follows: in Sect. 2, we provide
a very brief synopsis of the main features of the CSL model,
with particular emphasis on those that will be useful for the
next sections. In Sect. 3, we present the characterization of the
primordial perturbations within the two cosmological mod-
els that we are considering, i.e. the MBS and standard slow
roll inflation. In Sect. 4, we show the connection between
the observational quantities and the theoretical predictions
that result from adopting our conceptual point of view con-
cerning the CSL model. In Sect. 5, we explicitly show the
implementation of the CSL model to the MBS and inflation,
and we also present the predictions for the primordial power
spectra (scalar and tensor) in each case. In Sect. 6, we discuss
the implications of the results obtained; additionally, we com-

4 We encourage the reader to consult Refs. [35,50,52] for a detailed
exposition of the concepts involved in our approach and its relation
with the collapse of the wave function.

pare the predicted scalar power spectra with the standard one.
In Sect. 7, we analyze the viability of the CSL model using
the data extracted from the CMB when considering the best
fit cosmological model. Finally, in Sect. 8, we end with our
conclusions. We include an Appendix containing the com-
putational details that led to the results presented in Sect. 5.

2 A concise synopsis of the CSL model

In this section, we provide a brief summary of the relevant
features of the CSL model; for a detailed review, we refer the
reader to Refs. [43,44].

In the CSL model, the modification of Schrödinger’s equa-
tion induces a collapse of the wave function towards one of
the possible eigenstates of an operator Θ̂ , called the collapse
operator, with certain rate λ. The self-induced collapse is due
to the interaction of the system with a background noiseW(t)
that can be considered as a continuous-time stochastic pro-
cess of the Wiener kind. The modified Schrödinger equation
drives the time evolution of an initial state as

|�, t〉 = T̂ exp

{
−

∫ t

t0
dt ′

[
i Ĥ + 1

4λ
(W(t ′) − 2λΘ̂)2

]}
|�, t0〉,

(1)

with T̂ the time-ordering operator. The probability associated
with a particular realization of W(t) is,

P[W(t), t]DW(t) = 〈�, t |�, t〉
t∏

ti=t0

dW(ti )√
2πλ/dt

. (2)

The norm of the state |�, t〉 evolves dynamically, and Eq.
(2) implies that the most probable state will be the one with
the largest norm. From Eqs. (1) and (2), it can be derived the
evolution equation of the density matrix operator ρ̂. That is,

dρ̂

dt
= −i[Ĥ , ρ̂] − λ

2
[Θ̂, [Θ̂, ρ̂]]. (3)

The density matrix operator can be used to obtain the ensem-

ble average of the expectation value of an operator 〈Ô〉 =
Tr[Ôρ̂]. Henceforth, from Eq. (3) it follows that

d

dt
〈Ô〉 = −i〈[Ô, Ĥ ]〉 − λ

2
〈[Θ̂, [Θ̂, Ô]]〉. (4)

The average is over possible realizations of the noise W(t),
each realization corresponding to a single outcome of the
final state |�, t〉.

One of the most important features of collapse models
is the so-called amplification mechanism. That is, assuming
that the reduction (collapse) rates for the M constituents of
a macroscopic object are equal (λi = λ), it can be proved
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that the reduction rate for the center of mass of an M-particle
system is amplified by a factor of M with respect to that of a
single constituent [41,57]; in other words, λmacro = Mλ.

The parameter λ sets the strength of the collapse pro-
cess. In the original model, proposed by Ghirardi-Rimmini-
Webber (GRW), the authors suggested a value of λGRW �
10−16 s−1 for rC � 100 nm. However, Adler suggested a
greater value λAdler � 10−8 s−1 for rC � 100 nm [58] (the
parameter rC is called the correlation length of the noise
and provides a measure for the spatial resolution of the col-
lapse [41,43,57]). Recent experiments have been devised
to set bounds on the parameter λ [59,60]. Furthermore,
it is claimed that matter-wave interferometry provides the
most generic way to experimentally test the collapse models
[55,56]. Those results suggest that the range between λGRW

and λAdler is still viable for some variations of the original
CSL model (e.g. by considering non-white noise).

Consequently, the main characteristics of the CSL model
are: (1) The modification to Schrödinger’s equation is nonlin-
ear and leads to a breakdown of the superposition principle
for macroscopic objects; (2) The random nature of Quan-
tum Mechanics is concealed in the noise W(t) and is consis-
tent with Born’s rule; (3) An amplification mechanism exists,
through the parameter λ which is related to the strength of
the collapse. This strength is weak for microscopic objects
and strong for macroscopic bodies.

Another main aspect of the collapse models is that the
collapse mechanism injects energy into the system. In fact,
previous works have performed a preliminary analysis using
cosmological data to set bounds on the value of λ [61].
The energy increase is minimal, e.g. for a particle of mass
m = 10−23 g, one obtains δE/t � 10−25 eV s−1 [43]. In
other words, an increase of 10−8 eV will take 1010 years.
However, even if the energy increase can be ignored at
the phenomenological level, a more realistic model should
remove this issue.

Moreover, the increase of energy in the collapse models
leads to difficulties when trying to formulate relativistic col-
lapse models. Additionally, the collapse mechanism occurs
in such a way that is nonlocal. This implies that the col-
lapse of the wave function must be instantaneous or super-
luminal (but the nonlocal features cannot be exploited to
send signals at superluminal speed). Also, the nonlocality
is necessary to ensure that the models are consistent with
the violation of Bell’s inequalities. Several relativistic mod-
els have been proposed so far [62–64], none of which can
be considered completely finished. In spite of the lack of
a relativistic collapse model, we will apply the CSL model
to the primordial Universe, i.e. to inflation and the MBS,
but in order to provide a more detailed picture, we need
first to establish the mathematical framework of the pri-
mordial Universe in the two approaches considered in this
work.

3 Two approaches: accelerated expansion
or quasi-matter contraction

This section presents the details of the two cosmological
approaches, describing the dynamics of the Universe, that we
will be considering in the rest of the manuscript. In particular,
we are going to work with the following two scenarios:

1. An accelerated expansion of the early Universe given
by the simplest inflationary model, that is, a single scalar
field in the slow roll approximation with canonical kinetic
term. Since such a model is probably very well known
for most readers, we will not dwell into much detail here.

2. The MBS [22–26], a cosmological model in which the
Universe undertakes a quasi-matter contracting phase,
then experiences a non-singular bounce and finally enters
into the standard cosmological expansion. Since in this
model the primordial perturbations are born during the
contracting stage of the Universe, we will focus exclu-
sively on that cosmic stage. We will refer to such a stage
as the quasi-matter contracting Universe (QMCU).

3.1 The background

The inflationary Universe and the QMCU are both described
by Einstein equations Gab = 8πGTab (c = 1), while the
matter fields are characterized by a single scalar field. In the
case of inflation the scalar field is the inflaton φ, and in the
QMCU the scalar field will be denoted by ϕ.

As mentioned earlier, for inflation, we will consider stan-
dard slow roll inflation. In that case, the background space-
time is described by a quasi-de Sitter Universe, character-
ized by H � −1/[η(1 − ε)], with H ≡ a′/a the conformal
expansion rate, a being the scale factor and the slow roll
parameter is defined as ε ≡ 1−H′/H2; a prime denotes par-
tial derivative with respect to conformal time η. The energy
density of the Universe is dominated by the potential of
the inflaton V , and during slow roll inflation the condition
ε � M2

P/2(∂φV/V )2 � 1 is satisfied, with M2
P ≡ (8πG)−1

the reduced Planck mass. Since we will work in a full quasi-
de Sitter expansion, another useful parameter to character-
ize slow roll inflation is the second slow roll parameter, i.e.
δ ≡ ε − ε′/2Hε � 1.

In the case of the QMCU, the starting point is also a flat
FLRW geometry that leads to the Friedmann and conserva-
tion equations. The field ϕ is separated into an homogeneous
part ϕ0(η) plus small inhomogeneities δϕ(x, η). The homo-
geneous part satisfies

H2 = a2

3MP

(
ϕ′2

0

2a2 + W

)
; ϕ′′

0 +2Hϕ′
0+a2∂ϕW = 0, (5)
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where W is the potential associated to the field ϕ.
In the QMCU, it is assumed that the equation of state

associated to the scalar field almost mimics that of ordinary
matter, i.e. P = ωρ such that |ω| � 1; the latter implies
ϕ′2

0 � 2a2W . Consequently, the scale factor (in conformal
time) evolves as a(η) � η2/9.

The quasi-matter contraction is characterized with a small
parameter |ε| � 1, which plays the same role as the slow
roll parameter in inflation. The parameter ε is defined as (see
e.g. [22])

ε ≡ −2

3

(
1

2
+ H′

H2

)
� 1

3

(
∂ϕW

W

)2

− 1. (6)

The case ε = 0 corresponds to an exact matter dominated
contracting phase (note that ε = ω). Furthermore, for sake
of completeness we introduce another parameter

δ2 ≡ ε′

2H � −∂ϕ

(
∂ϕW

W

)
, (7)

such that |δ2| � |ε|. The parameter |δ2| is analog to the δ

parameter of slow roll inflation and it is related to the running
of the spectral index in the QMCU model (see e.g. [22]).

As is well known, it is not straightforward to accomplish
a non-singular bounce within the framework of General Rel-
ativity by considering a single canonical scalar field, since
the null energy condition (NEC) is violated (see for instance
[14,23]). As a consequence, one possible option is to work
with cosmologies within the context of modified gravity the-
ories. In the case of the QMCU presented in [22,23], the
authors worked within the framework of holonomy corrected
loop quantum cosmology and teleparallel F(T ) gravity.

It is also important to note that even if a non-singular
bounce cannot be achieved within general relativity, the ori-
gin of the primordial perturbations is assumed to take place
during the contracting (pre-bounce) phase of the Universe,
where the curvature and energy scales are low enough to be
described by General Relativity. On the other hand, one must
present the conditions that need to be fulfilled such that the
shape of the primordial spectrum, associated to the perturba-
tions, remains practically unchanged when passing through
the bounce. We will discuss this subject in more detail in the
next section.

3.2 Perturbations

In the inflationary Universe and in the QMCU, one can sep-
arate the scalar field into an homogeneous part plus small
inhomogeneous perturbations. Moreover, the metric associ-
ated to the spacetime, in both cases, is described by a FLRW
background metric plus perturbations; which are classified as

scalar, vector and tensor types (in this paper we will not con-
sider vector perturbations). One useful quantity to describe
the scalar (an also the tensor) perturbations is the so called
Mukhanov-Sasaki (MS) variable. During inflation, the MS
variable is defined by

v(x, η) ≡ a(η)

[
δφ(x, η) + φ′

0(η)

H(η)
�(x, η)

]
, (8)

with � the gauge invariant quantity known as the Bardeen
potential [65], which, in the longitudinal gauge, corresponds
to the curvature perturbation. A similar expression to Eq. (8)
can be used in the QMCU by replacing the fields φ′

0 and δφ

with ϕ′
0 and δϕ, respectively. The advantage of relying on the

MS variable is that, when expanding the action of a scalar
field minimally coupled to gravity into second order scalar
perturbations, one obtains δ(2)S = 1

2

∫
dηd3kL, where

L = v′
kv

�′
k −k2vkv

�
k− z′

z

(
vkv

�′
k + v′

kv
�
k

)
+

(
z′

z

)2

vkv
�
k, (9)

with vk the Fourier modes associated to the MS variable, z =
aφ′

0/H during inflation, and z = aϕ′
0/H when considering

the QMCU. However, it is important to note that during the
bouncing phase, the action given by the Lagrangian in Eq. (9)
remains the same but the expression for z changes (see Ref.
[25] for an explicit calculation within F(T ) theories). On the
other hand, during the contraction phase, the quantity z′/z
can be written explicitly in terms of the QMCU parameter ε̄,
as in a similar fashion using the slow roll inflation parameters,
i.e.

z′(η)

z(η)
= β

η
, (10)

where

β ≡
{

−(1 + 2ε − δ) if assuming inflation

2(1 − 3ε̄) if assuming the QMCU
(11)

Note that, since |δ2| � |ε|, the δ2 parameter does not enter
into the expression z′/z at first order for the QMCU.

The CSL model is based on a nonlinear modification to
the Schrödinger equation; consequently, it will be advanta-
geous to perform the quantization of the perturbations in the
Schrödinger picture, where the relevant physical objects are
the Hamiltonian and the wave functional. The Hamiltonian
associated to L in Eq. (9) is H = 1

2

∫
d3k (HR

k + H I
k ), with

HR,I
k = pR,I

k pR,I
k + z′

z

(
v
R,I
k pR,I

k + v
R,I
k pR,I

k

)

+k2v
R,I
k v

R,I
k , (12)

where the indexes R, I denote the real and imaginary parts of
vk and pk. The canonical conjugated momentum associated
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to vk is pk = ∂L/∂v�′
k , i.e.

pk = v′
k − z′

z
vk. (13)

Since v(x, η) is a real field, v�
k = v−k.

We promote vk and pk to quantum operators, by imposing
canonical commutations relations [v̂R,I

k , p̂R,I
k′ ] = iδ(k−k′).

In the Schrödinger picture, the wave functional �[v(x, η)]
characterizes the state of the system. Furthermore, in Fourier
space, the wave functional can be factorized into modes com-
ponents

�[v(x, η)] = �k�
R
k (vR

k )� I
k(v I

k). (14)

From now on, we will deal with each mode separately.
Henceforth, each mode of the wave functional, associated
to the real and imaginary parts of the canonical variables,
satisfies the Schrödinger equation

Ĥ R,I
k �

R,I
k = i∂�

R,I
k /∂η, (15)

with the Hamiltonian provided by (12).
Note that one can also choose to work with the wave func-

tional in the momentum representation, i.e. �[p(x, η)] =
�k�

R
k (pRk )� I

k(pIk).
The standard assumption is that, at an early conformal

time τ → −∞, the modes are in their adiabatic ground state,
which is a Gaussian centered at zero with certain spread. This
applies to both, the inflationary Universe and the QMCU. In
addition, this ground state is commonly referred to as the
Bunch-Davies vacuum. Thus, the conformal time η is in the
range [τ, 0−).

Given that the initial quantum state is Gaussian, its shape
will be preserved during its evolution. The explicit expression
of the Gaussian state, in the field representation, is:

�R,I (η, v
R,I
k ) = exp

[
−Ak(η)(v

R,I
k )2 + Bk(η)v

R,I
k + Ck(η)

]
,

(16)

and, equivalently, in the momentum representation

�R,I (η, pR,I
k ) = exp

[
− Ãk(η)(pR,I

k )2 + B̃k(η)pR,I
k + C̃k(η)

]
.

(17)

Therefore, the wave functional evolves according to
Schrödinger equation, with initial conditions given by Ak(τ )

= k/2, Ãk(τ ) = 1/2k, Bk(τ ) = B̃k(τ ) = Ck(τ ) =
C̃k(τ ) = 0 corresponding to the Bunch-Davies vacuum,
which is perfectly homogeneous and isotropic in the sense of
a vacuum state in quantum field theory. The fact that we are
introducing the wave functional in the field and momentum

representations is related to the choice of the collapse opera-
tor in the CSL model, i.e., since there is no physical reason to
choose one over the other, both choices are equally acceptable
(at least from the phenomenological point of view). In the
next section, we will show how to extract the physical quan-
tities from the theory to be compared with the observations.

4 Theoretical predictions and observational quantities

We begin this section by making some key remarks about the
conceptual aspects of our approach and, then, we proceed to
identify the relevant physical quantities that will be related
with the observed data. We encourage the reader to consult
Refs. [34,35,52] for a complete discussion regarding our full
picture of the role played by the dynamical reduction of wave
function in the cosmological setting. As a matter of fact, the
relation between the observables and the predictions from the
theory, using the Mukhanov-Sasaki variable during inflation
and the CSL model, has been previously exposed in [50];
however, in this section we reproduce the key arguments of
such a reference to make the present paper as self-contained
as possible. Thus, there is no original work in the following
of this section.

The main role for invoking the collapse of the wave func-
tion is to find a physical mechanism for breaking the initial
homogeneity and isotropy associated to both, the quantum
state and the spacetime. More specifically, we assume that
a nonlinear modification to the Schrödinger equation, which
in the present work is provided by the CSL model, can break
the homogeneity and isotropy associated to the vacuum state
and, in turn, it can generate the metric perturbations, which
correspond to the primordial curvature perturbation.

Note that in the literature one can found statements sug-
gesting that the vacuum fluctuations somehow become clas-
sical when the proper wavelength associated to the perturba-
tions becomes larger than the Hubble radius [29,66]. Nev-
ertheless, there is nothing in the dynamics governed by the
traditional Schrödinger equation that can change the sym-
metry of the vacuum state, the symmetry being the homo-
geneity and isotropy. As a consequence, if the quantum state
is perfectly symmetric and the Quantum Theory teaches us
that the symmetries of a physical system must be encoded
in the quantum state, then there is no clear way to describe
the inhomogeneities and anisotropies of the spacetime in the
quantum sense. If the quantum state of the system is perfectly
symmetric, then its classical description must also be exactly
symmetric. Thus, there is a lack of a proper explanation con-
cerning the emergence of the primordial inhomogeneities
and anisotropies in the Universe. That is why some non-
standard interpretations of Quantum Mechanics, that make
use of the Schrödinger equation (e.g. many-worlds, consis-
tent histories, etc.), cannot provide a satisfactory answer to
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the problem at hand. It is important to note that the previous
discussion applies to both cosmological models, the QMCU
and inflation.

The modified Schrödinger equation given by the CSL
model can successfully change the symmetries of the vac-
uum state and, at the same time, be responsible for the birth
of the primordial curvature perturbation.

Specifically, in the comoving gauge, the curvature per-
turbation R(x, η) and the MS variable v(x, η) are related
by R(x, η) = v(x, η)/z(η). Thus, a quantization of v(x, η)

implies a quantization of R(x, η). The question that arises
now is: how to relate the quantum objects v̂(x, η) and
R̂(x, η)? Furthermore, one may wonder how to relate the
physical observables, such as the temperature anisotropies
of the CMB, with the quantum objects that emerge from the
quantum theory? The traditional answer relies on the quan-
tum correlation functions, in particular, the two-point quan-
tum correlation function 〈0|R̂(x, η)R̂(x′, η)|0〉 and its rela-
tion with the two-point angular correlation function of the
temperature anisotropies δT/T0(n̂1)δT/T0(n̂2), where the
bar denotes an average over different directions in the celes-
tial sky and n̂1 and n̂2 are two unitary vectors denoting some
particular directions. We do not find the previous answer to
be completely satisfactory, and for a detailed explanation we
invite the reader to consult Refs. [34,35].

In order to illustrate our approach, we begin by focusing on
the temperature anisotropies of the CMB observed today and
its relation to the comoving classical curvature perturbation
encoded in the quantity R. Such a relation is approximately
given by (i.e. for large angular scales)

δT

T0
� −1

5
R. (18)

On the other hand, the observational data are described in
terms of the coefficients alm of the multipolar series expan-
sion δT/T0(θ, ϕ) = ∑

lm almYlm(θ, ϕ), i.e

alm =
∫

δT

T0
(θ, ϕ)Y ∗

lm(θ, ϕ)d� (19)

here θ and ϕ are the coordinates on the celestial two-sphere,
with Ylm(θ, ϕ) the spherical harmonics.

Given Eq. (18), the coefficients alm can be further re-
expressed in terms of the Fourier modes associated to R,
i.e.

alm � −4π i l

5

∫
d3k

(2π)3/2 jl(kRD)Y ∗
lm(k̂)Rk, (20)

where RD is the comoving radius of the last scattering surface
and jl(kRD) the spherical Bessel function of order l of the
first kind.

Finally, we can include the effects of late time physics
that give rise to so called acoustic peaks. These effects are
encoded in the transfer functions �l(k), and thus the coeffi-
cients alm are given by

alm = −4π i l

5

∫
d3k

(2π)3/2 �l(k)Y
∗
lm(k̂)Rk, (21)

whereRk is the primordial comoving curvature perturbation.
Also note that for large angular scales �l(k) → jl(kRD).

The next step is to relate Rk with the quantum operator
R̂k. Clearly, if one computes the vacuum expectation value
〈0|R̂k|0〉 and makes it exactly equal to Rk, then one obtains
precisely zero; while it is clear that for any given l,m, the
measured value of the quantity alm is not zero. As matter
of fact, the standard argument is that it is not the quantity
alm that is zero but the average alm . However, the notion of
average is subtle, since in the CMB one has an average over
different directions in the sky, while the average that one
normally associates to the quantum expectation value of an
operator is related to an average over possible outcomes of
repeatedly measurements of an observable associated to an
operator in the Hilbert space of the system (it is evident that
concepts such as measurements, observers, etc. are not well
defined in the early Universe).

On the other hand, we will assume that the quantity Rk,
i.e. the classical value associated to the Fourier mode of
the comoving curvature perturbation R(x, η), is an adequate
description if the quantum state associated to each mode
is sharply peaked around some particular value. In conse-
quence, the classical value corresponds to the expectation
value of R̂ in that particular “peaked” state [53]. In other
words, our assumption is that the CSL mechanism will lead
to a final state such that the relation

Rk = 〈�|R̂k|�〉 = 1

z2 〈�|v̂k|�〉 (22)

holds.
Therefore, in our approach, the coefficients alm in Eq.

(21), will be given by

alm = −4π i l

5

∫
d3k

(2π)3/2 Y
∗
lm(k̂)�l(k)〈�|R̂k|�〉, (23)

where |�〉 corresponds to the evolved state according to the
non-unitary modification of the Schrödinger equation pro-
vided by the CSL mechanism (see Refs. [46,48,49] for other
ways to relate Rk and R̂k using the CSL model, and [50]
for a discussion on those approaches). Note also that |�〉
does not share the same symmetries as the vacuum state, i.e.
the inhomogeneity and isotropy of the system is encoded in
the quantum state |�〉. Furthermore, Eq. (23) shows how the
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expectation value of the quantum field R̂k in the state |�〉
acts as a source for the coefficients alm .

A well known observational quantity is the angular power
spectrum defined by

Cl ≡ 1

2l + 1

∑
m

|alm |2. (24)

We will assume that we can identify the observed value |alm |2
with the most likely value of |alm |2ML obtained from the the-
ory and, in turn, assume that the most likely value coincides
approximately with the average |alm |2. This average is over
possible realizations or outcomes of the state |�〉 that results
from the CSL evolution. Thus, the observed Cobs.

l approxi-
mately coincides with the theoretical prediction Cl given in
terms of the average |alm |2, i.e.

Cobs.
l � Cl = 1

2l + 1

∑
m

|alm |2. (25)

Using Eq. (23), the theoretical prediction for the angular
power spectrum is

Cl = 1

2l + 1

∑
m

16π2

25

∫
d3kd3k′

(2π)3 �l(k)�l(k
′)

×Y ∗
lm(k̂)Ylm(k̂′)〈R̂k〉〈R̂k′ 〉∗. (26)

Moreover, if the CSL evolution is such that there is no corre-
lation between modes (which can be justified by the fact that
we are working at linear order in cosmological perturbation
theory), then

〈R̂k〉〈R̂k′ 〉∗ =
(
〈R̂R

k 〉2 + 〈R̂I
k〉2

)
δ(k − k′), (27)

where R̂R,I
k denotes the real and imaginary part of the field

R̂k (also, we assume that there is no correlation between R̂R
k

and R̂I
k). Therefore,

Cl = 1

2l + 1

∑
m

16π2

25

∫
d3k

(2π)3 |Ylm(k̂)|2

×�2
l (k)

(
〈R̂R

k 〉2 + 〈R̂I
k〉2

)
. (28)

Performing the integral over the angular part of k and sum-
ming over m, we obtain

Cl = 2

25π

∫
dk k2�2

l (k)
(
〈R̂R

k 〉2 + 〈R̂I
k〉2

)
. (29)

On the other hand, the standard relation between the pri-
mordial power spectrum and the Cl is given by

Cl = 4π

25

∫
dk

k
�2

l (k)Ps(k), (30)

where Ps(k) is the dimensionless scalar power spectrum
defined as

RkRk′ ≡ 2π2

k3 Ps(k)δ(k − k′) (31)

As a consequence, Eqs. (29) and (30) imply that the power
spectrum in our approach is given by

Ps(k) = k3

2π2

(
〈R̂R

k 〉2 + 〈R̂I
k〉2

)
. (32)

Note that the definition of the power spectrum, Eq. (31),
is the canonical definition when dealing with classical ran-
dom fields, where the average is over possible realizations
of the random fields. In cosmology, the usual identification
of the two–point quantum correlation function 〈0|R̂kR̂k′ |0〉
with RkRk is subtle and concepts such as ergodicity, deco-
herence and squeezing of the vacuum state are normally
invoked.

Thus, in terms of the MS variable, the scalar power spec-
trum in our approach is:

Ps(k) = k3

2π2z2

(
〈�|v̂R

k |�〉2 + 〈�|v̂ I
k|�〉2

)
. (33)

Equation (33) is the key result from this section. It shows
explicitly how to relate the quantities obtained from the quan-
tum theory with the observed temperature anisotropies of the
CMB. It also exhibits the difference between our approach
and the traditional one.

5 The CSL model in quasi-matter contraction and
inflation

In this section, we will focus on the specific details of imple-
menting the CSL model to the QMCU and the inflationary
Universe, and the main goal will be to obtain a prediction for
the power spectra.

We begin by noting that, in Eq. (33), the predictions related
to the observational data are the objects 〈�|v̂R,I

k |�〉. There-
fore, we will apply the CSL model to each mode of the field
and to its real and imaginary parts. As a consequence, we will
assume that the evolution of the state vector characterizing
each mode of the field, written in conformal time, is given
by

|�R,I
k , η〉 = T̂ exp

{
−

∫ η

τ

dη′ [i Ĥ R,I
k

+ 1

4λk

(
W(η′) − 2λkΘ̂

R,I
k

)2
]}

|�R,I
k , τ 〉

(34)
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with HR,I
k given in (12). Note that the Hamiltonian Ĥ R,I

k
depends on the field v̂

R,I
k which is defined in terms of the

inflaton perturbations, but also it can be defined analogously
using the perturbations of the scalar field associated to the
QMCU [one has to take into account the change in z(η)]. Fur-
thermore, we will consider that Eq. (4) can be extrapolated to
a generic quantum mode F̂k, that is, the real and imaginary
parts of the mode F̂k satisfy:

d

dη
〈F̂ R,I

k 〉 = −i[F̂ R,I
k , Ĥ R,I

k ] − λk

2
[Θ̂ R,I

k , [Θ̂ R,I
k , F̂ R,I

k ]].
(35)

At this point, we have to make a choice regarding the col-
lapse operator Θ̂

R,I
k . At first sight, the natural candidate is the

MS variable, namely Θ̂
R,I
k = v̂

R,I
k . Nevertheless, we think

that in absence of a full relativistic CSL model, there is no a
priori choice and, thus, the canonical conjugated momentum
p̂R,I
k can also be considered as the collapse operator. In fact,

in Ref. [50], we have shown that in the framework of the
inflationary Universe, the momentum operator can be used
as the collapse operator given that, in the longitudinal gauge,
the momentum operator is directly related with the curvature
perturbation.

Thus, we are going to consider four different cases:

(i) The collapse operator is v̂
R,I
k during slow roll inflation.

(ii) The collapse operator is v̂
R,I
k during the QMCU.

(iii) The collapse operator is p̂R,I
k during slow roll inflation.

(iv) The collapse operator is p̂R,I
k during the QMCU.

We stress that only the third case, that is, the implemen-
tation of the CSL model within the inflationary framework
using the field p̂R,I

k as the collapse operator, was first devel-
oped in Ref. [50]. Nevertheless, we are including it in the
present work for the sake of completeness. Note however
that the analysis in Ref. [50] was done in the longitudinal
gauge. In the present paper, we will work in the comoving
gauge in all the four cases. The analysis of the three remain-
ing cases, and in particular the implementation of the CSL
model during a contracting phase of the early Universe, are
presented here for the first time.

For each of these four cases, we will obtain the scalar (and
tensor) power spectrum.

Furthermore, the calculation of the object 〈�|v̂R
k |�〉2 is

identical to 〈�|v̂ I
k|�〉2. Consequently, we will omit from now

on the indexes R, I unless it creates confusion.
Using the Gaussian wave functions in the field represen-

tation, Eq. (16), and the probability associated to W(η) in
Eq. (2), it can be shown that [47],

〈v̂k〉2 = 〈v̂2
k〉 − 1

4Re[Ak(η)] . (36)

The quantity (4Re[A(η)])−1 is the standard deviation of
the squared field variable v̂k. It is also the width of every
packet in Fourier’s space. In a similar manner, using the
Gaussian wave function in the momentum representation,
Eq. (17), along with Eq. (2), it follows that

〈v̂k〉2 = 〈v̂2
k〉 − | Ãk(η)|2

Re[ Ãk(η)] . (37)

For cases (i) and (ii), it is convenient to work with Eq. (36);
and for cases (iii) and (iv) with Eq. (37). Thus, to calculate
〈v̂k〉2, we only need to find the two terms on the right hand
side of (36) or (37), respectively. The second term on the
right hand side of both equations can be found from the CSL
evolution equation, Eq. (34), while the first one by using Eq.
(35) with the wave function in the corresponding represen-
tation. Also, in Eqs. (36) and (37), we consider the regime
−kη → 0, which correspond to the range of observational
interest, that is, the regime for which the modes are larger
than the Hubble radius.

Once we have computed Eqs. (36) and (37), in the cor-
responding case, we can substitute it into Eq. (33) to give a
specific prediction for the scalar power spectrum. The actual
calculations are long, so we have included them in Appendix
A for the interested reader. In the following, we will show
only the main results.

In case (i), our predicted scalar power spectrum during
inflation is (at the lowest order in the slow roll parameter):

Ps(k) = H2(−kη)−2νs+3

πεM2
P

F1(λk, νs), (38)

with νs ≡ 3/2 + 2ε − δ and

F1(λk, νs) ≡ 22νs−3

sin2(νsπ)�2(1 − νs)

[
1 − λkτ

k

+3λk

k2 sin(−kτ) cos(−kτ)

]

− 1

8π

[
λk

2(νs − 1)k2 (−kη)−2νs+2

+ζ
2νs
k π sin(πνs + 2νsθk)

sin(πνs)22νs�2(νs)

]−1

. (39)

For case (ii), we have

Ps(k) = 1

12π2

(∫ η

−∞
dη̃

z2

)2 (
k

|aH |
)−2μs+3

F2(λk, μs),

(40)
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with μs ≡ 3/2 − 6ε̄ and

F2(λk, μs) ≡ 8π

sin2(μsπ)�2(1 − μs)

[
1 − λkτ

k

−3λk

k2 sin(−kτ) cos(−kτ)

]

−
[

22μs−4λk

(μs − 1)k2 (−kη)−2μs+2

+ζ
2μs
k π sin(πμs + 2μsθk)

sin(πμs)8�2(μs)

]−1

. (41)

In both cases, (i) and (ii), we have also defined:

ζk ≡
(

1 + 4λ2
k

k4

)1/4

, θk ≡ −1

2
arctan

(
2λk

k2

)
. (42)

The calculations for obtaining the tensor power spectra
are very similar to the one used to obtain the scalar ones
(see Appendix A for further details). In case (i), the formula
obtained for the tensor power spectrum is

Pt (k) = H216(−kη)−2νt+3

πM2
P

F1(λk, νt ), (43)

where νt ≡ 3/2+ε. Therefore, the tensor-to-scalar ratio r ≡
Pt (k)/Ps(k), at the lowest order in the slow roll parameter,
is given by

r = 16ε (44)

which is exactly the same prediction as in the standard infla-
tionary slow roll scenario.

Meanwhile, in case (ii), the tensor power spectrum is

Pt (k) = 2

9π2

(∫ η

−∞
dη̃

z2
T

)2 (
k

|aH |
)−2μt+3

F2(λk, μt ),

(45)

where μt ≡ 3/2 − 6ε = μs . Also, for very low energy
densities and curvatures, zT = a (see Ref. [22]). The tensor-
to-scalar ratio is given by

r = 8

3

⎛
⎝

∫ ∞
−∞

dη

z2
T (η)∫ ∞

−∞
dη

z2(η)

⎞
⎠

2

k=|aH |
, (46)

which is also the same as the one presented in Refs. [22,23].
Note that we have evaluated the upper limit of the integrals
at η = ∞. The motivation is essentially the same as the
one given in Refs. [22,23]. That is, one evaluates the scalar
and power spectra at very late times corresponding to when

the mode “re-enters the horizon”, or more precisely when
k = |aH | during the expanding (post-bounce) phase.

The previously presented cases (i) and (ii) correspond to
selecting v̂

R,I
k as the collapse operator. Next, we focus on the

results for cases (iii) and (iv), which correspond to choose
p̂R,I
k as the collapse operator.

For case (iii), we obtain:

Ps(k) = 22νs−3H2�2(νs)

εM2
Pπ3

(−kη)−2νs+1F3(λk, νs), (47)

where we have defined νs ≡ 1/2 + 2ε − δ and

F3(λk, νs) ≡ 1 − λkkτ + λk sin(−kτ) cos(−kτ)

− sin(πνs)

ζ̃ 2νs sin(2νs θ̃k + πνs)
. (48)

In case (iv), the corresponding expression results

Ps(k) = 1

12π2

(∫ η

−∞
dη̃

z2

)2 (
k

|aH |
)−2μs+3

F4(λk, μs)

(49)

with the definitions μs ≡ 3/2 − 6ε and

F4(λk, μs) ≡ 8�2(μs)

π

[
1 − λkkτ

− 5λk sin(−kτ) cos(−kτ)

]

+[c12−2μs+4(1 + 4λk)
2]

× [2λk(−kη)−2μs + c24λk(−kη)−2μs+2

+ c3ζ̃
2μs
k sin[2(μs + 1)θ̃k + πμs]]−1. (50)

The constants c1, c2 and c3 are shown in Appendix A. In both
cases, (iii) and (iv), we have the following definitions

ζ̃k ≡ (1 + 4λ2
k)

1/4, θ̃k ≡ −1

2
arctan(2λk). (51)

The predictions for the tensor-to-scalar ratios are exactly
the same as the ones presented in cases (i) and (ii) (see
Appendix A).

We end this section by summarizing the main results. We
have applied the CSL model to the inflationary Universe and
to the QMCU. Moreover, in order to employ the CSL model,
we need to choose the collapse operator. We have chosen to
work with v̂

R,I
k and p̂R,I

k as the collapse operators. Hence-
forth, we have obtained the scalar power spectra in four dif-
ferent cases Eqs. (38), (40), (47) and (49). On the other hand,
introducing the CSL mechanism does not affect the tensor-to-
scalar ratio r . Specifically, if one works within the standard
inflationary scenario, then the prediction for r is equal to the
standard one given by slow roll inflation; meanwhile, if one
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adopts the QMCU framework, then the predictions are equal
to the ones presented in Refs. [22,23].

6 Discussion on the CSL inspired power spectra

In this section, we will discuss the implications of the results
obtained in the previous section. In particular, we will com-
pare our predicted scalar power spectra with the standard
one.

The scalar power spectrum predicted by slow roll inflation
is traditionally expressed as [36,67]

Ps(k) = As

(
k

k0

)ns−1

, (52)

where k0 is a pivot scale, and the amplitude As and the spec-
tral index ns are given by

As =
(

H2

8π2M2
Pε

)
k0=aH

, ns − 1 = −4ε + 2δ. (53)

On the other hand, we have four different expressions for
the scalar power spectrum, corresponding to the four cases
mentioned at the beginning of Sect. 5. In the following, we
will analyze each one of them, but first we will make a few
observations regarding the parameter λk .

The dependence on k in the parameter λk encodes
the “amplification mechanism”, which is characteristic of
dynamical reduction models Refs. [48,49]. One possible way
to determine the exact dependence on k, and perhaps the
simplest, is by dimensional analysis. That is, the main evolu-
tion equations are given in Eqs. (34) and (35); consequently,
in order for those equations to be dimensionally consistent,
the fundamental dimensions of λk change depending on the
fundamental units associated to the collapse operator Θ̂

R,I
k .

Moreover, we expect that λk is directly related to λ, i.e. the
CSL parameter, which clearly must be the same in all physi-
cal situations (cosmological or otherwise). Moreover, taking
into account that we are working in units in which h̄ = c = 1,
the fundamental dimension of λ is [Length]−1.

Thus, in the case where the collapse operator is chosen to
be v̂

R,I
k , the most natural expression of λk , which is consistent

with the dimensions of all terms involving the dynamical
equations, is

λk = λk (54)

And in the case where the selected collapse operator is p̂R,I
k ,

such an expression is

λk = λ

k
, (55)

where λ is the CSL parameter, with the same numerical value
in all cases. From now on, we will assume that λk takes the
form of Eqs. (54) and (55) depending on the chosen operator
acting as the collapse operator.

6.1 The CSL power spectra during inflation

Let us begin the discussion by working within the framework
of the inflationary Universe, analyzing cases (i) and (iii).

The scalar power spectrum given in Eq. (38), correspond-
ing to case (i), can be written in a similar form to the
one showed in Eq. (52). As usual, the power spectrum can
be evaluated at the conformal time where the pivot scale
“crosses the horizon”; or more precisely, when −k0η = 1
(i.e. k0 = aH ) during the inflationary epoch. Furthermore,
the different coefficients that multiply each term of the func-
tion F1(λk, νs) involve the quantity νs . For these terms, we
can approximate νs � 3/2 without loss of generality. How-
ever, note that such approximation cannot be done to the
powers of k involving νs because these are directly related
to the scalar spectral index ns , for which the value ns = 1 is
ruled out. Furthermore, in order to provide a suitable normal-
ization for the CSL power spectra, we multiply and divide
by the quantity λ|τ |. Thus, the power spectrum in Eq. (38)
can be rewritten as:

Ps(k) = As

(
k

k0

)ns−1

C1(k) (56)

where

As =
(

H2λ|τ |
4π2M2

Pε

)
k0=aH

, ns − 1 = −4ε + 2δ, (57)

and C1(k) ≡ F1(λk = λk, νs � 3/2)/λ|τ |; that is,

C1(k) = 1

λ|τ |
{

1 − λτ + 3λ

k
sin(−kτ) cos(−kτ)

−1

2

[
λ

k
(−kη)ns−2 + ζ

4−ns
k cos[(4 − ns)θk]

2

]−1}

(58)

[expressions for ζk and θk are given in Eq. (42) with λk = λk].
Within the inflationary framework, and with the same

arguments followed to arrive to Eq. (56), we can write the
power spectrum Eq. (47), corresponding to case (iii), in the
following form:

Ps(k) = As

(
k

k0

)ns−1

C3(k) (59)
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where As and ns are the same as in Eq. (57), and C3(k) ≡
F3(λk = λ/k, νs � 1/2)/λ|τ |. Thus,

C3(k) = 1

λ|τ |
{

1 − λτ + λ

k
sin(−kτ) cos(−kτ)

− 1

ζ̃
2−ns
k cos[(2 − ns)θ̃k]

}
(60)

[expressions for ζ̃k and θ̃k are given in Eq. (51) with λk =
λ/k]

Let us make some remarks. Notice that the scalar index
predicted by the CSL power spectra is exactly the same as
the standard one from slow roll inflation, but the amplitude is
slightly different. The difference between the standard ampli-
tude and the one using the CSL model is a factor of λ|τ |/2
[see Eqs. (53) and (57)]. The reason for the factor 1/2 can
be traced back to Eq. (33), since in our approach the power
spectrum receives an equal contribution from the expecta-

tion values 〈v̂R
k 〉2 and 〈v̂ I

k〉2. However, the factor 1/2 will not
have any important observational consequences. On the other
hand, the factor λ|τ |, which comes from the normalization of
C1(k) and C3(k), does modify the standard predicted ampli-
tude. A quantitative analysis will be done in the next section.

A second remark has to do with the following. It is well
known that there is a minimum number of e-foldings for infla-
tion related to the solution of the “horizon problem”, and this
minimum number depends on the characteristic energy of
inflation. A shared characteristic of the functions C1(k) and
C3(k) is that they include the quantity τ , which represents the
conformal time at the beginning of inflation. This quantity
depends on the energy scale at which inflation ends, which
is associated to the inflaton potential V at that time, and the
number of e-foldings corresponding to the total duration of
inflation.

Third, note that another important feature of the CSL
power spectra in inflation is that the function C1(k), cor-
responding to the case in which the collapse operator is v̂

R,I
k ,

depends explicitly on the conformal time η, whilst the func-
tion C3(k), which corresponds to the case when p̂R,I

k is the
collapse operator, does not exhibit such time dependence.
The time dependence on the power spectrum when the col-
lapse operator is v̂

R,I
k has been previously noted by other

authors [46,48]. Nevertheless, the exact form of their pre-
dicted power spectrum is different from the one shown here.
As a matter of fact, that difference is illustrated by consider-
ing the limiting case λk = 0. In such mentioned works, for
λ = 0 (i.e. standard Schrödigner evolution), their predicted
power spectrum is the same as the traditional one. Contrarily,
in our approach, if λk = 0 then Ps(k) = 0, which is con-
sistent with our point of view regarding the role played by
the CSL model. In any case, even if the pictures used for the
role of the CSL model are different between our work and
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Fig. 1 The function C1(k), corresponding to the power spectrum in
the case when the collapse operator is v̂

R,I
k during inflation. We have

set the value λGRW = 1.029 × 10−2 Mpc−1 and ns = 0.96. The val-
ues of conformal time at the beginning of the inflationary regime τ

corresponding to the three cases depicted (from top to bottom) are:
−τ = 7803894, 115820063 and 156745414 Mpc. We have evalu-
ated C1(k) at η = η f , and the values of η f corresponding to the
three different cases considered (from top to bottom) are: −η f =
4.604 × 10−22, 4.604 × 10−23 and 4.604 × 10−22 Mpc. MP denotes
the reduced Planck mass MP � 1018 GeV

the one in Refs. [46,48], the time dependence on the power
spectrum is shared.

In order to continue, we choose to evaluate the power spec-
trum (or equivalently the function C1(k)) at the conformal
time when inflation ends, which we denote by η f . We think
it is consistent with the previous calculations in which the
power spectrum was obtained in the limit −kη → 0, which
is satisfied by the value η f . The precise value of η f depends
mainly on the characteristic energy scale of inflation and the
number of e-foldings assumed for the full inflationary phase
N ≡ ln[a(η f )/a(τ )].

Readers familiar with previous works, can check that our
expression for the scalar power spectrum Eq. (59), which fea-
tures the function C3(k), is essentially the same as the one
obtained in Ref. [50]. The difference is that in the present
paper we chose to work in the comoving gauge (where R
represents the curvature perturbation), whilst in the afore-
mentioned reference we worked in the longitudinal gauge,
where the Bardeen potential � corresponds to the curvature
perturbation. Therefore, we find reassuring that even hav-
ing worked in different gauges, the expression for the power
spectrum, when the collapse operator is the momentum asso-
ciated to the Fourier’s mode of the MS variable, is the same
and it has the attractive feature that does not depends on the
conformal time.

Figures 1 and 2 show different plots for the functions
C1(k) andC3(k), respectively. In both cases, we have consid-
ered the value of the CSL parameter as λGRW = 1.029×10−2
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Fig. 2 The function C3(k), corresponding to the power spectrum in
the case when the collapse operator is p̂R,I

k during inflation. We have
set the value λGRW = 1.029 × 10−2 Mpc−1 and ns = 0.96. The val-
ues of conformal time at the beginning of the inflationary regime τ

corresponding to the three cases depicted (from top to bottom) are:
−τ = 7803894, 115820063 and 156745414 Mpc. MP denotes the
reduced Planck mass MP � 1018 GeV

Mpc−1, which corresponds to a value favored by experimen-
tal data [55,56,59,60]. The various plots in each figure corre-
spond to different values of the characteristic energy of infla-
tion V 1/4, and the total e-foldings N that inflation is assumed
to last, which also set the values of τ and η f . The values of k
considered correspond to these of observational interest, i.e.
we consider k in the range from 10−6 to 10−1 Mpc−1.

As we can observe, the functions C1(k) and C3(k) exhibit
an oscillatory behavior around the unit. For increasing values
of k, the oscillations decrease in amplitude. However, we note
that even for decreasing values of k the functions C1(k) and
C3(k) are very close to 1. Consequently, for the chosen values
of λ, V 1/4 and N , the functions C1(k) � C3(k) � 1. That
means that the shape of the angular power spectrum Cl will
not be very different from the standard one, but the amplitude
could vary (a complete analysis will be presented in the next
section).

Additionally, the fact that C1(k) depends on the confor-
mal time does not seem to affect its behavior in a significant
manner. In fact, it is closely similar to the one of C3(k),
which does not depend on the conformal time. That means
that the contribution from the time dependent term (i.e. the
last term in Eq. (58)), to the total value of the function C1(k)
is negligible when −kη → 0.

6.2 The CSL power spectra in the QMCU

We switch now the discussion to the framework of the
QMCU, i.e. cases (ii) and (iv), which correspond to selecting
v̂
R,I
k or p̂R,I

k as the collapse operator, respectively.

The scalar power spectra given in both cases, i.e. Eqs.
(40) and (49), can also be written in a manner similar to
the standard spectrum Eq. (52). Once again, following Refs.
[22,23], we choose to evaluate the spectrum at the conformal
time where the pivot scale “reenters the horizon” k0 = |aH |,
which happens at late times during the expansion phase of the
Universe (consequently the upper limit of the integral is eval-
uated at η → ∞). We approximate (for the same arguments
as in the previous subsection) μs � 3/2 in the coefficients
of the terms in expressions F2(λk, μs) and F4(λk, μs) (but
not in the powers of k as these powers are directly related
to the spectral index ns). Additionally, the parameter λk is
assumed to be λk = λk for case (ii) and λk = λ/k in case
(iv). Moreover, we multiply and divide by a factor of λ|τ | in
order to properly normalize the expressions F2 and F4.

Henceforth, the scalar power spectrum for case (ii), Eq.
(40), will be written as

P(k) = As

(
k

k0

)ns−1

C2(k) (61)

where

As = λ|τ |
6π2

(∫ ∞

−∞
dη

z(η)2

)2

, ns − 1 = 12ε (62)

and C2(k) ≡ F2(λk = λk, μs � 3/2)/λ|τ |; thus,

C2(k) = 1

λ|τ |
{[

1 − λτ − 3λ

k
sin(−kτ) cos(−kτ)

]

−1

2

[
λ

k
(−kη)ns−2+ ζ

4−ns
k

2
cos[(4 − ns)θk]

]−1 }
.

(63)

On the other hand, the power spectrum for case (iv), Eq.
(49), will be written as

P(k) = As

(
k

k0

)ns−1

C4(k) (64)

with As and ns the same as in Eq. (62), andC4(k) ≡ F4(λk =
λ/k, μs � 3/2)/λ|τ |. Hence,

C4(k) = 1

λ|τ |
{[

1 − λτ − 5λ

k
sin(−kτ) cos(−kτ)

]

− (1 + 4λ/k)2
[

6(λ/k)(−kη)ns−4

+ 4(λ/k)(−kη)ns−2+ζ̃
4−ns
k cos[θ̃k(6 − ns)]

]−1}
.

(65)
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As in the case of the inflationary Universe, the predicted
value of the scalar spectral index ns is not affected by the CSL
model. In fact, it has the same expression as that of the QMCU
original models presented in Refs. [22,23]. Nevertheless, as
can be seen in Eq. (62), the amplitude of the spectrum is
modified by an extra factor of λ|τ |/2 with respect to the
original QMCU model, that is,

As = Aorig.
s × λ|τ |

2
(66)

In this case, τ corresponds to the beginning of the quasi-
matter dominated period. Regarding the amplitude of the
spectrum in the QMCU model, when the background evo-
lution is driven by a matter dominated Universe, it can be
obtained analytically working within F(T ) gravity or LQC.
In the teleparallel F(T ) case, the original amplitude is

Aorig.
s = 1

3π2

(∫ ∞

−∞
dη

z(η)2

)2

= π2

9

ρc

ρP
(67)

while in the LQC case, the original amplitude is

Aorig.
s = 1

3π2

(∫ ∞

−∞
dη

z(η)2

)2

= 16

9

ρc

ρP
C2 (68)

where ρP is the Planck energy density, C � 0.9159 is Cata-
lan’s constant and ρc is called the critical density, which cor-
responds to the energy density at which the Universe bounces,
both expressions for the amplitude can be consulted in Refs.
[22,23].

Thus, in order to obtain an amplitude in both cases (the
teleparallel gravity case and the LQC case) that is consistent
with that obtained from the CMB data (i.e. As � 10−9), and
taking into account the extra factor of λ|τ |/2 coming from the
CSL model, the value of the energy density at the bouncing
point must satisfy

ρc � 10−9 ρP

λ|τ | . (69)

Generically λ|τ | � 1; hence, the CSL model introduces
an extra constriction to the QMCU, that is, ρc � ρP . In the
next section we will perform a more quantitative analysis.

The functions C2(k) and C4(k) share a characteristic fea-
ture, namely they depend explicitly on −kη, which comes
from a series expansion around −kη → 0. Consequently,
we choose to evaluate η = η f corresponding to the end
of the quasi-matter domination stage or the onset of the
bouncing phase. One can also define the total number of e-
foldings N ≡ ln[a(τ )/a(η f )] for the duration of the quasi-
matter dominated phase; however, notice that in this case,
since there is no horizon problem, there is no minimum
value of N . Another important aspect is that if λ = 0 then

C2(k) = C4(k) = 0. In other words, if the evolution of the
state vector is completely unitary, then there are no pertur-
bations of the spacetime at all and the state vector continues
being perfectly symmetric, which is consistent with our con-
ceptual framework.

In Figs. 3 and 4, we show different plots for the func-
tions C2(k) and C4(k), respectively. In both cases, we have
considered the value λGRW = 1.029 × 10−2 Mpc−1. The
various plots in each figure correspond to different values
of τ and η f . The values of k considered correspond to the
values of observational interest, hence, we consider k in the
range from 10−6 to 10−1 Mpc−1. As we can see, the func-
tions C2(k) and C4(k) exhibit the same oscillatory behavior
around the unity as its counterparts during inflation. Also, the
amplitude of each oscillation decreases for increasing values
of k.

We end this section with a few comments regarding the
dependence of the power spectrum on η in cases (i), (ii)
and (iv). In case (i), which corresponds to selecting the MS
variable as the collapse operator during inflation, the term
containing the η dependence is the last one of C1(k) in
Eq. (58). On the other hand, since the amplitude associ-
ated to the modes Rk is “frozen” on super-Hubble scales,
the behavior of C1(k) will not change for super-horizon
modes. As a matter of fact, the plots in Fig. 1 show that
C1(k) is essentially a constant in the limit −kη → 0, which
means that the term containing the η dependence is sub-
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Fig. 3 The functionC2(k), corresponding to the power spectrum in the
case when the collapse operator is v̂

R,I
k in the QMCU framework. We

have set the value λ = 1.028×10−2 Mpc−1 and ns = 0.96. The value of
conformal time at the beginning of the quasi-matter dominated stage τ

corresponding to the three cases depicted (from top tobottom) are:−τ =
7803894, 156745414 and 115820063 Mpc. We have evaluated C2(k) at
η = η f , and the values of η f corresponding to the three different cases
considered (from top to bottom) are: −η f = 5.99 × 10−8, 1.78 × 10−4

and 1.60 × 10−3 Mpc
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Fig. 4 The functionC4(k), corresponding to the power spectrum in the
case when the collapse operator is p̂R,I

k in the QMCU framework. We
have set the value λ = 1.028×10−2 Mpc−1 and ns = 0.96. The value of
conformal time at the beginning of the quasi-matter dominated stage τ

corresponding to the three cases depicted (from top tobottom) are:−τ =
7803894, 156745414 and 115820063 Mpc. We have evaluated C4(k) at
η = η f , and the values of η f corresponding to the three different cases
considered (from top to bottom) are: −η f = 5.99 × 10−8, 1.78 × 10−4

and 1.60 × 10−3 Mpc

dominant in such a limit. In cases (ii) and (iv), corresponding
to the framework of the QMCU, the behavior of the func-
tions C2(k) and C4(k) are very similar to that of C1(k) (see
Figs. 3, 4). That is, they are practically a constant in the
limit −kη → 0, which means that the terms involving η,
i.e. the last terms of Eqs. (63) and (65), are sub-dominant
in the super-Hubble limit. Nevertheless, since in cases (ii)
and (iv) the Universe approaches a non-singular bounce, it
might be the case that, when the mode “reenters the hori-
zon” (k � |aH |) during the bouncing phase, a modifica-
tion of the dynamical evolution of the functions C2(k) and
C4(k) would occur. However, if the duration of the bounc-
ing phase is short enough then one could intuitively consider
that the spectrum is left unchanged (although counterexam-
ples exist in the literature [68]). Therefore, one could perform
a full analysis regarding the CSL model during the bounce
within the QMCU. Nonetheless, we will take a pragmatical
approach and assume that the shape of the spectrum, pro-
vided by the functions C2(k) and C4(k), survives the bounc-
ing phase and, then, we will use the observational data to
further constraint or completely discard the predicted spec-
tra. In case that the predicted spectra are consistent with
observations, one can proceed to perform the full-fledged
analysis of implementing the CSL model to the QMCU dur-
ing the bouncing phase and study the possible corrections
that may arise from passing the perturbations through the
bounce. This subject, however, will not be explored in the
present paper.

In the next section, we will explore the implications of the
predicted spectra using the observational data.

7 Effects on the CMB temperature spectrum and its
implications on the cosmological parameters

The aim of this section is to analyze the viability of the
CSL model by comparing the corresponding predictions with
the ones coming from the best fit canonical model to the
CMB data. In particular, we will focus on the power spectra
obtained using the CSL model and its effect on the angular
power spectrum.

In order to perform our analysis, we start by setting the
cosmological parameters of our fiducial model, which will be
used as a reference to compare with the CSL inspired spectra.
The fiducial cosmology will be the best fitting flat �CDM
model from Planck data, with the following cosmological
parameters and values: baryon density in units of the critical
density �Bh2 = 0.0223, dark matter density in units of the
critical density �CDMh2 = 0.1188, Hubble constant H0 =
67.74 in units of km s−1 Mpc−1, reionization optical depth
T = 0.066, the scalar spectral index ns = 0.96 and a pivot
scale of k0 = 0.05 Mpc−1. These values can be found in the
Table 4 presented by the latest Planck Collaboration [5].

Furthermore, we recall that the primordial power spectrum
and the angular power spectrum are related by Eq. (30), i.e.

Cl = 4π

25

∫
dk

k
�2

l (k)Ps(k). (70)

Hence, we will use the CSL predicted power spectraPs(k) =
As(k/k0)

ns−1Ci (k) with i = 1, 2, 3, 4, which correspond
to the four different cases that we have considered so far.
We will focus first on the inflationary model of the early
Universe and, then, on the QMCU model. Also, note that
the fiducial model corresponds to: Ps(k) = As(k/k0)

ns−1.
The precise prediction for the angular power spectrum will
be obtained by using the Boltzmann code CAMB [69], with
the aforementioned cosmological parameters.

7.1 The angular power spectrum and the CSL model during
inflation

During inflation, the CSL power spectra is characterized by
the functions C1(k) and C3(k), Eqs. (58) and (60), with stan-
dard spectral index ns − 1 = −4ε + 2δ and amplitude

As =
(

Vλ|τ |
12π2M4

Pε

) ∣∣∣∣
k0=aH

(71)

The output of the CAMB code, that is, the temperature
autocorrelation power spectrum of the fiducial model and the
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Fig. 5 The relative difference S(l) [defined in Eq. (72)] between the
angular power spectrum predicted using the fiducial model and the one
provided by the CSL model during inflation. Top v̂

R,I
k as the collapse

operator. Bottom p̂R,I
k as the collapse operator. For the CSL model, we

have chosen the value of λGRW = 1.029 × 10−2 Mpc−1. Also, we have
assumed that inflation ends at an energy scale of 10−5MP and a total
amount of inflation corresponding to N = 65, i.e. τ = 7.8 × 107

Mpc and η f = 4.6 × 10−21 Mpc. Other values of λ were plotted
(not shown) achieving an excellent fit, but they are observationally
ruled out by their ε and r values predicted. See Table 1 and text for
details

one provided by the CSL model during inflation are indis-
tinguishable; thus, we have decided not to show the plots.
Instead, we present the the relative difference, which we
define as

S(l) ≡ |CCSL
l − Cfiducial

l |
Cfiducial
l

(72)

Figure 5 shows the relative difference between both pre-
dictions. On top, we have chosen v̂

R,I
k as the collapse operator

while on the bottom we have chosen p̂R,I
k . In both cases, we

have set an energy scale of 10−5MP for the energy at which

inflation ends, and a total amount of inflation corresponding
to 65 e-foldings.

We observe that the relative difference between the fidu-
cial spectrum and the one predicted using the CSL model
with, for instance λGRW, is practically null (the highest dif-
ference is around 0.01 %). This statement applies to both
elections of the collapse operator and for other λ values listed
in Table 1 (not shown in the figure).

We have also checked that the essentially null relative dif-
ference between the fiducial model and the CSL model during
inflation is also present in the E polarization autocorrelation
power spectrum CEE

l and the temperature polarization cross
correlation power spectrum CTE

l .
On the other hand, the amplitude of the power spectrum As

consistent with the CMB data is As � 10−9 [5]. Henceforth,
the amplitude obtained using the CSL model, as shown in
Eq. (71), must satisfy

10−9 �
(

Vλ|τ |
12π2M4

Pε

) ∣∣∣∣
k0=aH

(73)

Clearly, different values of λ will have an effect on the ampli-
tude of the spectrum.

Assuming that the pivot scale k0 crosses the Hubble radius
at an energy scale of V 1/4

0 = 10−4MP (i.e. one order of
magnitude less than the presumed energy at which inflation
ends), an estimate for ε can be calculated. Therefore, the
above equation leads to

ε � λ|τ |10−7

12π2 . (74)

Table 1 shows the different values of ε obtained by con-
sidering several λ values. Also, in the same table, we provide
an estimate for the tensor-to-scalar ratio r (recall that the
CSL model predicts the same relation as standard inflation,
i.e r = 16ε). From Table 1, it can be seen that only the value
corresponding to λGRW is consistent with both, the observed
shape and amplitude of the spectrum. In particular, assuming
a characteristic energy scale of inflation of 10−4MP � 1014

GeV, a total amount of inflation corresponding to N = 65,
and the value of λGRW, we obtain an angular spectrum with
a shape and an amplitude that is indistinguishable from the
fiducial model, which we know is consistent with the obser-
vational data. The amplitude of the spectrum for this par-
ticular set of values leads to an estimate for the slow roll
parameter and the tensor-to-scalar ratio of ε � 10−4 and
r � 10−2, respectively. Those values of ε and r are consis-
tent with the ones presented by the latest results of the Planck
Collaboration [6].

It is also instructive to mention that, if future observations
confirm the results of the BICEP2 Collaboration [70], i.e.
r � 0.2, then the value of λGRW would not be compatible
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Table 1 Estimation of ε from Eq. (74). We have used |τ | = 7.8 × 107

Mpc, which corresponds to V 1/4 = 1014 GeV and N = 65, and the four
values of λ shown below. Also, we have estimated the tensor-to-scalar
ratio using r = 16ε. Note that only the λGRW case is compatible with
the latest observations from Planck Collaboration [5]

λ type λ (s−1) λ (Mpc−1) ε r

λGRW 10−16 1.029 × 10−2 6.77 × 10−4 0.01

λ1 10−12 102.9 6.77 108

λ2 10−10 10,293 678 10,848

λAdler 10−8 1,029,378 67,793 1,084,688

with the values of V and N used in Table 1. In fact, the λ value
that might be compatible would be one such that λ � λGRW.
That would open a new range of parameter space to explore
in addition to considering other experimental setups different
from cosmological ones [55,56].

7.2 The angular power spectrum and the CSL model during
the quasi-matter contracting phase

In the QMCU framework, the power spectra are characterized
by the functions C2(k) and C4(k), i.e. Eqs. (63) and (65),
respectively. The predicted scalar spectral index is ns − 1 =
12ε, and the amplitude is given by

As � ρc

ρP

λ|τ |
2

. (75)

Notice we have approximated the integral that appears in the
amplitude, corresponding to Eq. (62), by ρc/ρP [see Eqs.
(67) and (68)].

The output of the CAMB code, that is, the temperature
autocorrelation power spectrum of the fiducial model and
the one provided by the CSL model during the QMCU are
also indistinguishable. Thus, we present again the relative
difference defined in Eq. (72) where now CCSL

l corresponds
to the angular power spectrum during the QMCU.

Figure 6 shows the relative difference between both pre-
dictions. On top, we have chosen v̂

R,I
k as the collapse operator

while on the bottom, we have chosen p̂R,I
k . In both cases, we

have assumed a total duration of 50 e-foldings for the quasi-
matter contracting phase and a conformal time |τ | � 108

Mpc corresponding to the beginning of the contracting stage.
We show only the plot of S(l) corresponding to the value of
λAdler merely as an illustrative example; the plots for the val-
ues corresponding to λ1, λ2, λGRW follow the exactly same
behavior as the one shown in Fig. 6.

We found no difference between the fiducial spectrum and
the one provided by the CSL model for the four values of
λ listed in Table 2; the highest relative difference is around
0.1 %. This statement applies to both elections of the collapse
operator. Finally, we have also checked that the essentially
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Fig. 6 The relative difference S(l) [defined in Eq. (72)] between the
angular power spectrum predicted using the fiducial model and the one
provided by the CSL model during the quasi-matter contracting phase.
Top v̂

R,I
k as the collapse operator. Bottom p̂R,I

k as the collapse operator.
For the CSL model, we have chosen, as an illustrative example, the value
of λAdler = 1029378 Mpc−1. Also, we have assumed that the quasi-
matter contracting phase begins at conformal time |τ | = 1.15×108 Mpc
and lasts a total amount of N = 50 e-foldings, with −η f = 1.6 × 10−3

Mpc. Other values of λ listed in Table 2 also achieve an excellent fit
(not shown), but the analysis done in this work does not allow prefer
one value over another

null relative difference between the fiducial model and the
CSL model during the QMCU is also present in the E polar-
ization autocorrelation power spectrum CEE

l and the temper-
ature polarization cross correlation power spectrum CTE

l .
On the other hand, the amplitude of the power spectrum As

consistent with the CMB data is As � 10−9 [5]. Therefore,
the ratio ρc/ρP , obtained using the CSL model, as shown in
Eq. (75), must satisfy

ρc

ρP
� κ1 where κ1 ≡ 2

λ|τ | × 10−9. (76)
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Table 2 Estimation of κ1 and
κ2 defined in Eqs. (76) and (77)
respectively. We have used
|τ | � 108 Mpc and the four
values of λ shown below. Also
we have estimated the quantities
λ|τ |

λ type λ (s−1) λ (Mpc−1) λ|τ | κ1 κ2

λGRW 10−16 1.029 × 10−2 1.029 × 106 10−15 −3.75

λ1 10−12 102.9 1.029 × 1010 10−19 −4.75

λ2 10−10 10293 1.029 × 1012 10−21 −5.25

λAdler 10−8 1029378 1.029 × 1014 10−23 −5.75

Consequently, an estimate for the energy scale of the critical
energy Ec is

Ec � 10κ2 MP where κ2 ≡ 1

4
log κ1. (77)

In Table 2, we show the different values of κ1 and κ2 by
using the chosen λ values, with |τ | = 1.15 × 108 Mpc. We
infer that the four values of λ considered are consistent with
a critical energy scale in the range (10−3MP , 10−6MP ).

It is worthwhile to mention that, in the QMCU, the spec-
tral index ns and the tensor-to-scalar ratio r are not related
each other as in the standard inflationary paradigm [see Eqs.
(46) and (62)]. However, the spectral index, along with the
running of the spectral index αs ≡ dns/d ln k, are the two
main parameters of the QMCU model used to compare with
the observational data [22–24]. The CSL model applied to the
QMCU does not affect those parameters. The only observable
affected by the CSL model is the amplitude of the spectrum
(which is not related to the parameter r as in the standard
spectrum). Consequently, in order to put an upper bound to
the energy scale at which the bouncing phase begins, and
which would be equivalent to set a constraint on the param-
eter λ, one should consider a specific theoretical model of
the QMCU (i.e. to choose a specific dynamics and a poten-
tial of the field ϕ). Therefore, in the QMCU, and with the
same degree of accuracy of past works dealing with the same
model, all of the four values of the CSL parameter λ con-
sidered here yield consistent predictions with observational
data; specifically, the predictions regarding the shape of the
spectrum, the scalar spectral index and the running of the
spectral index.

On the other hand, note that the information that could
discriminate among different values of λ is codified in the
amplitude of the spectrum. The predicted amplitude of the
spectrum depends on the critical energy density ρc (the value
of the energy density at the bouncing time), which is model
dependent.

8 Conclusions

The CSL model is a physical mechanism that attempts to
provide a solution to the measurement problem of Quantum

Mechanics by modifying the Schrödinger equation. The CSL
model can be referred as an objective reduction mechanism
or “effective collapse” of the wave function, and one of the
main elements of this model is the collapse operator, i.e. the
operator whose eigenstates correspond to the evolved states
by the collapse mechanism. Also, in principle, it is possible
to apply such a mechanism to any physical system.

In this work, we have applied the CSL model to the early
Universe by considering two cosmological models: the mat-
ter bounce scenario (MBS) and standard slow roll infla-
tion. Additionally, we have considered two different collapse
schemes, one in which the field variable (given in terms of
the Mukhanov-Sasaki variable) serves as the collapse oper-
ator, and other scheme where the collapse operator is the
conjugated momentum.

In all cases, we have found a prediction for the primor-
dial power spectrum, which is a function of the standard
parameters of each cosmological model, and also of the
CSL parameter λ. Although the exact expressions for the
primordial power spectra are different in each case, there
are features that are essentially the same as its standard–
non-collapse–counterparts. Specifically, the predictions for
the scalar spectral index and the tensor-to-scalar ratio are
exactly the same as the ones given in the MBS and slow roll
inflation without collapse. On the other hand, in each case,
the shape of the spectrum is modified by a function of the
wave number k, associated to the modes of the field, and
by the inclusion of the λ parameter. However, for a suit-
able choice of values corresponding to the parameters of
the cosmological models, there is no significant change in
the prediction for the CMB angular power spectrum (i.e. the
Cl ’s) that can be distinguished from the canonical flat �CDM
model.

Meanwhile, the prediction for the amplitude of the spec-
trum is modified directly by the parameter λ. We have empir-
ically explored the range of values of λ, from the originally
value suggested by Ghirardi-Rimini-Weber (GRW) λGRW �
10−16 s−1 [41], to the one given by Adler λAdler � 10−8

s−1 [58]. In the case of slow roll inflation, we have found
that for a characteristic energy scale of 1014 GeV and a
total amount of inflation of 65 e-folds, only the value sug-
gested by GRW is compatible with the observational bound
of the amplitude; other values of λ greater than λGRW, e.g.
λAdler, cannot be made compatible with the observed ampli-
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tude (because that would require values for the slow roll
parameter such that ε > 1). In the MBS case, we have
found that the modification in the predicted amplitude of
the spectrum, given by the λ parameter, causes that the crit-
ical energy density ρc, i.e. the energy density at which the
bouncing phase begins, to be several orders of magnitude
less than the Planck energy density ρP . The precise num-
ber of orders of magnitude varies according to the value of
λ. For instance, by assuming λGRW and a total amount of
∼ 50 e-folds for the matter dominated contracting phase,
we have ρc � 10−15ρP . The latter relation is obtained by
requiring the compatibility between the predicted amplitude
of the scalar power spectrum and the one from the Planck
CMB data As ∼ 10−9.

In conclusion, it was possible to incorporate the CSL
model into the cosmological context again, in particular when
dealing with the quantum-to-classical transition of the pri-
mordial inhomogeneities. Moreover, it is remarkable that our
implementation of the CSL model yields predictions that are
also in agreement with experiments in the regimes so far
investigated empirically. Those experiments involve values
of the CSL parameter λ that have been tested in laboratory
settings, quite disengaged from the cosmological framework.
We acknowledge that at this stage, the application of CSL
model to the early Universe, as done in this manuscript, can
be seen as an ad hoc employment. However, the fact that
the predictions can be empirically tested make us hopeful
that future studies will overcome the perceived shortcom-
ings.
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Appendix A: Calculations of Section 5

In this Appendix, we provide a sketch of the computational
steps that led to the results presented in Sect. 5. In the first
half of this Appendix, we will focus on cases (i) and (iii),
which correspond to selecting the MS variable as the collapse
operator during inflation and the QMCU, respectively. The
second half will contain the details according to cases (ii) and
(iv), corresponding to selecting p̂R,I

k as the collapse operator
during inflation and the QMCU, respectively.

Appendix A.1: The field v̂k as the collapse operator

We will proceed the calculation of the scalar power spec-
trum by dealing simultaneously with the inflationary and the
QMCU frameworks; and finally, we will argue that the com-
putation is similar for the tensor power spectrum.

In order to obtain the scalar power spectrum, we will use
Eq. (36). Let us focus first on the second term on the right
hand side in that equation, which can be obtained by using
the CSL evolution equation (34). Recall that, since in this
case Θ̂k = v̂k, it will be convenient to work with the wave
function in the field representation Eq. (16). The CSL evo-
lution equation leads to the following equation of motion:

A′
k = ik2

2
+ λk − 2β

η
Ak − 2i A2

k . (A.1)

The previous equation is solved by performing the change
of variable Ak(η) ≡ f ′

k(η)/[2i fk(η)], resulting in a Bessel
differential equation for fk(η). After solving such an equa-
tion, and returning to the original variable Ak , we obtain

Ak(η) = q

2i

[−Jm−1(−qη) − e−iπm J1−m(−qη)

Jm(−qη) − e−iπm J−m(−qη)

]
, (A.2)

being q2 ≡ k2(1−2iλk/k2), and where the initial condition
for the Bunch-Davies vacuum Ak(τ ) = k/2 was used (we
remind the reader that τ corresponds to the conformal time
at the beginning of the contraction phase or the exponential
expansion). The function Jm is a Bessel function of the first
kind of order m ≡ 1/2 − β [recall that β is defined in Eq.
(11)].

We now expand Ak(η) in the limit where the proper wave-
length associated to the modes becomes larger than the Hub-
ble radius H−1, that is, in the limit −qη → 0 (provided that
λk � 1). However, note that β varies according whether
inflation or a contracting phase is assumed. For inflation
β � −1 whilst for the QMCU case β � 2. This implies that
the dominant modes correspond tom � 3/2 during inflation.
On the contrary, in the QMCU, the dominant modes corre-
spond to m � −3/2. Furthermore, we are only interested in
the expansion on the real part of Ak(η). Therefore, for case
(i) the expansion of the real part of Ak(η) is

Re Ak(η) � λk

2k(m − 1)
(−kη)

+ ζ 2m
k

sin(πm + 2mθk)

sin(πm)

kπ

22m�(m)2 (−kη)2m−1,

(A.3)

and for case (ii) the corresponding expansion is
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Re Ak(η) � λk

2k(−m − 1)
(−kη)

+ζ−2m
k

sin(πm + 2mθk)

sin(πm)

× kπ

2−2m�(−m)2 (−kη)−2m−1. (A.4)

In both cases, ζk and θk are given in Eq. (42).

Next, we focus on the first term of Eq. (36), i.e. 〈v̂2
k〉. It

will be useful to define the following quantities:

Q ≡ 〈v̂2
k〉, R ≡ 〈 p̂2

k〉 and S ≡ 〈 p̂kv̂k + v̂k p̂k〉. (A.5)

The equations of evolution for Q, R and S are obtained using
Eq. (35), with Θ̂k = v̂k. That is,

Q′ = S + 2β

η
Q,

R′ = −k2S − 2β

η
Rλk,

S′ = 2R − 2k2Q. (A.6)

Therefore, we have a linear system of coupled differential
equations, whose general solution is a particular solution to
the system plus a solution to the homogeneous equation (with
λk = 0). After a long series of calculations we find:

Q(η) = (−kη)[C1 J
2
n (−kη) + C2 J

2−n(−kη)

+C3 Jn(−kη)J−n(−kη)] + λkη

2k2 , (A.7)

with

n = 3

2
+ 2

3
α (A.8)

and

α ≡
{

3ε − 3
2δ if assuming inflation

−9ε̄ if assuming the QMCU
(A.9)

and the constants C1,C2 and C3 are found by imposing the
initial conditions corresponding to the Bunch-Davies vac-
uum state: Q(τ ) = 1/(2k), R(τ ) = k/2 and S(τ ) = 0.
Equation (A.7) is exact; expanding it again around −kη → 0
yields

Q(η) � π

2k2 sin2(nπ)

{
k

2
− λkτ

2
+ mλk

k
sin � cos �

}

× 22n

�2(1 − n)
(−kη)−2n+1, (A.10)

where

� = −kτ − nπ

2
− π

4
. (A.11)

Using the above results, we can compute the quantity 〈v̂k〉2

using Eq. (36). In case (i), we substitute Eqs. (A.3) and (A.10)
into Eq. (36), obtaining

〈v̂k〉2 = Q(η) − 1

4ReAk(η)

� π

2k2 sin2(nπ)

{
k

2
− λkτ

2
+ mλk

k
sin � cos �

}

× 22n

�2(1 − n)
(−kη)−2n+1

−1

4

[
λk

2k(m − 1)
(−kη) + ζ 2m

k
sin(πm + 2mθk)

sin(πm)

× kπ

22m�(m)2 (−kη)2m−1
]−1

. (A.12)

With the expression in (A.12) at hand (which is valid for

〈v̂R
k 〉2 and 〈v̂ I

k〉2), and using Eq. (33), our predicted scalar
power spectrum during inflation (at the lowest order in the
slow roll parameter) is given in Eq. (38). (we have also used
that during inflation z2(η) � 2εM2

P/(H2η2) and m = n =
3/2 + 2ε − δ).

Analogously, in case (ii), substituting Eqs. (A.4) and
(A.10) into (36) yields

〈v̂k〉2 = Q(η) − 1

4ReAk(η)

� π

2k2 sin2(nπ)

{
k

2
− λkτ

2
+ mλk

k
sin � cos �

}

× 22n

�2(1 − n)
(−kη)−2n+1

−1

4

[
λk

2k(−m − 1)
(−kη) + ζ−2m

k
sin(πm + 2mθk)

sin(πm)

× kπ

2−2m�(−m)2 (−kη)−2m−1
]−1

. (A.13)

Hence, substituting the above expression in Eq. (33)
yields:

Ps(k) = (−kη)−2μs+3

4π2z2η2

{
22μsπ

sin2(μsπ)�2(1 − μs)

[
1 − λkτ

k

−3λk

k2 sin(−kτ) cos(−kτ)

]

−
[

λk

2(μs − 1)k2 (−kη)−2μs+2

+ζ
2μs
k π sin(πμs + 2μsθk)

sin(πμs)22μs�2(μs)

]−1}
, (A.14)

and μs ≡ 3
2 −6ε̄, where we have used m = −n = 3/2 −6ε̄.

As argued in Refs. [22,23], during the quasi-matter contract-
ing phase z � η2/(3

√
3) and |aH | = −2/η, which implies

that Eq. (A.14) can be written as in the final form of the power
spectrum presented in Eq. (40)
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Let us focus now on the tensor modes. The action for the
tensor perturbations is obtained from the Einstein-Hilbert
action by expanding the tensor perturbations hi j (x, η) up to
second-order [67]. The resulting action for the tensor field
hi j (x, η) can be expressed in terms of its Fourier modes
hi j (k, η) = hk(η)ei j (k), with ei j (k) representing a time-
independent polarization tensor. Performing the change of
variable

hk(η) ≡ 2

MP (eij e
j
i )

1/2

vk(η)

a(η)
, (A.15)

the action can be written as δ(2)Sh = 1
2

∫
dη d3k Lh , where

Lh = v′
kv

�′
k − k2vkv

�
k − a′

a

(
vkv

�′
k + v′

kv
�
k

)
+

(
a′

a

)2

vkv
�
k.

(A.16)

The Lagrangian in Eq. (9), and the one in Eq. (A.16), share
the same structure. In particular, if one replaces z′/z → a′/a
in Eq. (9), one obtains Eq. (A.16). Thus, the preceding calcu-
lations can be directly employed to obtain the tensor power
spectrum by replacing z′/z → a′/a in the whole procedure.
The explicit form of this last quantity is

a′(η)

a(η)
= β̃

η
; (A.17)

where

β̃ ≡
{

−(1 + ε) if assuming inflation

2(1 − 3ε) if assuming the QMCU
(A.18)

Consequently, the replacement β → β̃, in the equations of
the present subsection, allows us to obtain the tensor power
spectra shown in Eqs. (43) and (45).

Appendix A.2: The momentum p̂k as the collapse operator

In the rest of this Appendix, we will present the mathemati-
cal details for obtaining the scalar and tensor power spectra,
using the CSL model, when the collapse operator is p̂k. As in
the previous subsection, we will use the framework provided
by the inflationary Universe and the QMCU simultaneously.
This will complete the computation of the power spectra for
the last two cases mentioned at the beginning of Sect. 5, i.e.
cases (iii) and (iv).

Since in this subsection we are considering that the col-
lapse operator is the momentum operator, Θ̂k = p̂R,I

k , it is
convenient to work with the wave function in the momentum
representation, Eq. (17). Moreover, as argued at the begin-
ning of this section, in that representation, the quantities of

interest, namely 〈v̂R
k 〉2 and 〈v̂ I

k〉2, can be calculated using Eq.

(37). Furthermore, in spite of the collapse operator being the
momentum operator, the calculations of the previous subsec-
tion serve as a blueprint for the computations in this subsec-
tion. Once again, we will proceed by omitting the indexes
R,I .

Let us focus first on the second term of the right hand side
of Eq. (37), i.e. | Ãk(η)|2/Re[ Ãk(η)]. The motion equation
for Ãk(η) is obtained from the CSL Eq. (34), which leads to

Ã′
k(η) = i

2
+ λk + 2β

η
Ãk − 2ik2 Ãk(η)2. (A.19)

Changing the variable Ãk ≡ g′
k(η)/[2ik2gk(η)] in the last

equation, results in a Bessel differential equation for gk(η).
Now, using such a solution and returning to the original vari-
able, we have

Ãk(η) = q

2ik2

[
Jm+1(−qη) + e−imπ J−m−1(−qη)

Jm(−qη) − e−imπ J−m(−qη)

]
,

(A.20)

and m ≡ − 1
2 − β where q2 ≡ k2(1 − 2iλk). Also, we

have used the initial condition provided by the Bunch-Davies
vacuum, which is Ãk(τ ) = 1/2k with τ → −∞. Do not
confuse the m of Eq. (A.20) with the one of the previous
subsection.

The next step is to perform the expansion for −qη → 0.
Note that if we consider the inflationary Universe, then β �
−1, which means that m � 1/2. On the other hand, for the
QMCU case β � 2, which implies that m � −5/2 [note that
β is defined in Eq. (11)].

In other words, for case (iii), we have the following expan-
sion

| Ãk(η)|2
Re[ Ãk(η)] � sin(πm)�2(m + 1)22m ζ̃−2m

k (−kη)−2m−1

k sin(2mθ̃k + πm)π
.

(A.21)

And in case (iv), the corresponding expansion results,

| Ãk(η)|2
Re[ Ãk(η)] � c1ζ̃

2
k

2k
(−kη)2m+3

×
{[

1 + c22ζ̃ 2
k cos(2θ̃k)(−kη)2

+ c22ζ̃ 2
k cos[2(m+1)θ̃k+πm](−kη)−2m−2

]

×
[

sin(2θ̃k)(−kη)2m+2

+ c2ζ̃
2
k sin(4θ̃k)(−kη)2m+4

− c3ζ̃
−2m−2
k sin[2mθ̃k + πm]

]−1}
(A.22)
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where

c1 ≡ 1

2(m + 1)
, c2 ≡ 1

22(m + 1)(m + 2)
, (A.23)

c3 ≡ 22m+2�(m + 2)

�(−m)
. (A.24)

In both cases, the definitions of the quantities ζ̃k and θ̃k are
given in Eq. (51).

Now, we have to obtain the first term of the right hand side

of Eq. (37), that is, 〈v̂2
k〉. We will employ the same procedure

as in the previous subsection. We use the previous definitions
for the quantities Q(η),R(η) and S(η) Eqs. (A.5) and (35) but
taking into account that Θ

R,I
k = p̂R,I

k . Thus, the evolution
equations are:

Q′ = S + 2β

η
Q + λk,

R′ = −k2S − 2β

η
R, (A.25)

S′ = 2R − 2k2Q.

Those equations are solved using the initial conditions pro-
vided by Q(τ ) = 1/(2k), R(τ ) = k/2 and S(τ ) = 0.

We are mainly interested in the solution for Q(η) ≡ 〈v̂2
k〉

[which is the first term on the right hand side of Eq. (37)].
Then, performing the series expansion to the lowest order
around −kη → 0 yields

Q(η) � π

2k2 sin2(nπ)

{
k

2
− k2λkτ

2
+ mkλk sin � cos �

}

× 22n

�2(1 − n)
(−kη)−2n+1 (A.26)

where � = −kτ − nπ
2 − π

4 and n is exactly the same as the
one defined in Eq. (A.9).

We are now in position to compute the scalar power spec-
trum. For case (iii), substituting Eqs. (A.21) and (A.26) into
Eq. (37) yields

〈v̂k〉2 = Q(η) − |Ak(η)|2
ReAk(η)

� π

2k2 sin2(nπ)

{
k

2
− k2λkτ

2
+ mkλk sin � cos �

}

× 22n

�2(1 − n)
(−kη)−2n+1

− sin(πm)�2(m + 1)22mζ−2m
k (−kη)−2m−1

k sin(2mθk + πm)π
.

(A.27)

In addition, by noting that m = 1/2 + 2ε − δ and n =
3/2 + 2ε − δ, we substitute Eq. (A.27) in (33), which results
in the final expression for the power spectrum shown in Eq.
(47).

For case (iv), we substitute Eqs. (A.22) and (A.26) into
(37) which results in

〈v̂k〉2 = Q(η) − |Ak(η)|2
ReAk(η)

� π

2k2 sin2(nπ)

{
k

2
− k2λkτ

2
+ mkλk sin � cos �

}

× 22n

�2(1 − n)
(−kη)−2n+1

−c1ζ
2
k

2k

{[
1 + c22ζ 2

k cos(2θk)(−kη)2

+c22ζ 2
k cos[2(m + 1)θk + πm](−kη)−2m−2

]

×
[

sin(2θk)(−kη)2m+2 + c2ζ
2
k sin(4θk)(−kη)2m+4

−c3ζ
−2m−2
k sin[2mθk + πm]

]−1}
(−kη)2m+3.

(A.28)

Since in this case m = −5/2 + 6ε and n = 3/2 − 6ε, and
considering only the first dominant term in the expansion
around −kη → 0, we finally obtain the expression for the
power spectrum presented in Eq. (49).

The procedure to obtain the tensor power spectra is anal-
ogous to the one outlined in the previous subsection, but
clearly the difference is that Θ̂

R,I
k = p̂R,I

k . In the following,
we will only present the results.

For case (iii), the tensor power spectrum is given by

Pt (k) = 22νt+1H2�2(νt )

M2
Pπ3

(−kη)−2νt+1F3(λk, νt ), (A.29)

where νt ≡ 1
2 + ε, and, consequently, the tensor-to-scalar

ratio is r = 16ε, which is the same as the standard prediction
of slow roll inflation.

For case (iv), the formula for the tensor power spectrum
is

Pt (k) = 2

9π2

(∫ η

−∞
dη̃

z2
T

)2 (
k

|aH |
)−2μt+3

F4(λk, μt ),

(A.30)

where μt ≡ 3
2 − 6ε = μs . Therefore, the tensor-to-scalar

ratio is exactly the same as the one shown in Eq. (46).
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