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Abstract The thermodynamic entropy of an isolated sys-
tem is given by its von Neumann entropy. Over the last
few years, there has been an intense activity to understand
the thermodynamic entropy from the principles of quantum
mechanics. More specifically, is there a relation between
the (von Neumann) entropy of entanglement between a sys-
tem and some (separate) environment and the thermody-
namic entropy? It is difficult to obtain the relation for many
body systems, hence, most of the work in the literature has
focused on small number systems. In this work, we consider
black holes—which are simple yet macroscopic systems—
and show that a direct connection could not be made between
the entropy of entanglement and the Hawking temperature. In
this work, within the adiabatic approximation, we explicitly
show that the Hawking temperature is indeed given by the
rate of change of the entropy of entanglement across a black
hole’s horizon with regard to the system energy. This is yet
other numerical evidence leading to understanding the key
features of black-hole thermodynamics from the viewpoint
of quantum information theory.

1 Introduction

Equilibrium statistical mechanics allows a successful
description of the thermodynamic properties of matter [1—
4]. More importantly, it relates entropy, a phenomenologi-
cal quantity in thermodynamics, to the volume of a certain
region in phase space [5]. The laws of thermodynamics are
also equally applicable to quantum mechanical systems. A
lot of progress has been made recently in studying the cold
trap atoms that are largely isolated from surroundings [6—
9]. Furthermore, the availability of Feshbach resonances is
shown to be useful to control the strength of interactions,
to realize strongly correlated systems, and to drive these
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systems between different quantum phases in a controlled
manner [10-13]. These experiments have raised the possi-
bility of understanding the emergence of thermodynamics
from the principles of quantum mechanics. The fundamen-
tal questions that one hopes to answer from these investiga-
tions are: How do the macroscopic laws of thermodynamics
emerge from the reversible quantum dynamics? How should
we understand the thermalization of a closed quantum sys-
tems? What are the relations between information, thermody-
namics, and quantum mechanics [14—19]? While answering
these questions for a many body system is out of sight, some
important progress has been made by considering simple lat-
tice systems (see, for instance, Refs. [20-23]). In this work,
in an attempt to address some of the above questions, our
focus is on another simple, yet, macroscopic system—the
black hole.

It has long been conjectured that a black hole’s thermody-
namic entropy is given by its entropy of entanglement across
the horizon [24-30]. However, this has never been directly
related to the Hawking temperature [31]. Here we show that:

(i) The Hawking temperature is given by the rate of change
of the entropy of entanglement across a black hole’s
horizon with regard to the system energy.

(i) The information lost across the horizon is related to the
black-hole entropy and the laws of black-hole mechanics
emerge from entanglement across the horizon.

The model we consider is complementary to other mod-
els that investigate the emergence of thermodynamics [14—
19]. First, we evaluate the entanglement entropy for a rela-
tivistic free scalar fields propagating in the black-hole back-
ground, while the simple lattice models that were considered
are non-relativistic. Second, quantum entanglement can be
unambiguously quantified only for bipartite systems [32,33].
While the bipartite system is an approximation for applica-
tions to many body systems, here, the event horizon provides
a natural boundary.
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The entanglement of a relativistic free scalar field, as
always, is the simplest model to evaluate. However, even for
free fields it is difficult to obtain the entanglement entropy.
The free fields are Gaussian and these states are entirely char-
acterized by the covariance matrix. It is generally difficult to
handle covariance matrices in an infinite-dimensional Hilbert
space [33]. There are two ways to calculate the entangle-
ment entropy in the literature. One approach is to use the
replica trick which rests on evaluating the partition function
on an n-fold cover of the background geometry where a cut
is introduced throughout the exterior of the entangling sur-
face [33,34]. Second we have a direct approach, where the
Hamiltonian of the field is discretized and the reduced density
matrix is evaluated in the real space. We adopt this approach
as the entanglement entropy may have more symmetries than
the Lagrangian of the system [35].

To remove the spurious effects due to the coordinate sin-
gularity at the horizon,! we consider a Lemaitre coordi-
nate, which is explicitly time-dependent [37]. One of the
features that we exploit in our computation is that for a
fixed Lemaitre time coordinate, the Hamiltonian of the scalar
field in Schwarzschild space-time reduces to the scalar field
Hamiltonian in flat space-time [28].

The procedure we adopt is the following:

1. We perturbatively evolve the Hamiltonian about the fixed
Lemaitre time.

2. We obtain the entanglement entropy at different times.
We show that at all times, the entanglement entropy sat-
isfies the area law i.e. S(¢) = C(¢)A where S(¢) is the
entanglement entropy evaluated at a given Lemaitre time
(e), C(e) is the proportionality constant that depends on
€, and A is the area of the black-hole horizon. In other
words, the value of the entropy is different at different
times.

3. We calculate the change in entropy as a function of €,
i.e., AS/Ae. Similarly we calculate the change in energy
E(e),i.e., AE/Ae.

For several black-hole metrics, we explicitly show that the
ratio of the rate of change of energy and the rate of change
of entropy is identical to the Hawking temperature.

The outline of the paper is as follows: in Sect. 2, we
set up our model Hamiltonian to obtain the entanglement
entropy in (D + 2)-dimensional space-time. Also, we define
the entanglement temperature, which has the same structure
as in statistical mechanics, that is, the ratio of the change in
total energy to the change in entanglement entropy. In Sect.
3, we numerically show that for different black-hole space-
times, the divergence free entanglement temperature matches
approximately with the Hawking temperature obtained from

' In Schwarzschild coordinates, r > 2M needs to be bipartitioned [36].
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the general theory of relativity and its Lovelock generaliza-
tion. This provides strong evidence toward the interpreta-
tion of entanglement entropy as the Bekenstein—Hawking
entropy. Finally in Sect. 4, we conclude with a discussion
to connect our analysis with the eigenstate thermalization
hypothesis for closed quantum systems [22].

Throughout this work, the metric signature we adopt is
(+,—,—,—)andweseth =kp =c=1.

2 Model and setup
2.1 Motivation

Before we evaluate the entanglement entropy (EE) of a quan-
tum scalar field propagating in a black-hole background, we
briefly discuss the motivation for studying the entanglement
entropy of a scalar field. Consider the Einstein—Hilbert action
with a positive cosmological constant (| Al):

Sn(@) =M /d“x/fg[k —2|A[] (1)

where R is the Ricci scalar and M,, is the Planck mass. Per-
turbing the above action w.r.t. the metric g, = guv + hpv,
the action up to second order becomes [28]

2

M
S, (g h) = ——"‘/ a* Jg]

2
X [Vahy VERPY + | AlRyh*] . 2)

The above action corresponds to a massive (A) spin-2 field
(h ) propagating in the background metric g,,,. Rewriting
hyy = M;le,wq)(x“) [where €, is the constant polariza-
tion tensor], the above action can be written as

1
Senle ) = =5 [ atr/igl [a,000 +1a107] . )

which is the action for the massive scalar field propagating in
the background metric g,,,. In this work, we consider a mass-
less (A = 0 corresponding to asymptotically flat space-time)
scalar field propagating in a (D + 2)-dimensional spherically
symmetric space-time.

2.2 Model

The canonical action for the massless, real scalar field ® (x*)
propagating in (D + 2)-dimensional space-time is

1

S = E/chHX«/—g "9, ®(x) 3, D (x) @
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where g, is the spherically symmetric Lemaitre line element
[37]:

ds? = de? — (1 = flr(z, )]) d€? — r2(z, £)dQ%  (5)

where 7, £ are the time and radial components in Lemaitre
coordinates, respectively, r is the radial distance in
Schwarzschild coordinates and dQ2p is the D-dimensional
angular line element. In order for the line element (5) to
describe a black hole, the space-time must contain a singu-
larity (say at » = 0) and have horizons. We assume that the
asymptotically flat space-time contains one non-degenerate
event horizon at r;. The specific forms of f(r) correspond
to different space-times.

The Lemaitre coordinate system has the following inter-
esting properties:

1. The coordinate 7 is time-like all across 0 < r < o0,
similarly & is space-like all across 0 < r < oco.

2. The Lemaitre coordinate system does not have coordinate
singularity at the horizon.

3. This coordinate system is time-dependent. The test par-
ticles at rest relative to the reference system are particles
moving freely in the given field [37].

4. The scalar field propagating in this coordinate system is
explicitly time-dependent.

The spherical symmetry of the line element (5) allows us
to decompose the normal modes of the scalar field as follows:

D(x) =Y Dy, (7, £) Z1; (0, 9i), (6)

l,m,-

where i € {1,2,...D — 1} and Z,,’s are the real hyper-
spherical harmonics. We define the lfollowing dimension-
less parameters: 7 = r/ry, 5 =&/rp, T = t/rp, &DIm =
rp @, By the substitution of the orthogonal properties of
Z, ,the canonical massless scalar field action becomes

Im; >
1 - - 1
S=- dF dé 7P | V1= f[F] 0z Bim)* — ———=
52 /Tr £ {¢ N ey

- Il+D-1) .
X (8 Bum)? — 1—fﬁ]£¥tﬁ——l®ﬁi. )

Lim;

The above action contains non-linear time-dependent terms
through f (7). Hence, the Hamiltonian obtained from the
above action will have a non-linear time-dependence. While
the full non-linear time-dependence is necessary to under-
stand the small size black holes, for large size black holes it
is sufficient to linearize the above action by fixing the time-
slice and performing an infinitesimal transformation about a
particular Lemaitre time T [38]. More specifically,

E—¢& =¢, ®)

T—> 1T =17+e,

F(FLE) =F(F +¢€ &), ©)

D, (F.8) > B, (T E) = Dy, (7. 8) (10)

where ¢ is the infinitesimal Lemaitre time. The functional
expansion of f(¥) about ¢ and the following relation between
the Lemaitre coordinates [37]:

- L dr
E—r:/—, (11)
1 -

fIF(E,8)]

allow us to perform the perturbative expansion in the above
action.

After doing the Legendre transformation, the Hamiltonian
up to second order in € is

H(e) =~ Hy + €V, + €%V, (12)

where H, is the unperturbed scalar field Hamiltonian in
the flat space-time, V, andV, are the perturbed parts of
the Hamiltonian (for details, see Appendix A). Physically,
the above infinitesimal transformations (10) correspond to
perturbatively expanding the scalar field about a particular
Lemaitre time.

2.3 Important observations

The Hamiltonian in Eq. (12) is key equation regarding which
we would like to stress the following points: First, in the limit
of ¢ — 0, the Hamiltonian reduces to that of a free scalar field
propagating in flat space-time [28]. In other words, the zeroth
order Hamiltonian is identical for all the space-times. Higher
order e terms contain information as regards the global space-
time structure and, more importantly, the horizon properties.

Second, the Lemaitre coordinate is intrinsically time-
dependent; the € expansion of the Hamiltonian corresponds
to the perturbation about the Lemaitre time. Here, we assume
that the Hamiltonian H undergoes adiabatic evolution and
the ground state Wgs is the instantaneous ground state at
all Lemaitre times. This assumption is valid for large black
holes, as Hawking evaporation is not significant. Also, since
the line element is time-asymmetric, the vacuum state is
the Unruh vacuum. Evaluation of the entanglement entropy
for different values of € corresponds to different values of
Lemaitre time. As we will show explicitly in the next sec-
tion, the entanglement entropy at a given € satisfies the area
law [S(€) oc A] and the proportionality constant depends on
€,i.e. S(e) = C(e)A.

Third, it is not possible to obtain a closed form analytic
expression for the density matrix (tracing out the quantum
degrees of freedom associated with the scalar field inside a
spherical region of radius rj) and hence, we need to resort

@ Springer
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to numerical methods. In order to do so, we take a spa-
tially uniform radial grid, {r;}, with b = r;4; —r;. We
discretize the Hamiltonian H in Eq. (12). The procedure
to obtain the entanglement entropy for different € is simi-
lar to the one discussed in Refs. [25,28]. In this work, we
assume that the quantum state corresponding to the dis-
cretized Hamiltonian is the ground state with wave function
Wes(X1, ...y Xn; Y15 - - -» YN—n). The reduced density matrix
o(y,y’) is obtained by tracing over the first n of the N oscil-
lators,

oy, y) =/<]_[dxi> WGs (X1, oo X3 YIWEG(XT, oo X3 ¥ ).
i=1
(13)

Fourth, in this work, we use the von Neumann entropy
S(e) = =Tr(p logp) (14)

as the measure of entanglement. In analogy with the
microcanonical ensemble picture of equilibrium statistical
mechanics, the evaluation of the Hamiltonian H at different
infinitesimal Lemaitre times, €, corresponds to setting the
system at different internal energies. In analogy we define
entanglement temperature [39]:

1 AS(e) _ Slope of EE(AS/A€) (15)
Trr  AE(e)  Slope of energy(AE/A¢€)’

The above definition is consistent with the statistical mechan-
ical definition of the temperature. In statistical mechanics,
the temperature is obtained by evaluating the change in the
entropy and energy w.r.t. the thermodynamic quantities. In
our case, the entanglement entropy and the energy depend
on the Lemaitre time, and we have evaluated the change in
the entanglement entropy and energy w.r.t. €. In other words,
we calculate the change in the ground state energy (entan-
glement entropy) for different values of € and find the ratio
of the change in the ground state energy and change in the
EE. As we will show in the next section, EE and energy go
linearly with € and, hence, the temperature does not depend
on €. While the EE and the energy diverge, their ratio is a
non-divergent quantity. To understand this, let us do a dimen-
sional analysis,

L D+1 A
[Eps1]oc NPH o (Z) LISl (16)
- E LP
= [Tpe] o b [’;” xN. (17)
(TeE] D .
ie., N = [TEg] &< (N/n)” = finite (18)

where Ap is the (D + 1)-dimensional hyper-surface area. In
the thermodynamic limit, by setting L finite with N — oo
and b — 0, Tgg in Eq. (16) is finite and independent of €.

@ Springer

For large N, we show that, in natural units, the above cal-
culated temperature is identical to the Hawking temperature
for the corresponding black hole [31]:

Tpy = << = L4

27 4m dr

(19)
r=rp
Fifth, it is important to note that the above entanglement
temperature is non-zero only for f(r) # 1. In the case of
a flat space-time, our analysis shows that the entanglement
temperature vanishes, and we obtain Trg numerically for
different black-hole space-times.

3 Results and discussions

The Hamiltonian H in Eq. (12) is mapped to a system of N
coupled time independent harmonic oscillators (HOs) with
non-periodic boundary conditions. The interaction matrix
elements of the Hamiltonian can be found in Ref. [40]. The
total internal energy (E) and the entanglement entropy (S)
for the ground state of the HOs is computed numerically as
a function of € by using a central difference scheme (see
Appendix B). All the computations are done using MAT-
LAB R2012a for the lattice size N = 600, 10 < n < 500
with a minimum accuracy of 10~8 and a maximum accuracy
of 10712,

In the following subsections, we compute Tgfr numeri-
cally for two different black-hole space-times, namely, the
four-dimensional Schwarzschild and Reissner—Nordstrém
black holes and show that they match with the Hawking tem-
perature Tpy. Tgg is calculated by taking the average of
entanglement temperature for each n by fixing N.

3.1 Schwarzschild (SBH) black holes

The four-dimensional Schwarzschild black-hole space-time
(put D = 2) in dimensionless units 7 is given by the line
element in Eq. (5) with f(¥) given by

1
f(7)=1—;- (20)

In Fig. 1, we have plotted the total energy (in dimensionless
units) and EE versus ¢ for a four-dimensional Schwarzschild
space-time. The following points are important to note
regarding the numerical results: First for every €, the von
Neumann entropy scales approximately as S ~ (r;,/b)>. Sec-
ond, EE and the total energy increase with €.

Using Eq. (15), we evaluate the “entanglement” temper-
ature numerically. In dimensionless units, we get Tpg =
0.0793, which is close to the value of the Hawking temper-
ature 0.079. However, it is important to note that for differ-
ent values of N, we obtain approximately the same value
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Fig. 1 The plots of total energy (left) and EE (right) as a function of
€ for the four-dimensional Schwarzschild black hole. We set N = 600
and n = 150. The cyan colored dots are the numerical data and the red
line is the best linear fit to the data

Table 1 Entanglement temperature and Hawking temperature (mea-
sured in units of r;,) for four-dimensional Schwarzschild and Reissner—
Nordstrom black-hole space-times

Four-dimensional black-hole space-time Tsu Teg
SBH 0.07958 0.07927
RN
q =0.1 0.07878 0.07836
q=02 0.07639 0.07507
q=03 0.07242 0.07501
q=04 0.06685 0.06659

of the entropy. The results are tabulated; see Table 1. See
Appendix C, for plots of energy and EE for n = 50, 80, 100,
and 130.

3.2 Reissner—Nordstrom (RN) black holes

The four-dimensional Reissner—Nordstrom black hole is
given by the line element in Eq. (5), where f(7) is

21

2
i =1- 2Mf/rh n Q/rn)”

i-‘2

Q is the charge of the black hole. Note that we have rescaled
the radius w.r.t. the outer horizon (r, = M + /M? — Q?).
Choosing g = Q/ry, we get

1+4) ¢
d+q)  a

72

fr=1- (22)
and the black-hole temperature in the unit of rj, is Tpy =
(1 —g*)/4m.

Note that we have evaluated the entanglement temperature
by fixing the charge g. For a fixed charge ¢, the first law of
black-hole mechanics is givenby dE = (k/2m) dA, where A
is the area of the black-hole horizon. The energy and EE for
different ¢ values have the same profile, which looks exactly
like the previous case and is shown in the middle row in Fig. 2.

%.4
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> | 3204
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3288t 7

Fig. 2 The plots of total energy (top panel) and EE (bottom panel) as a
function of € for different gs in four-dimensional Reissner—Nordstrom
black hole. For these, we set N = 600 and n = 150. The cyan colored
dots are the numerical data and the red line is the best linear fit to the
data

See Appendix C for plots for other values of n. As given in
Table 1, Tg g matches with the Hawking temperature.

4 Conclusions and outlook

In this work, we have given another proof that four-
dimensional black-hole entropy can be associated to the
entropy of entanglement across the horizon by explicitly
deriving the entanglement temperature. The entanglement
temperature is given by the rate of change of the entropy of
entanglement across a black hole’s horizon with regard to the
system energy. Our new result sheds light on the interpreta-
tion of temperature as regards entanglement as the Hawking
temperature; one more step to understanding the black-hole
thermodynamics in the field of quantum information theory.

Some of the key features of our analysis are: First, while
entanglement and energy diverge in the limit of b — O,
the entanglement temperature is a finite quantity. Second,
the entanglement temperature vanishes for the flat space-
time. While the evaluation of the entanglement entropy does
not distinguish between the black-hole space-time and flat
space-time, the entanglement temperature distinguishes the
two space-times.

Our analysis also shows that the entanglement entropy sat-
isfies all the properties of the black-hole entropy. First, like
the black-hole entropy, the entanglement entropy increases
and never decreases. Second, the entanglement entropy and
the temperature satisfies the first law of black-hole mechan-
ics dE = TggdS. We have shown this explicitly for a
Schwarzschild black hole and for a Reissner—Norstrom black
hole.

It is quite remarkable that in higher-dimensional space-
time the Rényi entropy provides a convergent alternative to
the measure of entanglement [30]; however, the entanglement
temperature will depend on the Rényi parameter. While a
physical understanding of the Rényi parameter has emerged

@ Springer
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[41], it is still not clear how to fix the Rényi parameter from
first principles [42].

Our analysis throws some light on the emergent gravity
paradigm [43-46] where gravity is not viewed as a funda-
mental force. Here we have shown that the information lost
across the horizon is related to the black-hole entropy and
the laws of black-hole mechanics emerge from the entan-
glement across the horizon. Since general relativity reduces
gravity to an effect of the curvature of the space-time, it is
thought that the microscopic constituents would be the atoms
of the space-time itself. Our analysis shows that entanglement
across horizons can be used as building blocks of space-time
[47,48].

One of the unsettling questions in theoretical physics is
whether due to Hawking temperature the black hole has per-
formed a non-unitary transformation on the state of the sys-
tem, a.k.a. the information loss problem. Our analysis here
does not address this question for two reasons: (1) Here, we
have fixed the radius of the horizon at all times and evaluated
the change in the entropy while to address the information
loss we need to consider a changing horizon radius. (2) Here,
we have used a perturbative Hamiltonian, and, hence, this
analysis fails as the black-hole size shrinks to half its size
[49]. We hope to report on this feature in the future.

While the unitary quantum time-evolution is reversible
and retains all information as regards the initial state, we
have shown that the restriction of the degrees of freedom
outside the event horizon at all times leads to a temperature
analogous to the Hawking temperature. Our analysis may
have relevance to the eigenstate thermalization hypothesis
[20-23], which we plan to explore.
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Appendix A: Calculation of scalar field Hamiltonian in
Lemaitre coordinate

In this appendix, we give details of the derivation of the
Hamiltonian (H) up to second order in €. Using the orthogo-
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nal properties of the real spherical harmonics Z, , the scalar

field action reduces to

( lm)
dzd 1= P10 By, )2 — i
Zfs R ey

Il+D-1) .
SN %@ﬁn,}

.9
Im;

(A1)

where 7 = r/ry, £ = &/rp, T = t/rp, Ppm = rp Opm are
dimensionless.

We perform the following infinitesimal transformation
[38] in the above resultant action:

Tt =7%+e £ & =E, (A.2)
D, (F.8) > B, (T E) = Dy, (T, ). (A3)
F(EE) =F(F +e ). (A.4)

The action in Eq. A.1 becomes

~ %Z/dfdé (7 + ehi + *ha/2)"

Lm;

af T 2N L.
) [<1 “r-eng -G gt e REE]) b
- . -\ —1/2
Y ) a2 f .
—<l—f—€h1§—3 h2¥+h% 372 (8E~d)lmi)2
I(+D—-1)

(F+ehy + 2h/2)°

of [ af Lt
X(l—_f—fh]g—z_za—.—h%az > q)lzm,
(A.5)
oF 3°F
where h| = —’: and hy, = Trz
T

Using the relatlon between the Lemaitre coordinates [37]

.
— 7 = - A.6
‘ fx/il—fwr,s)] (A.6)

gives the following expression:

af dé 1

hy = — , = T= .
2 = af d}" |COn.‘L’ m
(A7)

e

The Hamiltonian (H) corresponding to the above Lagrangian
is
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~ 2
1 It ~2 gD X]"’i
HZEZ/dg Hlmi"'g_l(aé D/2 )
2

Lm;

I0+D—1)_
+ 2 Xl%n-
8] !

1 o0 o - (T]t. 2
H0=§Z/f dr|:n12mi+rD[8;FD72]

Lm;

81 V& llmll b1
+(+~—2_)f’ﬁm] , (A.15)
(A.8) r
. EZ/OO . (=D o +27 01, ) (DH3 01, 27 H i, +2DF H] 01, ~F Hf 01, ) 204D DA,
) z 472 72 mi | >
(A.16)

where

g, =7 +e€hy 4+ €°hy)2, (A.9)
) 217 9 32

g, = \/1 e |:h2—f +h2—f}, (A.10)

aF 2 | Tar a2

Ko, = 8P /8, Pim,y (A11)

and I m; 1s the canonical conjugate momenta corresponding
to the field i, .

Upon quantization, l:Ilm,. and ), satisfy the usual canon-
ical commutation relation:

i (:5) T (67)] = £ 6).

(A.12)

Using relations (A.7) and expanding the Hamiltonian up to
second order in €, we get

(1 —€H, — esz)D

! R =D
H:EZﬁ dr | wj,, +7 72
m; 0T (1 +e€H, — 62H4)

2

O'lm,‘
FP/2 (1—€H, —esz)D/z <1+6H3 —€2H4)
Il+D—1) 2}

o,
72 (1 —€H, — 62H2)2 mi

x| 9 1/4

(A.13)

The Hamiltonian in Eq. (A.13) is of the form

H >~ H,+ eV, +€*V, (A.14)

where H, is the unperturbed scalar field Hamiltonian in the
flat space-time, V, and V, are the perturbed parts of the Hamil-
tonian given by

1 < 2 2
Vv, = 52/{ dr|:(H3 +H4) s

Lim;

DH? DH.
+(— 1=

3 —_ 4 DH|H| — DH3H| + DH;
r r

1
+H3Hé + §H41> Ul/mialmi

N Il+D—1)(3H} +2H,) D?H} D*H,
72 472 472
D] D g 2
2r 2r 4 2r
DH3H3’ 1 — I, dH‘{ 2
- — -DH|H,+ —H? — —* ,
7 TR T g ) O
(A.17)
where
g _YI-7 _1af 1
NV S
(A.18)
-1 [af\* 18>
H=—— —Jj + _4, (A.19)
41 — f) \or 2 972
and the redefined field operators are
- Tim; ~ Olm;
Mim; = ——77 and Xim; = —— 77> (A.20)
= pte - pte

such that they satisfy the following canonical commutation
relation:

[mmi NG f)] = i8S 8G — ). (A21)
The Hamiltonian H in Eq. (A.14) is mapped to a system of
N coupled time independent harmonic oscillators (HO) with
non-periodic boundary conditions. The interaction matrix
elements of the Hamiltonian can be found in Ref. [40]. The
total internal energy (E) and the entanglement entropy (S)

for the ground state of the HO’s is computed numerically as
a function of € by using a central difference scheme.
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Appendix B: Central difference discretization

Central difference discretization is one of the effective meth-
ods for finding the approximate value for the derivative
of a function in the neighborhood of any discrete point,
X; = xo+1 h, with unit steps of /. The Taylor expansions of
the function about the point xq in the forward and backward
difference scheme are given, respectively, by

W@ R

fa+h) = f)+ = 5 , (B.1)
h / h2 "
Foe—my = poo - L g
which implies
fro =104 h)z_hf(x —M 4 o, (B.3)
f”(x): f(x'i_h)_z.];(zx)'i‘f(x_h) +0(h2), (B.4)
Fx42h) =2 f (x+h)+2f (x—h)+ f(x—2h)

Jrx) = T

+ 0(h?). (B.5)

Appendix C: Plots of internal energy and EE as a
function of € for different black-hole space-times

In this section of the appendix, we give plots of EE for dif-
ferent black-hole space-times (Figs. 3, 4, 5).

1476,
n=50 948 n=80 n=100 n=130

wn 37 945 1473
2478

944

Fig. 3 Plots of the EE as a function of € for the four-dimensional
Schwarzschild black hole with N = 300, n = 50, 80, 100, and 130,
respectively. The blue dots are the numerical data and the red line is the
best linear fit to the data

e n=110 =140 s n=180 o n=200

a2

Fig. 4 Plots of the EE as a function of € for the four-dimensional
Schwarzschild black hole with N = 400, n = 110, 140, 180, and 200,
respectively. The blue dots are the numerical data and the red line is the
best linear fit to the data

@ Springer

k2 74 374 374

a2

370

00 05 10 00 05 0 00 05 10 00 05 10

Fig. 5 Plots of the EE of four-dimensional R-N black hole in terms of
€ for different ¢’s with N = 300, and n = 50. The blue dots are the
numerical data and the red line is the best linear fit to the data
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