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Abstract In this paper, we take into account black hole
solutions of Brans–Dicke–Maxwell theory and investigate
their stability and phase transition points. We apply the con-
cept of geometry in thermodynamics to obtain phase transi-
tion points and compare its results with those, calculated in
the canonical ensemble through heat capacity. We show that
these black holes enjoy second order phase transitions. We
also show that there is a lower bound for the horizon radius of
physical charged black holes in Brans–Dicke theory, which
originates from restrictions of positivity of temperature. In
addition, we find that employing a specific thermodynamical
metric in the context of geometrical thermodynamics yields
divergencies for the thermodynamical Ricci scalar in places
of the phase transitions. It will be pointed out that due to the
characteristic behavior of the thermodynamical Ricci scalar
around its divergence points, one is able to distinguish the
physical limitation point from the phase transitions. In addi-
tion, the free energy of these black holes will be obtained
and its behavior will be investigated. It will be shown that
the behavior of the free energy in the place where the heat
capacity diverges demonstrates second order phase transition
characteristics.

1 Introduction

Einstein’s general relativity is able to describe the dynamics
of our solar system well enough. In addition, this theory pre-
dicted the existence of gravitational waves, which recently
were observed by the LIGO and Virgo collaborations [1].
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It is notable that observations of the LIGO collaboration
could be employed to test the validation of Einstein theory
of the gravity or the necessity of modified theories of gravity
[2–7]. The Einstein theory of gravity may have some prob-
lems in describing gravity accurately at all scales. One of the
problems that general relativity faced was that it could not
describe the accelerated expansion of the universe accurately
[8–10]. Also, it is consistent with neither Mach’s principle
nor Dirac’s large number hypothesis [11,12]. Thus, cosmol-
ogists explored various alternatives for gravitational fields
[13–22]. The pioneering studies of scalar–tensor theory were
done by Brans and Dicke [23]. This theory accommodates
both Mach’s principle and Dirac’s large number hypothe-
sis [11,12]. Scientists have investigated various aspects of
black holes and gravitational collapse in Brans–Dicke (BD)
theory due to their importance in both classical and quantum
aspects of gravity [24–27]. It has been shown that the station-
ary and vacuum BD solution in four dimensions is just the
Kerr solution with a trivial scalar field everywhere [28]. Cai
and Myung showed that in four dimensions the BD-Maxwell
(BDM) solution is just the Reissner–Nordström (RN) solu-
tion with a constant scalar field [29–32]. However, in higher
dimensions, due to the fact that the action of Maxwell field
is not invariant under a conformal transformation and the
stress energy tensor of the Maxwell field is not traceless, the
solution of BDM is an RN solution with a non-trivial scalar
field.

On the other hand, black hole thermodynamics has been
a field of interest for many researchers since the work of
Hawking [33]. Recently, in most treatments of black hole
thermodynamics, physicists have considered the cosmolog-
ical constant (�) as a dynamical variable [34–36]. Further-
more, some authors suggested to treat � as a thermody-
namic variable [37,38], such as thermodynamical pressure
[39–56]. One of the interesting aspects of black hole ther-
modynamics is its stability. In order to have a black hole
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in thermal stability, its heat capacity must be positive. In
other words, positivity of the heat capacity guarantees ther-
mal stability of the black holes. This approach of studying the
stability is in the context of the canonical ensemble. Study-
ing the heat capacity of a system also provides a mecha-
nism to study the phase transitions of that system. There
are two distinctive points: in one point, changing the sign
of the heat capacity is called a physical limitation point and
therefore, the root of the heat capacity is a border between
non-physical and physical black hole solutions. Other char-
acterized points are related to the divergencies of the heat
capacity. We identify these points as second order phase tran-
sitions [57].

In the past few decades, applying the thermodynamical
geometry for studying the phase transition of black holes has
gained a lot of attention. These studies were pioneered by
Weinhold [58,59] and Ruppeiner [60,61]. Weinhold intro-
duced a metric on the space of equilibrium state and defined
the metric tensor as the second derivative of the internal
energy with respect to entropy and other extensive quan-
tities. On the other hand, the metric that Ruppeiner intro-
duced was defined as the minus second derivatives of entropy
with respect to internal energy and other extensive quanti-
ties, which was conformal to Weinhold’s metric [62]. How-
ever, applying these treatments to the study of black hole
thermodynamics caused some puzzling anomalies. Neither
Weinhold nor Ruppeiner metrics were invariant under a Leg-
endre transformation. A few years ago, Quevedo [63–66]
proposed an approach to obtain a metric which was Legen-
dre invariant in the space of equilibrium state. His work was
based on the observation that standard thermodynamics was
invariant with respect to a Legendre transformation. The for-
malism of geometrothermodynamics (GTD) indicates that a
phase transition occurs at points where the thermodynamics
curvature is singular, and as a consequence, the curvature
can be interpreted as a measure of thermodynamics inter-
action. After Quevedo, interesting studies were performed
by some authors [67–71]. Recently, it was pointed out that
using the mentioned approaches toward GTD may some-
times confront with some problems. In order to overcome
these problems, a new approach was introduced in Refs. [72–
75].

The outline of the paper is as follows; in Sect. 2, we
review the charged BD black holes and their thermodynam-
ical quantities. In Sect. 3, we introduce the approaches for
studying phase transitions of these black holes in the con-
text of the heat capacity and geometrical thermodynamics.
Then we investigate the existence of the phase transitions
in the context of the two approaches mentioned and com-
pare them with each other. We also investigate the effect
of the BD parameter. In addition, we study the free energy
of BD black holes. The last section is devoted to closing
remarks.

2 Black holes solutions in BDM gravity

Regarding (n + 1)-dimensional BDM theory, one finds the
related action [29–32]

IG = − 1

16π

∫
M

dn+1x
√−g

×
(
�R − ω

�
(∇�)2 − V (�) − FμνF

μν
)

, (1)

where � and V (�) are, respectively, a scalar field and its self-
interacting potential. Besides, the factor ω is the coupling
constant, R is the scalar curvature, Fμν = ∂μAν − ∂ν Aμ is
the electromagnetic tensor field, and Aμ is the electromag-
netic potential. The equations of motion can be obtained with
the following explicit forms by varying the action (1) with
respect to the gravitational field gμν , the scalar field �, and
the gauge field Aμ [29–32]:

Gμν = ω

�2

(
∇μ�∇ν� − 1

2
gμν(∇�)2

)

−V (�)

2�
gμν + 1

�

(
∇μ∇ν� − gμν∇2�

)

+ 2

�

(
FμλF

λ
ν − 1

4
Fρσ F

ρσ gμν

)
, (2)

∇2� = − n − 3

2 [(n − 1) ω + n]
F2 + 1

2 [(n − 1) ω + n)]

×
[
(n − 1)�

dV (�)

d�
− (n + 1) V (�)

]
, (3)

∇μF
μν = 0, (4)

where Gμν and ∇μ are, respectively, the Einstein tensor
and covariant derivative of manifold M with metric gμν .
Due to the appearance of inverse powers of the scalar field
on the right hand side of (2), solving the field equations
(2)–(4) directly is a non-trivial task. This difficulty can be
removed, by using a suitable conformal transformation [29–
32]. Indeed, via the conformal transformation the BDM the-
ory can be transformed into the Einstein–Maxwell theory
with a minimally coupled scalar dilaton field. A suitable con-
formal transformation can be shown as [29–32]

ḡμν = �2/(n−1)gμν, (5)

�̄ = n − 3

4α
ln �, (6)

where

α = (n − 3)/
√

4(n − 1)ω + 4n. (7)

It is worth mentioning that all functions and quantities in
Jordan frame (gμν , �, and Fμν) can be transformed into
Einstein frame (ḡμν , �̄ and F̄μν ). Applying the mentioned
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conformal transformation on the BD action (1), one finds the
action of dilaton gravity,

ĪG = − 1

16π

∫
M

dn+1x
√−ḡ

{
R̄ − 4

n − 1
(∇̄�̄)2

−V̄ (�̄) − exp

(
− 4α�̄

(n − 1)

)
F̄μν F̄

μν

}
, (8)

where ∇̄ and R are, respectively, the covariant derivative and
Ricci scalar corresponding to the metric ḡμν , and V̄ (�̄) is

V̄ (�̄) = �−(n+1)/(n−1)V (�). (9)

Regarding the (n + 1)-dimensional Einstein–Maxwell-
dilaton action (8), α is an arbitrary constant that governs
the strength of coupling between the dilaton and Maxwell
fields. One can obtain the equations of motion by varying
this action (8) with respect to ḡμν , �̄, and F̄μν

R̄μν = 4

n − 1

(
∇̄μ�̄∇̄ν�̄ + 1

4
V̄ ḡμν

)

+2e−4α�̄/(n−1)

(
F̄μλ F̄

λ
ν − 1

2(n − 1)
F̄ρσ F̄

ρσ ḡμν

)
, (10)

∇̄2�̄ = n − 1

8

∂ V̄

∂�̄
− α

2
e−4α�̄/(n−1) F̄ρσ F̄

ρσ , (11)

∂μ

[√−ḡe−4α�̄/(n−1) F̄μν
]

= 0. (12)

Assuming the
(
ḡμν, F̄μν, �̄

)
as solutions of Eqs. (10)–

(12) with the potential V̄
(
�̄

)
and comparing Eqs. (2)–(4 )

with Eqs. (10)–(12), the solutions of Eqs. (2)–(4) with the
potential V (�) can be written as

[
gμν, Fμν,�

] =
[

exp

(
− 8α�̄

(n − 1) (n − 3)

)

×ḡμν, F̄μν, exp

(
4α�̄

n − 3

)]
. (13)

As a consequence, we can solve Eqs. (10)–(12) with a
suitable potential, instead of solving Eqs. (2)–(4). Assume an
(n+1)-dimensional static and spherically symmetric metric,

ds̄2 = − f (r)dt2 + dr2

f (r)
+ r2R2(r)d�2

n−1, (14)

where d�2
n−1 is the metric of a unit (n−1)-sphere, and f (r)

and R(r) are metric functions. By integrating the Maxwell
equation (12), we can obtain the nonzero electric field F̄tr as

F̄tr = q

(r R)n−1 exp

(
4α�̄

n − 1

)
, (15)

where q is an integration constant related to electric charge.
Now, we regard the following Liouville-type potential to
solve the field equations:

V̄ (�̄) = 2� exp

(
4α�̄

n − 1

)
+ (n − 1)(n − 2)α2

c2
(
α2 − 1

) e
4�̄

(n−1)α . (16)

Taking into account the metric (14) with the Maxwell field
(15) and potential (16), the consistent solutions of Eqs. (10)
and (11) are [56]

f (r) = − (n − 2)
(
α2 + 1

)2
c−2γ r2γ(

α2 + n − 2
) (

α2 − 1
)

+2�(α2 + 1)2c2γ

(n − 1)(α2 − n)
r2(1−γ ) − m

r (n−2)
r (n−1)γ

+ 2q2(α2 + 1)2c−2(n−2)γ

(n − 1)(α2 + n − 2)r2(n−2)(1−γ )
, (17)

R(r) = exp

(
2α�̄

n − 1

)
=

(c
r

)γ

, (18)

�̄(r) = (n − 1)α

2(1 + α2)
ln

(c
r

)
, (19)

wherem is an integration constant which is related to the total
mass, c is another arbitrary constant related to the scalar field
and γ = α2/(1 + α2).

Now, using the conformal transformation, we are able to
obtain the solutions of Eqs. (2)–(4). Considering the follow-
ing spherically symmetric metric:

ds2 = −U (r)dt2 + dr2

V (r)
+ r2H2(r)d�2

n−1, (20)

with Eqs. (2)–(4), we find that the functions U (r) and V (r)
are [56]

U (r) = 2�(α2 + 1)2c2γ ( n−5
n−3 )

(n − 1)(α2 − n)
r2(1− γ (n−5)

n−3 )

−mc(
−4γ
n−3 )

r (n−2)
rγ (n−1+ 4

n−3 )

+ 2q2(α2 + 1)2c−2γ (n−2+ 2
n−3 )

(n − 1)(α2 + n − 2)r2[(n−2)(1−γ )− 2γ
n−3 ]

− (n − 2)
(
α2 + 1

)2

(
α2 + n − 2

) (
α2 − 1

) (c
r

)−2γ
(
n−1
n−3

)
, (21)

V (r) = 2�(α2 + 1)2c2γ ( n−1
n−3 )

(n − 1)(α2 − n)
r2(1− γ (n−1)

n−3 )

−mc(
4γ
n−3 )

r (n−2)
rγ (n−1− 4

n−3 )

+ 2q2(α2 + 1)2c−2γ (n−2− 2
n−3 )

(n − 1)(α2 + n − 2)r2[(n−2)(1−γ )+ 2γ
n−3 ]

− (n − 2)
(
α2 + 1

)2

(
α2 + n − 2

) (
α2 − 1

) (c
r

)−2γ
(
n−5
n−3

)
, (22)
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where we used the conformal transformation of Eq. (16) with
the following explicit form:

V (�) = 2��2 + (n − 1)(n − 2)α2

c2
(
α2 − 1

)
×�[(n+1)(1+α2)−4]/[(n−1)α2]. (23)

In addition, one can use the conformal transformation to
obtain a consistent electromagnetic field as

Ftr = qc(3−n)γ

r (n−3)(1−γ )+2
. (24)

As one can see, the electromagnetic field becomes zero
as r −→ ∞. It is evident that as ω −→ ∞, the obtained
solutions are just the charged solutions of Einstein gravity
(RN AdS black hole).

Using the Euclidean action, the finite mass and the entropy
of the black hole can be obtained [29–32],

M = c(n−1)γ

16π

(
n − 1

1 + α2

)
m, (25)

S = c(n−1)γ

4
r (n−1)(1−γ )
+ . (26)

By considering the flux of electric field at infinity, one can
find the total charge of this configuration,

Q = q

4π
. (27)

Calculations show that the Hawking temperature of a BD
black hole on the outer horizon r+ is

T = κ

2π
= 1

4π

√
V

U

(
dU

dr

)∣∣∣∣∣
r=r+

, (28)

where κ is the surface gravity. After some simplifications,
we obtain [56]

T = −2(1 + α2)

4π(n−1)

(
�c2γ r1−2γ

+ + q2c−2(n−2)γ

r+γ
r+(2n−3)(γ−1)

)

+
[
γ (n−3)−n+2

]
(1 − n) (n−2)

2r+
(
α2+n − 2

) (
α2−1

)
(

c

r+

)−2γ

. (29)

3 Stability, phase transition, and geometrical
thermodynamics

In this section, first, we study the stability and phase transition
of the solutions in the context of the heat capacity. Next,
we consider the geometrical approach for studying phase
transition. We investigate the effect of the BD parameter and
compare the results of both approaches.

There are several approaches for studying the stability of
black holes. One of these approaches is related to studying the
perturbed black holes and see if and how they acquire stable
state and will be in equilibrium. This approach is known as
dynamical stability of black holes. In this paper, we are not
interested in the dynamical stability of black holes. We focus
our studies on the thermal stability of charged black hole
solutions in the context of BD theory through the canonical
ensemble. To do so, we calculate the heat capacity and study
its behavior.

Black holes should have a positive heat capacity in order
to be thermally stable. In other words, the positivity of the
heat capacity guarantees the local thermal stability of the
black holes. One can use the following relation for the heat
capacity:

CQ =T

(
∂2M

∂S2

)−1

Q
=T

(
∂S

∂T

)
Q

=T

(
∂S

∂r+

)
Q

(
∂T

∂r+

)−1

Q
.

(30)

On the other hand, it is possible to employ the heat capac-
ity for studying the phase transitions of black holes. In the
context of black holes, it is argued that the root of the heat
capacity (CQ = T = 0) is representing a border line between
physical (T > 0) and non-physical (T < 0) black holes. We
call it a physical limitation point. The system in the case of
this physical limitation point has a change in sign of the heat
capacity. In addition, it is believed that the divergencies of
the heat capacity represent phase transitions of black holes.
These phase transitions are known as second order phase
transition [57]. Therefore, the phase transition and limitation
points of the black holes in the context of the heat capacity
are calculated with the following relations:

⎧⎪⎪⎨
⎪⎪⎩

T = (
∂M
∂S

)
Q = 0, physical limitation point,

(
∂2M
∂S2

)
Q

= 0, second order phase transition.

(31)

Regarding Eq. (31) and in order to find the physical limi-
tation point, one should solve the following equation for the
entropy:

(
∂M

∂S

)
Q

= 7
π2�(n − 9 − 4ω) A1c(n+1) j1

4

+ (n − 2) π2 [(n − 1) ω + n] A2c(n−3) j1

2

+ (n − 9 − 4ω) Q2

c(n−3) j1 A2
= 0, (32)

while for the second order phase transition points (divergence
points of the heat capacity), we obtain the following relation:
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Fig. 1 For different scales: R
(continuous line), CQ (dotted
line) and T (dashed line) versus
r+ for � = −1, ω = 1, c = 1,
and q = 0.1. (Upper diagrams
d = 5 and lower diagrams
d = 6)

(
∂T

∂S

)
Q

= π2�(n − 9 − 4ω) A1c(n+1) j1

32

− (n − 2) π2 [(n − 1) ω + n] A2c(n−3) j1

16

+ [(n − 12) ω + 9 (n − 1)] Q2

8A2c(n−3) j1
= 0, (33)

where

A1 =
(
c− (n−3)2

(4n−4)ω+4n (4S)
n2+(4ω−2)n+9−4ω
4[(ω+1)n−ω](n−1)

) j2

,

A2 =
(
c− (n−3)2

(4n−4)ω+4n (4S)
n2+(4ω−2)n+9−4ω
4[(ω+1)n−ω](n−1)

) j3

,

j1 = ζ (n − 3)2 ,

j2 = ζ [4nω (n − 1) + 3n (n + 1) + 3n − 9] ,

j3 = ζ (n − 1) [(4n − 8) ω + 5n − 9] ,

ζ =
[
(n − 1)2 + 4 (n − 1) ω + 8

]−1
.

It is worthwhile to mention that for the case of a phys-
ical limitation point, numerical evaluation shows that there
is only one root for this case which will be seen by plotting
graphs for the heat capacity. In the case of a phase tran-
sition point, interestingly, numerical evaluation shows that

two cases might occur: in one of these cases, there is no real
root for Eq. (33), hence there is no phase transition for the
black holes; whereas in the other case, due to the structure
of Eq. (33), there will be two roots for this equation, which
indicates the existence of two divergence points, and there-
fore, could be interpreted as phase transitions for these black
holes. This will be seen in the plotted graphs (Figs. 1, 2, 3,
4, and 5) in more detail.

Another approach for studying the phase transition of
black holes is through geometrical thermodynamics. There
are several metrics that one can employ in order to build a
geometrical phase space by thermodynamical quantities. The
well-known ones are the Ruppeiner, Weinhold, and Quevedo
cases. It was previously argued that these metrics may not
provide us with a completely flawless mechanism for study-
ing the geometrical thermodynamics of specific types of
black holes [72–75]. In this paper, we will show that the
method of geometrical thermodynamics reported in [76] is
not suitable in the presence of a scalar field. Recently, a new
metric (HPEM metric) was proposed in order to solve the
problems that other metrics may confront with [72–75].

According to Ref. [63], it is possible to derive, in principle,
an infinite number of Legendre invariant metrics. In addition,
it was shown that one of the simplest ways for obtaining the
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Fig. 2 For different scales: R (continuous line), CQ (dotted line), and T (dashed line) versus r+ for � = −1, ω = 1, c = 1, and q = 1. (Left
diagram d = 5 and middle, and right diagrams d = 6)

Fig. 3 For different scales: R (continuous line), CQ (dotted line) and T (dashed line) versus r+ for � = −1, ω = 1, c = 1, and q = 2. (Left
diagram d = 5 and middle, and right diagrams d = 6)

Legendre invariant metrics is to apply a conformal trans-
formation. Comparing HPEM metric with Quevedo’s one,
we find that they are the same up to a conformal factor. In
addition, despite Weinhold and Ruppeiner, the HPEM and
Quevedo metrics enjoy the same (− + + + · · · ) signature.
Regarding the same signature with a difference in the confor-
mal factor, it is expected that HPEM enjoys Legendre invari-
ance with a different Legendre multiplier.

On the other hand, we should mention an unavoidable fea-
ture related to Legendre invariance. Although it was thought
that the Legendre invariance guarantees a unique descrip-
tion of thermodynamical metrics, it was shown that such
an invariance alone is not sufficient for the mentioned guar-
anty in terms of thermodynamical curvatures [77]. However,
it was proven that in addition to Legendre invariance, we
need to require curvature invariance in various representa-
tions. Therefore, both Legendre and curvature invariances
should be checked. In addition, there are two issues with a
fundamental relation between them; (I) agreement of ther-
modynamical curvature results with usual thermodynamical
approaches (such as the heat capacity); (II) curvature invari-
ance in addition to the Legendre invariance. It is important to

probe the fundamentals of cases (I) and (II) for discovering
which case may lead to satisfaction of another one. Although
the former case has been investigated for special cases [77],
the latter one has been remained unanalyzed yet. One may
address them in an independent work in the future.

The Weinhold, Ruppeiner, and Quevedo thermodynamical
metrics are given by

ds2
W = MgWabdXadXb, (34)

ds2
R = −MTgWabdXadXb, (35)

ds2
Q = (

SMS + QMQ
) (

−MSSdS2 + MQQdQ2
)

, (36)

where gWab=∂2M (Xc) /∂Xa∂Xb and also Xa ≡ Xa
(
S, Ni

)
,

in which Ni denotes other extensive variables of the system.
The HPEM metric, with two extensive parameters (entropy
and electric charge), is

ds2
HPEM = SMS

M3
QQ

(
−MSSdS2 + MQQdQ2

)
, (37)
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Fig. 4 For different scales: R
(continuous line), CQ (dotted
line) and T (dashed line) versus
r+ for � = −1, q = 1, c = 1,
and ω = 0.1. (Up diagrams
d = 5 and lower diagrams
d = 6)

Fig. 5 For different scales: R (continuous line), CQ (dotted line) and T (dashed line) versus r+ for � = −1, q = 1, c = 1, and ω = 3. (Left
diagram d = 5 and middle and right diagrams d = 6)

where MX = (
∂M
∂X

)
and MXX =

(
∂2M
∂X2

)
. Calculations show

that the numerator and denominator of HPEM method for
this type of thermodynamical system are given by [72–75]

num(RHPEM) = 6S2M2
SMQQM

2
SSMQQQQ

−6SM2
SM

2
QQMSSMSSQQ + 2SM2

SQQM
2
SMQQMSS

+2

[
SMSMSSS − 1

2
MSS (SMSS − MS)

]
SM2

QQMSMSQQ

−9S2M2
QQQM

2
SM

2
SS

+4

[
1

4
MSQMSS + MSMSSQ

]
S2MQQMSMQQQ

+
[
S2M2

SMSSQ − S2MSQMSSMSMSSQ

× SMQQMS (SMSS − MS) MSS − 2
(
S2M3

SS + M2
SMSS

)

× MQQ + 2S2M2
SQM

2
SS

]
M2

QQ (38)
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and

denom(RHPEM) = S3M3
SM

2
SS . (39)

It is obvious that, in general, the roots of the numerator
and denominator of this Ricci scalar do not coincide. This
means that the case where the divergency of the Ricci scalar
could be canceled by its root does not occur. The denominator
of the Ricci scalar of the HPEM metric contains numerator
and denominator of the heat capacity. In other words, diver-
gence points of the Ricci scalar of the HPEM metric coincide
with both roots and phase transition points of the heat capac-
ity. Therefore, all the phase transition and limitation points
are included in the divergencies of the Ricci scalar of this
metric.

In the following, we study the stability and phase transi-
tion of charged BD black holes in the context of the canon-
ical ensemble by calculating heat capacity. Then we study
geometrical thermodynamics of these black holes by using
the HPEM thermodynamical metric. Before conducting the
research in the context of HPEM method, we will show that
the Weinhold, Ruppeiner, and Quevedo metrics fail to pro-
vide effective results.

First of all, one should take the fact into consideration that
the sign of temperature puts a restriction on the system as to it
being physical or non-physical. In other words, the negativity
of temperature denotes a non-physical system which in our
case is a black hole. It is evident that there is a critical horizon
radius, say rc, in which for r+ < rc the temperature of the
system is negative. Therefore, in this region solutions are
non-physical. Since for r+ > rc the system has a positive
temperature, the horizon radius of physical black holes is
placed in this region.

In the case of five-dimensional black holes, for sufficiently
small values of the electric charge (Fig. 1 top) and BD cou-
pling constant (Fig. 4 top), these black holes have three char-
acteristic points. One is related to the root of heat capac-
ity and the others are related to its divergencies (rDiv1 and
rDiv2, in which rDiv1 < rDiv2). It is clear that the root of
heat capacity and rc are the same and for the case r+ < rc
the heat capacity is negative but due to the negativity of tem-
perature, the system is not physical. On the other hand, for
the region rc < r+ < rDiv1, the heat capacity is positive
definite. Therefore, in this region, the system is in a stable
state. As for the case rDiv1 < r+ < rDiv2 the heat capac-
ity has a negative value, which is called an instability of
the black holes. In other words, in the case of r+ = rDiv1

the system may undergo a phase transition from a large and
unstable black hole to a smaller and stable one. In the case
of r+ = rDiv2 the system will have another phase transi-
tion and its stability will change from an unstable to a stable
one. In other words, for r+ > rDiv2 the heat capacity has
a positive value and the black hole is stable. It is notable

that for sufficiently large values of q (Figs. 2, 3 left), ω (Fig.
5 left), the divergencies of the heat capacity vanish and the
black hole is thermally stable for r+ > rc, without any phase
transition.

In the case of six-dimensional charged BD black holes,
we find the following results. It is clear that in the six-
dimensional case, using the values considered in the case
of five-dimensional solutions, in all cases one root and two
divergence points for the heat capacity are observed. In these
cases, the heat capacity and phase transitions have similar
behavior to that observed in five dimensions for charged BD
black holes. rDiv1 is an increasing function of the electric
charge (Figs. 2, 3 middle) while rDiv2 is a decreasing func-
tion of the BD coupling constant (Figs. 2, 5 right). We should
note that the effects of variation of q on the second divergence
point are small (Figs. 2, 3 right).

Next, by employing the metrics that were defined, Eqs.
(34)–(37), we construct a thermodynamical spacetime with
mass as the thermodynamical potential. Using Eqs. (25)–(27)
one can write the total mass of the black holes as a function of
extensive parameters. By employing Eqs. (34)–(37) the phase
space will be constructed. Next, we calculate the curvature
scalar of the mentioned thermodynamical metrics. Analytical
calculation of the curvature scalar is too large and, therefore,
we leave out the analytical result for reasons of economy.

Studying Fig. 6 shows that using the Weinhold and Rup-
peiner cases leads to a mismatch between the divergency
of the Ricci scalar of these two metrics and the diver-
gency of the heat capacity. In other words, the phase tran-
sitions of the Ruppeiner and Weinhold metrics do not coin-
cide with phase transitions of the canonical ensemble, and
hence the heat capacity. Next, we present the behavior of
the results obtained for the HPEM method in the plotted
graphs (Figs. 1, 2, 3, 4, and 5). These figures show that
divergencies of thermodynamical Ricci scalar coincide with
the root and divergence points of the heat capacity. As for
the Quevedo metric, we will follow another approach to
show that it fails to produce suitable results. It is a mat-
ter of calculation to show that using the Quevedo metric
(36), one can find the following denominator for its Ricci
scalar:

denom(RQ) = (
SMS + QMQ

)3
M2

SSM
2
QQ . (40)

Here, three terms contribute to divergencies of the Ricci
scalar of the Quevedo metric. MSS ensures that phase tran-
sitions of the heat capacity and some of the divergencies of
the Ricci scalar of this metric coincide, where the other two
terms will result in extra divergencies that do not coincidence
with any phase transition. In other words, the results of using
this metric are not consistent with the results of heat capac-
ity. Therefore, if one uses this metric independent of the heat
capacity, due to being plugged with extra divergencies, it
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Fig. 6 Left panel Weinhold,
right panel Ruppeiner; R
(continuous line), CQ (dotted
line) and T (dashed line) versus
r+ for � = −1, ω = 1, c = 1,
and q = 0.1. (Upper diagrams
d = 5 and lower diagrams
d = 6)

is not possible to make acceptable statements regarding the
physical properties of the system. For further clarification,
we give an example. For d = 5 and � = ω = c = 1, one
can find the following relation for the Ricci scalar of Quevedo
metric:

R = −104799744π2 r
228
29+

841 �2
1 �3

2

{
11981115 r

390
29+ −8575308 r

336
29+

−83387808 r
282
29+ + 116784640 r

228
29+

−5880114 r
222
29+ + 33781860 r

168
29+ + 343570752 r

114
29+

−123023853 r
54
29+ − 133929936

}
, (41)

where the �1 term,

�1 = 9 r
168
29+ + 28 r

114
29+ − 47, (42)

in the denominator, ensures that all the divergencies of the
heat capacity coincide with some of the divergencies of the
Ricci scalar, whereas the �2 term,

�2 = 171 r
168
29+ − 532 r

114
29+ − 333, (43)

provides extra divergencies, which are not matched with any
phase transition point. It is worthwhile to mention that the
root of the numerator does not cancel extra divergencies of
the Ricci scalar. Therefore, this simple example shows that
the Quevedo metric is plugged with extra divergencies which
are not consistent with phase transition points.

Therefore, the HPEM metric provides a successful mech-
anism for studying the places of the root and phase transition
points of these black holes in the context of the canonical
ensemble. It is worthwhile to mention that the behavior of
the thermodynamical Ricci scalar is different around the root
and divergence points of the heat capacity. In other words, in
the case of a divergency of the Ricci scalar coinciding with
the root of heat capacity, the behavior of the diagrams differs
from the case in which the divergency of the Ricci scalar
coincides with the divergencies of heat capacity. Therefore,
considering the HPEM method, we find that the root and
phase transitions are distinguishable from one another. In
order to recognize the physical limitation point (rc) from
phase transition points, one can extract the following infor-
mation from the figures. In the case of the root of the heat
capacity (S = S0), hence, a physical limitation point, there is
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Table 1 Comparison of root with phase transition points

CQ R

S = S0 limS→S0 CQ = 0 limS→S−
0
R = +∞

limS→S+
0
R = −∞

S = S1c limS→S−
1c
CQ = +∞ limS→S−∞ R = +∞

limS→S+
1c
CQ = −∞ limS→S+∞ R = +∞

S = S2c > S1c limS→S−
2c
CQ = −∞ limS→S−∞ R = −∞

limS→S+
2c
CQ = +∞ limS→S+∞ R = −∞

a change in sign of the Ricci scalar from +∞ to −∞; whereas
for the case of the divergence points of the heat capacity,
hence, second order phase transitions, the sign of the Ricci
scalar stays fixed. Therefore, this change/non-change in sign
is a characteristic that enables one to distinguish the root of
the heat capacity from phase transition points. We summarize
the mentioned information in Table 1.

Regarding CQ versus entropy, numerical calculations and
also the figures show that the heat capacity has a real positive
root (S0) for all values of parameters (q, ω, �, c). For the case
of divergence points of the heat capacity, there are two cases.
In the first case and for special choices of parameters, the
heat capacity does not diverge, while for the second case,
one can set the free parameters in such a way that CQ has
two real positive divergence points (S1c and S2c).

In order to emphasize the effects of the Brans–Dicke grav-
ity, we have plotted Figs. 7 and 8 for the variation of ω. It
is evident that the variation of the Brans–Dicke parameter
modifies the number of the divergencies and roots and their
corresponding places. These modifications lead to changes
in the stability conditions (regions of the stability) as well as
phase transitions of the black holes. This shows that in the
presence of modified gravity (Brans–Dicke gravity), the ther-
modynamical structure of the black holes will be modified
and acquires a different structure compared to the absence of
Brans–Dicke gravity.

According to the pioneering work of Davies [57], regard-
ing phase transitions in black holes, the divergencies of the
heat capacity are second order phase transitions. In his work,
he showed that these divergencies of the heat capacity have
the characteristics of the second order phase transition. In
addition, the studies that are conducted in extended phase
space proved that the divergencies of the heat capacity and
the second order phase transition in phase diagrams coincide
with each other [78–82]. In other words, second order phase
transition points that are observed in Gibbs free energy versus
temperature, pressure versus horizon radius, and temperature
versus horizon radius are matched with divergencies of the
heat capacity. Therefore, the divergencies of the heat capac-
ity are second order phase transitions. For more clarification,

we will study the corresponding free energy versus horizon
radius as well.

The free energy for these black holes is given by

F = M − T S,

in which by using Eqs. (25), (26), and (29), one can find the
free energy as

F = ζ [n (n − 2) + 4ω (n − 1)]

4π j3

×
⎧⎨
⎩
q2

[
n

(
ω + 9

8

) − 3
2 ω − 9

8

]
[ω (n − 1) + n] c j1r j3

+ (n − 2) c j1r j3

4

−
� (n−4ω−9)

[
n

(
ω+ 5

4

)
−2ω− 9

4

]
c(n+1) j1r ζ (n−1)[3(3n+1)+4nω]

2 [ω (n−1)+n] [n (3+4ω)+9]

⎫⎬
⎭ .

(44)

Now, by employing this relation and specific choices of
the different parameters in the plotted diagrams, we plot Figs.
9, 10, and 11.

Thermodynamically speaking, in free energy diagrams,
the second order phase transition takes place when the free
energy acquires an extremum. Here, we see for these spe-
cific choices of the different parameters, that the free energy
has two extrema. These extrema are located exactly where the
temperature has extrema as well. The existence of extrema in
the temperature is observed as divergencies in the heat capac-
ity. Therefore, the extrema of free energy, where a second
order phase transition takes place, coincide with the diver-
gencies of the heat capacity. This leads to the conclusion that
the divergencies that are observed in the heat capacity are
where black holes undergo a second order phase transition.

Furthermore, we calculate the critical horizon radius and
temperature by

(
∂T
∂r+

)
and present the results in Table 2. In

order to compare the results of heat capacity with those of
T − r+ diagram and HPEM approach for calculating the
critical horizon radius, we combine all results in Table 2. It
is evident from the values obtained for the critical horizon
radius and their corresponding critical temperatures that they
coincide with the extrema in the free energy and divergencies
of the heat capacity as well. This shows that phase transition
points which are second order ones are consistent for free
energy, temperature, and the heat capacity. Therefore, the
divergencies of the heat capacity in fact are at places in which
second order phase transitions take place.

4 Closing remarks

In this paper, we have studied the thermal stability and phase
transitions of charged BD black holes in the context of the
canonical ensemble by calculating the heat capacity. We
showed that there is a lower bound for the horizon radius
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Fig. 7 For different scales: CQ
versus r+ for � = −1, c = 1,
d = 5, q = 1, and ω = 0.01
(continuous line), ω = 0.1
(dotted line) and ω = 1 (dashed
line)

Fig. 8 For different scales: CQ versus r+ for � = −1, c = 1, d = 6, q = 1, and ω = 0.01 (continuous line), ω = 0.1 (dotted line) and ω = 1
(dashed line)

Fig. 9 For different scales: F
(continuous line) and T (dashed
line) versus r+ for � = −1,
c = 1, and d = 5. (Left diagram
ω = 1 and q = 0.1 and right
diagram q = 1 and ω = 0.1)

of physical charged BD black holes. This restriction origi-
nated from the sign of the temperature of these black holes.
We found that the regions of the physical and non-physical
black holes were functions of the electric charge and BD
coupling constant.

Regarding the phase transition of the black holes, we
found that black holes in the context of BD enjoy the exis-
tence of second order phase transitions. In other words, the
heat capacity of these black holes diverged in two points

and it had a real valued positive root. It was pointed out that
the existence of the divergence points and their places were
functions of q and ω. It is worthwhile to mention that the
effect of variation of the electric charge on a larger diver-
gence point was relatively small. This small effect indi-
cates that the existence of the larger divergence point is
due to the contribution of the BD gravity. It was also seen
that the dimensions changed the existence of the divergence
points of the heat capacity and also the places of the root
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Fig. 10 For different scales: F (continuous line) and T (dashed line) versus r+ for � = −1, c = 1, d = 6, and ω = 1. (Left diagram q = 0.1,
middle diagram q = 1, and right diagram q = 2)

Fig. 11 For different scales: F
(continuous line) and T (dashed
line) versus r+ for � = −1,
c = 1, d = 6, and q = 1. (Left
diagram ω = 0.1 and right
diagram ω = 3)

Table 2 Critical horizon radius
and temperature for � = −1
and c = 1

d q ω T − r+
diagram: Tc →

T − r+
diagram: rc →

F − r+
diagram: rc →

CQ − r+
diagram: rc →

5 0.1 1 0.38486 0.35794 0.35794 0.35794

0.19380 1.83804 1.83804 1.83804

5 0.1 1 0.19709 1.47014 1.47014 1.47014

0.19703 1.62412 1.62412 1.62412

6 0.1 1 0.51557 0.45643 0.45643 0.45643

0.22972 3.29845 3.29845 3.29845

6 1 1 0.30070 1.06423 1.06423 1.06423

0.22969 3.29541 3.29541 3.29541

6 1 1 0.26534 1.39027 1.39027 1.39027

0.22963 3.28597 3.28597 3.28597

6 1 0.1 0.34958 1.06542 1.06542 1.06542

0.25592 4.27029 4.27029 4.27029

6 1 3 0.27082 1.06333 1.06333 1.06333

0.21270 2.83018 2.83018 2.83018

and divergencies of it. It is notable that these black holes
have three characteristic points, which are related to a posi-
tive temperature and the thermal (in)stability of these black
holes.

In the context of thermal stability, it was pointed out that
there are four regions with different conditions. These regions
are specified by the root and two divergencies of the heat
capacity. In the case of the root of the heat capacity, there
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was a limitation point between non-physical black holes and
physical ones. Between two divergencies, it was an unsta-
ble state and after the larger divergency it acquired a sta-
ble state. In other words, in a smaller divergency black hole
may undergo a phase transition from an unstable state with
larger horizon radius to a smaller stable black hole, whereas
in the case of a larger divergency, the system would undergo
another phase transition and was stabilized with a larger hori-
zon radius.

Finally, we used the geometrical thermodynamics for
studying the phase transitions of the system. It was shown
that the divergencies of the curvature scalar of the HPEM
metric exactly coincide with both physical limitation point
and phase transitions of the heat capacity. In other words,
the divergencies of the heat capacity and its root are matched
with the divergencies of the Ricci scalar. It was also shown
that, unlike RN-AdS black holes [76] (in the absence of dila-
ton field), employing the Weinhold, Ruppeiner, and Quevedo
metrics failed to provide effective results for BD black hole
solutions. It is notable that the behavior of the Ricci scalar
around its divergence points for root and phase transitions
was different. It means that there were characteristic behav-
iors that enable one to recognize the divergence point of the
Ricci scalar related to the root of the heat capacity from the
divergence points of R related to the divergencies of CQ .
Therefore, one is able to point out that a physical limitation
point and phase transitions occurred in the divergencies of
the thermodynamical Ricci scalar of the HPEM metric with
different distinctive behaviors.

In addition, the free energy of these black holes has been
investigated. It was shown that the free energy enjoys extrema
in its diagrams versus horizon radius. These extrema were
located exactly where the temperature acquires extrema and
the heat capacity diverges. It was pointed out that the diver-
gencies that are observed in the heat capacity are places where
black holes undergo a second order phase transition.
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