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Abstract We study the effects of a class of features of the
potential of slow-roll inflationary models corresponding to
a step symmetrically dumped by an even power negative
exponential factor, which we call local features. Local-type
features differ from other branch-type features considered
previously, because the potential is only affected in a limited
range of the scalar field value, and they are symmetric with
respect to the location of the feature. This type of feature
only affects the spectrum and bispectrum in a narrow range
of scales which leave the horizon during the time interval cor-
responding to the modification of the potential. On the con-
trary branch-type features have effects on all the perturbation
modes leaving the horizon when the field value is within the
interval defining the branch, introducing for example differ-
ences in the power spectrum between large and small scale
which are absent in the case of local-type features. The spec-
trum and bispectrum of primordial curvature perturbations
are affected by oscillations around the scale k0 exiting the
horizon at the time τ0 corresponding to the feature. We also
compute the effects of the features on the CMB tempera-
ture and polarization spectra, showing the effects of different
choices of parameters.

1 Introduction

Theoretical cosmology has entered in the last decades in a
new era in which different models can be compared directly to
high-precision observations [1–4]. One fundamental source
of information as regards the early Universe is the cosmic
microwave background (CMB) radiation, which according
to the standard cosmological model consists of the photons
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that decoupled from the primordial plasma when the neutral
hydrogen atoms started to form.

According to the inflation theory [5,6] the CMB tem-
perature anisotropies arose from primordial curvature per-
turbation, whose spectrum is approximately scale invari-
ant. An approximately scale invariant spectrum of curva-
ture perturbation, with a small tilt, provides a good fit of
CMB data [4], but recent analyses of the WMAP and Planck
data have shown evidence of a feature around the scale
k = 0.002 Mpc−1 in the power spectrum of primordial scalar
fluctuations [7–23] that corresponds to a dip in the CMB tem-
perature spectrum at l � 20. This kind of feature of the cur-
vature perturbations spectrum provides an important obser-
vational motivation to find theoretical models able to explain
it. In particular in this paper we will consider the effects of
features of the inflaton potential in single field inflationary
model as possible explanation of the features of the power
spectrum.

The effects of features of the inflaton potential were first
studied by Starobinsky [24], and CMB data have shown some
glitches of the power spectrum [25,26] compatible with these
features [27–31].

The Starobinsky model and its generalizations [32–36]
belong to a class of branch features (BFs) which involve a
step function or a smoothed version of the latter [37], and
consequently introduce a distinction between a left and right
branch of the potential. In this paper instead we will consider
the effects of local features (LF) [38] which only modify the
potential locally in field space, while leaving it unaffected
sufficiently far from the feature. The important consequence
is that also the effects of LFs on the spectrum and bispectrum
are local, while BFs modify the spectrum in a wider range of
scales. Features of the inflaton potential could be produced
by different sources [39,40], for example particle production
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Fig. 1 From left to right and top to bottom the numerically computed VF/V0,�H, ε, and η are plotted for λ = 10−11, σ = 0.05, and n = 1 (blue)
and n = 2 (red). The dashed black lines correspond to the featureless behavior

[41] or phase transitions [42], but here we will only study
their effects adopting a phenomenological approach, as done
originally by Starobinsky in his seminal work (Fig. 1).

2 Single field slow-roll inflation

We consider inflationary models with a single scalar field and
a standard kinetic term with action [43,44]

S =
∫

d4x
√−g

[
1

2
M2

Pl R − 1

2
gμν∂μφ∂νφ − V (φ)

]
, (1)

where MPl = (8πG)−1/2 is the reduced Planck mass. The
variation of the action with respect to the metric and the
scalar field gives the Friedmann equation and the equation of
motion of the inflaton,

H2 ≡
(
ȧ

a

)2

= 1

3M2
Pl

(
1

2
φ̇2 + V (φ)

)
, (2)

φ̈ + 3H φ̇ + ∂φV = 0, (3)

where H is the Hubble parameter and we denote with dots
and ∂φ the derivatives with respect to time and scalar field,

respectively. The definitions we use for the slow-roll param-
eters are

ε ≡ − Ḣ

H2 , η ≡ ε̇

εH
. (4)

3 Local features versus branch features

We consider a single scalar field inflationary model with
potential [38]

V (φ) = V0(φ) + VF (φ), (5)

VF (φ) = λe−(
φ−φ0

σ
)2n ; n > 0, (6)

where V0 is the featureless potential, and we call this type of
modification of the slow-roll potential local features (LFs).
Many of the features previously studied belong to the cate-
gory of branch features, which differ from LFs because their
definition involves step functions or their smoothed version,
which effectively divide the potential in separate branches
(Fig. 2).

Some examples of BFs are given by the Starobinsky model
[27] or its generalizations [33,35]
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Fig. 2 From left to right and top to bottom the numerically computed VF/V0,�H, ε, and η are plotted for λ = 10−11, σ = 0.05 (blue), σ = 0.1
(red), and n = 1. The dashed black lines correspond to the featureless behavior

VF (φ) = λ(φ − φ0)
nθ(φ − φ0). (7)

The Starobinsky model corresponds to the case n = 1, for
which an analytical solution was first found in [24,27], and
more recently these studies were followed by [32,36]. The
type of feature we study in this paper differs from [33] in the
fact that here we study only local features, which only affect
the potential in a limited range of the field values, while in
[33] the features are not local and modify the potential for
an entire branch, due to the absence of any dumping factor
(Fig. 3).

Some other smoothed versions involving hyperbolic
trigonometric function instead of the Heaviside function have
also been studied [37]. They can schematically be expressed
as

VF (φ) = λ tanh

(
φ − φ0

�

)
. (8)

For these models the potential is not only modified around
the feature, but for any value in the branch defined by the
feature. The direct consequence is that the effects of BFs on
perturbation modes are not only visible around the scale k0

leaving the horizon around the time of the feature, defined

as φ(τ0) = φ0, but for any scale leaving the horizon when
φ has a value within the feature branch. This is evident for
example from the fact that the spectrum of a BF shows a
step around k0 [45], i.e. the affected scales are all the ones
larger (or smaller, depending on the feature) than k0. On
the contrary LFs only affect the perturbation modes which
leave the horizon around τ0, and consequently the spectrum
does not show a step, but a local dumped oscillation and it
approaches the featureless spectrum for sufficiently smaller
and larger scales. This is very important because it could
allow one to model local features of the observed spectrum
without affecting other scales. The different effects of LFs
and BFs on the power spectrum are shown in Fig. 13, where it
can be seen that they both produce oscillations qualitatively
similar around k0, but in the case of BFs there is also a step
between large and small scales, which is absent for LFs. For
BFs if the branches of the feature definition were inverted
the role of small and large scales would also be accordingly
inverted (Figs. 4 and 5).

In this paper we will consider the case of power-law infla-
tion (PLI) to model the featureless behavior,

V0(φ) = Ae
−

√
2
q

φ
MPl . (9)
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Fig. 3 From left to right and top to bottom the numerically computed VF/V0,�H, ε, and η are plotted for λ = 10−11 (blue) and −λ = 10−11

(red), σ = 0.05, and n = 1. The dashed black lines correspond to the featureless behavior

While PLI is not in good agreement with CMB data due to
the high value of the predicted tensor-to-scalar ratio r , it can
be used as a good toy model to show qualitatively the general
type of effect produced by LFs. Future work may be devoted
to the test of different potentials V0(φ), for direct comparison
with the data (Figs. 6, 7, 8, 9, and 10).

4 Local versus branch features effects

One important difference between the effects of BFs and LFs
as mentioned earlier is that BFs introduce a step between
large and small scales in the spectrum, whose size depends
on the featureless model and on the choice of the parameters,
in particular λ. The effects of LFs and BFs producing oscil-
lations of comparable size are shown for different potentials
in Fig. 13. As it can be seen, depending on the featureless
potential V0(φ), there can be steps of different size in the
spectrum. If λ is very small the effects of BFs and LFs could
be phenomenologically indistinguishable, but only a detailed
and systematic data analysis can allow one to establish which
one of the two categories is observationally preferred, or if
they are both compatible with observations (Figs. 11, 12).

Another important difference is that an LF produces two
slow-roll violation phases, associated to the increasing and
decreasing part of the potential feature, while BFs have only
one. In this sense a LF can be thought as the superposition of
two BFs: for example two smoothed steps with different tran-
sition points φ0 and inverted branches are equivalent to one
local smoothed step. The distance between the two transition
points is related to the LF σ parameter, but each BF has also
his own σ parameter controlling the smoothness of each BF
transition, so the equivalence is not complete, and there can
still be differences between the effects of a LF and appropri-
ate combinations of BFs, as shown in Fig. 14. Schematically,
based on general symmetry arguments, we can write

VLF(φ) ≈ V 1
BF(φ) + V 2

BF(φ). (10)

For example we can approximate a LF as

VLF(φ) = λe−(
φ−φ0

σ
)2n ≈ V 1

BF(φ) + V 2
BF(φ) (11)

V 1
BF(φ) = λ1 tanh

(
φ − φ1

σ1

)
,

V 2
BF(φ) = λ1 tanh

(
φ2 − φ

σ1

)
(12)
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Fig. 4 From left to right and top to bottom the numerically computed VF/V0,�H, ε, and η are plotted for λ = 10−11 (blue) and λ = 10−12 (red),
σ = 0.05, and n = 1. The dashed black lines correspond to the featureless behavior
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Fig. 5 The numerically computed Pζ and r are plotted for λ = 10−11, σ = 0.05, and n = 1 (blue) and n = 2 (red). The dashed black lines
correspond to the featureless behavior

φ0 = φ2 + φ1

2
, λ = 2λ1, σ = φ2 − φ1

2
, σ1 = σ

2
(13)

Only a systematic analysis of observational data can deter-
mine which is the phenomenologically preferred type of fea-
ture, but in general a single BF is expected to produce effects
different from a single LF, since this is approximately equiv-
alent to the combination of two single BFs (Fig. 13).

5 Curvature perturbations

From now on we adopt a system of units in which c = h̄ =
MPl = 1. The study of curvature perturbations is attained
by expanding perturbatively the action with respect to the
background FRLW solution [46,47]. In the comoving gauge
the second and third order actions for scalar perturbations are
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Fig. 6 From left to right the numerically computed Pζ and r are plotted for λ = 10−11, σ = 0.05 (blue), σ = 0.1 (red), and n = 1. The dashed
black lines correspond to the featureless behavior
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Fig. 7 The numerically computed Pζ and r are plotted for λ = 10−11 (blue) and −λ = 10−11 (red), σ = 0.05, and n = 1. The dashed black lines
correspond to the featureless behavior
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Fig. 8 The numerically computed Pζ and r are plotted for λ = 10−11 (blue) and λ = 10−12 (red), σ = 0.05, and n = 1. The dashed black lines
correspond to the featureless behavior
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Fig. 9 The numerically computed equilateral shape bispectrum is plot-
ted for λ = 10−11, σ = 0.05, and n = 1 (blue) and n = 2 (red)
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Fig. 10 The numerically computed equilateral shape bispectrum is
plotted for λ = 10−11, σ = 0.05 (blue) σ = 0.1 (red), and n = 1

2 1 0 1 2 3 4
log

k

k 0

0.5

0.0

0.5

1.0

1.5

2.0

FNL

Fig. 11 The numerically computed equilateral shape bispectrum is
plotted for λ = 10−11 (blue) and −λ = 10−11 (red), σ = 0.05, and
n = 1

S2 =
∫

dtd3x
[
a3εζ̇ 2 − aε(∂ζ )2

]
, (14)

S3 =
∫

dtd3x

[
a3ε2ζ ζ̇ 2 + aε2ζ(∂ζ )2 − 2aεζ̇ (∂ζ )(∂χ) + a3ε

2
η̇ζ 2ζ̇

+ ε

2a
(∂ζ )(∂χ)∂2χ + ε

4a
(∂2ζ )(∂χ)2 + f (ζ )

δL

δζ

∣∣∣∣
1

]
, (15)
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Fig. 12 The numerically computed equilateral shape bispectrum is
plotted for λ = 10−11 (blue) and λ = 10−12 (red), σ = 0.05, and
n = 1

where

δL

δζ

∣∣∣∣
1

= 2a

(
d∂2χ

dt
+ H∂2χ − ε∂2ζ

)
, (16)

f (ζ ) = η

4
ζ + terms with derivatives on ζ, (17)

and we denote with δL/δζ |1 the variation of the quadratic
action with respect to ζ [46]. The Lagrange equations for the
second order action give

∂

∂t

(
a3ε

∂ζ

∂t

)
− aεδi j

∂2ζ

∂xi∂x j
= 0. (18)

Taking the Fourier transform and using the conformal time
dτ ≡ dt/a we obtain

ζ ′′
k + 2

z′

z
ζ ′
k + k2ζk = 0, (19)

where z ≡ a
√

2ε, k is the comoving wave number, and
primes denote derivatives with respect to the conformal time.

A similar approach can be adopted for the perturbations
of the tensor modes hk , which satisfy the equation

h′′
k + 2

a′

a
h′
k + k2hk = 0. (20)

The power spectrum of scalar perturbations is the Fourier
transform of the two-point correlation function of ζ . For the
power spectrum of scalar perturbations we adopt the defini-
tion

Pζ (k) ≡ 2k3

(2π)2 |ζk |2, (21)

and for the power spectrum of tensor perturbations
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Fig. 13 The numerically computed power spectra are plotted as a func-
tion of k/k0 for different potentials. The dashed lines are the spectra
for the featureless potential V0(φ), the blue lines are for the spectrum
corresponding to a LF, and the red lines to a BF. On the left we have
V0(φ) = Vvac + 1

2m
2φ2, where Vvac = 3.3 × 10−13M3

pl and m =
6 × 10−9Mpl . For a LF the potential is V (φ) = V0(φ) + λe−(

φ−φ0
σ

)2
,

with λ = 6.5 × 10−21, σ = 10−4, while the BF is of the type studied
before in [33] corresponding to V (φ) = V0(φ) + λθ(φ0 − φ), with

λ = −10−16.On the right we have V0(φ) = Ae
−

√
2
q

φ
MPl , the power-

law potential. For a LF the potential is V (φ) = V0(φ) + λe−(
φ−φ0

σ
)2

,

with λ = −10−11 and σ = 0.05, while the BF corresponds to
V (φ) = V0(φ) + λ

2 [1 + tanh(
φ0−φ

σ
)], with λ = −3 × 10−11 and

σ = 0.05. The parameters have been chosen so that the different types
of features produce oscillations of similar size, so that the effects can be
compared consistently. As it can be seen, depending on the featureless
potential V0, there are cases in which the step between the large and
small scale spectrum produced by BFs can be important. The oscillation
patterns can also be different, since a single BF has only one phase of
slow-roll violation, while in a single LF there are two slow-roll viola-
tion phases, corresponding to the increasing and decreasing part of the
feature
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Fig. 14 The local feature potential VLF in Eq. (11) and its approxima-
tion as the sum of two BF potentials V 1

BF(φ) + V 2
BF(φ) defined in Eq.

(12) are plotted, respectively, in blue and in light brown around φ0 for
φ1 = 1, φ2 = 1.2, λ1 = 1, and n = 1. This is an example of the fact
that appropriate combinations of two BFs can produce modifications of
the potential similar to a local feature

Ph(k) ≡ 2k3

π2 |hk |2. (22)

The tensor-to-scalar ratio is defined as the ratio between the
spectrum of tensor and scalar perturbations

r ≡ Ph
Pζ

. (23)

6 Calculation of the bispectrum of curvature
perturbation

The bispectrum Bζ is defined as the Fourier transform of the
three-point correlation function as

〈ζ(�k1, t)ζ(�k2, t)ζ(�k3, t)〉 = (2π)3Bζ (k1, k2, k3)δ(3)(�k1 + �k2, �k3).

(24)

After a field redefinition, we can re-write the third order
action as

S3 =
∫

dtd3x

[
−a3εηζ ζ̇ 2 − 1

2
aεηζ∂2ζ

]
, (25)

from which the interaction Hamiltonian can be written in
terms of the conformal time as

Hint (τ ) =
∫

d3x εηa

[
ζ ζ ′2 + 1

2
ζ 2∂2ζ

]
. (26)

Finally, the three-point correlation function is given by [46,
48]

〈�|ζ(τe, �k1)ζ(τe, �k2)ζ(τe, �k3)|�〉
= −i

∫ τe

−∞

〈
0

∣∣∣
[
ζ(τe, �k1)ζ(τe, �k2)ζ(τe, �k3), Hint

]∣∣∣ 0
〉
.

(27)

After substitution we get
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Bζ (k1, k2, k3) = 2�
[
ζ(τe, k1)ζ(τe, k2)ζ(τe, k3)

×
∫ τe

τi

dτηεa2
(

2ζ ∗(τ, k1)ζ
′∗(τ, k2)ζ

′∗(τ, k3)

−k2
1ζ ∗(τ, k1)ζ

∗(τ, k2)ζ
∗(τ, k3)

)

+ two permutations of k1, k2, and k3

]
, (28)

where � is the imaginary part. The integral is computed from
τi to τe, where τi is some time before τ0 when the feature
effects on the background and perturbations evolution start to
be important, and τe is some time after the horizon crossing,
when the modes have frozen [49–53] (Fig. 14).

A commonly used quantity introduced to study non-
Gaussianity is the parameter fNL

6

5
fNL(k1, k2, k3) ≡ Bζ

Pζ (k1)Pζ (k2) + Pζ (k1)Pζ (k3) + Pζ (k2)Pζ (k3)
,

(29)

where

Pζ ≡ 2π2

k3 Pζ . (30)

After replacing Pζ in Eq. (29) we can obtain fNL in terms of
our definition of the spectrum Pζ (k)

fNL(k1, k2, k3)

= 10

3

(k1k2k3)
3

(2π)4

Bζ

Pζ (k1)Pζ (k2)k3
3 + Pζ (k1)Pζ (k3)k3

2 + Pζ (k2)Pζ (k3)k3
1

.

(31)

In this paper we will use a different quantity to study non-
Gaussianity

FNL(k1, k2, k3; k∗) ≡ 10

3(2π)4

(k1k2k3)
3

k3
1 + k3

2 + k3
3

Bζ (k1, k2, k3)

P2
ζ (k∗)

,

(32)

where k∗ is the pivot scale at which the power spectrum is
normalized, i.e. Pζ (k∗) ≈ 2.2 ×10−9. When the spectrum is
approximately scale invariant our definition of FNL reduces
to fNL in the equilateral limit, but in general fNL and FNL

are not the same. For example in the squeezed limit they are
different, but FNL still provides useful information as regards
the non-Gaussian behavior of Bζ .

7 Effects of the parameter n

7.1 Background

The parameter n is related to the dumping of the feature, and
larger values are associated to a steeper change of the poten-
tial, as shown in Fig. 1. The slow-roll parameters show an

oscillation around the feature time τ0 with a larger amplitude
for larger n, since a steeper potential change is also associ-
ated to larger derivatives of the Hubble parameter as shown
in Fig. 1. To better understand the effects on the slow-roll
parameter we define the quantity

�H = HF − H0, (33)

where HF is the Hubble parameter for the model with a fea-
ture, and H0 is for the featureless model. From the definition
in Eq. (4) we can easily see that at leading order in �H we
have

εF = ε0 + �ε, (34)

�ε ≈ −∂t�H

H2
0

, (35)

where we have defined

εF = − ḢF

H2
F

, (36)

ε0 = − Ḣ0

H2
0

. (37)

The temporary violation of slow-roll conditions comes from
the time derivative of �H , so even small changes in the
expansion history of the Universe can produce important non-
Gaussianities if they happen sufficiently fast. In the limit of
very large n the feature of the potential tends to a local bump
characterized by a very steep transition.

7.2 Perturbations

As shown in Fig. 5 the tensor-to-scalar ratio r and the spec-
trum of primordial curvature perturbations show oscillations
around the scale k0 = −1/τ0 with an amplitude which
increases for larger n. We can understand this from the behav-
ior of �H , which has a larger time derivative for larger n,
because the transition for the potential is also steeper. As
seen in Fig. 9 the equilateral limit of the bispectrum also
shows oscillations around k0, which are larger for larger n,
for the same reason given above. It is important to observe
that both the spectrum and the bispectrum are only affected
in a limited range of scales, since this is a LF. For a BF,
instead, the change affects all the scales before of after the
feature [33,45], because the potential is modified in the entire
branch.

8 Effects of the parameter σ

8.1 Background

The parameter σ determines the size of the range of field
values where the potential is affected by the feature, as shown
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in Fig. 2. The slow-roll parameters are smaller for larger σ

since a larger width of the feature tend to reduce the time
derivative of the Hubble parameter. In this case, in fact, the
modification of the potential is also associated to smaller
derivatives with respect to the field, since the shape of the
potential is less steep.

8.2 Perturbations

As shown in Fig. 6 the spectrum of primordial curvature
perturbations and the tensor-to-scalar ratio r have oscillations
around k0, whose amplitude is larger for smaller σ , because
in this case the potential changes faster and consequently the
slow-roll parameters are larger. In Fig. 10 we can see that the
equilateral limit of the bispectrum also presents oscillations
around k0 with larger amplitude for smaller σ . Both for the
spectrum and bispectrum the effects are confined in a limited
range of the scales, differently from what we would have
with BFs.

9 Effects of the parameter λ

9.1 Background

The parameter λ controls the magnitude of the potential mod-
ification, as shown in Figs. 3 and 4. For larger absolute values
of λ, the slow-roll parameters are larger in absolute value,
since a larger feature of the potential induces a larger time
derivative of the Hubble parameter. The sign of λ produce
opposite and symmetric effects, since it implies an oppo-
site sign for the derivative of the potential with respect to the
field, and consequently of the Hubble parameter with respect
to time.

9.2 Perturbations

As shown in Figs. 7, 8, 11, 12, larger absolute values of λ

produce oscillations with a larger amplitude for the tensor-
to-scalar ratio r , the spectrum and bispectrum around k0.
Features with the same absolute value and opposite sign of
λ correspond to oscillations that are symmetric with respect
to the featureless spectrum and bispectrum.

10 Effects on the CMB temperature and polarization
spectrum

In this section we present the effects of the feature on the
CMB temperature and polarization spectrum. To study how
the feature impacts on the CMB spectra we modified the
Boltzmann equations solver Code for Anisotropies in the
Microwave Background (CAMB) [54] to use the modified

primordial power spectrum instead of the usual power-law
expression Ps(k) = As (k/0.05 Mpc−1)ns−1, where As is the
normalization and ns is the tilt of the power-law spectrum.

The CMB spectrum is the convolution of the power spec-
trum of initial perturbations with the transfer function, which
is calculated by CAMB assuming the standard cosmological
model. We fix all the cosmological parameters to the Planck
2015 best-fit values [4].

In Figs. 15, 16, 17, and 18 we show the CMB spectra
obtained with different combinations of the parameters λ, σ ,
and n: in Table 1 we list the values of the feature parameters
for each combination. We show the spectra in terms of the
quantity D� = �(� + 1)C�/(2π). For each of the tempera-
ture (TT, Fig. 15), E-mode polarization (EE, Fig. 17), and
B-mode polarization (BB, Fig. 18) auto-correlation power
spectra we plot the D� spectra (top) and the relative difference
with respect to the featureless spectrum (bottom) for a large
range of multipoles. In Fig. 16 we show also the TE cross-
correlation power spectra. The spectra are compared with
the most recent experimental data: we plot the Planck data
[55] for the TT, TE, and EE spectra and the points obtained
by the SPTPol experiment [56] and the Bicep–Keck (BK)
collaboration [57] data for the BB spectrum. The SPTPol
data provide the first detection of the B modes generated by
the lensing of E-mode perturbations. We recall that the BK
data plotted here contain a significant contamination from B
modes emitted by dust [58].

From the various plots it is possible to see how the fea-
ture can change the predicted CMB spectra. In particular,
the most significant variations are in the TT and in the EE
spectra, where relative differences of the order of 10–15 %
are visible, while the presence of the feature has a very small
impact on the B-mode spectrum. Choosing the values listed
in Table 1 for the parameters describing the feature, and
k0 = 5×10−4 Mpc−1, As = 2.2×10−9, and ns = 0.967 we
can see from Fig. 15 that the effects of some feature can par-
tially reproduce the dip at � � 20 in the TT spectrum. Further
studies involving data fitting can determine more accurately
the values of the parameters which provide the best explana-
tion of the observed deviation of the power spectrum from
the power-law form, but they go beyond the scope of this
paper, and they will be reported separately. From Figs. 15,
16, 17, and 18 it is also clear that the presence of the LF
affects only a part of the CMB spectra, while far from the
multipoles corresponding to the feature scale the spectra are
equal to those obtained in the featureless case.

11 Conclusions

We have studied the effects of local features of the inflation
potential on the spectrum and bispectrum of single field infla-
tionary models with a canonical kinetic term. These features
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Fig. 15 We plot the DTT
l = �(�+ 1)CTT

� /(2π) spectrum in units
of μK 2 with respect to the multipole l, and the relative dif-
ference with respect to the featureless behavior. The solid black

lines correspond to the featureless behavior. The values of λ, σ ,
and n we used for the different curves are listed in Table 1

Fig. 16 We plot the DT E
l = �(� + 1)CT E

� /(2π) spectrum in units of μK 2 with respect to the multipole l. The solid black lines correspond to the
featureless behavior. The values of λ, σ , and n we used for the different curves are listed in Table 1

only modify the potential in a limited range of the scalar
field values, and consequently only affect the spectrum and
bispectrum in a narrow range of scales, which leave the hori-
zon during the time interval corresponding to the modifi-
cation of the potential. This is different from branch-type

features which effectively divide the potential into separate
branches, because they involve a step-like function in their
definition. Some examples of branch-type features are the
Starobinsky model [27] and its generalizations [33,35]. In
BF models the spectrum can, for example, exhibit a step,
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Fig. 17 We plot the DEE
l = �(� + 1)CEE

� /(2π) spectrum in
units of μK 2 with respect to the multipole l, and the relative dif-
ference with respect to the featureless behavior. The solid black

lines correspond to the featureless behavior. The values of λ, σ ,
and n we used for the different curves are listed in Table 1

Fig. 18 We plot the DBB
l = �(� + 1)CBB

� /(2π) spectrum in
units of μK 2 with respect to the multipole l, and the relative dif-
ference with respect to the featureless behavior. The solid black

lines correspond to the featureless behavior. The values of λ, σ ,
and n we used for the different curves are listed in Table 1

reminiscent of the branch-type potential modifications. For
local features there is no step, and the spectrum returns to the
featureless form for scales sufficiently larger or smaller than
k0.

The tensor-to-scalar ratio r , the spectrum, and the bispec-
trum of primordial curvature perturbations are affected by the
feature, showing modulated oscillations which are dumped
for scales larger or smaller than k0. The amplitude of the oscil-
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Table 1 The values of λ, σ , and n we used for the different spectra in
Figs. 15, 16, 17, 18

Label λ σ n

Feature A 10−11 0.05 1

Feature B 10−11 0.05 2

Feature C −10−11 0.05 1

Feature D 10−11 0.1 1

Feature E 10−12 0.05 1

lations depends on the parameters defining the local feature,
and the effects are larger when the potential modification is
steeper, since in this case there is a stronger violation of the
slow-roll conditions.

We have also computed the effects of the features on the
CMB temperature and polarization spectra, showing how an
appropriate choice of parameters can produce effects in qual-
itative agreement with the observational CMB data. Due to
this local-type effect these features could be used to model
phenomenologically local glitches of the spectrum, without
affecting other scales, and it will be interesting in the future
to perform a detailed observational data fitting analysis using
the new CMB data of the Planck mission.
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