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Abstract Most no-hair theorems involve the assumption
that the scalar field is independent of time. Recently in Gra-
ham and Jha (Phys. Rev. D90: 041501, 2014) the existence
of time-dependent scalar hair outside a stationary black hole
in general relativity was ruled out. We generalize this work
to modified gravities and non-minimally coupled scalar field
with the additional assumption that the spacetime is axisym-
metric. It is shown that in higher-order gravity such as metric
f (R) gravity the time-dependent scalar hair does not exist.
In Palatini f (R) gravity and the non-minimally coupled case
the time-dependent scalar hair may exist.

1 Introduction

It is well known that black holes have no hair except the
parameters of mass, electric charge, and angular momentum.
More precisely, the no-hair theorem claims that all black hole
solutions of the Einstein–Maxwell equations of gravitation
and electromagnetism in general relativity can be completely
characterized by only the three parameters. Since the long-
range field in the standard model of particle physics is electro-
magnetism, the matter field considered in the original no-hair
theorem is the electromagnetic field only. Nevertheless, it is
still worth thinking about what the result is if we take other
matter fields blue such as scalar fields into account.

The issue of the scalar-vacuum was first considered in
1970 in Ref. [1]. Canonical scalar hair was ruled out for
scalar fields with various kinds of potential [2–4]. Recently,
this proof was extended to non-canonical scalar fields [5]
and Galileons [6,7]. Besides, black holes in Brans–Dicke
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and scalar–tensor theories of gravity were studied in Refs.
[8,9], which showed that the isolated stationary black holes
in scalar–tensor theories of gravity are not different from
general relativity. In another word, non-minimally coupled
scalar hair is also ruled out for stationary and conformally
flat black holes. However, there is still the case that scalar
hair does exists. Coexistence of black holes and a long-range
scalar field in cosmology was presented in Refs. [10,11].
Other scalar hair cases can be found in Refs. [7,12–15].
These results are based on a same assumption: the scalar
field is time-independent. In Ref. [16], the authors considered
Einstein gravity minimally coupled to a dilaton scalar field
and obtained an exact time-dependent spherically symmet-
ric solution, which describes gravitational collapse to a static
scalar-hairy black hole. If the scalar field is time-dependent,
we should be more careful when defining the scalar hair in
order to distinguish with some trivial situations. If a time-
dependent scalar field is compatible with a stationary black
hole metric (the back action of the scalar field to the space-
time is taken into account), it is called time-dependent scalar
hair. Hence an in-falling flux of scalar waves is not time-
independent scalar hair outside of a black hole, because the
metric is no longer stationary if the back reaction to the space-
time is taken into account. It is important that the metric
should be stationary because the no-hair theorem is about sta-
tionary black holes and the end state of the collapse of a star
is stationary. It was shown that the system of a charged scalar
field coupled to an electromagnetic field settles down to a sta-
tionary black hole with oscillating scalar hair [17]. It has been
shown that scalar fields do not necessarily share the symme-
tries with the spacetime [18]. In Ref. [19] it was shown that
the stationary spacetime does not ensure that the scalar field
is time-independent and time-dependent real non-canonical
scalar hair was ruled out in Einstein gravity. While for the
complex scalar field these arguments do not apply. Indeed
Kerr black holes were found to be having time-dependent
massive complex scalar hair [20,21].
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In this paper, we would like to generalize the work of
Ref. [19] to some modified gravities. Since the proof only
needs a small subset of the Einstein equations [19], this
generalization is turned out to be possible for some cases.
Among numerous modified gravities, f (R) gravity, which
is motivated by high-energy physics, cosmology, and astro-
physics, has received increased attention. It is interesting to
consider the generalization of Ref. [19] to f (R) gravity. For
metric f (R) gravity the scalar curvature R in the action is
constructed from the metric only. For Palatini f (R) gravity
the scalar curvature R = gμνRμν where the Ricci curva-
ture Rμν is constructed from the independent connection.
Besides, since the time-independent non-minimally coupled
scalar hair is ruled out [8,9], we also investigate the case that
the scalar field is time-dependent and we will find non-trivial
results.

This paper is organized as follows. In Sect. 2 we first
investigate the time-dependent scalar field in metric f (R)

gravity, then generalized it to other higher-order gravity
and Eddington-inspired Born–Infeld (EiBI) gravity [22]. In
Sect. 3 time-dependent scalar field in Palatini f (R) gravity is
investigated. In Sect. 4 we investigate the time-independent
non-minimally coupled scalar. Finally the conclusion is given
in Sect. 5.

2 Time-dependent scalar field in f (R) gravity

The action of f (R) gravity is

S = 1

2κ

∫
d4x

√−g f (R) + SM (gμν, ϕ), (1)

where ϕ denotes the matter field. The variation of the action
(1) with respect to the metric gμν leads to the equation of
motion (EoM) in f (R) gravity:

fR Rμν − 1

2
f (R)gμν + [gμν� − ∇μ∇ν] fR = κTμν, (2)

where fR ≡ ∂ f (R)
∂R , � = ∇μ∇μ, and the energy-momentum

tensor Tμν is given by

Tμν = − 2√−g

δSM
δgμν

. (3)

In general relativity, if the null energy condition holds, the
rigidity theorem ensures that stationary spacetime must be
axisymmetric [23,24]. In f (R) gravity, the null energy con-
dition does not lead to Rμνlμlν ≥ 0 for all timelike vector lμ.
Therefore, the null energy condition of the matter fields does
not lead to the conclusion that stationary spacetime must
be axisymmetric. We have to assume that the spacetime is
axisymmetric and we choose coordinates (t, r, θ, φ) so that
the metric takes the form [25]

ds2 = −eu(r,θ)dt2 + 2ρ(r, θ)dtdφ + ev(r,θ)dφ2

+ eA(r,θ)dr2 + eB(r,θ)dθ2. (4)

One can easily verify that the following components of the
Ricci tensor and Christoffel symbol vanish:

Rtr = Rtθ = Rrφ = Rθφ = 0, (5)


r
tr = 
θ

tr = 
r
tθ = 
θ

tθ = 0. (6)

The action of the K-essence is [26–29]

SM =
∫

d4x
√−gP(ϕ, X), (7)

where the kinetic term is X = − 1
2∇μϕ∇μϕ. When P =

X −V (ϕ), Eq. (7) reduces to the action of a canonical scalar
field. Varying the action (7) with respect to the scalar field ϕ

we obtain the EoM of the non-canonical scalar field,

Pϕ + PX�ϕ + (∇μϕ)∇μPX = 0. (8)

The energy-momentum of the scalar field can be obtained by
varying the action (7) with respect to the metric:

Tμν = PX∂μϕ∂νϕ + Pgμν. (9)

the tr and tθ components of Eq. (2) imply that

Ttr = PX∂tϕ∂rϕ = 0, (10)

Ttθ = PX∂tϕ∂θϕ = 0. (11)

Note that PX �= 0, as otherwise the action (7) would depend
on ϕ only and the EoM of the scalar field would be an alge-
braic equation. Moreover, the scalar field is time-dependent,
i.e. ∂tϕ �= 0. Thus, Eqs. (10) and (11) yield

∂rϕ = 0, ∂θϕ = 0, (12)

or, equivalently,

ϕ = ϕ(t, φ). (13)

On the other hand, considering the rr component of Eq. (2)
and noting that the metric is independent of time, we have

∂t Trr = ∂t (PX∂rϕ∂rϕ) + grr∂t P

= grr∂t P = 0. (14)

Thus, ∂t P = 0. Similarly, the t t component of Eq. (2) shows
that PX ϕ̇2 is independent of time. For general actions these
yield Pϕ = 0 and ϕ depends at most linearly upon φ, as
otherwise there will be two equations for one unknown ϕ,
the system will be overdetermined [19].

The result that Pϕ = 0 was deduced from a highbrow point
of view in Ref. [18]. Here we briefly introduce the derivation.
We start from a K-essence minimally coupled to gravity (not
necessarily f (R) gravity) in a stationary spacetime. It is easy
to verify that

T = gμνTμν = −2X PX + 4P (15)
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and

P = 1

4
T ± 1

4

√
3TμνTμν − T 2

3
. (16)

Since the spacetime is stationary, from Eqs. (15) and (16) we
have

0 = £ξ P = P,X£ξ X + P,φ£ξ ϕ (17)

and

0 = £ξT = −2(£ξ X)P,X − 2X£ξ (P,X ) + 4£ξ P, (18)

where ξ is the timelike Killing vector. Thus we have
£ξ (P,X ) = (£ξ P),X = 0, which together with Eqs. (17)
and (18) yields P,ϕ£ξ ϕ = 0. So, the condition for the scalar
field not to inherit the symmetry of the spacetime is P,ϕ = 0.

Similarly one can deduce that the scalar field ϕ depends
at most linearly upon φ. Moreover, since ϕ should depend
periodically upon φ, it is incompatible if ϕ depends linearly
upon φ. Hence, we finally deduce that the only possible con-
figuration of the scalar field is

ϕ = at + b, (19)

where a and b are constants. So far we have proved that in
f (R) gravity, the time-dependent non-canonical scalar field
in a stationary spacetime is only a linear function of t . This
conclusion is the same as that of Ref. [19]. Following the
procedure of Ref. [19], for asymptotically flat and (anti-)
de Sitter stationary black holes, there is no time-dependent
scalar hair. Here we give a brief demonstration.

2.1 Boundary conditions

Let us first consider the asymptotic flat condition, i.e. gμν →
ημν as the radial coordinate r → ∞, for which X → a2/2,
and the t t and rr components of the energy-momentum ten-
sor tend to

Ttt → a2PX

(
a2

2

)
− P

(
a2

2

)
, (20)

Trr → P

(
a2

2

)
. (21)

The EoMs demand Ttt = 0 and Trr = 0, thus either a = 0
or PX ( a

2

2 ). However, PX ( a
2

2 ) together with P( a
2

2 ) compose
two equations for one unknown, which is overdetermined.
Hence we have a = 0, and the scalar field is a constant.

For the case of an asymptotically anti-de Sitter spacetime,
gtt → 0 as r → ∞, which yields X → 0. In the static
spherically symmetric coordinates, the anti-de Sitter metric
reads

ds2 = −
(

1 − 


3
r2

)
dt2 +

(
1 − 


3
r2

)−1
dr2

+r2(dθ2 + sin2θdφ2). (22)

The t t and rr components of the energy-momentum tensor
at infinity tend to

Ttt → PX P(0) −
(

1 + |
|r2

3

)
P(0), (23)

Ttt → a2PX (0) −
(

1 + |
|r2

3

)
P(0), (24)

Trr → 0. (25)

It is clear that Ttt = 0 and Trr = 0 yield P(0) = 0 and
a = 0. So there is no time-dependent scalar hair.

For the case of an asymptotically de Sitter spacetime, in the
static coordinates the metric is the same as Eq. (22). As 
 >

0, there is an event horizon at r = √
3/
. Thus, grr (r →√

3/
) → ∞ leads to Trr (r → √
3/
) → ∞, which

is incompatible with the geometry. Hence there is no time-
dependent scalar hair.

The derivation of the time-dependent scalar field in f (R)

gravity can be generalized to a large class of alternative the-
ories of gravity under the metric form (4). As an example,
consider a higher-order gravity with the action

S = 1

2κ

∫
d4x

√−g(R + αR2 + βRμνR
μν) + Sϕ. (26)

The field equations read

Gμν + 2αR
(
Rμν − 1

4
R gμν

)

+ (2α + β)(gμν� − ∇μ∇ν)R

+ 2βRρσ
(
Rμρνσ − 1

4
Rρσ gμν

)

+ β�
(
Rμν − 1

2
R gμν

)
= κT ϕ

μν. (27)

Since the metric is stationary and axisymmetric, the tr and
tθ components of Eq. (27) vanish and we still have Eqs. (10)
and (11). The rest of the derivation is the same as that in f (R)

gravity. It is obvious that these arguments can apply to some
other alternative gravities like EiBI gravity theory.

2.2 Double scalar fields

We consider the case that the matter fields are consisted of
two coupled non-canonical scalar fields ϕ1 and ϕ2, of which
the generalized action is

SM =
∫

d4x
√−gP(ϕ1, ϕ2, X1, X2). (28)

This action contains the case of a complex scalar field as a
special case. The energy-momentum tensor is

Tμν = PX1∂μϕ1∂νϕ1 + PX2∂μϕ1∂νϕ2 + Pgμν. (29)

Therefore T0i = 0 does not necessarily lead to ∂0ϕ1∂iϕ1 = 0
or ∂0ϕ2∂iϕ2 = 0, and the argument given above does not
work for the double scalar field case any more.
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3 Time-dependent scalar field in Palatini f (R) gravity

Now we turn to the time-dependent scalar field in Palatini
f (R) gravity. The action of Palatini f (R) gravity is [30–32]

SPal = 1

2κ

∫
d4x

√−g f (R) + SM(gμν, ϕ), (30)

where the Ricci tensor Rμν is constructed with the indepen-
dent connection 
λ

μν and the corresponding Ricci scalar is
R = gμνRμν . Here we still assume that the spacetime is
stationary and axisymmetric. Then the metric has the same
form of (4) and R is independent on t and φ.

Varying the action (30) independently with respect to the
metric and connection, one can obtain the EoMs of Palatini
f (R) gravity,

fRR(μν) − 1

2
f (R)gμν = κ Tμν, (31)

∇̃λ

(√−g fRgμν
) = 0, (32)

where ∇̃λ ined with the independent connection 
λ
μν . Let us

define a conformal metric qμν ,

qμν ≡ fRgμν. (33)

Then Eq. (32) implies that the independent connection 
λ
μν

is the Levi-Civita connection of the conformal metric qμν .
Under conformal transformations, the Ricci tensor Rμν trans-
forms as

Rμν = Rμν + 3

2

1

f 2
R

(∇μ fR
)
(∇ν fR)

− 1

fR

(
∇μ∇ν + 1

2
gμν�

)
fR, (34)

where the Ricci tensor Rμν and ∇μ are constructed by the
spacetime metric gμν . Contraction with gμν yields

R = R + 3

2 f 2
R

(∇μ fR
) (∇μ fR

)

− 3

fR
� fR. (35)

With Eqs. (34) and (35), Eq. (31) is reduced to

Gμν = κ

fR
Tμν − 1

2
gμν

(
R − f

fR

)

+ 1

fR
(∇μ∇ν − gμν�

)
fR

−3

2

1

f 2
R

[
(∇μ fR)(∇ν fR) − 1

2
gμν(∇ fR)2

]
, (36)

from which we can see that we still have Eqs. (10), (11),
and Eqs. (14)–(18) for Palatini f (R) gravity. Thus, the only
possible configuration of the scalar field is (19).

Now we consider whether the configuration of the scalar
field can be compatible to the boundary conditions. First we
consider the asymptotic flat boundary condition. Note that

the asymptotic flat boundary condition implies that the met-
ric gμν approaches the Minkowski metric ημν , while qμν

approaches conformally Minkowski. Thus Eqs. (20) and (21)
no longer hold. On the other hand, ∂t P = 0 and ∂tϕ = 0
yield ∂ϕP = 0, and PX = PX (a2/2) is a constant. Thus
∇μPX = 0. It is easy to verify �ϕ = 0. Therefore, the con-
figuration of the scalar field of Eq. (19) is compatible with Eq.
(8), the EoM of the scalar field. The asymptotic flat boundary
condition no longer yields a = 0. Similar argument can be
made in the asymptotic AdS/dS cases. Hence for all the three
kinds of boundary conditions the time-dependent scalar hair
may exist in Palatini f (R) gravity.

Though the discussion above failed to exclude the time-
dependent scalar hair for an arbitrary Palatini f (R) gravity,
it works if

f (R) = R +
N∑

n=2

anRn . (37)

Taking the trace of Eq. (31), we have

fRR − 2 f (R) = κ T . (38)

Using Eq. (37) and noting that Tμν approaches a constant
at infinity, Eq. (38) yields R = constant. Considering the
asymptotic flat boundary condition, Eq. (35) yields R = 0,
f (0) = 0 and fR(0) = 1. Finally Eq. (36) results in Tμν = 0
at infinity and the time-dependent scalar hair is ruled out. For
the asymptotic AdS/dS we have the same conclusion.

We can also investigate the time-dependent scalar field ϕ

in scalar–tensor gravity with the action

Sst = 1

2κ

∫
d4x

√−g
[
U (ψ)R − 1

2
h(ψ)∇μψ∇μψ − V (ψ)

]

+SM(gμν, ϕ), (39)

where the action of the scalar field ϕ is still given by Eq. (7).
Here we also assume that gμν is in the form of Eq. (4) and
ψ = ψ(r, θ). This action is equivalent to the action (1) of
metric f (R) gravity if U (ψ) = ψ and h(ψ) = 0 [31–34],
and equivalent to the action (30) of Palatini f (R) gravity
if U (ψ) = ψ and h(ψ) = − 3

2ψ
[31,32,34,35]. This case

will be the same as that of the time-dependent scalar field
in Palatini f (R) gravity: we can educe the conclusion that
the scalar field ϕ only depend linearly on t , but the boundary
conditions do not exclude the scalar hair, thus the scalar hair
may exist. While for some specific V (ψ) corresponding to
the Lagrangian of Palatini f (R) gravity given by Eq. (37)
we can rule out the scalar hair.

4 Non-minimally coupled scalar field

We now give the argument for a time-dependent non-
minimally coupled scalar field in a stationary spacetime. It
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should be note that this is different from the case of the time-
dependent scalar field in scalar–tensor. The action for the
non-minimally coupled scalar field is

S =
∫

d4x
√−g

[
ϕR − ω(ϕ)

ϕ
∇μϕ∇μϕ − V (ϕ)

]
. (40)

By varying with respect to gμν and ϕ, one obtains the field
equations

Rμν − 1

2
Rgμν = ω(ϕ)

ϕ2

(
∇μϕ∇νϕ − 1

2
gμν ∇λϕ∇λϕ

)

+ 1

ϕ

(∇μ∇νϕ − gμν�ϕ
) − V (ϕ)

2ϕ
gμν,

(2ω + 3)�ϕ = −ωϕ∇λϕ∇λϕ + ϕVϕ − 2V . (41)

Here we still assume that the spacetime is stationary and
axisymmetric. Thus we have the metric (4) and Eqs. (5) and
(6). The tr and tθ components of Eq. (2) imply that

ω(ϕ)

ϕ2 ∂tϕ∂rϕ + 1

ϕ
∇t∇rϕ = 0, (42)

ω(ϕ)

ϕ2 ∂tϕ∂θϕ + 1

ϕ
∇t∇θϕ = 0. (43)

Now it is clear that ∂tϕ �= 0 no longer educes ∂rϕ = 0 or
∂θϕ = 0, thus the arguments in Sect. 2 no longer apply and
the time-dependent non-minimally coupled scalar hair may
exist.

5 Conclusion

In this paper, we investigated the non-canonical time-
dependent scalar field in a stationary and axisymmetric
spacetime in modified gravities. For a single real scalar field
in metric f (R) gravity, we proved that the time-dependent
scalar hair does not exist for the three kinds of boundary con-
ditions (asymptotically flat, anti-de Sitter, and de Sitter). It
was shown that the demonstration can be generalized to a
large class of alternative theories of gravity like the higher-
order gravity described by the action (26) and EiBI grav-
ity. While for two coupled scalar fields, these arguments do
not apply. These conclusions are the same as for the time-
dependent scalar field in general relativity in Ref. [19].

Though the demonstrations for a single scalar hair in gen-
eral relativity and metric f (R) only use a small subset of the
field equations [19], the generalization to other alternative
gravities may not be correct. For Palatini f (R) gravity cou-
pled with a scalar field, as the boundary conditions no longer
rule out the non-trivial configuration of the scalar field, the
time-dependent scalar hair may exist outside a stationary and
axisymmetric black hole.

However, for the case that f (R) is given by Eq. (37),
the time-dependent scalar hair is ruled out. This conclusion

can be widely generalized. The keypoint is to ensure that
f (R = 0) = 0 and fR(R = 0) �= 0.

Since Palatini f (R) gravity is equivalent to scalar–tensor
gravity, similar argument can be applied to time-dependent
scalar field in scalar–tensor gravity. For some specific V (ψ)

we can rule out the scalar hair. For the time-independent non-
minimally coupled scalar field, since the effective energy-
momentum of the scalar field contains the second derivative
of the scalar field, the derivations of Sect. 2 do not apply
any more and non-minimally coupled scalar hair may exist
outside a stationary and axisymmetric black hole.
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