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Abstract We construct a theory in which the gravitational
interaction is described only by torsion, but that generalizes
the teleparallel theory still keeping the invariance of local
Lorentz transformations in one particular case. We show that
our theory falls, in a certain limit of a real parameter, under
f (R̄) gravity or, in another limit of the same real parame-
ter, under modified f (T ) gravity; on interpolating between
these two theories it still can fall under several other theo-
ries. We explicitly show the equivalence with f (R̄) gravity
for the cases of a Friedmann–Lemaître–Robertson–Walker
flat metric for diagonal tetrads, and a metric with spherical
symmetry for diagonal and non-diagonal tetrads. We study
four applications, one in the reconstruction of the de Sitter
universe cosmological model, for obtaining a static spheri-
cally symmetric solution of de Sitter type for a perfect fluid,
for evolution of the state parameter ωDE, and for the thermo-
dynamics of the apparent horizon.

1 Introduction

One of the most important findings in modern physics is that
our universe has accelerated expansion [1–3]. However, a
plausible common explanation for this is using the model
of a very exotic fluid called dark energy, which has nega-
tive pressure. Another well-known possibility is to modify
Einstein’s general relativity (GR) [4], making the action of
the theory depend on a function of the curvature scalar R,
but at a certain limit of parameters the theory falls under
GR. This way to explain the accelerated expansion of our
universe is known as modified or generalized gravity. Con-
sidering that the gravitational interaction is described only by
the curvature of space-time, we can generalize the Einstein–
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Hilbert action through an analytic function of scalars of the
theory, as for example f (R̄) gravities [5–9], with R̄ being
the Ricci scalar or curvature scalar, f (R̄,�) [10–13], with
� being the trace of energy-momentum tensor, or yet f (G)

[14–18], f (R̄,G) [19–24] and f (R̄,�, R̄μν�
μν) [25], with

�μν being the energy-momentum tensor.
An alternative to consistently describe the gravitational

interaction is one which only considers the torsion of space-
time, thus canceling out any effect of the curvature. This
approach is known as teleparallel theory (TT) [26–29], which
is demonstrably equivalent to GR. In order to describe not
only the gravitational interaction, but also the accelerated
expansion of our universe, Ferraro and Fiorini [30] proposed
a possible generalization of the TT, which became known as
f (T ) gravity [31–62], which up to now has provided good
results in both cosmology and local phenomena of gravita-
tion. A key problem in f (T ) gravity is that it breaks the
invariance under local Lorentz transformations complicat-
ing the interpretation of the relationship between all inertial
frames of the tangent space to the differentiable manifold
(space-time) [63,64]. This problem may lead to the emer-
gence of spurious new degrees of freedom, which are respon-
sible for the breakdown of the local Lorentz symmetry [65].
A consequence of the formulation of the theory using a scalar
which is not invariant under local Lorentz transformations,
the torsion scalar T in this case, is that instead of the theory
presenting differential equations of motion of fourth order,
as in the case of f (R̄) gravity, it has second-order differential
equations. That seems like a benefit but it is a consequence of
the fact of the local Lorentz symmetry. This generalization
of the TT still is not equivalent to a generalization f (R̄) for
RG.

This is the main reason why we will address the construc-
tion of a theory that generalizes the TT, but which still keeps
the local Lorentz symmetry in a particular case. Therefore,
it is clear that we must build the function of the action with
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dependence on a scalar that at some limit is invariant under
local Lorentz transformations. This will be shown soon.

The paper is organized as follows. In Sect. 2 we present a
review of f (T ) gravity, introducing the functional variation
method used in this work, obtaining the equations of motion
of this theory, noting a poorly treated point at the limit to GR.
In Sect. 3 we propose the action of generalized teleparallel
theory, we obtain the equations of motion through functional
variation of the same and compare with f (T ) gravity. We
show the equivalence of our theory with f (R̄) gravity, in the
case of cosmology for the line element of flat FLRW metric
in Sect. 4.1, and also in the case of a spherically symmetric
line element in Sect. 4.2. We also show the equivalence of our
theory with a particular case of f (T, B) gravity in Sect. 5.
In Sect. 6 we make four applications, one where we recon-
structed the action of our theory for the universe of the model
of de Sitter, and another where we obtain a static de Sitter
type solution; we analyze the evolution for the state parameter
to dark energy and the thermodynamics for a cosmological
model. We present our final considerations in Sect. 7.

2 The equations of motion for f (T ) gravity

The geometry of a space-time can be characterized by the
curvature and torsion. In the particular case in which we
only consider the curvature and torsion being zero, we have
defined, together with the metricity condition ∇μgαβ ≡ 0
where gαβ are the components of the metric tensor, a Rie-
mannian geometry where the connection �̄

μ
αβ is symmetric

in the last two indices. Already in the particular case that
we consider only torsion (Riemann tensor identically zero,
the case without curvature) in the space-time, we can then
work with objects that depend solely on the so-called tetrad
matrices and their derivatives as dynamic fields.

In the space-time having only torsion, the line element can
be represented through two standard forms

dS2 = gμνdxμdxν = ηabθ
aθb, (1)

where we have the following relationships: gμν = ηabeaμe
b
ν ,

gμν = ηabeμ
a eν

b , θa = eaμdxμ, eaμe
ν
a = δν

μ e eaμe
μ
b = δab , with

eaμ being the tetrad matrices and eμ
a their inverse, and [ηab] =

diag[1,−1,−1,−1] the Minkowski metric. We adopt Latin
indices for the tangent space and Greeks for space-time.

We will first establish the equations of motion for the the-
ory f (T ), thus showing that the functional variation method
adopted here is consistent.

We restrict the geometry to Weitzenböck geometry where
we have the following connection:

�σ
μν = eσ

a ∂νe
a
μ = −eaμ∂νe

σ
a . (2)

All Riemann tensor components are identically zero for the
connection (2). We can then define the components of the
tensor of torsion and contortion as

T σ
μν = �σ

νμ − �σ
μν = eσ

a

(
∂μe

a
ν − ∂νe

a
μ

)
, (3)

Kμν
α = −1

2

(
Tμν

α − T νμ
α − Tμν

α

)
. (4)

We can also define a new tensor, so we write the equations
of motion in a more elegant way, through the components of
the tensor torsion and contortion, as

Sμν
α = 1

2

(
Kμν

α + δμ
α T

βν
β − δν

αT
βμ
β

)
. (5)

We define the torsion scalar as

T = T α
μνS

μν
α = 1

4
T α

μνT
μν
α + 1

2
T α

μνT
νμ
α − T α

μαT
βμ
β . (6)

Some observations are important here. The first is that there
is a direct analogy to a space only with torsion and another
considering only curvature in that the connections are related
by

�̄α
μν = �α

μν − gμλK
αλ
ν , (7)

where �̄α
μν is the Levi-Civita connection, which is symmet-

ric in the last two indices. The second observation is that the
torsion scalar T is not a Lorentz scalar (in the tangent space),
being only a scalar in the tensorial indices (space-time) [66].
This is precisely the cause for that theory, being built start-
ing from this scalar, to break down the invariance by local
Lorentz transformations. We can in reality build the curva-
ture scalar analog, through the torsion scalar, by the relation
[66]

R̄ = −T − 2∇̄μT α
μα = −T − 2e−1∂μ

(
egμλT α

λα

)
, (8)

where e = det[eaμ] = √−g, with g = det[gμν]. The curva-
ture scalar R̄ in (8) is a Lorentz scalar as well as a scalar on
tensorial indices. That is why f (R̄) gravity is a theory that
is invariant under local Lorentz transformations and general
coordinates transformations (tensorial).

It is then possible to construct a generalization of the
teleparallel theory (TT) using the following action of the
f (T ) gravity:

S f (T ) =
∫

d4xL f (T ) =
∫

d4x
[ e

2κ2 f (T ) − Lmatter

]
(9)

where κ2 = 8πGNewton , f (T ) is a function of the torsion
scalar andLmatter is the Lagrangian density of the matter con-
tent. We call attention to the true sign (−) in front of the mat-
ter term. This so far has not been explicitly addressed in the
literature of this theory, because we still have few models that
couple the matter contents that need to be obtained through
functional variation in principle. This feature is essential if
the theory is to be equivalent to GR at some limit. It will soon
be made clear.
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Addressing the functional variation of the action (9) we
have

δS f (T ) = 1

2κ2

∫
d4x

[
f δe + eδ f − 2κ2δLmatter

]
,

= 1

2κ2

∫
d4x

[
f

∂e

∂eaσ
δeaσ + e

d f

dT
δT

]

−
∫

d4xδLmatter,

= δST − δSmatter, (10)

with δSmatter = ∫
d4x δLmatter. Now let us study first the

functional variation of the matter term,

δSmatter =
∫

d4x

[
∂Lmatter

∂eaσ
δeaσ + ∂Lmatter

∂(∂αeaσ )
δ(∂αe

a
σ )

]
;

performing the integration by parts of the latter term, consid-
ering δeaσ |sur f ace ≡ 0, we have

δSmatter = 1

2κ2

∫
d4x 2κ2

[
∂Lmatter

∂eaσ
δeaσ

−∂α

(
∂Lmatter

∂(∂αeaσ )

)
δeaσ

]

= 1

2κ2

∫
d4x 2κ2e�σ

a δeaσ , (11)

where �σ
a = eβ

a�σ
β , and we define �σ

ν as the energy-
momentum tensor.

We now have the functional variation of geometric part,

δST = 1

2κ2

∫
d4x

{
f

∂e

∂eaσ
δeaσ

+e
d f

dT

[
∂T

∂eaσ
δeaσ + ∂T

∂(∂αeaσ )
δ(∂αe

a
σ )

]}
.

for Performing integration by parts the last term, considering
δeaσ |sur f ace ≡ 0, we obtain

δST = 1

2κ2

∫
d4x

{
f

∂e

∂eaσ
+ e fT

∂T

∂eaσ

−∂α

[
e fT

∂T

∂(∂αeaσ )

]}
δeaσ , (12)

where fT = d f/dT . Taking (11) and (12) and replacing in
(10), and imposing the principle of least action δS f (T ) ≡ 0
and multiplying by e−1eaν /2, we have the following equation
of motion:

1

2
f

(
e−1eaν

∂e

∂eaσ

)
+ 1

2
fT e

a
ν

∂T

∂eaσ

−1

2
e−1eaν ∂α

[
e fT

∂T

∂(∂αeaσ )

]
− κ2�σ

ν = 0. (13)

Substituting the derivatives [66]

∂e

∂eaσ
= e eσ

a ,
∂T

∂eaσ
= −4eλ

aT
α
νλS

νσ
α ,

∂T

∂(∂αeaσ )
= 4eλ

a S
ασ
λ ,

(14)

in (13) we finally have the equations of motion of f (T ) grav-
ity

1

2
f δσ

ν −2 fT T
α
βνS

βσ
α −2e−1eaν ∂α

[
e fT e

β
a S

ασ
β

]
− κ2�σ

ν = 0.

(15)

Now we make use of the identity [66]

[
e−1eaν ∂α

(
eeβ

a S
ασ
β

)
+ T α

βνS
βσ
α

]
= −1

2

[
Gσ

ν − 1

2
δσ
ν T

]
,

(16)

with Gσ
ν being the mixed components of the Einstein tensor,

for rewriting (15) as

− 2Sασ
ν ∂α fT + fT G

μ
ν + 1

2
δσ
ν [ f − fT T ] = κ2�σ

ν . (17)

This theory falls under Einstein’s general relativity with
a cosmological constant, when we make f (T ) = T − 2�.
Here it becomes clear that if we do not consider the sign (−)

in front of the matter term in the action (9) in the theory,
we do not return to GR for a linear f (T ) function, reach-
ing the case opposite to Einstein’s equation. This fact will
be crucial in showing later that an invariant theory by local
Lorentz transformations, as f (R̄) gravity, cannot fall under
f (T ) gravity, since these have opposite coupling signs to the
matter term.

Sotiriou et al. [63,64] have shown that f (T ) gravity does
not preserve its equations of motion invariant by local Lorentz
transformations. It is in relation to this problem that we then
construct a generalization of the teleparallel theory that pre-
serves the invariance of the equations of motion for a local
Lorentz transformation. This will be addressed in the next
section.

3 Equations of motion on generalized teleparallel theory

An important identity is given by R̄ = −T −2∇̄μT β
μβ , where

R̄ is the curvature scalar associated with a Riemann tensor
defined solely by the Levi-Civita connection �̄α

μν , where the
indices (μν) are symmetric, and the covariant derivative ∇̄
is defined by this connection. The curvature scalar is by def-
inition invariant under a local Lorentz transformation, but it
is also invariant under a general coordinate transformation.
So it would be interesting to develop a theory that general-
izes the TT but for which the functional action depends on
an invariant under local Lorentz transformations. This is not
the case of f (T ) gravity.

We propose the following action:

SGTT =
∫

d4x
[ e

2κ2 f (T ) + Lmatter

]
, (18)
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where we define

T = −T − 2a1∇̄μT β
μβ = −T − 2a1 e

−1∂μ

(
egμλT α

λα

)
.

(19)

This action generalizes TT and falls under a modified f (T )

gravity as well as f (R̄) gravity. We can show this by mak-
ing the limit a1 → 0, where we have T → −T , therefore
f (T ) → f (−T ), fT → − fT and the theory must be equiv-
alent to a modified f (T ) (we shall see this later). Moreover,
we can regain f (R̄) gravity, making the limit a1 → 1, where
we have T → R̄; then the theory must be equivalent to f (R̄).
We show this explicitly through the equations of motion later
on.

By performing the functional variation of the action (18)
we obtain

δSGTT = 1

2κ2

∫
d4x

[
f δe + eδ f + 2κ2δLmatter

]
. (20)

As SGTT ≡ SGTT
[
eaσ , ∂αeaσ ,�A

]
, in which �A are the mat-

ter fields, we have

δSGTT = δST + δSmatter, (21)

with δSmatter = ∫
d4x δLmatter in the same manner as in f (T )

gravity. The functional variation of the matter term (21) is
exactly the same as given in (11).

The geometric part is

δST = 1

2κ2

∫
d4x [ f δe + e δ f ]

= 1

2κ2

∫
d4x

[
f

∂e

∂eaσ
δeaσ + e fT δT

]
, (22)

where we use fT = d f/dT . The first term in (22) is already
known, and we will pay attention to the second term.
Performing the functional variation to T in (19) we obtain

δT = −δT − 2a1δ
[
e−1∂μ

(
e gμβT α

βα

)]

= −δT − 2a1

[
−e−2∂μ

(
egμβT α

βα

)
δe

+e−1δ∂μ

(
egμβT α

βα

)]
, (23)

in (22) taking into account the functional variation of T and
e we have

δST = 1

2κ2

∫
d4x

{
f

∂e

∂eaσ
δeaσ

−e fT

[
∂T

∂eaσ
δeaσ + ∂T

∂(∂αeaσ )
δ(∂αe

a
σ )

]

+2a1

[
e−1 fT ∂μ(egμβT α

βα)
∂e

∂eaσ
δeaσ

− fT δ∂μ(egμβT ν
βν)

]}
. (24)

Now we do the integration by parts in the terms containing
δ(∂αeaσ ) and δ∂μ(egμβT ν

βν). The first integration by parts is
given by

− 1

2κ2

∫
d4x e fT

∂T

∂(∂αeaσ )
δ(∂αe

a
σ )

= − 1

2κ2

∫
d4x∂α

[
e fT

∂T

∂(∂αeaσ )
δeaσ

]

+ 1

2κ2

∫
d4x∂α

[
e fT

∂T

∂(∂αeaσ )

]
δeaσ , (25)

where the first term is zero because it is a surface term, which
we consider δeaσ |sur f ace ≡ 0. The second integration by parts
is given by

− 2a1

2κ2

∫
d4x fT δ∂μ(egμβT ν

βν)

= − 2a1

2κ2

∫
d4x∂μ

[
fT δ(egμβT ν

βν)
]

+ 2a1

2κ2

∫
d4x(∂μ fT ) δ(egμβT ν

βν), (26)

with the first term is null for being a surface term. Then we
have

− 2a1

2κ2

∫
d4x fT δ∂μ(egμβT ν

βν)

= 2a1

2κ2

∫
d4x(∂μ fT )

[
gμβT ν

βν

∂e

∂eaσ
δeaσ

+ e T ν
βνδg

μβ + egμβδT ν
βν

]
. (27)

Making use of the following relationship:

δgμβ = δ
(
ηabeμ

a e
β
b

)

= −(gβσ eμ
a δeaσ + gμσ eβ

a δeaσ ) (28)

and replacing (25) and (27) in (24), developing the terms of
δT ν

βν we have

δST = 1

2κ2

∫
d4x

{
f

∂e

∂eaσ
δeaσ − e fT

∂T

∂eaσ
δeaσ

+∂α

[
e fT

∂T

∂(∂αeaσ )

]
δeaσ

+2a1

[
e−1 fT ∂μ(e gμβT ν

βν)
∂e

∂eaσ
δeaσ

+(∂μ fT )

[
gμβT ν

βν

∂e

∂eaσ
δeaσ

−eT ν
βν

(
gβσ eμ

a δeaσ + gμσ eβ
a δeaσ

) + e gμβ
∂T ν

βν

∂eaσ
δeaσ

+e gμβ
∂T ν

βν

∂(∂αeaσ )
δ(∂αe

a
σ )

]]}

. (29)
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At this point we see that we still have to do an integration by
parts in the last term, i.e.,

2a1

2κ2

∫
d4x (∂μ fT ) e gμβ

∂T ν
βν

∂(∂αeaσ )
δ(∂αe

a
σ )

= 2a1

2κ2

∫
d4x∂α

[

(∂μ fT )egμβ
∂T ν

βν

∂(∂αeaσ )
δeaσ

]

− 2a1

2κ2

∫
d4x∂α

[

(∂μ fT ) e gμβ
∂T ν

βν

∂(∂αeaσ )

]

δeaσ , (30)

where once again the first term vanishes due to being a surface
term. Substituting this result in (29) we obtain

δST = 1

2κ2

∫
d4x

{
f

∂e

∂eaσ
− e fT

∂T

∂eaσ

+∂α

[
e fT

∂T

∂(∂αeaσ )

]
+ 2a1

[
e−1 fT ∂μ(e gμβT ν

βν)
∂e

∂eaσ

+(∂μ fT )

[
gμβT ν

βν

∂e

∂eaσ
− eT ν

βν

(
gβσ eμ

a + gμσ eβ
a

)

+e gμβ
∂T ν

βν

∂eaσ

]

− ∂α

[

(∂μ fT ) e gμβ
∂T ν

βν

∂(∂αeaσ )

]]}

δeaσ .

(31)

Now we must replace the results derived from T , e and T ν
βν

in the relation as regards the tetrads and the derivatives. Tak-
ing into account the results of f (T ), we have the following
derivative:

∂e

∂eaσ
= e eσ

a ,
∂T

∂eaσ
= −4eλ

aT
α
νλS

νσ
α ,

∂T

∂(∂αeaσ )
= 4eλ

a S
ασ
λ ,

∂T ν
βν

∂eaσ
= −eν

aT
σ
βν, (32)

∂T ν
βν

∂(∂αeaσ )
= eν

bδ
b
a

(
δα
βδσ

ν − δα
ν δσ

β

)
. (33)

Substituting the above derivatives in (31), making δSGTT ≡
0 in (21) and multiplying by 1

2e
−1eaω we have the following

equation of motion for the generalized teleparallel theory:

1

2
δσ
ω f + 2 fT T β

νωS
νσ
β + 2e−1eaω∂α

[
e fT eβ

a S
ασ
β

]

+ a1

{
e−1 fT δσ

ω∂μ(egμβT ν
βν) + (∂μ fT )

[
δσ
ωg

μβT ν
βν

−
(
δμ
ωg

βσ T ν
βν + gμσ T ν

ων

)
− gμβT σ

βω

]

−e−1eaω∂α

[
e(∂μ fT )(gμαeσ

a − gμσ eα
a )

]} + κ2�σ
ω = 0.

(34)

Taking the limit in which a1 → 0 (T → −T, f ≡
f (−T ), fT → − fT ), making T → −T the equation of
motion (34) does not fall exactly under the equation of motion
of the f (T ) gravity in (15). This happens due to the fact that
the relationship between the curvature scalar and the torsion

scalar has a minus sign, which prevents a theory to be f (R̄)

gravity, in which the coupling with matter is positive, which
would fall under a theory like f (T ) gravity, in which the cou-
pling signal with the matter should be negative so that it falls
under GR. In the next section we shall show the equivalence
between GTT and f (R̄) gravity.

4 Equivalence between GTT and f (R̄) gravity

Let us start this section showing the equivalence of GTT with
f (R̄) gravity in the limit a1 → 1, to general tetrads.

Let us first establish some necessary identities, as arising
from the condition of the metricity,

∇̄αgμν = ∇̄αg
μν ≡ 0, ∂αgμν = �̄λ

αμgλν

+�̄λ
ανgλμ, ∂αg

μν = −�̄
μ
λαg

λν − �̄ν
λαg

λμ.

(35)

With it the identity ∂αe = egμν∂αgμν becomes

∂αe = 2e�̄ν
αν. (36)

Now we can divide the equation of motion (34) in terms
such as

T (1) + T (2) + T (3) + κ2�σ
ω = 0, (37)

T (1) = 1

2
δσ
ω f + 2 fT T β

νωS
νσ
β

+ 2e−1eaω∂α

[
e fT e

β
a S

ασ
β

]
+a1e

−1 fT δσ
ω∂μ(egμβT ν

βν),

(38)

T (2) = a1(∂μ fT )
[
δσ
ωg

μβT ν
βν − δμ

ωg
βσ T ν

βν

−gμσ T ν
ων − gμβT σ

βω

]
, (39)

T (3) = −a1e
−1eaω∂α

[
e(∂μ fT )(gμαeσ

a − gμσ eα
a )

]
. (40)

Developing the last term we have

T (3) = −a1δ
σ
ω�̄ fT + a1g

μσ ∇̄ω∇̄μ fT − a1g
νσ �̄μ

ων∂μ fT
−a1e

−1eaω
(
∂μ fT

) [
(gμαe σ

a − gμσ e α
a )∂αe

+e(e σ
a ∂αg

μα + gμα∂αe
σ

a

−e α
a ∂αg

μσ − gμσ ∂αe
α

a )
]
. (41)

Using (2), (3), (4), (7), (35), and (36) in (39) and (41) we
have the sum of terms T (2) and T (3) resulting in

T (2) + T (3) = −a1δ
σ
ω�̄ fT + a1g

μσ ∇̄ω∇̄μ fT . (42)

Now we use the identity (16) in (38), then we can rewrite the
equation of motion (37), using (42), as follows:

− fT Gμ
ν − a1

[
δμ
ν �̄ − gμα∇̄ν∇̄α

]
fT

+1

2
[−T fT + f ] δμ

ν + 2Sαμ
ν ∂α fT + κ2�μ

ν = 0. (43)
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Considering T ≡ T (−T − a1B), with B = 2∂μ(egμβT ν
βν),

we see that GTT will only be equivalent to f (R̄) gravity in
the limit a1 → 1, so T → R̄ and the term 2Sαμ

ν ∂α fT must
be identically zero, as shown in Sect. III, subsection C, of
[68]. When this term vanishes, we have exactly one theory
invariant by local Lorentz transformations, which occurs only
when a1 → 1, and thus Eq. (43) becomes identical to f (R̄)

gravity, which is covariant and independent of the chosen of
set of tetrads.

In the next section we will specify a set of tetrads that
explicitly show the equivalence between the two theories in
the limit referred to above.

4.1 Friedmann–Lemaître–Robertson–Walker case

In this section we explicitly show that the GTT equations of
motion in (34) are exactly the same as f (R̄) gravity for the
particular limit in which a1 → 1. We can then begin com-
paring the equations of motion for an easier symmetry of
the metric, as the maximum symmetry for the cosmological
Friedmann–Lemaître–Robertson–Walker (FLRW) flat met-
ric,

dS2
FLRW = dt2 − a2(t)

(
dx2 + dy2 + dz2

)
. (44)

Considering the case of cosmology, with line element FLRW
flat (44), for a diagonal tetrad [eaσ ] = diag[1, a(t), a(t),
a(t)], we see that Eq. (34) become

κ2�0
0 = 1

2a2

{
6a1aȧ

(
d

dt
fT

)

+
[
12 (1 − a1) (ȧ)2 − 6a1aä

]
fT − f a2

}
, (45)

κ2�1
1 = κ2�2

2 = κ2�3
3

= − 1

2a2

{
2a

(
a1a

d

dt
+ 2ȧ

)
d

dt
fT +

[
(4 − 6a1) aä

+ (8 − 12a1) (ȧ)2
]
fT − f a2

}
, (46)

where ȧ = (d/dt)a and ä = (d2/dt2)a.
We can now compare these equations with those obtained

from f (R̄) gravity, whose equations of motion are [5–9]

κ2�μ
ν = f R̄ R̄

μ
ν − 1

2
δμ
ν f + (

δμ
ν �̄ − gμβ∇̄β∇̄ν

)
f R̄ . (47)

Considering the flat FLRW metric (44), Eq. (47) provide us
with

κ2�0
0 = 1

2a

[
6ȧ

d

dt
fR − 6ä fR − a f

]
, (48)

κ2�1
1 = κ2�2

2 = κ2�3
3

= − 1

2a2

[(
2a2 d

dt
+ 4aȧ

)
d

dt
fR

−
(

2aä + 4(ȧ)2
)
fR − f a2

]
. (49)

Subtracting (45) from (48) we have

0 = 3

a2

{
2(1 − a1)ȧ

2 fT + aȧ

(
a1

d fT
dt

− d f R̄
dt

)

+aä( f R̄ − a1 fT ) + a2

6

[
f (R̄) − f (T )

]}
. (50)

Subtracting (46) from (49) we obtain

0 = 1

a2

{
a2

(
a1

d2 fT
dt2 − d2 f R̄

dt2

)
+ 2aȧ

(
d fT
dt

− d f R̄
dt

)

+ aä[(2 − 3a1) fT + f R̄] + ȧ2[(4 − 6a1) fT + 2 f R̄]
+ a2

2

[
f (R̄) − f (T )

]}
. (51)

Now we clearly see that in the limit a1 → 1 we have
{T → R̄, f (T ) → f (R̄), fT → f R̄}, then (50) and (51)
are identically null, showing the equivalence of equations of
motion between GTT and f (R̄) for this limit. The conclusion
is that GTT is only invariant under local Lorentz transforma-
tions and at the same time invariant by general coordinates
transformations in the limit at which a1 → 1.

4.2 Spherically symmetric case

We have demonstrated in general that GTT is equivalent to
f (R) gravity, but in addition to explain this through a metric
with specific symmetry, we want to leave the equations of
motion open for further analysis of this theory.

Let us now consider the case of a spherically symmetric
and static line element,

dS2 = ea(r)dt2 − eb(r)dr2 − r2
(

dθ2 + sin2 θdφ2
)

; (52)

we can choose the following diagonal tetrad: [eaσ ] =
diag[ea(r)/2, eb(r)/2, r, r sin θ ], which, taking into account
(34), provides us with the following equations of motion:

κ2�0
0 = −e−b

4r2

{
4a1r

2 d2

dr2 fT + (8r − 2a1r
2b′) d

dr
fT

+
[(

a1r
2a′ + 4(a1 − 1)r

)
b′

+ 4(a1 − 1)eb − a1r
2
(

2a′′ + (a′)2
)

− 4(2a1 − 1)ra′ − 8(a1 − 1)
]
fT + 2 f r2eb

}
,

(53)
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κ2�1
1 = e−b

4r2

{
a1

(
2r2a′ + 8r

) d

dr
fT

+
[
a1r(ra

′ + 4)b′ + 4(a1 − 1)eb

−a1

(
2r2a′′ + r2(a′)2

)
+ 8(1 − a1)ra

′

+ 8(1 − a1)
]
fT + 2 f r2eb

}
, (54)

κ2�1
2 = (a1 − 1) cos θ d

dr fT
r2 sin θ

= 0, (55)

κ2�2
2 = κ2�3

3 = e−b

4r2

{
4a1r

2 d2

dr2 fT

−2r
(
a1rb

′ − ra′ − 2
) d

dr
fT

+
[(

(a1 − 1)r2a′ + (4a1 − 2)r
)
b′ + 4a1e

b

+2(1 − a1)r
2a′′ + (1−a1)r

2(a′)2 + (6−8a1)ra
′

− 4(2a1 − 1)
]
fT + 2 f r2eb

}
, (56)

where ′ denotes a derivation in relation to radial coordinate
r . Taking the metric (52) to the equations of f (R̄) gravity in
(47), we obtain

κ2�0
0 = −e−b

4r

{
4r

d2

dr2 f R̄ + (8 − 2rb′) d

dr
f R̄

+
[
r(a′b′ − 2a′′ − (a′)2) − 4a′] f R̄ + 2 f reb

}
,

(57)

κ2�1
1 = e−b

4r

{
(2ra′ + 8)

d

dr
f R̄

+
[
(ra′ + 4)b′ − 2ra′′ − r(a′)2

]
f R̄ + 2 f reb

}
,

(58)

κ2�2
2 = κ2�3

3 = e−b

2r2

{
2r2 d2

dr2 f R̄ − r(rb′−ra′−2)
d

dr
f R̄

+(rb′+2eb−ra′−2) f R̄ + f r2eb
}

. (59)

Here first we notice that if a1 �= 1, there exists an equa-
tion, Eq. (55), outside the diagonal for GTT, resulting in the
restriction of the functional form f (T ) = c1T + c0, where
c0, c1 ∈ 	. Then we have the same constraint to f (T ) gravity
in this case [67].

We also see that in the limit a1 → 1, {T → R̄, f (T ) →
f (R̄), fT → f R̄}, all equations (53)–(56) for GTT are iden-
tical to f (R̄) given in (57)–(59).

Now choose a set of non-diagonal tetrads,

{eaμ} =

⎡

⎢
⎢
⎣

ea/2 0 0 0
0 eb/2 sin θ cos φ r cos θ cos φ −r sin θ sin φ

0 eb/2 sin θ sin φ r cos θ sin φ r sin θ cos φ

0 eb/2 cos θ −r sin θ 0

⎤

⎥
⎥
⎦ ,

(60)

and the equations to GTT in (34) provide us with

κ2�0
0 = −e−b

4r2

{
4a1r

2 d2

dr2 fT −
(

2a1r
2b′−8(a1−1)reb/2

− 8r
) d

dr
fT + [(

a1r
2a′ + 4(a1 − 1)r

)
b′

+ (
4(a1−1)ra′+8(a1−1)

)
eb/2−a1r

2 (
2a′′+(a′)2)

− (8a1 − 4)ra′ − 8(a1 − 1)
]
fT + 2 f r2eb

}
,

(61)

κ2�1
1 = e−3b/2

4r2

{
2a1r(ra

′ + 4)eb/2 d

dr
fT

+
[
a1r(a

′r + 4)eb/2b′ + [
4(a1 − 1)ra′ + 8(a1 − 1)

]
eb

− (
a1r

2 (
2a′′ + (a′)2) − 8(1 − a1)ra

′

−8(1 − a1)) e
b/2

]
fT + 2 f r2e3b/2

}
, (62)

κ2�2
2 = κ2�3

3 = e−b

4r2

{
4a1r

2 d2

dr2 fT

−
(

2a1b
′ − 4(a1 − 1)reb/2 − 2r2a′ − 4r

) d

dr
fT

+
[(

(a1 − 1)r2a′ + (4a1 − 2)r
)
b′ + 4eb

+ (
4(a1 − 1)ra′ + 8(a1 − 1)

)
eb/2

−2(a1−1)r2a′′ − (a1−1)r2(a′)2 + (6−8a1)ra
′

− (8a1 − 4)
]
fT + 2 f r2eb

}
. (63)

We can then see that in this case the equations of motion
are diagonal. But equivalence of GTT with f (R̄) gravity is
only given in the limit a1 → 1, when Eqs. (57)–(59) and
(61)–(63) are identical.

5 Equivalence between GTT and a particular case
of the f (T, B) gravity

In this section we make an important observation. When we
were finishing the calculation of the non-diagonal tetrads case
of the previous subsection, we noted that a collaboration have
submitted exactly the same idea as our work here. The so-call
f (T, B) gravity [68], with B = −2∇̄μT ν

μν , is a more general
theory than presented here, where the algebraic function is
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contained in the action; it may be any analytic function of the
variables T and B. We noted then that the equivalence of this
theory with the f (R̄) gravity is given only for the specific
functional form f (T, B) ≡ f (−T +B) = f (R̄). Compared
to our theory, we see that GTT is a particular case of f (T, B)

gravity, when f (T, B) ≡ f (−T + a1B) = f (T ). We can
show this again explicitly using the equations of motion.

The equation of motion for f (T, B) gravity is given by

2δλ
ν �̄ fB − 2∇̄λ∇̄ν fB + B fBδλ

ν

+4∂μ ( fB + fT ) Sμλ
ν + 4e−1eaν ∂μ

(
eeβ

a S
μλ
β

)
fT

−4 fT T
σ
μνS

λμ
σ − f δλ

ν = 2κ2�λ
ν. (64)

The first observation here is that this theory does not fall
under f (T ) gravity in general, as well as our GTT, as men-
tioned at the end of Sect. 3. Taking f (T, B) ≡ f (T ), thus
fB = 0, the equation of motion (64), using the identity (16),
becomes

4(∂μ fT )Sμλ
ν − 2 fT G

λ
ν + δλ

ν (T fT − f ) = 2κ2�λ
ν. (65)

This equation is not equal to (17) for f (T ) gravity, and cannot
fall under GR when f (T ) ≡ T − 2�, due to the sign. This
shows that the f (T, B) gravity also does not return to f (T )

gravity in general.
Now we can show that in the particular case f (−T +a1B)

this theory falls under our GTT. We take the FLRW metric
(44) with diagonal tetrads [eaμ] = diag[1, a, a, a], and the
equations of motion (64) provide us with

κ2�0
0 = − 1

2a2

{
12(ȧ)2 fT − 6aȧ

d

dt
fB

+ 2
[
3aä + 6(ȧ)2

]
fB + f a2

}
, (66)

κ2�1
1 = κ2�2

2 = κ2�3
3 = 1

2a2

{
4a(ȧ)

(
d

dt
fT

)

+
[
4aä + 8(ȧ)2

]
fT − 2a2

(
d2

dt2 fB

)

+
[
6aä + 12(ȧ)2

]
fB + f a2

}
. (67)

Now identifying f (−T + a1B) = f (T ), recalling that T is
given in (19),

fT = ∂ f

∂T
= ∂T

∂T

d f

dT = − d f

dT ,

fB = ∂ f

∂B
= ∂T

∂B

d f

dT = a1
d f

dT . (68)

We see that Eqs. (66) and (67) are identical with GTT (45)
and (46), thus showing the equivalence between the theories.

We can also confirm this by choosing the spherical sym-
metry for the metric (52), first for diagonal tetrads [eaμ] =
diag[ea/2, eb/2, r, r sin θ ], thus, Eq. (64) provide us with

κ2�0
0 = e−b

4r2

{
8r

d

dr
fT − 2

[
2rb′ + 2eb − 2ra′ − 4

]
fT

−2r2
[

2
d

dr
− b′

]
d

dr
fB

+
[
−r(ra′ + 4)b′ − 4eb + r

(
2ra′′ + r(a′)2 + 8a′)

+8

]
fB − 2 f r2eb

}
, (69)

κ2�1
1 = e−b

4r2

{
2

[
2eb − 4ra′ − 4

]
fT + 2r

[
ra′ + 4

] d

dr
fB

+
[
r
(
ra′ + 4

)
b′ + 4eb − r

(
2ra′′ − r(a′)2 − 8a′)

− 8
]
fB + 2r2 f eb

}
, (70)

κ2�1
2 = − 1

r2 sin θ

[
cos θ

d

dr
fT + cos θ

d

dr
fB

]
= 0, (71)

κ2�2
2 = κ2�3

3 = e−b

4r2

{
2r(ra′ + 2)

d

dr
fT

+
[
−r

(
ra′ + 2

)
b′ + r2

(
2a′′ + (a′)2

)
+ 6ra′ + 4

]
fT

−2r2
[

2
d

dr
− b′

]
d

dr
fB +

[
− r(ra′ − 4)b′

− 4eb + r2
(

2a′′+(a′)2
)

+ 8ra′ + 8

]
fB − 2 f r2eb

}
.

(72)

Again we have the equivalence of the equations of motion
(69)–(72) with (53)–(56), for the identifications f (T, B) =
f (T ) and (68).

By taking the choice of non-diagonal tetrads (60), the
equations of motion from f (T, B) gravity (64) provide us
with

κ2�0
0 = −e−5b/2

4r2

{
8r

[
e2b − e3b/2

] d

dr
fT

+
[
4re3b/2b′+2(2ra′+4)e2b−4(ra′+2)e3b/2

]
fT

+
[

4r2e3b/2 d

dr
+

(
8re2b − 2r2e3b/2

)]
d

dr
fB

+
[
r
(
ra′ + 4

)
e3b/2b′ + 4

(
ra′ + 2

)
e2b

−
(

2r2a′′ + r(a′)2 + 8ra′ + 8
)
e3b/2

]
fB

+ 2 f r2e5b/2
}

, (73)

κ2�1
1 = e−5b/2

4r2

{[
4(ra′ + 2)e2b − 8(ra′ + 1)e3b/2

]
fT

+2r(ra′ + 4)e3b/2 d

dr
fB

+
[
r(ra′+4)e3b/2b′ + 4(ra′ + 2)e2b − (2r2a′′

+ r2(a′)2 + 8ra′ + 8)e3b/2
]
fB + 2 f r2e5b/2

}
,

(74)
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κ2�2
2 = κ2�3

3 = e−5b/2

4r2

{[
4re2b − 2r(ra′ + 2)e3b/2

] d

dr
fT

+
[
r(ra′ + 2)e3b/2b′ − 4e5b/2 + 4(ra′ + 2)e2b

− (
2r2a′′ + r2(a′)2 + 6ra′ + 4

)
e3b/2

]
fT

+
[

4r2e3b/2 d

dr
+ 4re2b − 2r2e3b/2b′

]
d

dr
fB

+
[
r(ra′ + 4)e3b/2b′ + 4(ra′ + 2)e2b

− (
2r2a′′ + r2(a′)2 + 8ra′ + 8

)
e3b/2

]
fB

+ 2 f r2e5b/2
}

. (75)

Just as before, making the identifications f (T, B) = f (T )

and (68), Eqs. (73)–(75) are identical to GTT in (61)–(63),
confirming again the equivalence of these theories.

6 Applications to GTT

6.1 Reconstruction for de Sitter Universe

A method to obtain the functional form of the algebraic func-
tion f (T ) is the so-called reconstruction. This method con-
sists of specifying a model that fixes the matter content of the
theory in terms of the scalar T , allowing one to reconstruct
the functional form of f (T ) through the equations of motion
of the theory.

We will choose the particular case of a flat FLRW met-
ric in which a(t) = a0 exp[H0(t − t0)], a0, H0, t0 ∈ 	+;
it provides us with the model of de Sitter universe, where
H(t) = ȧ/a = H0. In this case, using (19), we have
H0(T ) = √

T /[6(1 − 3a1)], Ḣ ≡ 0 and (d/dt) fT =
fT T (d/dt)T ≡ 0. Knowing that κ2�0

0 = κ2ρ = 3H2
0 ,

Eq. (45) provides us with

3[H0(T )]2 = 3[H0(T )]2(2 − 3a1) fT (T ) − 1

2
f (T ),

(76)

and integrating with respect to that T results in

f (T ) = T + [(2 − 3a1)T ](1−3a1)/(2−3a1) c1, c1 ∈ 	.

(77)

6.2 Spherially symmetric type-de Sitter solution

We here take the limit a1 → 0 in (34), which after using the
identity (16) and considering T → −T results in

fT (−T )Gσ
ω + 1

2
δσ
ω [ f (−T ) − T fT (−T )] = −κ2�σ

ω.

(78)

As in f (R̄) gravity [69], we can consider the very specific
case where R̄ ≡ R̄0 = −T0 + B0, T ≡ T0 = −T0 +a1B0 =
−T0, with R̄0, T0, B0 ∈ 	 and B0 is defined by (19). In the
case of a perfect fluid �λ

ν = diag[ρ0,−p0,−p0,−p0], and
∂μ fT = fT T ∂μT0 ≡ 0, which results in the equations

R̄σ
ω = − κ2

fT0(−T0)
�σ

ω + 1

2
δσ
ω

[
R̄0 + T0 − f (−T0)

fT0(−T0)

]
,

(79)

which taking the trace results in

B0 = κ2

fT0(−T0)
(ρ0 − 3p0) + 2

f (−T0)

fT0(−T0)
− T0. (80)

Considering now the line element (52), for b(r) = −a(r)
and p0 = −ρ0 (type dark energy), we can integrate the equa-
tions of motion (79), where we get the following solution:

a(r) = − b(r) = log

[
1 + c1

2 fT0(−T0)r

+ f (−T0) − fT0(−T0)T0 + 2κ2ρ0

6 fT0(−T0)
r2

]
. (81)

This is a static de Sitter type solution where we can identify
the effective cosmological constant (−�eff/3) = [ f (−T0)−
fT0(−T0)T0+2κ2ρ0]/[6 fT0(−T0)]. A de Sitter type solution
was also previously obtained in f (R̄) gravity for a(r) =
−b(r) and R̄ = R̄0 [69]. We emphasize here that this solution
boils down to a different theory from f (T ) gravity, because
GTT does not fall under f (T ) gravity for a1 → 0, except
for the special case where f (T ) is an odd analytic function,
that is, f (−T ) = − f (T ).

6.3 Evolution for the state parameter of the dark energy

A good test for our theory is the evolution of a model of the
universe. This can discard or keep a theory depending on
whether it is in agreement with the observational data.

Let us follow the procedure found in [70] to determine the
state parameter ωDE. For a universe permeated by a perfect
fluid, of which the equation of state is governed by p = ωρ,
we can rewrite the equations of motion (45) and (46) as

3H2 = κ2Geff (ρm + ρDE) ,

H = ȧ

a
,

Geff = 1

(3a1 − 2) fT
,

ρDE = 1

κ2

[
3a1

(
Ḣ fT − H ḟT

) − 1

2
f

]
, (82)

Ḣ = −κ2

2
Geff (pm + pDE + ρm + ρDE) ,

pDE = 1

κ2

[
a1 f̈T + H ḟT − 1

2
f

]
. (83)
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Fig. 1 Representation of the temporal evolution of ωDE(t)

Now we can defining the state parameter of dark energy by

ωDE = pDE

ρDE
= a1 f̈T + H ḟT − 1

2 f

3a1
(
Ḣ fT − H ḟT

) − 1
2 f

. (84)

We now assume an exponential model [70] defined by

f (T ) = T − βTs
(

1 − exp

[ T
Ts

])
. (85)

We will now test for a solution of power law type,

a(t) = tα, H(t) = α

t
. (86)

We can show that (86) is a solution of the equations of motion
(82) and (83) if the matter part is given by the expressions

ρmt = 1

2t4Tsκ2

{
e

6α[a1+α(1−2a1)]
Ts t2

[
T 2
s t

4 + 6αTs t2(a1

+α(3a1 − 2)) + 72a1α
2(a1(2α − 1) − α)

]
β

+ Ts t2
[
−6α2 + 6αa1(2 + α) − βTs t2

]}
, (87)

pmt = 1

2T 2
s κ2t6

{
e

6α[a1+α(1−2a1)]
Ts t2

[
−T 3

s t
6

+ 2T 2
s αt4(−4 + 3a1(2 − 3α) + 6α)

+ 288a1α
2(a1 + α(1 − 2a1))

2

− 24Ts t2α(3a1 − α)(−α + a1(2α − 1))
]
β

+ T 2
s t

4
[
2α(−4 − 3a1(α − 1) + 3α) + βTs t2

]}
.

(88)

Figure 1 is the temporal evolution of the state parameter
ωDE of the dark energy. The red curve is obtained with a
constant given by {α = 2, β = 1, Ts = H0�

(0)
m /β, H0 =

0.75,�
(0)
m = 0.23, a1 = 1000}, where we can see that

the fluid is always phantom ωDE < −1. The blue curve is
obtained with a constant given by {α = 20, β = 1, Ts =
H0�

(0)
m /β, H0 = 0.75,�

(0)
m = 0.23, a1 = 1}, where we

see that the fluid is always phantom ωDE < −1, but it fluc-
tuates approximately between the values −1.05 and −1.08.
The most interesting case is the green curve obtained for
the constants {α = 2, β = 1, Ts = H0�

(0)
m /β, H0 =

0.75,�
(0)
m = 0.23, a1 = 0.1}. In this case we see that the

fluid begins in a rather phantom phase, going through another
quintessence type phase, heading toward behavior of bary-
onic matter (ω > 0), and finally returning to the phantom
phase. The result is that the current accelerated expansion of
the universe and the crossing of the phantom divide from the
phantom phase to the non-phantom (quintessence) one can
be realized as well as in [70].
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6.4 Thermodynamics for an apparent horizon

A further application is for thermodynamics of the apparent
horizon in cosmology with the FLRW metric. We can follow
the formulation given in [71].

We can establish a similar equation of continuity, deriving
over time (82) and using (83)

ρ̇m + ρ̇DE + 3H (ρm + ρDE + pm + pDE)

= 3H2 d

dt

(
1

Geff

)
. (89)

Whereas the baryonic matter is conserved (ρ̇m + 3H(ρm +
pm) ≡ 0), we see that dark energy is not conserved, yielding
the interpretation that it is a system out of equilibrium with
entropy production (non-equilibrium thermodynamics). Fol-
lowing exactly the same steps as in [71], we can establish the
first law of thermodynamics,

TAdSA + TAdSp = −dEMS + WdV,

TAdSp = −1

2
r̂A(1 + 2π r̂ATA)d

(
1

Geff

)
, (90)

where TA the temperature of the apparent horizon, dSA is
the entropy of the apparent horizon, dSp is the produced
entropy, dEMS is the Misner–Sharp energy, W the work, and
dV the volume element of the apparent horizon. Here it is
clearly seen that the first law of thermodynamics is consistent
for entropy production associated with an effective Newton
constant Geff , given in (82), for which for the linear case of
f (T ) the entropy production vanishes and the system goes
back to equilibrium.

If we take the same model as the previous section, i.e. (85)
and (86), we can explicitly show the time dependence of the
effective Newton constant in (82),

Geff = (3a1 − 2)−1
{

1 + βe
6α[a1+α(1−2a1)]

Ts t2
}−1

. (91)

Here two important observations are in order. The first is that
it gets an explicit dependence of the first law of thermody-
namics corresponding to the specific choice of the value on
a1 in (91). The second is that by taking the particular value
β ≡ 0 in (91), clearly we have Geff = (3a1 − 2)−1, which
again shows the dependence of the theory in relation to the
specific value of a1, and from (91), (85) and (90) we return
to the linear theory, where there is no entropy production.

7 Conclusion

We construct a theory that describes the gravitational inter-
action through effects of torsion of space-time. This theory
generalizes the teleparallel theory, keeping the invariance by

both local Lorentz transformations as general coordinates
transformations for a particular case.

The action of our theory is described by a general alge-
braic function that depends on a tensorial scalar T , which
is classified by a real parameter a1. Our theory falls exactly
under f (R̄) gravity when we take the limit a1 → 1. This is
shown from the equations of motion of the two theories.

We show explicitly through the equations of motion of our
theory that it is also equivalent to the recently found f (T, B)

gravity, when f (T, B) = f (−T + a1B).
We make two small applications of our theory, reconstruct-

ing the action for the particular case of a de Sitter universe
for the flat FLRW metric, with a set of diagonal tetrads, and
for obtaining a static de Sitter type solution. We also analyze
the evolution of the state parameter of the dark energy and
the first law of thermodynamics for the apparent horizon.

Our theory is a good scenario for an attempt to explain
the accelerated expansion of our universe, by modifying the
usual teleparallel gravitation, or by analogy to Einstein grav-
ity. The real parameter a1 which classifies which theory GTT
describes is crucial to any consideration of cosmological phe-
nomena. We also expect new solutions of black holes to arise
through our theory, in which one may also suggest to shed
some light on the so-called dark matter explanation of local
effects of gravitation.

Another perspective is to show the stability of the three
solutions discussed here. This should be a topic for future
work.
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