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Abstract Here we apply different types of embeddings of
the equations of motion of the linearized “New Massive Grav-
ity” in order to generate alternative and even higher-order (in
derivatives) massive gravity theories in D = 2 + 1. In the
first part of the work we use the Weyl symmetry as a guiding
principle for the embeddings. First we show that a Noether
gauge embedding of the Weyl symmetry leads to a sixth-
order model in derivatives with either a massive or a mass-
less ghost, according to the chosen overall sign of the theory.
On the other hand, if the Weyl symmetry is implemented
by means of a Stueckelberg field we obtain a new scalar–
tensor model for massive gravitons. It is ghost-free and Weyl
invariant at the linearized level around Minkowski space.
The model can be nonlinearly completed into a scalar field
coupled to the NMG theory. The elimination of the scalar
field leads to a nonlocal modification of the NMG. In the
second part of the work we prove to all orders in deriva-
tives that there is no local, ghost-free embedding of the lin-
earized NMG equations of motion around Minkowski space
when written in terms of one symmetric tensor. Regarding
that point, NMG differs from the Fierz–Pauli theory, since in
the latter case we can replace the Einstein–Hilbert action by
specific f (R,� R) generalizations and still keep the theory
ghost-free at the linearized level.

1 Introduction

Massive spin-2 particles can be covariantly described by
means of a symmetric rank-2 tensor. Although this is not
the only possible tensor structure, it is very convenient. It
is closely connected with a geometrical point of view (fluc-
tuation about some metric) and it is a minimal description
in the sense that we need just one auxiliary field, i.e., the
trace of the tensor which vanishes on shell. If we further

a e-mail: dalmazi@feg.unesp.br
b e-mail: elias.fis@gmail.com

require a second-order theory, in derivatives, we end up with
a unique answer: the Fierz–Pauli (FP) theory [1]. Almost all
developments in massive gravity, from earlier works [2–5]
until recent developments, see [6,7] for review articles, are
built up on top of the free FP theory. It is remarkable that
the absence of ghosts [4] and of mass discontinuity [2,3]
have been both achieved in recent theories with one [8,9]
and two [10] dynamic metrics. A good question concerns the
uniqueness of those massive gravities; see for instance [11–
14]. Moreover, which features of those theories are model
independent? Can we still dream of a renormalizable mas-
sive gravity? One way of addressing those questions is to
abandon the FP paradigm as a starting point and allow for
higher-derivative kinetic terms. In fact, the reader can find
higher-derivative massive gravities and discussions regard-
ing their physical consequences in [15–19].

At the linearized level, those higher-derivative models are
specific generalizations of the FP theory which, however,
have the same spectrum: massive spin-2 particles without
ghosts. This is remarkable, since usually higher-derivatives
introduce ghosts. The above result requires of course a sys-
tematic investigation of all possible higher-derivative gener-
alizations of the FP model. In [20] we have addressed this
problem.

One way of producing higher-derivative models dual to
some “lower-derivative” theory is by means of the embed-
ding of its Euler tensor (equations of motion). The method
consists of adding to the action of some lower-derivative start-
ing theory, quadratic terms in its equations of motion with
coefficients which are functions of � = ∂μ∂μ. This guaran-
tees that the equations of motion of the original theory also
minimize the new action. We say that the equations of motion
of the starting theory are embedded into the new theory. The
particle content of the lower-order theory is inside the new
theory. Then the coefficients are fixed such that the new the-
ory contains exactly the same particle content of the lower-
order one without extra propagating modes. Such method
produces alternative dual models of higher order which by
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themselves are not very useful as free models; however, in
some cases those free models correspond to quadratic trun-
cations of nonlinear models which are not equivalent in gen-
eral to nonlinear versions of the starting lower-order theory.
In other words, the embedding procedure and the addition of
nonlinear terms do not commute. As a successful application
of this method we can mention the “New Massive Gravity”
(NMG) theory of [21] which is of fourth-order in derivatives
and can be obtained from the usual FP theory (of second
order) by the addition of quadratic terms in the FP equations
of motion with specific constant coefficients as explained in
[22]. Another example is the higher-derivative topologically
massive gravity of [22,23] which is obtained from the topo-
logically massive gravity (TMG) of [24]. The TMG itself, of
third order, can be obtained at the linearized level from con-
secutive embeddings of the first-order spin-2 self-dual model
of [25].

In [20] we have investigated, to all orders in derivatives,
all possible embeddings of the equations of motion of the FP
theory which are ghost-free at the linearized level. We have
found a system of equations allowing for several solutions for
the coefficients. Those theories are in general of higher order
in derivatives but still ghost-free at the linearized approxi-
mation. They can all be nonlinearly completed with the help
of a fiducial metric. Most of them are f (R,�R) modifica-
tions of the Einstein–Hilbert kinetic term plus the FP mass
term. Although a complete analysis has not yet been carried
out, at least a subset of such theories can be modified with
an appropriate non-derivative potential of the type suggested
in [8,9] and become, apparently, ghost-free beyond the lin-
earized approximation, as shown in [17].

It turns out that all higher-order models obtained in [20]
in arbitrary D-dimensions correspond to modifications of the
FP theory in the spin-0 sector of the propagator. Any modifi-
cation in the spin-2 sector leads to ghosts. There is however,
one exception in D = 2 + 1. Namely, the “New Massive
Gravity” (NMG) theory1 of [21]. Although of fourth order
in derivatives, the NMG is ghost-free, though it is apparently
still not renormalizable [27]. Here we take the NMG model
as our “lower-order” starting point and try different types of
embeddings in order to produce alternative massive gravity
models in D = 2 + 1. In this sense the present work com-
plements the work [20] by taking care of the special case of
D = 2 + 1.

Sometimes the embedding of equations of motion leads to
new theories with gauge symmetries not present in the lower-
order starting theory. In those cases, as in [22], one may call
it a Noether gauge embedding (NGE). We have found useful

1 In the FP model there is only one massive pole in the spin-2 sector
while in the NMG there is both a massive and a massless pole, see
(38); however, the massless pole does not correspond to a propagating
particle [26].

to split the embeddings here into two categories. Namely, the
ones based on requiring Weyl symmetry of the new model
(Sect. 2) and the other ones (Sect. 3). In the first part of Sect.
2 we require Weyl symmetry without introducing any extra
field. In the second part we introduce a scalar Stueckelberg
field and obtain a new scalar–tensor theory for massive gravi-
tons in D = 2 + 1. In Sect. 3 we look at rather general local
embeddings where quadratic terms in the NMG equations
of motion are added to the NMG theory with coefficients
which are arbitrary functions of �. We examine the propaga-
tor of the final higher-order model and require equivalence of
the particle content, i.e., the new dual theory must describe
massive spin-2 particles and nothing else. Differently from
the FP case we show here (Sect. 3) to all orders in deriva-
tives that there is no local ghost-free embedding of the NMG
equations of motion. In particular, the NGE embedding of the
Weyl symmetry of the first part of Sect. 2 also leads to a ghost.
Only the Stueckelberg approach leads to a ghost-free model
which, after elimination of the scalar field, becomes nonlocal.
The work in Sect. 3 is based on the analytic structure of the
propagator. In Sect. 4 we present some final comments and
our conclusions explaining that the negative results of Sect.
3 are related with the linearized reparametrization invariance
of the NMG theory which makes it hard to be embedded.

2 Weyl embedments of the “New Massive Gravity”

By a systematic Lagrangian procedure, called Noether gauge
embedment (NGE), one can deduce a gauge invariant mas-
sive theory out of a non gauge invariant one [28]. The gauge
symmetry of part of the initial Lagrangian is extended to the
whole final theory. However, there is no guarantee that the
particle spectrum is preserved. In [22] we have shown that
the linearized NMG theory can be obtained via NGE from
the usual Fierz–Pauli theory via embedding of linearized
reparametrizations. We have also shown that a linearized
higher-derivative topologically massive gravity is obtained
from the usual linearized topologically massive gravity of
[24] via NGE of the Weyl symmetry. In all those cases the par-
ticle content is preserved. One could wonder what would be
the gauge invariant action obtained from the linearized New
Massive Gravity theory. Since part of the action of NMG, the
curvature square term, is invariant under Weyl transforma-
tion δWhμν = φημν , one might try to embed this symmetry
into a new theory. This is what we next do. The linearized
NMG theory can be written, up to an overall constant, as

SNMG = 2
∫

d3x
√−g

[
−R + 1

m2

(
RμνR

μν − 3

8
R2

)]
hh

=
∫

d3x

[
hμνG

μν(h) + 2

m2 Gμν(h)Sμν(h)

]
(1)
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where Gμν(h) is the usual linearized self-adjoint Einstein
tensor and Sμν(h) is the linearized Schouten tensor in D = 3
defined as

[
Rμν(h) − ημνR(h)/4

]
hh which has the useful

property of “commutativity” with the Einstein tensor in the
sense that inside integralsGμν(h)Sμν( f ) = Gμν( f )Sμν(h).
In the NGE procedure an important ingredient is the Euler
tensor,

Kμν ≡ δSNMG

δhμν

= 2 Gμν(h) + 4

m2 G
μν[S(h)]

= −� hμν − ∂μ∂νh + ∂μ∂αh
αν + ∂ν∂αh

αμ

− ημν[∂α∂βh
αβ − � h]

− �
m2

[
�hμν − ∂μ∂αh

αν − ∂ν∂αh
αμ + ∂μ∂νh

2

+ ημν

2
(∂α∂βh

αβ − � h)

]

+ 1

2m2 ∂μ∂ν(∂α∂βh
αβ). (2)

With the help of an auxiliary field aμν such that δWaμν =
−δWhμν we implement a first iteration of the form

S(1) = SNMG +
∫

d3x aμνK
μν. (3)

The Weyl variation of (3) can be written as

δW S(1) = −
∫

d3x δW [aμνG
μν(a)]. (4)

Therefore we end up with the Weyl invariant theory,

SW = SNMG +
∫

d3x
(
aμνK

μν + aμνG
μν(a)

)
. (5)

Noticing that the Euler tensor (2) can be written in terms
of the Einstein tensor, i.e., Kμν = 2Gμν(H) with Hμν ≡
hμν + 2 Sμν(h)/m2 we can rewrite SW as

SW = SNMG +
∫

d3x
(
2 aμνG

μν(H) + aμνG
μν(a)

)

= SNMG+
∫

d3x
(−HμνG

μν(H) + (a + H)μνG
μν(a + H)

)
.

(6)

After the shift aμν → ãμν−Hμν in (6), the ãμν auxiliary field
decouples. We can safely discard the last term, ãμνGμν(ã),
which is a linearized Einstein–Hilbert term without particle
content. Thus we have a sixth-order Weyl invariant action
which turns out to have a nonlinear completion,

SW =
∫

d3x

{
hμνG

μν(h) + 2

m2 Gμν(h)Sμν(h)

−
[
h + 2

m2 S(h)

]
μν

Gμν

[
h + 2

m2 S(h)

]}

= − 2

m2

∫
d3x

[
Gμν(h)Sμν(h) + 2

m2 Sμν(h)Gμν [S(h)]
]

= 2

m4

∫
d3x

[√−g

(
Rμν − 3

8
gμνR

)
(� − m2)Rμν

]
hh

.

(7)

Since the tensor structure of (7) is the same as the curvature
square term of the NMG theory, it is clear that SW is invariant
under Weyl transformations. The particle content of SW will
be examined in the next section. The theory SW contains a
ghost.

Another way to embed the Weyl symmetry in the “New
Massive Gravity” is to introduce a scalar Stueckelberg field
in (1) by substituting hμν → hμν + ημν φ. Since the fourth-
order term of SNMG is Weyl invariant we end up with

SLφ [h, φ] =
∫

d3x

[
hμνG

μν(h) + 2

m2 Gμν(h)Sμν(h)

+ 1

2
φ �φ + 1

2
φ

(
� h − ∂μ∂νhμν

)]
. (8)

By construction, the linear theory SLφ [h, φ] is invariant under
linearized Weyl transformations: δWhμν = ημν	; δWφ =
−	. We can easily find a nonlinear version of SLφ [h, φ],
namely,

SNL
φ [gμν, φ] = 2

∫
d3x

√−g

[
−R + 1

m2

(
Rμν R

μν − 3

8
R2

)

+ 1

2
φ �φ − 1

2
φ R

]
. (9)

It is clear that the equations of motion δ SNL
φ = 0 contain

the trivial solution gμν = ημν, φ = 0. Expanding about
such vacuum up until quadratic terms in the fluctuations we
recover SLφ . Therefore, the particle content of SNL

φ consists,
at tree level, of one massive spin-2 particle just like the NMG
of [21]. However, as in the K-model (massless limit of NMG)
studied in detail in [29,30], we might have problems at non-
linear level since the linearized Weyl symmetry is probably
broken at nonlinear level and consequently the scalar field
stops being pure gauge in the full model (51). In particular,
the phenomenon of bifurcation of constraints found in [30]
might also be present here. A detailed study of the constraint
structure should be carried out.

3 Generalized Euler tensor embedment of “New
Massive Gravity”

Our starting point is the linearized NMG theory with the
addition of quadratic terms in its equations of motion:

LG[hμν] = 1

2
hμνK

μν + 1

2
Kμν d(�) Kμν + 1

2
K f (�) K .

(10)

123



373 Page 4 of 9 Eur. Phys. J. C (2016) 76 :373

The first term in (10) is the linearized NMG theory. The
NMG Euler tensor Kμν is given in (2). The coefficients
d(�) and f (�) are so far arbitrary functions of � = ∂μ∂μ

such that the Lagrangian LG remains local. Due to the
conservation law ∂μKμν = 0 which holds identically due
to the linearized reparametrization invariance of the NMG
(δhμν = ∂μξν + ∂νξμ), other terms which might show up
in (10) like (∂μKμν)2 and ∂μKμν∂νK do not contribute.2 In
terms of the original field hμν we can rewrite LG as

LG = ∂μhμν c1(�) ∂αh
αν + ∂μh c2(�) ∂νhνμ + h c3(�)

h + hμνc4(�) hμν + ∂μ∂νhμνc5(�)∂α∂βhαβ. (11)

The coefficients ci (�) are given by3

c1 = � d − 1 + �
m2

[
1 − 2 � d + �2

m2 d

]
, (12)

c2 = 1 − �
2m2 + � f + � d

2
− � d

2

( �
m2 − 1

)2

, (13)

c3 = �
2
c2, (14)

c4 = �
2
c1, (15)

c5 = f + d

2
+ 1

4m2 + d �
4m2

( �
m2 − 2

)
. (16)

The Lagrangian LG can be further rewritten in terms
of a four index differential operator LG = hμνGμναβhαβ

whose inverse G−1 does not exist due to the linearized
reparametrization symmetry. We choose the de Donder gauge
fixing term:

LGF = λ
(
∂μhμν − ∂νh/2

)2
, (17)

which amounts to the shift c1 → c1 + λ , c2 → c2 − λ

in Eqs. (12) and (13) but not in (14) and (15). In (14) we
make c3 → c3 − λ�/4. Before we display G−1 we take
a closer look at the coefficients ci (�) in (12)–(16). A local
Lagrangian density in terms of hμν requires

d = a

� + d̃(�), (18)

f = − a

� + f̃ (�), (19)

where d̃(�) and f̃ (�) are analytic functions of � while a is
an arbitrary real constant. In terms of the spin-s projection
operators P(s)

I J given in the appendix A and suppressing the
four indices we have

2 We have restricted ourselves here to parity invariant theories, thus
avoiding terms like εμναKμγ ∂νK

γ
α .

3 Henceforth, unless otherwise stated, we replace d(�), f (�)) by d, f
respectively, though they are still arbitrary functions of �.

G−1 = 2m4 P(2)
SS

�(� − m2)
[
m2(1 − a) + a � + �(� − m2) d̃

]

− 2 P(1)
SS

λ � + 2 P(0)
SS

�
[
1 − a + � (d̃ + 2 f̃ )

]

+
2
√

2
(
P(0)
SW + P(0)

WS

)

�
[
1 − a + � (d̃ + 2 f̃ )

]

− 4

[
1 − a + � (d̃ + 2 f̃ ) − λ

]
P(0)
WW

λ �
[
1 − a + � (d̃ + 2 f̃ )

] . (20)

Regarding the local symmetries of LG there is one special
case,

a = 1 and d̃(�) = −2 f̃ (�), (21)

since we have a zero in the denominator of the spin-0 sector
which indicates a spin-0 symmetry. Indeed, under a Weyl
transformation δWhμν = 	ημν we have from (10) after
integrations by parts

δWLG = h(2 c4 + 6 c3 − � c2)	

+∂μ∂νhμν[2 � c5 − 2 c1 − 3 c2]	
= (� h − ∂μ∂νhμν)[1 − a + � (d̃ + 2 f̃ )]	. (22)

In the special case (21) we need to add another (Weyl) gauge
fixing term, we may choose LW

GF = ξ h2. This implies the
shift c3 → c3 +ξ . Consequently, in the Weyl symmetric case
we have

G−1
W = 2m4 P(2)

SS

�2(� − m2)[1 − 2 f (� − m2)] − 2 P(1)
SS

λ �

+
(

1

8ξ
− 1

2 λ �

)
P(0)
SS

+
(

1

4ξ
− 1

λ �

)
P(0)
WW +

√
2

8
+

(
1

ξ
+ 4

λ �

)

×
[
P(0)
SW + P(0)

WS

]
. (23)

Next we analyze the particle content of LG from the ana-
lytic structure of G−1 and G−1

W . In momentum space we can
calculate the gauge invariant two-point amplitude A(k) by
saturating G−1 or G−1

W with external sources. For instance,

A(k) = − i

2
T ∗

μν(k)(G
−1)μναβ(k)Tαβ(k). (24)

Here G−1(k) = G−1(∂μ → i kμ). Due to the linearized
reparametrization symmetry, the source must be transverse
kμTμν = 0, consequently,
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A(k) = i

[
S(0)

k2 [1 − a − k2(d + 2 f )]

− m4 S(2)

k2(k2 + m2)[m2(1 − a) − a k2 + k2 d(k2 + m2)]

]
,

≡ i

[
S(0)

k2 P(k2)
− m4 S(2)

k2(k2 + m2)Q(k2)

]
, (25)

where d = d̃(−k2) and f = f̃ (−k2) are analytic functions
of k2 = kμkμ and

S(0) = T ∗
μν(P

(0)
SS )μναβTαβ = |T |2

2
, (26)

S(2) = T ∗
μν(P

(2)
SS )μναβTαβ = T ∗

μνT
μν − |T |2

2
. (27)

The quantity T = ημνTμν = −T00 + Tii is the trace of the
external source in momentum space. If the two conditions
for Weyl invariance (21) hold we must have T = 0.

A key role is played by the imaginary part of the residue
of A(k) at each pole. For instance, at k2 = −m2 we have

Im ≡ � lim
k2→−m2

(k2 + m2)A(k). (28)

If and only if Im > 0 we have a physical particle. If Im = 0
we have a non-propagating mode while Im < 0 or no definite
sign for Im signalizes the presence of ghost. In order to verify
the sign of Im we fix a convenient coordinate frame splitting
the cases of massless and massive poles. In the massless case
we fix a frame such that kμ = (k0, ε, k0), thus kμkμ = ε2.
We will take ε → 0 at the end. This caution is necessary
for the analysis of double poles. From the three conditions
kμTμν = 0 we have in this frame

T01 = −T12 − ε

k0
T11, (29)

T02 = −T22 − ε

k0
T12, (30)

T00 = T22 + 2
ε

k0
T12 + ε2

k2
0

T11. (31)

Consequently,

T ∗
μνT

μν = |T11|2 − 2
ε

k0
(T12T

∗
11 + T ∗

12T11)

+ ε2

k2
0

[
2|T12|2 + (T11T

∗
22 + T ∗

11T22)−2 |T11|2
]
,

(32)

|T |2 = |T11|2 − 2
ε

k0
(T12T

∗
11 + T ∗

12T11)

+ 2
ε2

k2
0

(2 |T12|2 − |T11|2). (33)

In the case of massive poles we choose the frame kμ =
(m, ε, 0) such that k2 +m2 = ε2. From kμTμν = 0 we have

T01 = − ε

m
T11; T02 = − ε

m
T12; T00 = ε2

m2 T11. (34)

Thus,

T ∗
μνT

μν = |T22|2 + |T11|2
(

1 − ε2

m2

)2

+ 2 |T12|2
(

1 − ε2

m2

)
,

(35)

|T |2 = |T22|2 + |T11|2
(

1 − ε2

m2

)2

+
(

1 − ε2

m2

)
(T11T

∗
22 + T ∗

11T22). (36)

Since d(k2) and f (k2) are arbitrary analytic functions, there
might be double poles in the denominator of A(k). We first
examine those poles. From (26), (27), (35), and (36) we see
that is impossible to take linear combinations of S(0) and
S(2) in order to end up only with terms of order ε2. There-
fore a massive double pole 1/(k2 + m2)2 = 1/ε4 cannot be
reduced to a simple pole by any fine tuning of the functions d
and f . So henceforth we assume that all massive poles must
be simple poles. The conclusion remains the same for the
Weyl symmetric case. In the latter case T00 = T11 + T22 and
(34) imply T22 = −T11 + (ε2/m2)T11, which does not help
canceling the term |T12|2 in (35).

The massless case is a bit different. From (26), (27), (32),
and (33) we see that we do have one special combination
of order ε2 which may turn double poles into simple ones,
namely,

S(2) − S(0) = T ∗
μνT

μν − |T |2 = ε2

k2
0

×
[
(T11T

∗
22 + T ∗

11T22) − 2 |T12|2
]
. (37)

However, the term (T11T ∗
22 +T ∗

11T22) has no definite sign. So
we end up with a ghost. In the special case of Weyl symmetry,
using (31) in T00 = T11 + T22 we have T11 = 2(ε/k0)T12 +
O(ε2). Thus, the dangerous term of (37) becomes of order
ε3 and will not contribute to the residue. So we may hope to
turn a double massless pole 1/k4 into a physical pole only
in the Weyl invariant case after a specific fine tuning of d
and f . In particular, this is the mechanism behind the fourth-
order K-term which describes a physical massless particle
as explained in [29] via decomposition of hμν in orthogonal
modes and in [31] via the analytic structure of the propagator.

In summary, multiple poles lead us to ghosts in general
except for the double massless pole in the Weyl symmetric
case which will be examined later on.

Henceforth we split our analysis in four cases:

a �= 1 (Case I)
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a = 1 and d + 2 f �= 0 (Case II)

a = 1 and d + 2 f = 0 (Case III)

a = 0 = d and f = 1/(2 k2) (Case IV)

In the cases III and IV we have Weyl symmetry. The case IV
corresponds to the Sφ model of (8) after elimination of φ.

3.1 Case I: a �= 1

As a warm up we start reproducing the results of [26] for
the NMG theory. We take a = 0 = d = f . We have one
massless and one massive pole,

A(k) = i

[
S(0)

k2 − m2 S(2)

k2(k2 + m2)

]
. (38)

Taking ε → 0 in (32) and (33) we have a vanishing residue at
the massless pole and consequently a non-propagating mode:

I0 = � lim
k2→0

k2 A(k) = S(0) − S(2)

= |T |2
2

−
(
T ∗

μνT
μν − |T |2

2

)
= 0. (39)

The residue at the massless pole vanishes for the very same
reason as it does in the Maxwell–Chern–Simons theory of
[24], namely, the lowest-order term (in derivatives) of the
theory (linearized Einstein–Hilbert) has no particle content.
Taking ε → 0 in (35) and (36) we have a positive residue at
the massive pole, a physical massive spin-2 particle,

Im = � lim
k2→−m2

(k2 + m2)A(k) = S(2)

= 2 |T12|2 + |T11 − T22|2
2

> 0. (40)

Now we go back to the general case a �= 1. Except for the
NMG case a = 0 = d = f , which will not be treated here
anymore, we have in general extra massive poles stemming
from the polynomial Q(k2). Requiring that no tachyons show
up we can write

A(k) = −i m2 SA(k2)
∏NQ

i=1 m
2
i

(a − 1)k2(k2 + m2)(k2 + m2
1) · · · (k2 + m2

NQ
)
,

(41)

where NQ ≥ 1 is the number of extra massive poles coming
from Q(k2). Since we are specially interested in the massive
poles, we can write from (26), (27) and (35), (36) at ε → 0,

SA(k2) ≡ S(2) + A(k2) S(0) = 2|T12|2 + |T11|2 + |T22|2

+ (A − 1)

2
|T11 + T22|2. (42)

The quantity A(k2) is an analytic real function of k2 whose
specific form is not important, it is defined by comparing (41)

with (25). Defining the polynomial of degree NQ + 1:

P(k2) = (k2 + m2
0)(k

2 + m2
1) · · · (k2 + m2

NQ
), (43)

where m2
0 ≡ m2 is the mass squared already present in the

NMG theory, it is clear that the sign of the residue Im j at some
pole k2 = −m2

j depends essentially upon the sign of the

ratio SA/P ′ calculated at k2 = −m2
j , where P ′ = dP/dk2.

Since the derivative of a polynomial has alternating signs at
its consecutive simple zeros, the only hope of having posi-
tive residues at the different massive poles is to require that
SA also has alternating signs at such points. However, it is
easy to prove that SA(−m2

j ) either has no definite sign or is

definite positive. The point is that if A(−m2
j ) ≥ 0 we can

guarantee that the last three terms of (42) add up to a non-
negative number, so in those cases SA(−m2

j ) ≥ 0. On the
other hand, since the three complex numbers T12, T11, T22 are
totally unconstrained, even if we take A(−m2

j ) < 0, depend-
ing on the relative strength of those three complex numbers,
the sign of (42) may change. Thus, we cannot guarantee that
SA(−m2

j ) < 0. In conclusion, whenever we have more than
one massive pole we have ghosts and only the NMG case is
safe at a �= 1.

3.2 Case II: a = 1 and d + 2 f �= 0

In this case we have in principle a double massless pole and
massive poles:

A(k) = −i

{
m4S(2)

k4(k2 + m2)[(k2 + m2)d − 1] + S(0)

k4(d + 2 f )

}
.

(44)

We can choose d(0) + f (0) = 1
2m2 and turn the double

massless pole into a simple one. However, since we have no
Weyl symmetry, as explained in the paragraph of Eq. (37),
we are doomed to have a massless ghost. Therefore we go to
the next case.

3.3 Case III: a = 1 and d + 2 f = 0

If we set a = 1 and d̃ = −2 f̃ , or d = −2 f , in Eqs. (12)–
(16) and plug those results in (11) we have

LW = 1

m4 ∂μh
μν� H(�)∂αhαν − 1

2m4 ∂μh� H(�)∂αhαμ

− 1

4m4 h �2 H(�)h

+ 1

2m4 hμν�2 H(�)hμν + 1

4m4 ∂μ∂νhμν H(�)∂α∂βhαβ,

(45)

where H(�) = (�−m2)[1 − 2 (�−m2) f̃ (�)]. The above
Lagrangian can be nonlinearly completed in terms of the
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square of curvatures in the form of a K-term of the NMG
theory, i.e.,

LNL
W = 2

√−g

m4

(
Rμν − 3

8
gμν R

)
(� − m2)

×[1 − 2 (� − m2) f̃ (�)]Rμν. (46)

In the case f̃ = 0 we recover the Weyl embedding of the
previous section; see (7).

Back to the two-point amplitude A(k): we have again a
double massless pole and massive poles in general. Assuming
that the analytic function f (k2) = f̃ (� → −k2) is such that
we have no tachyons, we can write

A(k) = i
m4S(2)

k4(k2 + m2)[1 + 2 f (k2 + m2)]

= i
m2S(2)

∏NQ
i=0 m

2
i

k4P(k2)
, (47)

where P(k2) is defined in (43). From (27), (35), and the fact
that T = 0, due to the Weyl symmetry, we have at each
massive pole

Im j = � lim
k2→−m2

j

(k2+m2
j )A(k) = 2(|T12|2 + |T11|2)

P ′(−m2
j )

. (48)

Due to the alternating signs of P ′ at its consecutive single
zeros, it is impossible to have Im j > 0 for all j = 0, . . . , NQ .
We are forced to assume NQ = 0, i.e., f = 0. In this subcase
P(k2) = k2 + m2, so P ′ = 1 and the massive pole is a
physical one Im = Im0 = 2(|T12|2 + |T11|2) > 0. Regarding
the massless double pole, we have already seen that due to
the Weyl symmetry we have T11 = 2(ε/k0)T12 + O(ε2),
substituting back in (32) we obtain [31]

TμνT ∗
μν = −2

ε2

k2
0

|T12|2 + O(ε3). (49)

Consequently, although the apparent double pole has become
a simple pole, we still have a ghost due to the negative sign
of the residue:

I0 =� lim
k2→0

k2A(k)= lim
ε→0

m2

ε2 TμνT ∗
μν =−2m2

k2
0

|T12|2 < 0.

(50)

Therefore, the Weyl invariant theory (7) of the previous sec-
tion will unavoidably contain a ghost.

3.4 Case IV: a = 0 = d and f = 1/(2 k2)

In this last case we have a nonlocal theory corresponding to
the Weyl invariant action Sφ given in (8) after the elimination
of φ:

SLφ [gμν, φ] = 2
∫

d3x
√−g

[
−R+ 1

m2

(
RμνR

μν − 3

8
R2

)

−1

8
R

1

� R

]
hh

. (51)

After adding a gauge fixing term like (17) plus another one
for the Weyl symmetry LW

GF = ζ h2 the action acquires the
form (11) with the coefficients

c1 = �
m2 − 1 + λ; c2 = 1

2
− �

2m2 − λ;

c3 = − �2

4m2 + �2

4
(1 − c), (52)

c4 = �
2m2 (� − m2); c5 = 1

4m2� (� − m2). (53)

The propagator, suppressing indices, is given by

G−1 = 2m2 P(2)
SS

�(� − m2)
− 2 P(1)

SS

λ � + (P(0)
WW +P(0)

SS )

8

(
1

ζ
− 4

λ �

)

+ (4ζ + λ �)

4ζλ�
(
P(0)
SW + P(0)

WS

)
. (54)

After saturating the propagator with transverse and traceless
sources as in (24) we are left with two simple poles, one
massive and one massless which come both from the pure
spin-2 sector:

A(k) = −i
m2 S(2)

k2(k2 + m2)
. (55)

As expected, the dependence on the gauge parameters λ and
ζ disappear which guarantees gauge invariance of the two-
point amplitude. When we look closer at the massless pole
using kμ = (k0, ε, k0), it is easy to see that its residue van-
ishes with power ε2. From (32), (33), and T = ημνTμν = 0
we have

I0 = � lim
k2→0

k2 A(k) = − lim
ε→0

T ∗
μνT

μν

= − lim
ε→0

ε2

k2
0

[
−2|T12|2 + (T11T

∗
22 + T ∗

11T22)
]

= 0. (56)

The massive pole is a physical one (positive residue). From
(35) we have

Im =� lim
k2→−m2

(k2+m2)A(k) = S(2) =|T22|2+2|T12|2 > 0.

(57)

Therefore, the linearized version of the model (51) is unitary
and contains only massive gravitons in the spectrum.

4 Conclusion

Recent work on massive gravity [8–10] has shown how
to overcome longstanding problems like the appearance of
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ghosts at the nonlinear level [4] and the vDVZ [2,3] mass dis-
continuity. Those models can be described in terms of one
[8,9] or two [10] dynamic metrics. In the linearized limit
those theories reduce, respectively, to the old paradigmatic
Fierz–Pauli (FP) theory [1] and to the addition of the lin-
earized Einstein–Hilbert plus the FP theory. In fact, those new
massive gravity models are built up on top of the second-order
FP theory which describes free massive spin-2 particles. It
is expected that if we change the starting point (underlying
free theory) we might end up with alternative massive grav-
ities. Those alternative massive gravities might help us to
understand which physical features of the new theories are
really model independent and eventually we might still hope
of finding a renormalizable massive gravity model.

In [20] we have shown that there are several higher-
derivative modifications of the Fierz–Pauli theory which
describe free massive spin-2 particles and are still ghost-
free at linear level. So they could be used as new starting
points for alternative massive gravities. Indeed, they can be
identified with quadratic truncations of f (R,� R) modifi-
cations of the Einstein–Hilbert theory plus the Fierz–Pauli
(FP) mass term; see [20]. Some of those models have been
further changed, see e.g. [19], by the addition of a convenient
non-derivative nonlinear potential of the type found in [8,9]
in order to account for the absence of ghosts at nonlinear
level. They define massive gravity theories with interesting
cosmological properties.

All modifications of the FP model found in [20] occur in
the spin-0 sector of the theory. Modifications in the spin-2
sector lead in general to a ghost, with the exception of the
so-called “New Massive Gravity” of [21] which only exists
in D = 2 + 1. In section III we have used the embedding
procedure used in [20] in order to search for arbitrary higher-
order modifications of the NMG model similarly to what has
been done in [20] for the case of the FP theory. Although the
embedding procedure does not guarantee full equivalence
of the initial and final models, it ensures that the particle
content of the initial theory is contained in the new theory.
At the end one always has to check both particle contents and
fix the embedding coefficients, see (10), in order to achieve
full equivalence.

Contrary to the FP case, we conclude here that there
is no local embedding of the NMG theory which remains
ghost-free. We have carried out a thorough calculation of
the residues at all possible massive and massless poles in
the propagator. There is always a pole with negative residue
(ghost). A key technical point is the fact that the Euler
tensor Kμν , which defines the NMG equations of motion
Kμν = 0, satisfies ∂μKμν = 0 identically due to the lin-
earized reparametrization invariance δhμν = ∂μξν + ∂νξμ.
Consequently, the quadratic terms (∂μKμν)

2, (∂μ∂νKμν)
2,

and ∂μKμν∂
νK identically vanish too and strongly restrict

the embedding Ansatz (10), contrary to the embedding of the

FP theory where we have five independent quadratic terms in
the equations of motion which can be added to the FP theory.
The more local symmetries we have, the more difficult is to
embed it into a higher-order model.

In Sect. 2 we have used the Weyl symmetry as a guid-
ing principle for the embedding of the NMG. First we have
looked at the Noether gauge embedment of the Weyl sym-
metry, which leads to the sixth-order model (7). In this case
we have one massive and one massless pole. Unfortunately,
their residues have opposite signs. If we reverse the over-
all sign of (7), we have a physical massless graviton and a
massive ghost. In this case we might use the Weyl invari-
ant model (7) with reversed sign as a phenomenological toy
model along the lines of [32]. Namely, we can have a consis-
tent unitary theory if the ghost mass stays above the energy
cut-off of the theory. Although the model (7) is of sixth order
in derivatives, the would-be double massless pole is reduced
to a simple pole and the analytic structure of the propagator
is similar to some curvature square modifications of general
relativity in D = 4.

At the end of Sect. 2 we have obtained a promising candi-
date for a consistent massive gravity different from the NMG
model. From the introduction of a scalar Stueckelberg field
in the linearized version of the NMG theory we have derived
the linearized Weyl invariant model given in (8). As in the
case of (7) we have one massless and one massive pole but
differently from (7) both poles are simple poles. The Weyl
symmetry now kills the residue at the massless pole such that
the “would-be” massless ghost does not propagate at all as
shown at the end of Sect. 3 (Case IV). The residue at the
massive pole is positive and we are left with physical mas-
sive gravitons, at least in the linearized approximation. The
model can be nonlinearly completed leading to the scalar–
tensor theory (51) which might be an alternative to the usual
NMG model. However, as in the case of the pure K-term
(massless limit of NMG) analyzed in [30], the Weyl sym-
metry is probably broken beyond the linearized level which
might lead to a ghost in the full theory. This is probably true
also for the higher-derivative topologically massive gravity
of [22,23]. Those examples require detailed investigations of
the constraints structure which are beyond the scope of the
present work.

Finally, we mention Ref. [33] where stability and uni-
tarity of fourth-order (quadratic in curvatures) three dimen-
sional gravities, including the parity breaking gravitational
Chern–Simons term of [24], have been investigated around
maximally symmetric spaces. Whenever our results overlap
(fourth-order theories around Minkowski space without par-
ity breaking terms) we have agreement.

Acknowledgments The works of D.D. and E.L.M. are partially sup-
ported by CNPq under grants 307278/2013-1 and 449806/2014-6,
respectively.

123



Eur. Phys. J. C (2016) 76 :373 Page 9 of 9 373

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix

Here we display the operators P(s)
I J , the coefficients Ai j (�).

They make use, as building blocks, of the spin-0 and spin-1
projection operators acting on vector fields, respectively,

ωμν = ∂μ∂ν

� , θμν = ημν − ∂μ∂ν

� , (58)

we define the spin-s operators P(s)
I J acting on symmetric rank-

2 tensors in D dimensions:

(
P(2)
SS

)λμ

αβ
= 1

2

(
θλ

αθ
μ
β + θ

μ
αθλ

β

)
− θλμθαβ

D − 1
, (59)

(
P(1)
SS

)λμ

αβ
= 1

2

(
θλ

α ω
μ
β + θ

μ
α ωλ

β + θλ
β ω

μ
α + θ

μ
β ωλ

α

)
,

(60)(
P(0)
SS

)λμ

αβ
= 1

D − 1
θλμθαβ ,

(
P(0)
WW

)λμ

αβ
= ωλμωαβ, (61)

(
P(0)
SW

)λμ

αβ
= 1√

D − 1
θλμωαβ,

(
P(0)
WS

)λμ

αβ
= 1√

D − 1
ωλμθαβ .

(62)

They satisfy the symmetric closure relation

[
P(2)
SS + P(1)

SS + P(0)
SS + P(0)

WW

]
μναβ

= ημαηνβ + ημβηνα

2
.

(63)

and the algebra

(
P(s)

)
I J

(
P(r)

)J K = δrs
(
P(s)

) K

I
. (64)
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