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Abstract We consider the cosmological dynamics of a non-
minimally coupled scalar field in scalar–torsion gravity in
the presence of hydrodynamical matter. The potential of the
scalar field have been chosen as power law with negative
index, this type of potentials is usually used in quintessence
scenarios. We identify several asymptotic regimes, including
de Sitter, kinetic dominance, kinetic tracker, and tracker solu-
tions and study the conditions for their existence and stabil-
ity. We show that for each combination of coupling constant
and potential power index one of the regimes studied in the
present paper is stable to the future.

1 Introduction

Recently a new class of theories modifying General Relativ-
ity (GR) has started to attract great attention mainly in order
to explain observation data indicating the accelerated expan-
sion of the late Universe [1–5]. It is based on the rather old
theory attributed to Einstein himself [6], however, forgotten
for decades since it is in fact not a separate theory from the
viewpoint of equation of motion, but rather a reformulation
of GR. Instead of torsion-free Levi-Civita connections it uses
curvature free Weitzenböck connections [7]. It is well known
that zero-curvature connections allow for the existence of a
path-independent definition of vector parallel transport, so
this theory has got the name of the Teleparallel Equivalent
of General Relativity (TEGR) [8–12]. What, however, has
become clear rather recently is that the well-known modifi-
cations of GR, such as a theory of a scalar field nonminimally
coupled to gravity, when constructed on the base of TEGR,
lead to different equations of motion (for the reason of this
see [13]). Such a theory has been intensively investigated in
many papers during several recent years.
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Generalizations of TEGR are usually constructed in the
same way as modifications of GR. It is possible to general-
ize the Lagrangian replacing in it the torsion scalar T with a
function f (T ) [14–16]. Different types of cosmological sce-
narios appear in scalar–torsion gravity, namely, in the class of
models with nonminimal coupling between the torsion scalar
and the scalar field φ of the form ξT F(φ), where ξ is a cou-
pling constant, F(φ) is some function of a scalar field [17–
25]. Recently some other modifications of TEGR including
a nonminimal derivative coupling to torsion [26] and analogs
of the Gauss–Bonnet invariant have appeared [27–30]. There
are also modifications of TEGR with no direct analogs of GR
modification [13].

In our recent paper [31] we applied dynamical system
methods to scalar–torsion theory in order to find some cos-
mological asymptotic regimes and describe the correspond-
ing phase portraits, focusing mainly on growing scalar field
potentials. The main qualitative result of that paper is that
scalar–torsion coupling leads to much less variety of the
possible dynamical regimes than scalar–curvature coupling
[32,33]. In the present paper we give an heuristic explana-
tion of this feature, as well as show that more possibilities
appears for decreasing scalar fields potentials, usually used
in quintessen-ce models. As such models have been created
for a description of the late Universe, when the usual matter
is important as well, we add hydrodynamical matter to the
scalar field. We will use units with h̄ = c = 1.

The paper is organized as follows: in Sect. 2 we present
the equation of motion in initial and expansion normalized
variables, in Sect. 3 the analysis of stationary points and cor-
responding asymptotic solutions is given, and Sect. 4 gives
a brief summary of the results obtained.

2 Main equations

We start with describing basic objects of teleparallel gravity.
In this theory the dynamical variables are the tetrad fields
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(also called the vierbein fields) eA(xμ); here Greek indices
relate to space-time and capital Latin indices belong to the
tangent space-time. The metric tensor is expressed in terms
of the tetrad as

gμν = ηAB eAμ eBν , (1)

where ηAB = diag(1,−1,−1,−1). For the definition of par-
allel transport of a vector the Weitzenböck connection [7] is
used,

w
�

λ

μν ≡ eλ
A∂μe

A
ν . (2)

Then the torsion tensor and the torsion scalar are given by

T λ
μν ≡ w

�
λ

νμ − w
�

λ

μν = eλ
A(∂μe

A
ν − ∂νe

A
μ), (3)

T ≡ 1

4
T ρμνTρμν + 1

2
T ρμνTνμρ − T ρ

ρμT
νμ
ν . (4)

On the other hand, the curvature of the Weitzenböck connec-
tion vanishes identically.

We consider the cosmological model with the following
action:

S =
∫

e d4x

[
T

2K
+ 1

2
∂μφ∂μφ − V (φ) + ξ

2
B(φ)T

]
+ Sm , (5)

where e = √−g is the determinant of the tetrad, K = 8πG,
φ is a canonical scalar field, V (φ) its potential, and B(φ) its
arbitrary nonminimal coupling with the torsion scalar T . Sm
is the matter action. In the classical scalar–curvature theory
the action has the same form except for the curvature scalar
R replacing the torsion scalar T .

For the spatially flat Friedmann–Robertson–Walker tetrad
eAμ = diag(1, a(t), a(t), a(t)) (the corresponding metric is
ds2 = dt2 − a2(t)dl2) the system of field equations is [31]

3H2 = K

(
φ̇2

2
+ V (φ) − 3ξH2B(φ) + ρ

)
, (6)

2Ḣ = −K (φ̇2 + 2ξH φ̇B ′(φ) + 2ξ Ḣ B(φ) + ρ(1 + ω)),

(7)

φ̈ + 3H φ̇ + 3ξH2B ′(φ) + V ′(φ) = 0. (8)

Here a(t) is the scale factor, H(t) ≡ ȧ
a is the Hubble param-

eter, the prime denotes the derivative with respect to φ. We
have used that in the chosen tetrad T = −6H2. The matter
equation of state is p = ωρ, where ω ∈ [−1; 1].

2.1 The effective potential

In the standard scalar–curvature theory of a nonminimal cou-
pling the conformal transformation to an Einstein frame is
often used. In the Einstein frame the theory is equivalent to
GR with a scalar field as a source, so the evolution of the
scalar field in an expanding Universe is, as usual, directed to
the minimum of the potential, which is not true in the ini-
tial nonminimal formulation, called the Jordan frame. This

conformal transformation is usually divided into two steps:
a redefinition of the potential via Veff(φ) = V (φ)/U 2(φ),
where U (φ) = 1 + K ξ B(φ) in our notations, and a redefi-
nition of the scalar field in order to get the canonical kinetic
term. The combination denoted here Veff(φ) is rather inter-
esting by itself. It is a conformal invariant, so it is not changed
by any conformal transformation [34]. Moreover, it can give
important information as regards the dynamics of the system
without the second step to the Einstein frame (which is usu-
ally much more technically complicated than the very easily
calculated first step). Namely, de Sitter solutions corresponds
to the minima of the effective potential, their stability is deter-
mined by the sign of the second derivative of the effective
potential in a standard way [33,34].

In the scalar–torsion theory the Einstein frame does not
exist [35]. However, it is possible to introduce some analog
of an effective potential with the same properties as in the
scalar–curvature theory. Indeed, taking into account (6) we
rewrite (8) for ρ = 0

φ̈ + 3H φ̇ + 1

2
K ξ B ′(φ)φ̇2

+K ξ B ′(φ)V (φ) + V ′(φ)(1 + K ξ B(φ))

1 + K ξ B(φ)
= 0. (9)

We see that the effective potential, of the form

Veff(φ) = V (φ)(1 + K ξ B(φ)), (10)

has a derivative with respect to φ,

dVeff(φ)

dφ
= V ′

eff(φ)

= K ξ B ′(φ)V (φ) + V ′(φ)(1 + K ξ B(φ)), (11)

which coincides with the numerator of the last term in (9).
The de Sitter solution H = H0, φ = φ0, in this model

exists for{
3H0

2(1 + K ξ B(φ0)) = KV (φ0),

3ξH0
2B ′(φ0) = −V ′(φ0).

(12)

From this system it is follows that

KV (φ0)

1 + K ξ B(φ0)
= − V ′(φ0)

ξ B ′(φ0)

⇒ K ξ B ′(φ0)V (φ0)

+V ′(φ0)(1 + K ξ B(φ0))

= V ′
e f f (φ0) = 0. (13)

Now we add small perturbations to the de Sitter solution:
φ(t) = φ0 + δφ, φ̇(t) = δφ̇, H(t) = H0 + δH .

Substituting these perturbations to (9) we get in the first
order

δφ̈ + 3H0δφ̇ + δφ
V ′′

eff(φ0)

1 + K ξ B(φ0)
= 0. (14)
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New variables s = δφ, r = δφ̇ are introduced and the first-
order system of differential equations is written in the form

ṡ = r,

ṙ = −3H0r − s
V ′′

eff(φ0)

1 + K ξ B(φ0)
. (15)

We find eigenvalues for the system (15)∣∣∣∣∣
−λ 1

− V ′′
eff (φ0)

1+K ξ B(φ0)
−3H0 − λ

∣∣∣∣∣ = λ2 + 3H0λ + V ′′
eff (φ0)

1 + K ξ B(φ0)
= 0 ⇒

⇒ λ1,2 = −3

2
H0 ± 1

2

√
9H0

2 − 4V ′′
e f f (φ0)

1 + K ξ B(φ0)
< 0

for V ′′
eff (φ0) > 0, ξ > 0, B(φ0) > 0. (16)

So, the de Sitter solution is stable in the minima of the effec-
tive potential, as expected. It is worth to note that the second
equation in Eq. (13) is just the “balanced solution” studied
in [36], so from a computational point of view the effective
potential gives nothing new. However, from a heuristic point
of view often it is much easier to visualize the locations of
the minima of some function instead of doing calculations.
For example, for positive power-law potential and coupling
functions B(φ) ∼ φN and V (φ) ∼ φn , a de Sitter solution
exists only for negative n with 0 < −n < N . This fact has
been established computationally in [31] and becomes now
a trivial consequence of the form of Veff(φ) = U (φ)V (φ).

2.2 Dimensionless variables

We introduce the new dimensionless variables

x = K φ̇2

6H2(1 + K ξ B(φ))
, y = KV (φ)

3H2(1 + K ξ B(φ))
,

z = Kρ

3H2(1 + K ξ B(φ))
, m = φ̇

Hφ
, A = φB ′(φ)

1 + K ξ B(φ)
, (17)

and also the dimensionless parameters

b = φB ′′(φ)

B ′(φ)
, c = φV ′(φ)

V (φ)
. (18)

Choosing the power-law function B(φ) = φN and the
potential V (φ) = V0φ

n we get b = N − 1, c = n.
Note the useful relation between A, x , m, namely,

x = K

6N
m2A

2
N (N − K ξ A)

N−2
N . (19)

It is useful to introduce auxiliary variables

X = φ̈

H φ̇
, Y = Ḣ

H2 , (20)

which are expressed through dimensionless variables and
parameters from the system (6)–(8),

X = −3 − K ξ Am

2x
− cym

2x
,

Y = −3x − K ξ Am − 3

2
z(1 + ω). (21)

From Eq. (6) using (17) we get

1 = x + y + z; (22)

then z = 1 − x − y.
Taking the derivative of the variables y, m, A with respect

to ln(a) (′ = d
d ln a ) we obtain the following first-order system

of differential equations:

y′ = y(cm − 2Y − K ξ Am),

m′ = m(X − Y − m),

A′ = Am(b + 1 − K ξ A), (23)

and finally substituting (19), (21), and (22) we get

y′ = y

[
cm + K

b + 1
m2A

2
b+1 (b + 1 − K ξ A)

b−1
b+1 + K ξmA

+3

(
1 − K

6(b + 1)
m2A

2
b+1 (b + 1 − K ξ A)

b−1
b+1 − y

)
(1 + ω)

]
,

m′ = −3(b + 1)ξ A
b−1
b+1 (b + 1 − K ξ A)

1−b
b+1

−3cy(b + 1)

K A
2

b+1

(b + 1 − K ξ A)
1−b
b+1 − 3m + K ξ Am2 − m2

+ Km3

2(b + 1)
A

2
b+1 (b + 1 − K ξ A)

b−1
b+1

+3

2
m

(
1 − Km2

6(b + 1)
A

2
b+1 (b + 1 − K ξ A)

b−1
b+1 − y

)
(1 + ω),

A′ = Am(b + 1 − K ξ A). (24)

If N = 2 (b = 1), then instead of (19) and (21) we have

x = K

12
m2A, (25)

X = −3 − 6
ξ

m
− 6

KcyA

m
,

Y = −K

4
m2A − K ξ Am − 3

2

(
1 − K

12
m2A − y

)
(1 + ω),

(26)

and the first-order system of differential equations

y′ = y

(
cm + K

2
m2A + K ξmA + 3

(
1 − K

12
m2A − y

)
(1 + ω)

)
,

m′ = −3m − 6ξ − 6cy

K A
+ K

4
m3A + K ξ Am2 − m2

+3

2
m

(
1 − Km2

12
A − y

)
(1 + ω),

A′ = Am(2 − K ξ A). (27)

We consider only the case of N = 2 in the present paper.

3 Stationary points and corresponding regimes

3.1 Stationary points analysis

Solving the system (27) with vanishing left-hand sides, we
find the following stationary points:
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1. x = 0, y = 1, z = 0, m = 0, A = − c
K ξ

.
We calculate the eigenvalues for the Jacobian matrix
associated with the system (27) to find

λ1 = −3(1 + ω),

λ2,3 = −3

2
± 1

2

√
9 − 24ξ(c + 2), (28)

so this point is stable for non-phantom matter. For this
point the quantity Y = Ḣ

H2 = 0 is found using (26) and,

therefore, Ḣ = 0. Then we find the time dependence of
the scale factor

a(t) = a0e
H0(t−t0). (29)

As the coordinate of this fixed point is A = NφN

1+K ξφN →
− n

K ξ
	= 0, the scalar field approaches a constant

φ = φ0. (30)

This is a de Sitter solution. The constants φ0 and H0 are
found with the substitution of this solution to the initial
system of Eqs. (6)–(8):

φ0 = ±
√

− n

K ξ(2 + n)
, H0 = ±

√
−nV0φ0

n−2

6ξ
.

Clearly, this regime exists only for 0 > n > −2. Since
it is stable it can be used for describing the late-time
acceleration of our Universe. Definitely, the unnaturally
low value of H0 (in natural units) should transform to a
very low value of some of the parameters of the theory.
Note, however, that in the theory under investigation we
have more possibilities to get a very low H0—this may
happen due to either a very low V0, a very low ξ or a
potential power index n being very close to −2. For the
last possibility, if we denote n + 2 = ε << 1, we get
H0 ∼ ε

√
V0ξ , so small corrections to the φ−2 potential

would do the job.
2. x = 1, y = 0, z = 0, m = √

6ξ , A = 2
K ξ

.
The corresponding eigenvalues are

λ1 = −2
√

6ξ,

λ2 = 3(1 − ω) + 2
√

6ξ,

λ3 = (c + 2)
√

6ξ + 6. (31)

Using (26) the quantity Y at this stationary point is
obtained to be Ystat = −3 − 2

√
6ξ and now we can

restore the time dependence of the Hubble parameter,
H(t) = − 1

Ystat(t−t0)
, and the scale factor

a(t) = a0|t − t0|−
1

Ystat = a0|t − t0|
1

3+2
√

6ξ . (32)

The corresponding behavior of the scalar field is obtained

applying the definition of the variable m = φ̇
Hφ

, then
φ̇
φ

= mstat
ȧ
a , where mstat is the coordinate of a stationary

point,

φ(t) = φ0|t − t0|−
mstat
Ystat = φ0|t − t0|

√
6ξ

3+2
√

6ξ . (33)

3. x = 1, y = 0, z = 0, m = −√
6ξ , A = 2

K ξ
. The

eigenvalues for this fixed point are

λ1 = 2
√

6ξ,

λ2 = 3(1 − ω) − 2
√

6ξ,

λ3 = 6 − √
6ξ(c + 2). (34)

We get an asymptotic behavior a(t) and φ(t) calculating
the quantity Ystat = −3 + 2

√
6ξ and using m = mstat =

−√
6ξ at this point,

a(t) = a0|t − t0|
1

3−2
√

6ξ ,

φ(t) = φ0|t − t0|
√

6ξ

2
√

6ξ−3 . (35)

For ξ = 3
8 instead of this solution (35) we have the

exponential one (because in this case Y = 0, H = H0,
φ̇
φ

= mstatH0, and mstat = − 3
2 ),

a(t) = a0e
H0(t−t0),

φ(t) = φ0e
− 3

2 H0(t−t0). (36)

The points 2 and 3 represent a situation when the kinetic
term of the scalar field dominates.

4. x = 8ξ

3(ω−1)2 , y = 0, z = 3+3ω2−6ω−8ξ

3(ω−1)2 , m = 4ξ
ω−1 ,

A = 2
K ξ

.
We find the eigenvalues for this point,

λ1 = 3ω2 − 3 + 4cξ

ω − 1
,

λ2 = 3(ω − 1)2 − 8ξ

2(ω − 1)
,

λ3 = 8ξ

1 − ω
. (37)

As the quantity Y at this stationary point is Ystat =
3−3ω2−8ξ

2(ω−1)
, we have

a(t) = a0|t − t0|
2(ω−1)

3ω2−3+8ξ , φ(t) = φ0|t − t0|
8ξ

3ω2−3+8ξ .

(38)
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The corresponding behavior ρ(t) is found using ρ̇ +
3Hρ(1 + ω) = 0, then ρ̇

ρ
= −3(1 + ω) ȧa and

ρ(t) = ρ0|t − t0|
3(1+ω)
Ystat = ρ0|t − t0|

6(1−ω2)

3ω2−3+8ξ . (39)

This is a kinetic tracker regime when the potential term
is negligible, and the ratio between the kinetic energy of
the scalar field and the matter density remains constant.
When ξ = 3

8 (1−ω2), the solution (38), (39) does not exist
and the exponential one appears (mstat = − 3

2 (1 + ω)),

a(t) = a0e
H0(t−t0),

φ(t) = φ0e
− 3

2 (1+ω)H0(t−t0),

ρ(t) = ρ0e
−3(1+ω)H0(t−t0), (40)

where H0
2 = − 4ρ0

9φ2
0ω(1+ω)

is found on substituting the

exponential solution (40) into the initial system of equa-
tions (6)–(8).

5. x = ξ(c+2)2

6 , y = 1 − ξ(c+2)2

6 , z = 0, m = −ξ(c + 2),
A = 2

K ξ
.

The eigenvalues are calculated,

λ1 = 2ξ(c + 2),

λ2 = −3 + ξ(c + 2)2

2
,

λ3 = −3(1 + ω) + cξ(c + 2). (41)

Similar to the previous points, using Ystat = 1
2ξ(4 − c2)

and mstat = −ξ(c + 2), we find a(t), φ(t) (c = n),

a(t) = a0|t − t0|
2

ξ(n2−4) , φ(t) = φ0|t − t0| 2
2−n . (42)

6. x = 3(1+ω)2

2ξc2 , y = 3−3ω2−4cξ
2ξc2 , z = c2ξ−3−3ω+2cξ

ξc2 ,

m = −3(1+ω)
c , A = 2

K ξ
.

We obtain the eigenvalues for this point,

λ1 = 6(1 + ω)

c
,

λ2,3 = 1

4ξc

(
3ξ(2 − c + ω(c + 2))

±
√

−3ξ(72ω3 + f1(ξ, c)ω2 + f2(ξ, c)ω + f3(ξ, c))

)
,

(43)

where f1(ξ, c) = −27c2ξ −12ξ −60cξ +72, f2(ξ, c) =
−24ξ −72+96cξ +6c2ξ , and f3(ξ, c) = 21c2ξ −72+
156cξ − 32ξ2c3 − 12ξ − 64c2ξ2.
The quantities Ystat = 3

2c (1 + w)(2 − c)) and mstat =
−3(1+ω)

c give us the behavior a(t), φ(t), and ρ(t) (c = n),

a(t) = a0|t − t0|
2n

3(1+ω)(n−2) ,

φ(t) = φ0|t − t0| 2
2−n ,

ρ(t) = ρ0|t − t0| 2n
2−n . (44)

This is a tracker when the potential and kinetic terms of
the scalar field as well as the density of the matter are
constant with respect to each other.

3.2 Conditions of existence and stability of obtained
solutions

With the substitution of the power-law solution a(t) =
a0(t − t0)α , φ(t) = φ0(t − t0)αβ , and ρ(t) = ρ0(t
− t0)−3(1+ω)α to the initial system of equations (6)–(8),
where B(φ) = φ2, V (φ) = V0φ

n , we find the conditions
of the existence and stability of the six solutions obtained
from the previous subsection. We consider only the cases
with n < 0, ξ > 0, and only positive values of φ. It is worth
to recall that in general a fixed point does not necessary cor-
respond to some solution of the initial system. First of all,
all regimes found above (except the de Sitter solution, which
is an exact, and not only an asymptotic solution) exist in the
φ → ∞ limit where we can neglect the Einstein term in com-
parison with the term originating from a nonminimal cou-
pling in the denominator of the expansion in normalized vari-
ables we use. When the field is small (which is realized near
a cosmological singularity for decreasing power-law poten-
tials) the Universe expands according to GR, since the correc-
tion terms are less important. Such regimes for quintessence
potentials are well known and are not included in our analysis
here. As for the large φ regimes, studied in the present paper,
we require that the omitted terms in the equations of motion
be negligible for large φ. Otherwise the regime cannot be
realized as an asymptotic solution. For example, suppose we
have a vacuum asymptotic solution. If the influence of matter
grows with growing φ, this means that the asymptotic solu-
tion corresponding to this particular expansion dynamics is
absent if we add any amount of matter. This does not mean
that such a regime has no physical meaning at all—the Uni-
verse may follow it as transient one, if the amount of matter is
small enough. However, such a situation does not belong to
the asymptotic regimes, and we will not list it in the following.

The analysis described above (with stability results got
from the corresponding eigenvalues) leads to the following
results for vacuum solutions summarized in Table 1 (points
4 and 6, being non-vacuum, are not included).

We can see from this table that in the vacuum case there
are three possible future stable regimes:

• For n > −2 a de Sitter solution exists and is stable.
• For n < −2 and ξ < 6/(n + 2)2 the regime of point 5 is

stable.
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Table 1 Conditions of existence and stability of solutions in vacuum

No. of point Conditions of existence Type of stability

1. −2 < n < 0 0 < ξ � 3
8(n+2)

Stable node

ξ > 3
8(n+2)

Stable focus

2. n < −2, ξ > 6
(n+2)2 , t → ∞ Stable node

3. −2 < n < 0, 1. 0 < ξ < 3
8 , t → t0 Unstable

2. 3
8 < ξ < 6

(n+2)2 , t → ∞ node

n � −2, 1. 0 < ξ < 3
8 , t → t0

2. ξ > 3
8 , t → ∞

n < 0, ξ = 3
8 , t → −∞

5. −2 < n < 0, 0 < ξ < 6
(n+2)2 , t → ∞ Saddle

n < −2, 0 < ξ < 6
(n+2)2 , t → ∞ Stable node

Table 2 Conditions of existence and stability of solutions for ρ 	= 0

No. of point Conditions of existence Type of stability

1. −2 < n < 0, ω ∈ (−1; 1] 0 < ξ � 3
8(n+2)

Stable node

ξ > 3
8(n+2)

Stable focus

3. n < 0, 1. ω ∈ [−1; 0), Unstable

0 < ξ <
3(1−ω)2

8 , node

t → t0

2. ω ∈ [0; 1),
3
8 < ξ < 6

(n+2)2 ,

t → ∞
n < 0, ξ = 3

8 , ω ∈ [−1; 0),

t → −∞
4. n < 0, 0 < ξ <

3(1−ω2)
8 , Unstable

ω ∈ (−1; 1), t → t0 node

n < 0, ξ = 3
8 (1 − ω2), Saddle

ω ∈ (−1; 0), t → −∞
5. n < −2, 0 < ξ <

3(1+ω)
n(n+2)

, Stable node

ω ∈ (−1; 1], t → ∞
6. n < −2, ξ >

3(1+ω)
n(n+2)

, 3(1+ω)
n(n+2)

< ξ � ξ0

ω ∈ (−1; 1], t → ∞ Stable node

ξ > ξ0

Stable focus

• For n < −2 and ξ > 6/(n + 2)2 the kinetic dominating
regime of point 2 is stable.

When the matter is taken into account, the situation is
described in Table 2 (note that the de Sitter solution in the
presence of matter is an asymptotic solution).

0 2 4 6 8 10
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

ξ

n

1. 

5. 

6. 

Fig. 1 Regions of a stability of solutions corresponding to the points
1 (red), 5 (green), 6 (cyan) for the case ρ 	= 0 with ω = 0

In Table 2
ξ0 = − 3

64n2(n+2)
( f4(ξ, n) + √

f5(ξ, n) f6(ξ, n)), where

f4(ξ, n) = −52n− 7n2 + 4 +ω2(9n2 + 20n+ 4)+ 2ω(4 −
16n−n2), f5(ξ, n) = ω2(4+36n+81n2)+ω(126n2−64n+
8) + 4 − 100n + 49n2, f6(ξ, n) = (2 − n + ω(n + 2))2.

For ξ = ξ0 the square root equals zero in the eigenvalues
λ2,3 of point 6 [see (43)].

We see that point 2 (a kinetic dominating regime) is
absent—this situation is described in the beginning of this
section as an illustration of what we call the existing asymp-
totic regimes. In this particular case matter with w < 1 would
inevitably destroy a vacuum regime of the point 2 in late time.
The future stable regimes are:

• For n > −2, as for the vacuum case, the future stable
point is a de Sitter solution.

• For n < −2 and ξ < 3(1 + ω)/(n2 + 2n) the regime
of point 5 is stable, so the scalar field dominates in late
time.

• For n < −2 and ξ > 3(1 + ω)/(n2 + 2n) the tracker
(point 6) is stable to the future.

An example of configurations of stability regions for ω =
0 is shown in Fig. 1.

4 Conclusions

In the present paper we considered the evolution of the Uni-
verse in a teleparallel version of a nonminimally coupled
scalar field theory, focusing mostly on quintessence scalar
field potentials. In our previous paper [31] we already pointed
out the radical differences in the dynamics of “classical” and
teleparallel cases of this theory. Here we provided a quali-
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tative explanation of this difference using the notion of an
effective scalar field potential. It appears as a first step from
a Jordan to an Einstein frame (to be followed by a redef-
inition of the scalar field in order to transform the kinetic
term to the canonical form) in the standard theory, though it
already gives an intuitively clear picture of possible dynam-
ical regimes without this second step. It is interesting that in
the teleparallel version, where the Einstein frame does not
exist at all [35], the effective potential nevertheless can be
introduced in the same manner. The difference in the forms
of this effective potential (being V (φ)/U 2(φ) for the classi-
cal case and V (φ)U (φ) for the teleparallel case, where V (φ)

is the scalar field potential and U (φ) is the coupling func-
tion which includes the Einstein–Hilbert term) results in very
different dynamics for the same scalar field potentials.

For the standard scalar–curvature coupling, the presence
of U (φ) [which is usually taken in the form U (φ) = 1 +
8πGξφ2] in the denominator leads to a run-away solution
for growing V (φ), corresponding to Veff(φ) decreasing for
large φ. This may happen if U 2(φ) grows more rapidly than
V with φ [33]. In the boundary case of U 2(φ) ∼ V (φ) for
large φ the effective potential is asymptotically flat, which is
the reason for the existence of viable Higgs inflation models
[37].

None of these features can exist for the effective potential
in the form of U (φ)V (φ) as in scalar–torsion theory. For
the usual quadratic coupling (we study only this form of
the coupling in the present paper) Veff(φ) is growing for an
arbitrarily growing V (φ), so the dynamics inevitably pushes
the scalar field toward zero, as we have seen in our previous
paper. On the contrary, for the decreasing potentials studied in
the present paper the effective potential can have a minimum,
resulting in a de Sitter solution. For a quadratic coupling this
happens if V (φ) scales less steep than φ−2. This condition
for a de Sitter solution to exist has been obtained earlier in
[31] and in a more general context in [36], and we now have
a very easy way to explain it.

Steeper potentials result in unlimited growing of the scalar
field, similar to the quintessence scenario in GR. We have
identified a tracker solution which is always an attractor in
its range of existence. It is shown that when the coupling
constant ξ is low enough for the tracker to exist (see the cor-
responding condition in Table 2), a vacuum regime is stable,
so the scalar field dominates at late time. We also list sev-
eral unstable asymptotic regimes. A full description of the
scalar field dynamics requires matching solutions studied in
the present paper with GR solutions valid for small φ. We
leave this for future work.
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