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Abstract We consider the precession of a Dirac particle
spin in some anisotropic Bianchi universes. This effect is
present already in the Bianchi-I universe. We discuss in some
detail the geodesics and the spin precession for both the Kas-
ner and the Heckmann–Schucking solutions. In the Bianchi-
IX universe the spin precession acquires the chaotic character
due to the stochasticity of the oscillatory approach to the cos-
mological singularity. The related helicity flip of fermions in
the very early universe may produce the sterile particles con-
tributing to dark matter.

1 Introduction

In almost all the applications of mathematical cosmology
to the elaboration of observational data the isotropic Fried-
mann cosmological models are used. However, in the very
early universe, the effects of anisotropies could be essen-
tial. As is well known, the most simple and well studied
anisotropic cosmological models are the spatially homoge-
neous Bianchi models (see e.g. [1,2]). Remarkably, already in
Bianchi models one can observe such interesting and impor-
tant phenomenon as the oscillatory approach to the cosmo-
logical singularity [3–5]. However, to the best of our knowl-
edge, the behavior of quantum particles in the Bianchi uni-
verses has not been studied in detail. We think that the filling
of this gap can be of interest not only from the theoretical
point of view, but that it may also reveal some interesting
physical effects in the very early universe.

Especially promising can be the study of the motion of
Dirac particles (quarks and leptons) in gravitational fields.
While this study has a rather long history [6,7], some essen-
tial progress was made in a recent series of papers [8–12].
In particular, the general expressions, characterizing the spin
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motion in rather general gravitational fields were elaborated
in paper [12]. Here we apply this formalism to the study of
the behavior of quantum particles with spin in some Bianchi
universes. We found a novel effect of anisotropy induced
spin precession, revealed already in the simplest case of the
Bianchi-I universe. We consider in some details the geodesics
and the spin precession in Bianchi-I universes, putting special
emphasis on the Kasner [13] and the Heckmann–Schucking
[14] solutions. It is interesting also from the point of view of
the study of cosmic jets, which was undertaken in Ref. [15].

Then we consider the precession in the Bianchi-IX uni-
verse. Here, first of all, two qualitatively different contribu-
tions to the angular velocity are present and, second, the oscil-
latory approach to the singularity [3,4] implies the stochas-
ticity of the changes of the direction of the precession axis.

We also consider the possible physical consequences of
these effects in the very early universe, including the appear-
ance of effective magnetic field. The similar precession
effects are also present for classical rotators due to the equiv-
alence principle and might be manifested in the structure
formation in the very early universe.

The equivalence principle implied also the helicity flip
which is of special interest for massive Dirac neutrinos. The
neutrinos produced as active ones are becoming sterile due to
gravity-induced helicity flip and may contribute to fermionic
dark matter. The structure of the paper is as follows: in the
second section we briefly describe the precession of the Dirac
particle in gravitational field; in the third section we give
the general formulas for geodesics and spin rotation in the
Bianchi-I universes, and, in particular, in the empty Bianchi-I
universes evolving, following the Kasner solution; Sect. 4 is
devoted to the Heckmann–Schucking solution for a Bianchi-
I universe filled with a dust-like matter; in the fifth section
we consider the precession of spin in a Bianchi-IX universe;
in the concluding section we discuss possible physical appli-
cations of described effects and give a short outlook of the
future directions of investigations.
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2 The precession of the Dirac particle in a gravitational
field

Following Ref. [12], we present the general formula for
the precession of the Dirac particle, adapted for the case
of Bianchi universes, where we shall use the synchronous
reference frame. The metric can be represented by

ds2 = dt2 − δâb̂W
â
c W

b̂
d dxcdxd , (1)

where a, b, . . . are world spatial indices, while the ones with
the hats are spatial tetrad indices. We shall introduce also the
inverse matrix Wa

ĉ such that Wa
ĉ W

ĉ
b = δab .

In Ref. [12] it was shown that the average spin s in the
semiclassical approximation is precessing with an angular
velocity � like

ds
dt

= � × s = (�(1) + �(2)) × s. (2)

The velocities �(1) and �(2) correspond to gravitoelectric
and to gravitomagnetic forces, respectively. Then

�â
(1) = 1

ε′ W
d
ĉ pd

(
1

2
ϒδâĉ − εâê f̂ C ĉ

ê f̂

)
, (3)

�â
(2) = 1

2
�â − 1

ε′(ε′ + m)
εâb̂ĉ Q

(b̂d̂)
δd̂ n̂Wk

n̂ pkW
l
ĉ pl . (4)

Here Cĉ
âb̂

are anholonomy coefficients

Cĉ
âb̂

= Wd
â W

e
b̂
∂[d Ẇ ĉ

e], Câb̂ĉ = gĉd̂C
d̂
âb̂

. (5)

Then

Qâb̂ = gâĉW
d
b̂
Ẇ ĉ

d , (6)

ϒ = −εâb̂ĉCâb̂ĉ, (7)

�â = εâb̂ĉ Qb̂ĉ. (8)

The motion of the particle is characterized by its momen-
tum pa and by the energy

ε′ =
√
m2 + δĉd̂Wa

ĉ W
b
d̂
pa pb.

It can be absorbed together with the particle mass m and
its momentum pa by introducing the velocity va . Thus, the
precession velocities are

�â
(1) = vĉ

(
1

2
ϒδâĉ − εâê f̂ C ĉ

ê f̂

)
, (9)

�â
(2) = 1

2
�â − γ

γ + 1
εâb̂ĉ Q

(b̂d̂)
δd̂ n̂vn̂vĉ, (10)

where γ = 1/
√

1 − v2 is a Lorentz factor.

3 The evolution of a spinning particle in the Kasner
universe

The simplest spatially homogeneous and anisotropic uni-
verse is that of Bianchi-I type, whose metric is [1]

ds2 = dt2 − a2(t)(dx1)2 − b2(t)(dx2)2 − c2(t)(dx3)2.

(11)

Comparing this expression with Eq. (1) we have the following
expressions for the non-vanishing elements of the matrixWb

â :

W 1̂
1 = a(t), W 2̂

2 = b(t), W 3̂
3 = c(t). (12)

The elements of the inverse matrix are

W 1
1̂

= 1

a(t)
, W 2

2̂
= 1

b(t)
, W 3

3̂
= 1

c(t)
. (13)

As is well known the anholonomy coefficients for the
Bianchi-I model are equal to zero. Hence, ϒ = 0 too and
the “gravitoelectric” contribution �(1) disappears. Then the
non-vanishing coefficients of the matrix Qâb̂ are

Q1̂1̂ = − ȧ

a
, Q2̂2̂ = − ḃ

b
, Q3̂3̂ = − ċ

c
. (14)

Correspondingly also the vector �â disappears. Finally, the
non-vanishing components of the “gravitomagnetic” contri-
bution to the precession of the Dirac particle in the Bianchi-I
universe is, up to cyclic permutations [16],

�1̂
(2) = γ

γ + 1
v2̂v3̂

(
ḃ

b
− ċ

c

)
. (15)

The solution of the Einstein equations for the empty
Bianchi-I universe, the Kasner solution [13,17], is

a(t) = a0t
p1, b(t) = b0t

p2 , c(t) = c0t
p3, (16)

where the Kasner indices p1, p2, and p3 satisfy the relations

p1 + p2 + p3 = 1, p2
1 + p2

2 + p2
3 = 1. (17)

Correspondingly, Eq. (15) becomes

�1̂
(2) = γ

γ + 1
v2̂v3̂

(
p2 − p3

t

)
(18)

and has some similarity to the Euler equations for rigid body
rotation with pi corresponding to the moments of inertia.

Obviously, this effect can be essential in the early universe,
i.e. at the very small values of the proper cosmic time t .
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The Kasner indices p1, p2, and p3 can be expressed
through the Lifshitz–Khalatnikov parameter u [17]:

p1 =− u

1+u+u2 , p2 = 1+u

1+u + u2 , p3 = u(1 + u)

1+u+u2 ,

(19)

where u > 1.
First of all, let us find the velocities of a particle, moving

in a Kasner universe, resolving the geodesic Eqs. [15,18].
The geodesic equation for the spatial velocities of a mas-

sive particle is

d2xi

dτ 2 + 2
i
j0

dt

dτ

dx j

dτ
= 0. (20)

Here τ is a proper time and the Christoffel symbols are


1
10 = ȧ

a
, 
2

20 = ḃ

b
, 
3

30 = ċ

c
. (21)

The solutions of these equations are

dx1

dτ
= C1

a2 ,
dx2

dτ
= C2

b2 ,
dx3

dτ
= C3

c2 . (22)

The geodesic equation for the coordinate time parameter
t is

d2t

dτ 2 + 
0
i j

dxi

dτ

dx j

dτ
= 0, (23)

where


0
11 = ȧa, 
0

22 = ḃb, 
0
33 = ċc. (24)

Substituting Eqs (22) into Eq. (23) and multiplying it by dt
dτ

we find

(
dt

dτ

)2

= C2
1

a2 + C2
2

b2 + C2
3

c2 + D, (25)

where D is an integration constant. For the particles in the
rest frame (C1 = C2 = C3 = 0) the proper time τ coincides
with the coordinate one t , hence, D = 1 and

dt

dτ
=

√
1 + C2

1

a2 + C2
2

b2 + C2
3

c2 . (26)

Let us note that this is nothing but the factor γ . Then the
three-velocities are

v1 = C1

γ a2 , v2 = C2

γ b2 , v3 = C3

γ c2 . (27)

Using the tetrads (12), we can obtain the tetrad velocities

v1̂ = C1

γ a
, v2̂ = C2

γ b
, v3̂ = C3

γ c
. (28)

Substituting Eq. (28) into the expression for the precession
velocity (15), we obtain

�1̂ = 1

γ (γ + 1)

C2C3

bc

(
ḃ

b
− ċ

c

)

= 1

γ (γ + 1)

C2C3(p2 − p3)t p1−2

b0c0
, (29)

�2̂ = 1

γ (γ + 1)

C1C3

ac

(
ċ

c
− ȧ

a

)

= 1

γ (γ + 1)

C1C3(p3 − p1)t p2−2

a0c0
, (30)

�3̂ = 1

γ (γ + 1)

C1C2

ab

(
ȧ

a
− ḃ

b

)

= 1

γ (γ + 1)

C1C2(p1 − p2)t p3−2

a0b0
. (31)

Let us suppose that p1 ≤ p2 ≤ p3 and that they can be
parametrized as in Eq. (19). The dependence of the factor γ

on time [see Eq. (26)] is rather involved, which makes the
precession equations unsolvable in simple terms. Thus, let us
consider the Kasner universe close to the singularity when
t → 0. In this case

γ = C3

t p3
. (32)

Substituting this expression into Eqs. (29)–(31), we obtain

�1̂ = C2C3(p2 − p3)t2p3+p1−2

C2
3b0c0

, (33)

�2̂ = C1C3(p3 − p1)t2p3+p2−2

C2
3a0c0

, (34)

�3̂ = C1C2(p1 − p2)t3p3−2

C2
3a0b0

. (35)

Writing down explicitly the exponents

2p3 + p1 − 2 = −u − 2

1 + u + u2 ,

2p3 + p2 − 2 = u − 1

1 + u + u2 ,

3p3 − 2 =u2 + u − 2

1 + u + u2 ,

(36)
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we see that only �1̂ survives in the vicinity of singularity.
Thus, the equations for the spin precession (2) take the form

ṡ 2̂ = Etqs 3̂,

ṡ 3̂ = −Etqs 2̂,
(37)

where

E = C2(u2 − 1)

C3b0c0(1 + u + u2)
> 0, (38)

q = −u − 1

1 + u + u2 . (39)

It is easy to integrate this couple of equations and to find that

s 2̂ = s0 sin

(
Etq+1

q + 1
+ ϕ

)
,

s 3̂ = s0 sin

(
Etq+1

q + 1
+ ϕ

)
,

(40)

where the amplitude s0 and the phase ϕ are the integration
constants. It is important that

q + 1 = u2

1 + u + u2 > 0.

That means that in spite of the fact that the precession veloc-
ity tends to infinity, this singularity is an integrable one and
the solution of the equations of the precession shows that the
average spin vector s tends to some fixed direction (deter-
mined by the phase ϕ) in quite a regular way.

Let us consider an opposite limiting case when the time
parameter t is big enough to make the term C1/t p1 domi-
nating in the expression (26). (Let us note, however, that the
value of the time parameter is still not as big to make the Kas-
ner regime invalid and to have a transition to the isotropiza-
tion due to the presence of matter, which will be described in
the next section.) A similar limit was considered in Ref. [15],
where it was related to the possible production of cosmic jets.
In this context, the component velocity of a particle oriented
along the axis of contracting dimension tends to the velocity
of light. What is the behavior of the angular momentum of
the jet? It is easy to see that in this case the factor γ behaves
as

γ = C1

t p1
. (41)

Then the components of the precession velocity are

�1̂ = C2C3(p2 − p3)t3p1−2

C2
1b0c0

, (42)

�2̂ = C1C3(p3 − p1)t2p1+p2−2

C2
3a0c0

, (43)

�3̂ = C1C2(p1 − p2)t2p1+p3−2

C2
3a0b0

. (44)

The largest power of t is

2p1 + p3 − 2 = −u2 + 3u + 2

1 + u + u2 < 0.

Thus, all the components of the precession velocity tend
rapidly to zero when t → ∞.

Let us recall that due to the equivalence principle, the
macroscopic angular momentum is evolving like spin. So,
the angular momenta of jets are changing very slowly.

It is curious that even in the vicinity of the cosmological
singularity of the Kasner universe, the angular momentum
remains quite stable and does not exhibit any singular behav-
ior. Perhaps, one can say that, in a way, the rotation possesses
some smoothing effect.

4 Geodesics and jets in the Heckmann–Schucking
universe

In Ref. [15] an interesting possibility of production of jets in
the Kasner spacetime was considered. Such a possibility is
connected with the fact that at the expansion the velocity of
test particles in the contracting direction is growing, tending
to that of light [see Eq. (27)]. It is particularly interesting
to study such e phenomenon in a more realistic Heckmann–
Schucking model, which represents the Bianchi-I universe
filled with dust [14]. Note that this solution can easily be
generalized for the case when the stiff matter and the cosmo-
logical constant are also present [19,20].

Now, let us give some details of the Heckmann–Schucking
solution following the approach developed in [19]. It is con-
venient to represent the scale factors a, b, and c for a Bianchi-
I universe (11) as

a(t) = R(t) exp(α(t) + β(t)),

b(t) = R(t) exp(α(t) − β(t)),

c(t) = R(t) exp(−2α(t)).

(45)

The Friedmann-type equation for the function R(t) can be
written in the form

Ṙ2

R2 = α̇2 + β̇2

3
+ M

R3 , (46)

where the term M
R3 is related to the presence of dust in the

universe, while the squared derivatives of anisotropy factors
α(t) and β(t) represent the influence of the anisotropy on the
dynamics of the scale factor R(t). The former, in turn satisfy
the equations

α̇ = α0

R3 ,

β̇ = β0

R3 ,

(47)
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where α0 and β0 are the integrations constants. Then

Ṙ2

R2 = M

R3 + S

R6 , (48)

where

S = α2
0 + β2

0

3
. (49)

Equation (48) can easily be integrated, giving

R(t) =
(

9

4
Mt2 + 3

√
St

)1/3

, (50)

where we have chosen initial conditions in such a way that
at the moment t = 0 the universe has a cosmological sin-
gularity. Substituting this expression into Eqs (47) we have

α(t) = α0

∫
dt

9
4 Mt2 + 3

√
St

= α0

3
√
S

ln

(
t

t + 4
√
S

3M

)
, (51)

where the integration constant is chosen in such a way that
α(t) → 0 when t → ∞. The expression for β(t) is quite
analogous. Now, we can write down the expressions for the
scale factors of the Bianchi-I universe:

a(t) =
(

9

4
M

) 1
3

t p1(t + t0)
2
3 −p1 ,

b(t) =
(

9

4
M

) 1
3

t p2(t + t0)
2
3 −p2 ,

c(t) =
(

9

4
M

) 1
3

t p3(t + t0)
2
3 −p3 ,

(52)

where

t0 = 4
√
S

3M
, (53)

and the exponents

p1 = 1

3
+ α0 + β0

3
√
S

,

p2 = 1

3
+ α0 − β0

3
√
S

,

p3 = 1

3
+ −2α0

3
√
S

(54)

satisfy the Kasner relations (17). It is easy to see that in the
vicinity of the singularity when t � t0 the solution (54)
behaves as the Kasner one (16), while at t � t0 the scale
factors behave as

a(t) ∼ t2/3, b(t) ∼ t2/3, c(t) ∼ t2/3, (55)

i.e. the universe behaves as a Friedmann flat universe filled
with dust. The magnitude t0 characterizes the time scale
where the regime is changed.

Let us note that we cannot make a naive transition from
the Heckmann–Schucking solution (52) to the Kasner solu-
tion (16) by requiring that M → 0. It is connected with the
fact that the integrals for the anisotropy functions (51) log-
arithmically diverge at t → ∞ if M = 0. Thus, the scale
t0 = 4

√
S/3M loses sense and one should introduce another

time scale to make it convergent. This phenomenon can be
considered as a particular example of the automodelity of
the second order [21]. Under the automodelity of the second
order one means the nonexistence of a finite limit of some
observable when a particular parameter is tending to zero
or to infinity. Instead, one has a power dependence on this
parameter. We would like to stress that this power is similar to
anomalous dimension in the renormalization group approach
to quantum field theory [22].

An interesting feature of the Heckmann–Schucking solu-
tion (52) is that the scale factor a(t) has a non-monotonic
behavior if, as usual, we choose p1 < 0. Indeed, this factor
is infinitely large at the singularity at t = 0, then it begin
decreasing arriving the point of minimal contraction at the
moment

tmin = −3p1

2
t0 = 3u

2(1 + u + u2)
t0. (56)

The minimal value of the scale factor a is

amin =
(

4S

M

) 1
3 × f (u),

f (u) = (3u)
− u

1+u+u2 (2u2 + 5u + 2)
2u2+5u+2
3(1+u+u2)

[2(1 + u + u2)] 2
3

. (57)

The plot of the function f (u) is presented in Fig. 1. It
decreases monotonically from f (1) ≈ 1.9 until f (∞) = 1.

200 400 600 800 1000

1.01

1.02

1.03

1.04

1.05

1.06

Fig. 1 The dependence of the function f (u) on the Lifshitz–
Khalatnikov parameter u
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Now, it is convenient to write down the explicit expression
for the component of the tetrad velocity oriented along the
contracting-expanding axis 1:

v1̂ = C1

a

√
1 + C2

1
a2 + C2

2
b2 + C2

3
c2

. (58)

This component is maximal for the particles with vanishing
transverse velocities, i.e. with C2 = C3 = 0. Then, for a
fixed value of C1, the maximal velocity is

v1̂
max = C1√

a2
min + C2

1

. (59)

It is approaching the velocity of light when C1 is growing.

5 Precession in a Bianchi-IX universe

The matrix Wb̂
a for the Bianchi-IX metric (see e.g. [2]) can

be written as

Wb̂
a =

⎛
⎝−a sin x3 a sin x1 cos x3 0

b cos x3 b sin x1 sin x3 0
0 c cos x1 c

⎞
⎠ , (60)

where a, b, and c are some functions of time, as usual. Its
inverse matrix Wc

b̂
is

Wc
b̂

=
⎛
⎜⎝

− 1
a sin x3 1

b cos x3 0
1
a

cos x3

sin x1
1
b

sin x3

sin x1 0

− 1
a

cos x1 cos x3

sin x1 − 1
b

sin x3 cos x1

sin x1
1
c

⎞
⎟⎠ . (61)

The non-vanishing anholonomy coefficients are

C 3̂
1̂2̂

= c

ab
, and cyclic permutations. (62)

Then

ϒ = 2

(
c

ab
+ b

ac
+ a

bc

)
. (63)

The non-vanishing coefficients of the matrix Qâb̂ are the
same as in Eq. (14). Hence, �â is again equal to zero. The
“gravitoelectric” precession velocity, up to cyclic permuta-
tions, is

�1̂
(1) = v1̂

(
c

ab
+ b

ac
− a

bc

)
, (64)

The expressions for the components of the “gravitomag-
netic” velocity �(2) remain the same as in Bianchi-I universe
[see Eq. (15)].

Thus, we have seen that the “gravitomagnetic” velocity
in the Bianchi-IX universe is the same as in Bianchi-I uni-
verse, however, in the Bianchi-IX universe there is also the
“gravitoelectric” precession. The presence of this term (64)
is connected with the presence of a spatial curvature in the
Bianchi-IX universe, in contrast to the Bianchi-I universe. It
is connected with the fact that the anholonomy coefficients
are non-vanishing in the Bianchi-IX universe.

Now, let us discuss what happens with the precession
of the Dirac particles in the Bianchi-IX universe, evolving
toward the cosmological singularity. As was discovered at
the end of 1960s the Bianchi-IX universe approaches the
singularity in an oscillating way [3–5] and these oscillations
have chaotic character [23,24]. The evolution toward the sin-
gularity can be described by the subsequence of the periods
when the universe behaves like a Kasner universe (16), (17),
separated by time intervals when one Kasner regime is substi-
tuted by another one. Let us recall how these changes occur.
The Kasner indices p1, p2, and p3 can be expressed through
the Lifshitz–Khalatnikov parameter u [17] as

p1 =− u

1+u+u2 , p2 = 1+u

1+u + u2 , p3 = u(1+u)

1+u + u2 ,

(65)

where u > 1. The perturbative terms in the Einstein equa-
tions, connected with the spatial curvature, induce the tran-
sition to another Kasner regime (which is called “epoch”
[1,3,4]). Such that

p′
1 = p2(u− 1), p′

2 = p1(u− 1), p′
3 = p3(u− 1). (66)

That means that if during the preceding epoch, the universe
is expanding along the first axis and contracting along the
second and third axes, in the successive epoch it begins
expanding along the second axis, i.e. the first and second
axis change their roles. There is another type of transition
when the parameter u becomes less than 1. In this case the
change of the “Kasner era” occurs [1,3,4]. This change is
described by the following formula:

p′
1 = p1

(
1

u

)
, p′

2 = p3

(
1

u

)
, p′

3 = p2

(
1

u

)
. (67)

The transition from one Kasner era to another can be
described by the mapping transformation of the interval [0, 1]
into itself by the formula

T x =
{

1

x

}
, xs+1 =

{
1

xs

}
, (68)

where curly brackets stay for the fractional part of a num-
ber. This transformation belongs to the so-called expanding

123



Eur. Phys. J. C (2016) 76 :293 Page 7 of 8 293

transformations of the interval [0, 1], i.e., transformations
x ∼ f (x) with | f ′(x)| > 1. Such transformations possess
the property of exponential instability: if we take initially
two close points, their mutual distance increases exponen-
tially under the iterations of the transformations. It is well
known that exponential instability leads to the appearance of
strong stochastic properties [23,24].

Now, let us describe what happens with our angular veloc-
ities �(1) and �(2) when the universe has an oscillating
approach to the singularity. The expression for �(2) can be
written as

�1̂
(2) = γ

(γ + 1)t
v2̂v3̂ · 1 − u2

1 + u + u2 ,

�2̂
(2) = γ

(γ + 1)t
v1̂v3̂ · 2u + u2

1 + u + u2 ,

�3̂
(2) = − γ

(γ + 1)t
v1̂v2̂ · 1 + 2u

1 + u + u2 .

(69)

It is easy to show that after the change of the Kasner epoch the
new expressions for the components of the velocity can be
obtained by substitution u → −u in this equation. It means
that the component the first component does not change the
sign, the third component changes the sign while the second
component changes the sign if u > 2.

After the change of the Kasner era all the components of
the velocity �(2) just change the sign, preserving the absolute
values, as follows immediately from (67).

The leading terms for the components of the velocity �(1)

are

�1̂
(1) ∼ −v1̂(t)

(
−1− 2u

1+u+u2

)
,

�b̂
(1) ∼ vb̂(t)

(
−1− 2u

1+u+u2

)
, b = 2, 3. (70)

The change of epochs boils down to

�2̂
(1) ∼ −v2̂(t)

(
−1− 2u−2

1−u+u2

)
,

�â
(1) ∼ vâ(t)

(
−1− 2u−2

1−u+u2

)
, a = 1, 3. (71)

Curiously, the change of eras leave leading terms under con-
sideration intact. Thus, we have seen that the precession of
the Dirac particle in the Bianchi-IX universe evolving toward
the singularity also follows a chaotic pattern.

6 Discussion and outlook

We have seen that the precession of a Dirac particle spin exists
already in the Bianchi-I universe. Interestingly, the Kasner
indices play the role similar to the moments of inertia in the
Euler equation for the rigid body precession. In the Bianchi-
IX universe the precession acquires the chaotic character due

to the stochasticity of the oscillatory approach to the cosmo-
logical singularity [3–5]. Remarkably, the formulas for the
changes of the precession direction are nicely expressible in
terms of the Lifshitz–Khalatnikov parameter u.

What physical consequences could it have for the very
early universe?

Let us note first that precession due to anisotropy of the
universe may be considered as generated by some effective
magnetic field. The latter may easily be obtained by equat-
ing the angular velocity to that of Larmor precession. For
the definiteness, in Bianchi-I universe it reads, up to cyclic
permutations,

H 1̂ = mγ

2eg(γ + 1)
v2̂v3̂

(
p2 − p3

t

)
(72)

As a result, the anisotropy of the universe provides all the
Dirac particles with effective anomalous magnetic moments.
In particular, the transitions between Dirac neutrinos and
their sterile partners may be induced in such a way. More-
over, due to the equivalence principle, these conclusions may
be extended to particles of any spin [25] and also to classical
rotators [11]. The latter fact opens the possibility to study the
role of the discussed precession effects for the formation of
structures in the very early universes and angular momentum
of cosmic strings [26].

Also, the equivalence principle leads to the precession
frequencies of spin and velocity differing by factor 2, so that
the helicity is conserved in the non-inertial frame rotating
with the same frequency but it is flipped [25] in the iner-
tial frame. This effect is especially interesting for massive
Dirac neutrinos. If they are produced in the very early uni-
verse as active ones, i.e. possessing the left chirality,1 the
gravity-induced helicity flip may turn them to sterile neu-
trinos which remain in this state after the universe becomes
isotropic and contribute to fermionic dark matter. As soon
as the rotation period is defined by the age of the uni-
verse in the anisotropic phase, the amounts of sterile and
active neutrinos at the end of this phase are of the same
order:

Nsterile

Nactive
∼ 1. (73)

If the spin happens to perform the rotation for an angle
close to π , the velocity will rotate for the angle close
to 2π and the most of the fermions will become sterile:

Nsterile

Nactive
� 1. (74)

This opens, in principle, the possibility to attribute the dark
matter to the contribution of light sterile neutrinos whose

1 It is definitely so in the Standard Model and we will not consider its
extensions in which sterile Dirac neutrinos may be produced.
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abundance would be much larger than that of thermal ones.
The validity of (74) would require a sort of fine tuning,
but not too strong, as the required excess of sterile neu-
trinos is about two orders of magnitude, and the closeness
of the rotation angle to π should also be at the percent
level.

The anisotropic metrics, in the case of some scale param-
eters being much smaller than others, may provide the model
of transitions between spaces of different (effective) dimen-
sion [27–29]. The spin dynamics in that case is manifesting
the interesting effects [30]. Other interesting directions of
investigation could be connected with the study of the spin
precession in Bianchi II universes, in the generalized Melvin
cosmologies in the presence of electromagnetic fields [31]
and in the double Kasner universes [26]. We hope to study
these topics in detail in future publications.
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