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Abstract The maximal U (1)L supersymmetric inverse
seesaw mechanism (MLSIS) provides a natural way to relate
asymmetric dark matter (ADM) with neutrino physics. In this
paper we point out that MLSIS is a natural outcome if one
dynamically realizes the inverse seesaw mechanism in the
next-to minimal supersymmetric standard model (NMSSM)
via the dimension-five operator (N )2S2/M∗, with S the
NMSSM singlet developing TeV scale VEV; it slightly vio-
lates lepton number due to the suppression by the fundamen-
tal scale M∗, thus preservingU (1)L maximally. The resulting
sneutrino is a distinguishable ADM candidate, oscillating and
favored to have weak scale mass. A fairly large annihilating
cross section of such a heavy ADM is available due to the
presence of singlet.

1 Introduction and motivation

Origins of tiny but not vanishing neutrino masses are of great
interest. Among those, the inverse seesaw mechanism [1,2]
gains special attention, mainly because it provides a natural,
simple and testable way to realize small neutrino masses at
low energy without invoking suppressed couplings. Besides,
this mechanism follows the symmetry principle: a tiny neu-
trino mass, which slightly breaks lepton number by two
units, is closely related to the degree of lepton number sym-
metry U (1)L violation. Such an observation yields a deep
implication to the supersymmetric dark matter (DM) candi-
dates in the supersymmetric standard models (SSMs): if the
inverse seesaw mechanism is realized with retaining a max-
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imal U (1)L , i.e., one attributes the lightness of neutrino to
U (1)L violation to the maximum extent (we refer to Eq. (3)
for a more detailed explanation), the lightest sneutrino can be
an asymmetric dark matter (ADM) candidate. The resulting
scenario is dubbed MLSIS, the maximal U (1)L supersym-
metric inverse seesaw.

Thus far, ADM [3–14] is the most attractive mechanism
to understand the coincidence between the relic densities of
the dark and baryonic matters, �DM : �b � 5 : 1. But real-
izing the ADM scenario in SSMs usually requires a bulk of
extension, for example, invoking higher dimensional oper-
ators with new scales [8–11]. On the other hand, it was
believed that the low scale supersymmetric type-I seesaw
could provide the sneutrino as an economic ADM candi-
date [15], but it is rendered to be the ordinary symmetric
DM by the large U (1)L violation effect [21].1 In contrast, in
the MLSIS, by definition, the degree of U (1)L violation is
under control: it just regenerates the symmetric DM compo-
nents via oscillation [22–26] but it does not spoil the ADM
picture. The oscillating sneutrino ADM is strongly favored to
have mass around the weak scale instead of the conventional
GeV scale [21].

Despite being a well-motivated scenario to embed ADM
in SSMs and, moreover, providing a distinguishable ADM
candidate, the MLSIS, in the sense of model building, still
can be improved from two aspects. First, the origin of the
maximal lepton number, or the minimal U (1)L violation,
is of concern. It is not a new problem but inherits from the
inverse seesaw mechanism; see some attempts to address this
problem [27–30]. As the central result of this paper, we find

1 The ordinary symmetric sneutrino dark matter is studied well by a lot
of groups [16–20].
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that the presence of a singlet S developing TeV scale vacuum
expectation value (VEV) provides a quite simple solution via
a dimension-five operator with a high cut-off scale. Such a
singlet is furnished in the well-known next-to minimal SSM
(NMSSM) [31], which thus provides the basis for model
building. Second, in the minimally realized MLSIS [21] the
sneutrino ADM fails in annihilating away effectively, and
again a singlet can help us to cope with this problem.

This work is organized as follows. In Sect. 2 the MLSIS
is realized in the Z3-NMSSM with a dimension-five opera-
tor. In Sect. 3, we study the oscillating sneutrino asymmetric
DM, focusing on the annihilation. The conclusion is given in
Sect. 4.

2 The maximal U(1)L inverse seesaw based on NMSSM

Let us begin with a brief review of the MLSIS, which was,
first, proposed in Ref. [21]. In the minimal scenario, the
superpotential is nothing but that of the supersymmetric
inverse seesaw mechanism [32,33]:

WIS = yN HuLN
c + mN NNc + MN

2
N 2. (1)

We follow the notation of Ref. [21]: the chiral superfields
are denoted as Nc = (̃ν∗

R, ν
†
R) and N = (̃ν′

L , ν′
L), with ν′

L
and νR both carrying lepton number +1. The Majorana mass
term is the source of U (1)L violation, by two units. For sim-
plicity, we consider the single family case. In the flavor basis
(νL , ν

†
R, ν′

L), the neutrino mass matrix is given by

Minverse =
⎛

⎝

0 mD 0
mD 0 mN

0 mN MN

⎞

⎠ , (2)

with a Dirac neutrino mass mD = yN 〈H0
u 〉. In order to avoid

large non-unitarity, we impose the bound K ≡ mN/mD �
10 [34]. Then the lightest neutrino is dominated by the
active neutrino: ν1 ≈ sin θννL − cos θνν

′
L with sin θν ≈

1 − 1/2K 2 ≈ 1. The neutrino mass takes the form of double
suppression,

meff
ν = − m2

D

m2
N + m2

D

MN � −MN/K 2. (3)

If K takes a value as small as possible, MN should take the
smallest value accordingly. So, U (1)L would be respected to
the greatest extent, leading to the maximal U (1)L .

The other two Weyl fermionsν2,3 ≈ 1√
2

(

±ν
†
R + sin θνν

′
L

+ cos θννL

)

are singlet-like and heavy. They have almost

degenerate masses, |M2,3| =
√

m2
N + m2

D +O(MN ) ≈ mN ,
and form a pseudo-Dirac fermion.

2.1 Realizing MLSIS in NMSSM via a dimension-five
operator

In the MLSIS, MN is required to be � 10 eV. Such a tiny
mass scale implies that the U (1)L breaking term may orig-
inate from a higher dimension operator, which resembles
the understanding on the active neutrino mass via the Wein-
berg operator Owin = (LHu)

2/M∗. Owing to the fact that
the weak scale vu � 246 GeV is relatively low, to give the
realistic neutrino mass we need a somewhat peculiar scale
M∗ ∼ 1014 GeV, which is close but two orders of magnitude
lower than the grand unification theory (GUT) scale ∼ 1016

GeV. It is even far less than another putative fundamental
scale, the Planck scale MPl ∼ 1018 GeV or the string scale,
which interpolates between them.

In the case under consideration, the situation becomes
quite different and intriguing new possibilities open. In order
to construct a Weinberg operator-like operator for the U (1)L
breaking mass term, a scalar singlet S is introduced; more-
over, it develops a VEV vs ≡ 〈S〉 so that we have the analogy

(LHu)(LHu)

M∗
→ NNSS

M∗
. (4)

Now we have meff
ν � −λ2v

2
s /(K

2M∗). Given a multi-TeV
vs , M∗ can be naturally identified as the GUT scale for oper-
ator coefficient λ2 ∼ 1. However, if vs is merely at the sub-
TeV scale, we need to allow a large coefficient λ2 ∼ K 2.
In particular, if we have vs ∼ O(10) TeV, even M∗ = MPl

is possible. In this article we prefer a lower vs because then
one can enjoy the benefits of NMSSM: enhancing the SM-
like Higgs boson mass via the new quartic term λ2|HuHd |2
without losing electroweak scale naturalness, i.e., keeping a
smaller value, μ = λvs ∼ O(100) GeV [35–37].

In SSMs, such a singlet is very welcome. As is well known,
the minimal SSM (MSSM) contains an unique mass parame-
ter in the superpotential, i.e., the μ parameter of the mass term
for Higgsinos μHuHd . It is expected to be around the weak
scale, which is technically natural but the origin of such a
low scale should be addressed. Among others, the NMSSM
provides a simple and attractive solution by updating μ to
be a dynamic field, μ → S [31]. As a bonus, S can also
generate the supersymmetric Dirac mass term for the sin-
glets N and Nc in the MLSIS. So, we propose the following
scale invariant (or Z3-invariant) superpotential except for the
dimension-five operator:

W = WNMSSM + (

yN LHuN
c + λ1SNNc) + λ2

4M∗
S2N 2,

(5)

−Lso f t =
(

m
˜L |˜L|2 + m ν̃′

L
|̃ν′

L |2 + m ν̃R |̃νR |2
)
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+yN AN Hu˜L ν̃∗
R

+BmmN ν̃′
L ν̃∗

R + BMMN

2
(̃ν′

L)2 + h.c. (6)

The soft SUSY-breaking parameters AN , A1, etc., are
assumed to be real and around the weak scale. 2 The ordinary
NMSSM sector with Z3 symmetry takes the form of

WNMSSM = λSHuHd + κ

3
S3, (7)

−Lso f t
NMSSM = m2

Hu
|Hu |2 + m2

Hd
|Hd |2

+ m2
S|S|2 +

(

λAλSHuHd+ κ

3
Aκ S

3+h.c.
)

.

(8)

As usual, we insist on the perturbative bound on the dimen-
sionless couplings, e.g. λ � 0.7. After S developing a VEV,
all the mass terms in the superpotential Eq. (1) just like μ are
dynamically generated,

mN = λ1vs, MN = λ2v
2
s

M∗
. (9)

The simple model can provide all the elements we need and
it is the minimal model to dynamically realize the inverse
seesaw mechanism because we do not introduce any new
fields (only the NMSSM plus right-handed neutrinos).

We would like to stress that the inverse seesaw mechanism
based on a dimension-five operator is bound to be realized
maximally preserving U (1)L . The reason is simple. From
Eqs. (3) and (9) one obtains vs ∼ K

√

meff
ν M∗/λ2. Thus,

for the given meff
ν ∼ 0.1 eV, M∗ ∼ MGUT and a not very

large λ2, a large K � 10 would push vs far above the TeV
scale, hence losing the benefits of NMSSM stated before.
Therefore, we want the K to be as small as possible, giving
rise to the MLSIS scenario.

2.2 Tentative UV completion

Since the small neutrino mass scale is simply a relic of fun-
damental scale physics, this inspires us to investigate the
possible models at the fundamental scale. We find that a
new U (1)′R symmetry can guarantee the general form of
our model. At the renormalizable level, the supersymmet-
ric model described by Eq. (7) plus Eq. (5) possesses an
accidentalU (1)B ×U (1)L ×U (1)R symmetry with the field
charges assigned as

2 We do not introduce lepton flavor violating mass terms in the soft
SUSY-breaking sector. Otherwise, the realization of the oscillating
sneutrino ADM would be changed significantly.

L : Hu[0], Hd [0], S[0], L[1], Ec[−1],
Nc[−1], N [1],

B : Hu[0], Hd [0], S[0], Q[1], Uc[−1],
Dc[−1], N [0],

R : Hu[2/3], Hd [2/3], S[2/3], L[2/3], Ec[2/3], · · ·
R′ : Hu[2/3], Hd [2/3], S[2/3], L[1/3], Ec[4/3],

Nc[4/3], N [1/3], �[1] · · · (10)

where the dots denote all other fields carrying the same charge
2/3. As a matter of fact, the U (1)R charge assignment is not
fixed according to this superpotential and in the above we
simply choose one as an example, which is consistent with
SU (5) GUT. Note that the Z3 symmetry simply is an acciden-
tal result of U (1)R symmetry, which forbids the bare mass
terms. At the dimension-five level, the operator S2N 2 vio-
lates the global symmetryU (1)L andU (1)R simultaneously,
but it still leaves a discrete ZL

2 ⊂ U (1)L and a new U (1)′R
invariance, R′ ≡ R− 1

3 L . The R′ charge assignment of vari-
ous fields is presented in the last line of Eq. (10). In particular,
ifU (1)′R is generated to all orders, it was found that as a con-
sequence U (1)B and the matter parity ZM

2 ≡ (−1)3(B−L)

are conserved to all orders [38].
With such a U (1)′R symmetry, we try to explore concrete

UV completions of the low energy model which contains
dimension-five operator and thus hints for new physics. This
is of concern, since we will find that M∗ tends to be far below
the fundamental Planck scale. We introduce a heavy singlet
� carrying unit U (1)′R charge and thus it can (only) couple
to S and N via the renormalizable term:

W = λ�SN� + M�

2
�2, (11)

with M� ∼ M∗. Now integrating out � via the F-flatness
condition of �, namely F� = M�� + λ�SN = 0, one
then obtains the operator 1

M∗ S
2N 2 with M∗ = −M�/2λ2

�.
We would like to point out that, in the presence of three
families of RHNs, one may arrange an accident hierarchy
among λ� or (and) M� such that one effective cut-off scale
M∗ is hierarchically larger than others, and consequently the
corresponding MN is much smaller than others. Later, we
will see that it is helpful to realize the oscillating sneutrino
ADM.

3 Oscillating asymmetric sneutrino dark matter

In this section we will study the main phenomenology of
MLSIS implemented in the NMSSM, oscillating asymmetric
sneutrino dark matter. Although the main physics has been
investigated in Ref. [21], there are still several differences
between the MLSIS with and without the singlet S; they
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Fig. 1 Thermal history and dynamics of the oscillating sneutrino dark matter

will be the focus here. We briefly discuss the similarities like
asymmetry transfer and symmetry regeneration in the first
subsection; for more details, see Ref. [21]. For illustration,
we show the thermal history and the corresponding dynamics
of sneutrino ADM in Fig. 1.

3.1 Profiles of the oscillating sneutrino ADM

A big bonus of maximal U (1)L is the presence of an
ADM candidate, the sneutrino. Let us begin with an exact
U (1)L thus strictly complex sneutrinos. In the basis �T =
(̃νL , ν̃R, ν̃′

L)T , the sneutrino mass squared matrix is given by

m2
ν̃ ≈

⎛

⎜

⎝

m2
˜L

+ m2
D (−mDAN + μmD cot β) −mDmN

m2
ν̃R

+ m2
N + m2

D
1√
2
A1mN

m2
ν̃′
L

+ m2
N

⎞

⎟

⎠
.

(12)

Among three sneutrino ν̃1,2,3 in the mass eigenstate, the light-
est sneutrino is denoted as ν̃1. The stringent DM direct detec-
tion requires that the left-handed sneutrino composition in ν̃1

should be very small, and hence we can make the approxi-
mation:

ν̃′
L ≈ − sin˜θν̃1 + cos˜θν̃2, ν̃R ≈ cos˜θν̃1 + sin˜θν̃2, (13)

with ˜θ the mixing angle. ν̃1 gains asymmetry when it enters
chemical equilibrium with the leptons; after the equilib-
rium breaks at Td , the left asymmetry in ADM is η0 ∼
fADM(xd)ηb, with ηb ≈ 10−11 the asymmetry of baryon.
fADM(xd) is a factor encoding the thermal threshold effect;
it tends to be 1 in the relativistic limit xd = mADM/Td � 1;
in the opposite case it is exponentially suppressed.

The above conventional picture of ADM may be spoiled
by the tiny U (1)L violation. It induces mixing between the
CP-even and -odd components of ν̃1 = 1√

2
(Rẽν1 + I Imν̃1)

and, moreover, splits their masses by an amount δm. Con-
sequently, DM and anti-DM can oscillate into each other. If
oscillation is significant during ADM freeze-out, ADM will
turn out to be an ordinary symmetric DM. The oscillating rate
is very sensitive to δm, whose upper limit is very sensitive
to the ADM mass [40,41]: ADM ∼ 300 GeV can tolerate

δm ∼ 10−5 eV; but for the conventional GeV ADM, δm
is forced to be incredibly small, � 10−10 eV. So we will
consider a weak scale sneutrino ADM.

However, even δm ∼ 10−5 eV is still hard to achieve in
the MLSIS. To see this, one can well approximate the mass
splitting as

δm ≈ δm2
11

m ν̃1

= mNMN sin 2˜θ − BMMN sin2
˜θ

m ν̃1

. (14)

As one can see, the natural scale of δm should be not far
below MN except for sin˜θ � 1. However, for meff

ν ∼ 0.1
eV one has MN ∼ K 2meff

ν ∼ eV � 10−5 eV. Therefore,
it is likely that meff

ν should be relaxed, says having a value
� 0.1 eV. This is allowed in the three families of RHNs and
may be regarded as a prediction of MLSIS with sneutrino
ADM.

3.2 Constraining λ1 from charge washing-out

It is already noticed that a viable sneutrino ADM in the
MLSIS needs the aid of a singlet to annihilate away the sym-
metric part through the term λ1NNc [21]. But the magnitude
of λ1 is stringently constrained by the DM charge violating
scattering (CVS) process ν̃1ν1 ↔ ν̃∗

1 ν̄1, which is mediated
by neutralinos and can keep chemical equilibrium between
ADM and the light neutrinos until a quite low temperature
Td [39]. If Td is down to the DM freeze-out temperature
T f ∼ mDM/20, no asymmetry will be left.

To determine Td , one has to compare the Hubble expan-
sion rate H(T ) ≈ 5.5T 2/MPl with the CVS reaction
rate, which can be obtained from the following effective
Lagrangian:

−Lwash = 1

2
M2

i χ̄iχi + (

yi1ν̃
∗
1 χ̄i PLν1 + h.c.

)

, (15)

with χi the five Majorana neutralinos in the NMSSM. They
are related to the states in the interacting eigenstates via χi =
ZT
i jψ j with ψ = (˜B, ˜W 3, ˜H0

d , ˜H0
u , s̃)T . Approximately, the

effective couplings yi1 are given by

yi1 ≈ yN sin θν cos˜θ Z4i − λ1 cos θν cos˜θ Z5i , (16)
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where the second is from the λ1-term. The CVS rate is cal-
culated to be

CVS = 5 × 103 × |y2
i1|2

12π3

(

T

Mi

)4 (

T

m ν̃1

)2

T . (17)

Now, the condition CVS(Td) < H(Td) gives the upper
bound on the couplings,

|y2
i1|2 � 0.41xd

(

Mi

Td

)4 m ν̃1

MPl

= 1.0 × 10−10
(

Mi/m ν̃1

10

)4 ( xd
5

)5 ( m ν̃1

100GeV

)

.

(18)

In the above estimation, ADM for reasons introduced later
is assumed to be relatively heavy, around the weak scale, but
neutralinos are even heavier, having multi-TeV masses so as
to suppress the CVS rate. Then it is seen that yi1 � 10−2

should be fulfilled. But we typically need yi1 � 10−3 if
neutralinos merely have masses close to the ADM mass, and
it is probably true at least for Higgsinos, whose masses are
mainly determined by the μ-term, expected to lie around the
weak scale for the sake of weak scale naturalness.

Now we investigate possible ways to get small |yi1|2
and the difficulty therein. First, neutrinos in the decoupling
limit, i.e., cos θν ≈ 1/K � 1, helps to suppress the λ1-
contribution. However, we know that by definition MLSIS
needs K to be as small as possible, so we merely have
cos θν ∼ 0.1. Second, as long as ν̃1 is dominated by ν̃′

L ,
all these couplings can be naturally small due to the sup-
pression from cos˜θ � 1. But such a situation will hamper
the attempt to decrease the mass splitting δm (see Eq. (14)).
Of course, the smallness of δm can always be attributed to a
small MN , so the option ν̃1 � ν̃′

L services as the last trick for
avoiding large CVS.

3.3 Annihilating away the symmetric part

Now we are at the position to discuss the sneutrino ADM
symmetric annihilation. The interactions between sneutrinos
and the NMSSM sector heavily rely on λ1 and as well asmN ;
see Eq. (A.1). We list the relevant terms for convenience:

Lν̃1 ⊃ −i

(

λ1√
2
A1 − √

2κmN

)

as ν̃
∗
1 ν̃2

+ cos 2˜θ

(

λ1√
2
A1 + √

2κmN

)

hs ν̃
∗
1 ν̃2

+
(

λ2
1 + λ1κ sin 2˜θ

) a2
s

2
|̃ν1|2

+
(

λ2
1 − λ1κ sin 2˜θ

) h2
s

2
|̃ν1|2

+
[√

2λ1mN − sin 2˜θ√
2

(λ1A1 + 2κmN )

]

hs |̃ν1|2

− sin 2˜θ√
2

λλ1 (vuhd + vdhu) |̃ν1|2. (19)

Interactions involving yN = mN/Kvu � 1 (to satisfy the
CVS bound) are neglected. One may wonder if it is possible to
get a large ADM annihilation cross section in the˜θ → 0 limit
(̃ν1 � ν̃R), which is favored by small δm. Unfortunately, we
cannot. In that limit, the CVS bound requires λ1 � O(0.01)

and thus all of the couplings in Eq. (19) are suppressed except
for the massive coupling κmN , which may be sizable due
to a large mN . But it renders a large yN , inconsistent with
the CVS bound. In the following we will present a viable
scenario, characterized by a large λ1 ∼ O(0.1) and small vs
at the sub-TeV scale.

Two ways are available to annihilate away the symmet-
ric part with a cross section at least a few pb [45]. One is
annihilating into the lighter as/hs3 pair via the contact inter-
actions, with cross sections � λ4

1/(64πm2
ν̃1

). Thus it works
for λ1 � 0.3 and a lighter ADM with mass m ν̃1 � 100
GeV. The other one is via a s-channel hs . Near the resonant
enhancement region, the inclusive cross section is

σv = 4π
(hs → ν̃1ν̃

∗
1 )hs

(s − m2
hs

)2 + m2
hs

2
hs

� π

m2
ν̃1

[

1 − Br(hs → ν̃1ν̃
∗
1 )

]

. (20)

Hence in principle it can easily reach O(pb) as long as hs
does not dominantly decay into a pair of DM. Actually, hs ,
due to a sizable λ near 1, tends to dominantly decay into a
pair of SM-like Higgs bosons or Higgsinos if kinematically
accessible.

3.4 On the detections of sneutrino DM

Sneutrino DM can interact with quarks via the three Higgs
bosons Hi , but the interaction strengths are supposed to be
fairly weak. One can see this from the last line in Eq. (19),
where sin 2˜θ � 1 in order to satisfy the CVS bound and
thus the only sizable contribution is from the λ1mN -term;
moreover, this term is negligible unless hs strongly mixes
with the doublet component. We consider this case to see the
prospect of direct detection of ADM.

The Hi mediate DM–nucleon spin-independent (SI) scat-
tering. Its cross section, normalized to DM–proton scatter-
ing, is conventionally written σSI = 4a2

pμ
2
p/π with μp the

proton–DM reduced mass. The effective proton–DM cou-

3 Mixings are neglected in our estimation.
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pling ap receives three contributions,

ap,Hi = μHi11

2m ν̃1

1

m2
Hi

m p

v

×
⎡

⎣

∑

q=u,d,s

f (p)
Tq

gqqHi + 2

27

∑

q=c,b,t

f (p)
TG

gqqHi

⎤

⎦

2

,

(21)

where μHi11 are the massive couplings for Hi |̃ν1|2; con-
cretely, μHi11 ≈ λ1mNOi3. The effective couplings are
guuHi = Oi2/ sin β for the up-type quarks and gddHi =
Oi1/ cos β for the down type quarks with O defined in
Eq. (A.2). The coefficients take values f (p)

Tu
= 0.023, f (p)

Td
=

0.033, f (p)
Ts

= 0.26, and f (p)
TG

= 1 − ∑

q=u,d,s f (p)
Tq

=
0.684 [42,43]. With them one can parameterize ap,Hi as

ap,Hi = 4.0 × 10−3

× μHi11

2m ν̃1

1

m2
Hi

(

0.123
Oi2

sin β
+ 0.343

Oi1

cos β

)

. (22)

For DM around the weak scale like 300 GeV, currently the
most stringent upper bound σ up is from LUX [44], about
10−9 pb, implying ap,Hi � 1.6 × 10−9

(

σ up/10−9 pb
)1/2

GeV−2. Typically, σSI here lies below the upper bound:

ap,H1 ≈ 0.8 × 10−9
(

λ1mN

10GeV

) (

200GeV

m ν̃1

)

×
(

125GeV

mH1

)2 (

0.03

mixing

)

GeV−2. (23)

In this optimistic estimation, H1 is the SM-like Higgs boson
and “mixing” denotes the factor in the bracket of Eq. (22). But
the next round of detection may reach the sneutrino ADM. Of
course, the most promising probe is from indirect detection,
because our ADM possesses a large annihilation cross section
today; it is totally different from most ADM scenarios, except
for the decaying one [46].

4 Conclusion

The MLSIS provides an attractive way to relate ADM with
neutrino physics. Such a scenario is a necessary outcome if
one dynamically realizes the inverse seesaw mechanism in
the NMSSM via the dimension-five operator (N )2S2/M∗ to
explain the origin of the smallness of lepton number vio-
lation. The sneutrino is a distinguishable ADM candidate,
oscillating and favored to have weak scale mass. A fairly large
annihilating cross section of such a heavy ADM is available
due to the presence of singlet.
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Appendix A: Relevant interactions of sneutrino DMwith
Higgs bosons

In studying the sneutrino DM annihilation and as well its
scattering with nucleon, the interactions with Higgs bosons
are relevant. We collect the dominant terms from F-term and
the soft terms below

Lν̃1 ⊃ |κS2+λHuHd + λ1ν̃
′
L ν̃∗

R |2+|λ1Sν̃∗
R |2+|λ1Sν̃′

L |2
⊃ −i

(

λ1√
2
A1 − √

2κmN

)

as ν̃
∗
1 ν̃2

+ cos 2˜θ

(

λ1√
2
A1 + √

2κmN

)

hs ν̃
∗
1 ν̃2

+i
λ1λ√

2
(vdau + vuad) ν̃∗

1 ν̃2

+λ1λ√
2

cos 2˜θ (vdhu + vuhd) ν̃∗
1 ν̃2 + c.c.

+
(

λ2
1 + λ1κ sin 2˜θ

) a2
s

2
|̃ν1|2

+
(

λ2
1 − λ1κ sin 2˜θ

) h2
s

2
|̃ν1|2

−λλ1
sin 2˜θ

2
(huhd − auad) |̃ν1|2

+
[√

2λ1mN − sin 2˜θ√
2

(λ1A1 + 2κmN )

]

hs |̃ν1|2

− sin 2˜θ√
2

λλ1 (vuhd + vdhu) |̃ν1|2. (A.1)

We have written the Higg fields as S = vs + (hs + ias) /
√

2
and similar to others.

We have not transformed the Higgs fields into their mass
eigenstates yet. Following the convention in Ref. [31] we use
matrix O to do this for the CP-even Higgs bosons:

(H1, H2, H3)
T = O(hd , hu, hs)

T , (A.2)

with Hi ordered in mass. As for the CP-odd Higgs bosons, we
first work in the basis (A, as) with A = cos βau+sin βad ; the
Goldstone mode G = − cos βad + sin βau is projected out.
Then we diagonalize (A, as) using matrix P ′: (A1, A2)

T =

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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P ′(A, as)T . Finally we have

ad = Pi1Ai , au = Pi2Ai , as = Pi3Ai , (A.3)

with Pi1 = sin βP ′
i1, Pi2 = cos βP ′

i1 and Pi3 = P ′
i2 (i =

1, 2).
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