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Abstract This paper is devoted to the study of the cylindri-
cally symmetric stellar filaments in self-interacting Brans–
Dicke gravity. For this purpose, we construct polytropic fil-
amentary models through a generalized Lane–Emden equa-
tion in the Newtonian regime. The resulting models depend
upon the values of the cosmological constant (due to the
scalar field) along with the polytropic index and represent a
generalization of the corresponding models in general relativ-
ity. We also investigate the fragmentation of the filaments by
exploring the radial oscillations through a stability analysis.
This stability criterion depends only upon the adiabatic index.

1 Introduction

Filamentary structures have important implications in struc-
ture formation of the universe. These stellar configurations
are omnipresent in the universe at various scales. On cos-
mological scales, the cosmic filament is associated with the
cosmic web [1–4] where it behaves like a bridge connecting
various dense regions (galaxies). On small scales, filaments
are the features of the interstellar medium and instabilities
within these filaments form a dense medium which turns into
a star [5]. The stellar filamentary structures appear in a vari-
ety of astronomical contexts; their dynamical analysis can be
considered as an effective tool to understand the behavior of
galactic as well as interstellar structures in the universe.

It happens very often that the geometries of the pro-
posed models are taken to be very simple or ideal, partly
because of reasons like mathematical simplicity which may
avoid complexities in the analysis, to obtain some results of
physical interest, and to provide an ideal model which can
act as a foundation and can be modified according to the
required astrophysical as well as cosmological applications.
The cylindrically symmetric configuration is one of the ideal
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cases, which has widely been used to represent filamentary
structures in the universe. In 1953, Chandrasekhar and Fermi
[6] described the dynamics of a cylinder filled with a homo-
geneous and incompressible fluid. Stodolkiewicz [7] devel-
oped the magneto-hydrodynamics equilibrium of isothermal
cylindrical filaments. Ostriker [8,9] studied the cylindrically
symmetric filamentary structure with a polytropic equation
of state and generalized the dynamical analysis of homoge-
neous compressible filaments. Afterward, many researchers
explored cylindrical filamentary structures both analytically
as well as numerically [10–14]. Recently, Breysse et al. [15]
described polytropic filamentary structures through a stabil-
ity analysis of the cylindrically symmetric self-gravitating
fluid.

Modified theories of gravity constructed by modifying the
Einstein–Hilbert action are considered to be candidates for
the accelerating agent (dark energy) of the expanding uni-
verse [16–19]. There is a large body of literature [20–25]
which has explored the dynamics of stellar structures in mod-
ified gravity to reveal the modification hidden in the structure
formation of the universe. Brans–Dicke (BD) gravity, being
a natural generalization of general relativity (GR) [26,27], is
one of the fascinating examples of modified gravity, which
is considered as a solution of various cosmic problems. One
of the main features of this theory is that the gravitational
force is described by a massless scalar field φ along with
a curvature part (Ricci scalar). It also contains a coupling
constant ωBD which serves as a tunable parameter to adjust
the required results. This theory provides suitable solutions
of many cosmic issues but remains unable to describe the
“graceful exist” problem of old inflationary cosmology. The
inflationary model of this theory is valid for a specific value
of the coupling parameter ωBD ≤ 25 [28] which contradicts
observational data [29]. Moreover, the observational limit of
ωBD at small scale (weak field) [30,31] is inconsistent with
those calculated at large scale [32].

These issues were resolved in self-interacting BD (SBD)
gravity, which is developed by introducing a massive poten-
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tial function V (φ) in the Jordan framework of BD gravity
[33]. The potential function represents a massive scalar field
term which describes the potential of the scalar field (φ) or
the potential of the energy density related to the scalar field
in the system. This theory provides consistency between the
weak field and the strong field regimes [34]. Recent liter-
ature indicates the dynamics of SBD gravity in many cos-
mic problems [35–40]. In recent papers [41–43], we have
explored spherically as well as cylindrically symmetric self-
gravitating fluids in SBD gravity and found some interesting
results. We have also investigated hydrodynamics and oscil-
lations of spherically symmetric gaseous distributions in the
post-Newtonian approximations of this theory [44,45].

In this paper, we study filamentary structures of stel-
lar systems in SBD theory. We construct cylindrical poly-
tropic models of the filaments in the Newtonian (N) approx-
imation and explore the fragmentation of filamentary struc-
tures through radial oscillations of self-gravitating fluids. The
paper is organized as follows. Section 2 formulates SBD as
well as dynamical equations in the N limit. In Sect. 3, we con-
struct cylindrical polytropic filamentary models in N approx-
imation. Section 4 is devoted to a discussion of radial oscil-
lations of the filaments through a stability analysis. Finally,
Sect. 5 summarizes the results.

2 Self-interacting Brans–Dicke gravity and dynamical
equations

The action of SBD gravity [33] is given by

S = 1

2κ2

∫
d4x

√−g

[
φR − ωBD

φ
∇αφ∇αφ − V (φ)

]

+Lm, (1)

where κ2 = 8πG
c2 and Lm shows the matter contribution. The

variation of this action with respect to the scalar field (φ)
and the metric tensor (gμν) provides the SBD equations as
follows:

Gμν = κ2

φ
Tμν + 1

φ
[φ,μ;ν − gμν�φ]

+ωBD

φ2

[
φ,μφ,ν − 1

2
gμνφ,αφ,α

]
− V (φ)

2φ
gμν, (2)

�φ = κ2T

3 + 2ωBD
+ 1

3 + 2ωBD

[
φ

dV (φ)

dφ
− 2V (φ)

]
, (3)

where Tμν represents the energy-momentum tensor of mat-
ter, T = gμνTμν , and � stands for the d’Alembertian oper-
ator. Equations (2) and (3) provide the field equations and
evolution of the scalar field, respectively. We assume a mat-
ter contribution in the form of a perfect fluid, which can be
compatible with the N regime,

Tμν = (ρc2 + p)uμuν − pgμν, (4)

where ρ, p, uμ stand for density, pressure, and four velocity,
respectively.

2.1 Newtonian approximation

The weak field approximated solutions of any relativistic the-
ory describe the order of deviations or perturbation of the
local system from its homogeneous and isotropic vacuum
background. The N and parameterized post-Newtonian lim-
its are widely used weak field approximated solutions that
are derived by a Taylor expansion of the metric functions as
follows:

gμν ≈ ημν + hμν,

with

h00 ≈ h(2)
00 + h(4)

00 + · · · ,

h0i ≈ h(3)
0i + h(5)

0i + · · · ,

hi j ≈ h(2)
i j + h(4)

i j . . . .

Here ημν indicates the Minkowski metric (describing a
homogeneous and isotropic vacuum background of gμν ), hμν

shows the deviation of gμν from its background values (ημν),
i, j = 1, 2, 3 and the superscripts (2), (3), and (4) represent
the order of approximation (c−2), (c−3) as well as (c−4). The
N limits require the information of g00 ∼ η00 + h(2)

00 , gi j ∼
ηi j , whereas the parameterized post-Newtonian corrections

use the approximations g00 ∼ η00 + h(2)
00 + h(4)

00 , g0i ∼ h(3)
oi ,

and gi j ∼ ηi j + h(2)
i j . Thus, the N limits of any system

can be directly obtained from its known parameterized post-
Newtonian approximations.

In order to discuss polytropic geometry in SBD gravity
and check the compatibility of our results with the analysis
of GR [15], we approximate the system in the N limits. For
this purpose, we evaluate the N limits of SBD gravity from its
known post-Newtonian approximate solutions. The parame-
terized post-Newtonian approximation of SBD (massive BD
gravity) solutions has been evaluated by using the following
Taylor expansion of the metric and the dynamical scalar field
[46]:

gμν ≈ ημν + hμν,

φ ≈ φ0(t0) + ϕ(2)(t, x) + ϕ(4)(t, x),

V (φ) ≈ V0 + ϕV ′
0 + ϕ2V ′′

0 /2 + · · ·
Here φ0 describes the dynamical scalar field as a function of
background cosmic time t0 (which varies slowly with respect
to cosmic time t0), V0 = V (φ0) is the potential function of
the scalar field at t0, and ϕ(t, x) represents local deviation
of the scalar field from φ0. The lowest-order parameterized
post-Newtonian corrections (O(c−2)) of the SBD solutions
are given by
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g00 ≈ 1 − h(2)
00 = 1 − 2U

c2 + V0r2

6φ0c2 , (5)

gi j ≈ −[1 + h(2)
i j ]δi j =

[
−1 − 2γBDU

c2 − V0r2

6φ0c2

]
δi j , (6)

ϕ(2)

φ0
≈ −2U

c2

[
e−m0r

3 + 2ωBD + e−m0r

]
. (7)

Here U = Geff
M�
r (M� is the Newtonian mass of the sun)

shows the effective gravitational potential determined by the
Poisson equation

∇2U = −4ρGeff , (8)

where

Geff = κ2

8πφ0

(
1 + e−m0r

3 + 2ωBD

)
,

m0 =
(

φ0V ′′
0 − V ′

0

3 + 2ωBD

)1/2

. (9)

The termγBD represents the parameterized post-Newtonian
parameter given by

γBD = 3 + 2ωBD − e−m0r

3 + 2ωBD + e−m0r
,

where m0 represents mass of the massive scalar field with
constraint (m0 >> 1

r̃ ) (where r̃ represents the scale of the
experiment or observation testing the field). When the back-
ground value of this mass is very small (m0 << 1

r̃ ) the SBD
system reduces to simple BD gravity (the massive scalar field
reduces to a massless scalar field) having the post-Newtonian
parameter

γBD = 1 + ωBD

2 + ωBD
.

That is why the BD theory (massless scalar field) is con-
sistent with solar system constraints of the Cassini mission
for ωBD > 40,000. However, for massive BD gravity (SBD
gravity), the dynamics of the spatial part of φ is frozen on
the solar system scales through the potential function and all
values of ωBD are observationally acceptable [47–49].

The term V0r2

6φ0c2 = �BDr2

3c2 describes the cosmological con-
stant term which depends upon the potential of the scalar
field. In order to be consistent with observational data rang-
ing from the solar system to clusters of galaxies the contri-
bution due to the scalar density should be very small and the
following constraint must be satisfied:

V0L2

φ0
<< 1.

Here L indicates the length scale equal to or greater than the
solar system.

The N limits of any scalar-tensor theory require informa-
tion of g00 ∼ η00 + h(2)

00 , gi j ∼ δi j and φ ∼ φ0. Thus, from

the parameterized post-Newtonian analysis of SBD theory
the obtained N approximated SBD solutions are evaluated as

g00 ≈ 1 − h(2)
00 = 1 − 2U

c2 + �BDr2

3c2 ,

gi j ≈ −δi j , φ ≈ φ0.

From now on, we use h(2)
00 = h00 for the sake of convenience.

It may be noticed that, by applying the limits (m0 << 1
r̃ ) and

V0
φ0

→ 0, the above defined N approximations of SBD gravity
can be shifted to N limits of BD solutions. Similarly, in the
limits (m0 << 1

r̃ ) , V0
φ0

→ 0 and ωBD → ∞, the obtained
approximated system can be converted into the GR case.

2.2 Dynamical equations

The polytropic geometry of any configuration is based upon
two dynamical equations, the Poisson equation and the equa-
tion of motion of the respective system [15]. Here, we cal-
culate the generalized form of both dynamical equations for
SBD gravity. Equation (2) can be rewritten as

Rμν = κ2

φ

(
Tμν − 1

2
gμνT

)
+ ωBD

φ2 [φ,μφ,ν]

+ 1

φ
[φ,μ;ν] + gμν

2φ
[�φ + V (φ)].

The temporal component of this equation in N approximation
is given by

R00 = 1

2

(
k2ρ

φ0
− V0

φ0

)
, (10)

where the contributions due to φ̇0 and φ̈0 are neglected
because the term φ0 behaves as almost a constant. The expan-
sion of Ricci tensor in the N regime is approximated by

R00 = −1

2
∇2h00. (11)

Comparing these two values, we obtain the generalized Pois-
son equation as follows:

∇2h00 = −k2ρ

φ0
+ V0

φ0
, (12)

where h00 represents the gravitational potential due to matter
as well as the massive scalar field. The generalized Euler
equations can be obtained by using Tμν

;ν = 0, whose time
component yields the continuity equation,

∂ρ

∂t
+ ∂

∂xi
(ρvi ) = 0, (13)

where vi (i = 1, 2, 3) stands for the components of the veloc-
ity. The spatial components give the generalized form of the
equation of motion as follows:

ρ
∂vi

∂t
= − ∂p

∂xi
− (ρc2 + p)

∂(ln g00)

∂xi
. (14)
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3 Cylindrical polytropes

In order to discuss cylindrical polytropic filaments in SBD
gravity, we consider the equilibrium configuration and the
standard polytropic equation of state:

p = Kργ , (15)

where K is a constant and γ = n+1
n represents the polytropic

exponent with n as a polytropic index [15,50]. In hydrostatic
equilibrium, the cylindrical configurations of Eqs. (12) and
(14) turn out to be

1

r

d

dr

(
r

dh00

dr

)
= −k2ρ

φ0
+ V0

φ0
, (16)

dp

dr
= −(ρc2 + p)

d(ln g00)

dr
. (17)

Integration of Eq. (17) by using (15) provides

ρ =
[

1

K

(
g

− 1
2(n+1)

00 − 1

)]n
. (18)

Using a binomial expansion on g
− 1

2(n+1)

00 and approximating
up to O(c−2), we have(
g

− 1
2(n+1)

00 − 1

)
≈ −1

2(n + 1)
h00. (19)

Using Eqs. (19) into (18), we obtain the relation between
the density and potential configurations as follows:

ρ = Cn(−h00)
n, Cn = [2K (n + 1)]−n . (20)

Equations (16), (20), and the cosmological constant term pro-
vide a differential equation for a gravitational potential h00

as follows:

1

r

d

dr

(
r

dh00

dr

)
= −k2Cn(−h00)

n

φ0
+ 2�BD. (21)

The above equation can be converted to a polytropic equa-
tion (Lane–Emden equation) by considering the following
dimensionless variables:

β(s) = h00

h00(c)
=

(
ρ

ρc

) 1
n

, s = r

b
, b =

[
Cnh

n−1
00(c)

]− 1
2
,

(22)

where h00(c) and ρc represent the potential as well as the
density at the center of the cylinder (r = 0) [15,50]. With
these assumptions, Eq. (21) turns out to be

1

s

d

ds
[sβ] = −βn + A, A = 2�BD

h00(c)
. (23)

This is a modified form of the original Lane–Emden equa-
tion describing spherical polytropic model [50] and gen-
eralized form of the modified Lane–Emden equation that
describes the cylindrically symmetric polytropic filament in
GR [15]. Here β(s) is the Lane–Emden function describing

the equilibrium potential and A is considered as a cosmo-
logical constant term due to the presence of the scalar field.
This is a second order differential equation satisfying the fol-
lowing boundary conditions: at the center (r = 0) we have

s = 0, h00 ≈ h00(c), ρ ≈ ρc, β ≈ 1 and
(

dβ
ds

)
s=0

= 0.

The surface of the polytopic filament is represented by a spe-
cific value s = S for which the density ρ as well as the
Lane–Emden function (β) becomes zero. Equation (23) can
be solved analytically for different values of n. Some possible
analytical solutions are given as follows:

β(s) = 1 + s4

4
+ As2

4
, n = 0, (24)

β(s) = −A + J0(s) + AJ0(s), n = 1, (25)

where J0(s) is a Bessel function of zeroth order. It is noted
that the analytical results depend upon the values of s as
well as A. We can also solve Eq. (23) numerically for dif-
ferent values of n and A. Some numerical solutions of the
modified Lane–Emden equation for n = 0, 1, 3, 5 with
A = 0,±1/2,±1,±3 are given in Figs. 1, 2, 3, 4, 5, 6,
7, and 8, respectively.

Fig. 1 Values of β(s) for n = 0 and A = 0, 1/2, 1, 3

Fig. 2 Values of β(s) for n = 0 and A = −1/2,−1,−3
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Fig. 3 Values of β(s) for n = 1 and A = 0, 1/2, 1, 3

Fig. 4 Values of β(s) for n = 1 and A = −1/2,−1,−3

Fig. 5 Values of β(s) for n = 3 and A = 0, 1/2, 1, 3

Figures 1 and 2 show polytropic models for n = 0 with
A = 0,±1/2,±1,±3. It is found that the polytropic fila-
ments for A � 1/2 have finite radii, i.e., after taking finite
values of s, the polytropic function β becomes zero. For
A > 1/2, the polytropic models have infinite radii. Figures
3 and 4 show that, for n = 1, we have finite radii models for
A � 0 and infinite radii models for A > 0. Figures 5 and 6
represent polytropic filaments for n = 3 where A � 0 rep-
resents finite radii, while A > 0 gives infinite radii models.

Fig. 6 Values of β(s) for n = 3 and A = −1/2,−1,−3

Fig. 7 Values of β(s) for n = 5 and A = 0, 1/2, 1, 3

Fig. 8 Values of β(s) for n = 5 and A = −1/2,−1,−3

Figures 7 and 8 show models for n = 5 and the results are
almost similar to the cases n = 1, 3.

It can be noticed that under the constraint (m0 << 1
r̃ )

and A = 0, Eq. (23) (derived for SBD gravity) is converted
into a non-linear homogeneous Lane–Emden type differen-
tial equation, which can be used to discuss polytropic fila-
ments in BD gravity. Thus, numerical results obtained for
A = 0 and n = 0, 1, 2, 3, 5 can indicate polytropic fila-
ments in BD gravity. It is mentioned here that the polytropic
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models described by GR depend only upon the values of the
polytropic index n. In the spherical case, the polytropic stars
for n < 5 have finite radii, while n � 5 provides infinite
radii models [51]. In the cylindrical case, there exist models
with finite radii for 0 � n < ∞ [7]. Since we have derived
filamentary polytopic models present in the universe from
small scales to cosmic scales, the astrophysical length scale
of our evaluated models are appropriate for both stellar size
and cosmic large scales.

4 Radial oscillations of polytropic filaments

In this section, we discuss the stability as well as normal
modes of radially oscillating filaments about their equilib-
rium configuration. For this purpose, we assume that initially
the system is in complete hydrostatic equilibrium. Afterward,
the stellar body starts oscillating (in the radial direction) and
becomes perturbed [15,51].

4.1 Stability analysis

In order to explore radially oscillating filamentary structures
for different matter distributions in SBD gravity, we assume
Lagrangian coordinates (μ, t), where μ represents the mass
per unit length and t stands for time. Let r = r(μ, t) be the
distance of the mass from the center of the cylinder such that
μ = πr2ρ satisfies the following relations [51]:

d

dμ
= 1

2πrρ

d

dr
, (26)

dr

dμ
= 1

2πrρ
. (27)

To study the stability criteria for an oscillating cylindrical
filament, we consider a thin shell of mass element dμ (per
unit length). The shell faces a force Fg per unit area from the
gravitational field of

Fg = gρdr = −G(eff)μ

πr2 dμ − 1

2πr

�BD

3
dμ, (28)

where g = G(eff)μ

r + �BD
3 represents gravitational potential

due to the matter and scalar field. The pressure gradient forces
exert a force FP per unit area of the shell given by

Fp = −dp

dr
dr = −dp

dμ
dμ. (29)

According to Eqs. (28), (29) and the N approximation (New-
ton’s second law), the equation of motion for the shell
becomes

1

2πr

d2r

dt2 = −dp

dμ
− G(eff)μ

πr2 − 1

2πr

�BD

3
. (30)

Let us perturb the following quantities adiabatically with
a time dependent perturbation eiω (ω indicates the frequency
of the oscillations):

r(μ, t) = r0(μ) + r0(μ)r̄(μ)eiω, (31)

ρ(μ, t) = ρ0(μ) + ρ0(μ)ρ̄(μ)eiω, (32)

p(μ, t) = p0(μ) + p0(μ) p̄(μ)eiω, (33)

where the quantities with a zero subscript indicate unper-
turbed terms, while the terms with bar represent the perturbed
ones. The perturbations are assumed to be very small such
that r̄

r0
,

ρ̄
ρ0

and p̄
p0

are <<< 1. After applying the perturba-
tion scheme to Eq. (30), we obtain

dp0

dr0
= g0ρ0, (34)

d

dμ
(p0 p̄) = r̄

2πr0
(2g0 + r0ω

2), (35)

where g0 = G(eff)μ

r0
+ �BD

3 and we have taken linear contri-
butions of the perturbed terms. Equation (34) represents an
unperturbed configuration, while Eq. (35) shows a perturbed
form of the equation of motion of the shell.

Equations (26) and (35) provide the radial dependence of
the perturbed equation of motion as follows:

d p̄

dr0
= ρ0

p0

[
r0r̄ω

2 + g0(2r̄ + p̄)
]
, (36)

while the perturbed configuration of Eq. (27) becomes

r0
dr̄

dr0
= −2r̄ − ρ̄. (37)

Since the system is perturbed adiabatically, the perturbed
density and pressure are related by

p̄ = �(ad)ρ̄. (38)

Here �(ad) is a constant term representing the adiabatic expo-
nent. Using Eqs. (37) and (38) in (36), we obtain

r̄ ′′ +
[

3

r0
− ρ0g0

p0

]
r̄ ′

+ ρ0

�adP0

(
ω2 + 2[1 − �(ad)]g0

r0

)
r̄ = 0, (39)

where a prime indicates the derivative with respect to r0. This
is a second order differential equation which represents the
relative amplitude (r̄(r0)) as a function of depth for a radial
adiabatic oscillation of frequency ω. Equation (39) can be
converted into a standard Sturm–Liouville (SL) equation if
it is multiplied by a factor p0r3

0 as follows:

(
r3

0 p0r̄
′)′ + r3

0ρ0

�(ad)

(
ω2 + 2[1 − �(ad)]g0

r0

)
r̄ = 0. (40)

According to SL theory [51], the term ω2 behaves as an eigen-
value for the SL problem and there exist an infinite number
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of eigenvalues (ωn) satisfying the property ω2
n+1 > ω2

n . For
each eigenvalue, there is a corresponding eigenfunction r̄n ,
which represents an amplitude of oscillations with a number
of n nodes in the range 0 < r0 < R0. The lowest-order eigen-
function r̄0 shows no node and is known as the fundamental
amplitude.

It is mentioned here that stability, instability, and marginal
stability of any oscillating model depend upon the behavior
of its frequency. If the frequency of the model is real, the
perturbation is purely oscillatory with constant amplitude
providing a dynamically stable equilibrium, while imaginary
values of the frequency lead to periodic oscillations in which
the amplitude increases exponentially in time and the sys-
tem becomes dynamically unstable. If the frequency tends to
zero, the system becomes marginally stable (neither stable
nor unstable), i.e., the model will expand and contract with
the homologous property [51].

In order to evaluate the stability criteria for a radial per-
turbation, we solve Eq. (40) for the fundamental mode with
boundary condition p0(R0) = 0. We insert the eigenfunc-
tion r̄0 in the SL equation and integrate over 0 < r0 < R0; it
follows that

[
r3

0 p0r̄
′
0

]R0

0
+ ω2

0

�(ad)

∫ R0

0
r3

0ρ0r̄0dr0

+2 − 2�(ad)

�(ad)

∫ R0

0
r2

0 ρ0g0r̄0dr0 = 0. (41)

Since r̄ ′
0 is finite everywhere, the first term in the above equa-

tion vanishes, yielding

ω2
0 = 2(�(ad) − 1)

∫ R0
0 r2

0 ρ0g0r̄dr0∫ R0
0 r3

0ρ0r̄0dr0

. (42)

This equation provides the fundamental frequency of the fil-
aments, which leads to the stability criterion of the system.
If ω2

0 > 0 then ω2
n > ω2

0 > 0 for all nodes n > 0 and the
frequency (±ωn) becomes real for all values of n, leading to
dynamically stable filaments. Similarly, ω2

0 < 0 ⇒ ω2
n < 0

for a finite number of nodes and the frequency becomes imag-
inary, providing unstable configurations. Otherwise ω2

0 = 0
gives a marginally stable configuration.

Since the fundamental amplitude represents no node, it
has the same sign all over the cylindrical filament and hence
the two integrals in Eq. (42) have the same sign. Thus, the
stability criterion depends upon sign ω2

0 = sign 2(�(ad) −1).
If

�(ad) > 1, (43)

ω2
0 > 0, and the corresponding model becomes stable. For

�(ad) = 1, (44)

ω2
n = 0, and the system is marginally stable. When

�(ad) < 1, (45)

ω2
0 < 0, and the system becomes dynamically unstable.
Thus, the criterion of stability for the filamentary struc-

tures in the N limit of SBD gravity depends only upon the
stiffness of the fluid (�(ad)). The stability conditions are inde-
pendent from the behaviors of dynamical variables related to
the metric, the coupling constant (ωBD), the scalar field, and
the potential of the scalar field.

It is mentioned here that in GR, the stability of spherical as
well as cylindrical polytropic models depends only upon the
stiffness parameter. In the spherical case, �(ad) < 4

3 leads to
an unstable model, while cylindrically symmetric filaments
remain stable for �(ad) > 1[15,50]. In the case of BD gravity,
the spherically symmetric polytropic model remains unstable
for �(ad) > 4

3 [52], while cylindrically symmetric polytropic
models are not discussed. Thus, our obtained results are con-
sistent with GR in the N regime.

4.2 Normal modes of radial oscillations

The behavior of normal modes for polytropic filaments can be
described by using polytropic quantities in the SL problem.
We use Eqs. (15), (20), (22) in (40), and it follows that

dr̄2

ds2 +
[

3

s
+ n + 1

β

dβ

ds
− �BD

3

]
dr̄

ds
−

[
b2 n + 1

�(ad)h00(c)
ω2

+ 2(1 − �(ad))
n + 1

�(ad)s

dβ

ds

]
r̄

β
= 0. (46)

In order to solve this equation for r̄ , the required boundary
conditions are as follows: at the center of cylinder, we have( dr̄

ds

)
s=0 = 0, at the boundary of polytrope s = S, we have

p0
ρ0

<<< 1, and the values of r̄ remain finite. Thus, Eqs. (36)
and (37) yield

[ω2bS + g0(2 − 2�(ad))]r̄(S) − g0�(ad)

(
dr̄

ds

)
s=S

= 0.

Equation (46) along with boundary conditions provides dif-
ferent patterns of normal modes of oscillating polytropic fila-
ments in SBD theory. It is mentioned here that the behavior of
these normal modes depends upon the frequency, the central
potential, the polytropic index, the adiabatic exponent, and
the gravitational potential term due to the massive scalar field
(g0), i.e., for different values of these parameters, we have
different modes of radial oscillations of polytropic filaments.

5 Final remarks

This paper investigates cylindrically symmetric filamentary
structures in the N limit of SBD gravity. We have formulated a
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generalized form of the Lane–Emden equation in N approx-
imations and obtained polytropic filament models analyti-
cally for n = 0, 1 as well as numerically for n = 0, 1, 3, 5.
We have found that the behavior of these models depend
upon the values of polytropic index as well as the cosmo-
logical constant term A (due to the scalar field). For n = 0,
the models have finite radii for A � 1/2, otherwise they
have infinite radii. For n = 1, 3, 5, we have approximated
that A � 0 represents finite radii polytropic filaments while
A > 0 gives infinite radii models. We have also found that
within m0 << 1

r̃ and A = 0, the models defined for A = 0
and n = 0, 1, 2, 3, 5 are same for BD gravity.

In order to study fragmentation of the filamentary struc-
tures, we have investigated the stability of radial oscillations
of polytropic filaments. It is found that the stability criterion
of cylindrical filaments in SBD gravity depends only upon
the adiabatic index (�ad). Generally in the weak field approx-
imation of GR and BD gravity, the stability criterion depends
upon the adiabatic index as well as on the dynamical vari-
ables related to matter and scalar field distributions. But in
the polytropic case, the adiabatic index is responsible for the
stability of the function. Finally, we have discussed possible
normal modes of radial oscillations of polytropic filaments.
It turns out that different values of parameters lead to differ-
ent modes of radially oscillating filaments. It is found that
the weak field approximation of SBD gravity is consistent
with observations for all arbitrary values ωBD and hence our
obtained results are valid for all arbitrary values of ωBD. It is
interesting to mention here that our results provide a gener-
alized form of cylindrical filament polytropic models of GR
theory.
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