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Abstract Motivated by a thermodynamic analogy of black
holes and Van der Waals liquid/gas systems, in this paper, we
study P–V criticality of both dilatonic Born–Infeld black
holes and their conformal solutions, Brans–Dicke–Born–
Infeld solutions. Due to the conformal constraint, we have
to neglect the old Lagrangian of dilatonic Born–Infeld the-
ory and its black hole solutions, and introduce a new one.
We obtain spherically symmetric nonlinearly charged black
hole solutions in both Einstein and Jordan frames and then
we calculate the related conserved and thermodynamic quan-
tities. After that, we extend the phase space by considering
the proportionality of the cosmological constant and thermo-
dynamical pressure. We obtain critical values of the thermo-
dynamic coordinates through numerical methods and plot
the relevant P–V and G–T diagrams. Investigation of the
mentioned diagrams helps us to study the thermodynami-
cal phase transition. We also analyze the effects of varying
different parameters on the phase transition of black holes.

1 Introduction

In 1872 James Clerk Maxwell combined the electricity and
magnetism laws in a unified theory. In Maxwell’s formulation
of electromagnetism, the electric field of a point-like charge is
singular at its position, which leads to an infinite self-energy.
In 1934 Max Born and Leopold Infeld [1,2] introduced a new
theory with an upper bound of the electric field in order to
obtain a finite value for the self-energy of point-like charges
in classical electrodynamics.

In theoretical physics, the Born–Infeld (BI) model is
known as an example of interesting and valuable nonlinear
version of electrodynamics [1,2]. The BI action has obtained
vast attention for many reasons. For example, in the context
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of superstring theory, the low-energy dynamics of D-branes
is handled by the BI action [3]. In addition, loop correction
analysis of quantum field theory leads to a BI type action
[4–6]. BI electrodynamics also exhibits some physical prop-
erties regarding wave propagation like the absence of shock
waves [7,8]. This theory is very close to Einstein’s idea of
introducing a nonsymmetrical metric with an antisymmet-
ric part as the electromagnetic field and a symmetric part
as the usual metric. It can also be regarded as a covariant
generalization of Mie’s theory [9]. Einstein–BI theory has
led to some interesting observable predictions in the con-
text of solar interior dynamics, big bang nucleosynthesis,
neutron stars [10,11], the nonsingular cosmological models,
and alternatives to inflation [12]. The supersymmetric ver-
sion of the BI Lagrangian is constructed in Refs. [13,14],
while in Refs. [15–17] it was identified as an invariant action
of the Goldstone multiplet in N = 2 supersymmetric the-
ory which is spontaneously broken to N = 1. The results of
Ref. [16] have been generalized to the case of n vector multi-
plets in N = 2 supersymmetry [18,19] with explicit solution
for n = 2 and n = 3. Moreover, the scalar perturbation at
the pre-inflationary stage driven by a massive scalar field in
Eddington-inspired BI gravity was investigated in Ref. [20].

One of the main reasons for considering scalar-tensor the-
ory is that it may give a clue to interpret the acceleration
expansion of the universe [21]. In addition, inflation may be
explained based on the scalar-tensor theory of gravitation.
Such an inflationary model is known as the hyper-extended
inflation [22]. From the cosmological point of view, infla-
tion can be naturally accommodated in the (low-energy limit
of) string theory, since it contains a fundamental scalar field
which acts as inflation. In addition, at high-energy regimes it
seems that gravity cannot be described by the Einstein the-
ory, but it may be modified by the superstring terms. Such
modified superstring terms contain a dilaton field.
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On the other hand, the theory of Brans–Dicke (BD) is one
of the modified theories of general relativity that gets con-
venient data of several cosmological problems like inflation,
early and late behavior of the universe, the coincidence prob-
lem, and cosmic acceleration [23,24]. It was shown that BD
theory can be used for dark energy modeling [23,25]. This
theory has been probed to be a possible explanation for the
accelerated expansion of our universe [26–28].

The BD theory is a modified form of general relativity that
is made by coupling a scalar field with a gravitational tensor
field. It has a free constant, known as the coupling parameter
ω (a tunable parameter), which can be adjusted according
to the suitable observational evidence. The four dimensional
action of BD theory has the following form [29]:

S = 1

16π

∫
d4x

√−g

[
φR − ω

φ
∂μφ∂μφ

]
.

This theory is compatible with the weak equivalence princi-
ple, Mach’s principle, and Dirac’s large number hypothesis
[30]. In addition, it is in agreement with solar system exper-
imental observations for a specific domain of ω [31]. BD
theory has been considered in various branches of gravita-
tion and cosmology. Instability analysis of the Schwarzschild
black hole in BD gravity is discussed in Ref. [32]. The ana-
lytical and numerical features of static spherically symmetric
solutions in the context of BD-like cosmological model have
been explored [29]. Thermodynamical properties of higher
dimensional charged rotating black brane solutions in BD-
BI gravity are presented in Ref. [33]. The cosmological per-
turbation equations of BD-BI have been investigated in Ref.
[34]. The interaction between two test objects and the anoma-
lous acceleration of Pioneer 10 and Pioneer 11 spacecraft
[35,36] have been studied in the BD-BI context [37]. Higher
dimensional BI-dilaton black hole solutions with nonabelian
Yang–Mills field and its stability against linear radial pertur-
bations have been examined in [38].

There are several reasons for considering the cases in
which the scalar field is non-minimally coupled to the BI
field. Here we present some of them. A non-minimal cou-
pling between a scalar field and a nonlinear U (1) gauge
field emerges naturally in supergravity and in the low-energy
effective action of string theory. Following the work of Refs.
[4,39,40], it was shown that the BI action coupled to a dila-
ton field appears in the low-energy limit of open superstring
theory. In other words, considering the coupling of gravity to
other gauge fields, the presence of the dilaton field cannot be
ignored. Therefore from the electrodynamic point of view,
one remains with Einstein–BI-dilaton gravity or its confor-
mal transformation, BD-BI theory. In addition, asymptoti-
cally adS (nonlinearly) charged dilaton black hole solutions
may be known as the family of four-charge black holes in
N = 8 four dimensional gauged supergravity [41]. Further-

more, the thermodynamical phase structure of dilatonic (BI)
black objects is more interesting with respect to Reissner–
Nordström solutions [33,42–44]. Also, in the holographic
perspective, (nonlinearly) charged dilatonic black holes have
shown a rather rich and interesting phenomenology [42,45–
51]. Moreover, regarding gauge/gravity duality, nonlinearly
charged black holes with a non-minimal coupling to a scalar
field are good candidates for the gravitational side as regards
duality to Lifshitz-like theories [46,52,53].

Regarding black hole thermodynamics as an important
connection between quantum gravity and the classical nature
of general relativity [54], one may be motivated to con-
sider thermal phase transitions. The behavior of a thermo-
dynamic system can be explained with physical tempera-
ture and entropy [55,56]. On the other hand, by considering
the extended phase space of a black hole, we may treat the
cosmological constant proportional to a typical dynamical
pressure [57–70]. Considering the thermodynamics of black
holes, we should note that a phase transition plays an impor-
tant role in describing critical phenomena from the thermo-
dynamics and quantum points of view. The thermodynamic
behavior of charged black hole solutions in BD theory and
the analogy of these solutions with the Van der Waals liquid–
gas system in the extended phase space was investigated in
Ref. [71]. In this paper, we study the P–V criticality and
phase transition of charged black holes in BD-BI theory and
compare it with Einstein–BI-dilaton solutions. At first we
consider the Lagrangian of Einstein–BI-dilaton gravity and
investigate its thermodynamical properties. Then we present
a brief discussion regarding the conformal inconsistency of
this Lagrangian and introduce a new well-defined Lagrangian
of Einstein–BI-dilaton theory. We obtain its exact solutions
and analyze the thermodynamic behavior of black holes. We
also use the conformal transformation to obtain correct BD-
BI black hole solutions. Finally, we discuss P–V criticality
of the black holes in both Einstein and Jordan frames.

2 Part A: old Lagrangian

2.1 Black hole solutions in Einstein–BI-dilaton gravity

The well-known action of (n + 1)- dimensional BI-dilaton
gravity is

I =
∫
M

dn+1x
√−g

(
R − 4

n − 1
(∇�)2 − V (�) + L (F , �)

)
,

(1)

where R is the Ricci scalar, V (�) is a self-interacting poten-
tial for the scalar field �, and L(F ,�) is the coupled
Lagrangian of BI-dilaton theory [72],
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L (F ,�) = 4β2e4α�/(n−1)

⎛
⎝1 −

√
1 + e−8α�/(n−1)F

2β2

⎞
⎠ .

(2)

In Eq. (2), the constants α and β are, respectively, the dilaton
and BI parameters, F = FμνFμν is the Maxwell invariant,
in which Fμν = ∂[μAν] and Aμ is the gauge potential. In the
limit of β → ∞, L (F ,�) reduces to the standard Maxwell
Lagrangian coupled to a dilaton field,

L(F ,�) = −e−4α�/(n−1)F .

Variation of the action (1) with respect to gμν , �, and Fμν

leads to the following field equations [72]:

Rμν = 4

n − 1

(
∂μ�∂ν� + 1

4
gμνV (�)

)

−4e−4α�/(n−1)∂Y L (Y ) FμηF
η
ν

+ 4β2

(n − 1)
e4α�/(n−1)[2Y ∂Y L (Y ) − L (Y )]gμν, (3)

∇2� = n − 1

8

∂V

∂�

+2β2αe−4α�/(n−1) [2Y ∂Y L (Y ) − L (Y )] , (4)

∂μ

[√−ge−4α�/(n−1)∂Y L (Y ) Fμν
]

= 0, (5)

where we have used the following notations:

L(F ,�) = 4β2e4α�/(n−1)L (Y ) ,

L(Y ) = 1 − √
1 + Y ,

Y = e
−8α�
n−1 F
2β2 .

In order to obtain static solutions, one can assume the fol-
lowing metric:

ds2 = − f (r)dt2 + dr2

f (r)
+ r2R(r)2d�2

k, (6)

where

d�2
k

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dθ2
1 +

n−1∑
i=2

i−1∏
j=1

sin2 θ jdθ2
i k = 1

dθ2
1 + sinh2 θ1dθ2

2 + sinh2 θ1
n−1∑
i=3

i−1∏
j=2

sin2 θ jdθ2
i k = −1

n−1∑
i=1

dφ2
i k = 0

,

(7)

indicates the Euclidean metric of an (n − 1)-dimensional
hypersurface with constant curvature (n − 1)(n − 2)k and

volume n−1. It has been shown that the following functions
satisfy all of the field equations simultaneously [72]:

f (r) = − k(n − 2)(1 + α2)2

(α2 − 1)(α2 + n − 2)

( r
b

)2γ

− m

r (n−1)(1−γ )−1
+ 2�(1 + α2)2r2

(n − 1)(α2 − n)

( r
b

)−2γ

− 4β2(α2 + 1)2r2

(n − 1)(α2 − n)

( r
b

)−2γ

×
{

1 − 2F1

([
−1

2
,

α2 − n

2(n − 1)

]
,

[
α2 + n − 2

2(n − 1)

]
,−�

)}
,

(8)

R(r) = e
2α�
n−1 , (9)

�(r) = − (n − 1)α

2(1 + α2)
ln
( r
b

)
, (10)

where γ = α2/(1 + α2), � = q2

β2r2(n−1)

( r
b

)2γ (n−1), m is an
integration constant which is related to the total mass, and b is
another arbitrary constant related to the scalar field. In addi-
tion, one should consider the following suitable Liouville-
type potential [72]:

V(�) = 2� exp

(
4α�

n − 1

)

+k(n − 1)(n − 2)α2

b2
(
α2 − 1

) exp

(
4�

(n − 1)α

)
, (11)

to obtain consistent solutions. Calculation of curvature
scalars shows that there is a curvature divergency at the ori-
gin and all curvature invariants are finite for r �= 0 [72]. It
means that there is a physical singularity located at r = 0
which can be covered with an event horizon, and therefore,
one can interpret it as a black hole. In the next section we
study thermodynamics and P–V criticality of the mentioned
solutions.

2.1.1 Extended phase space and P-V criticality
of the solutions

The thermodynamic properties of the mentioned solutions
were discussed before [72]. In this section, we study the P–
V criticality in the extended phase space. First of all, we cal-
culate the Hawking temperature by using the surface gravity
interpretation (κ),

T = κ

2π
= 1

2π

√
−1

2

(∇μχν

)
(∇μχν) = f ′(r+)

4π
,

where χ = ∂/∂t is the null Killing vector of the event horizon
r+. Calculations lead to the following explicit relation [72]:
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T = − (n − 2)
(
1 + α2

)
2π(α2 + n − 2)r+

(r+
b

)2γ

+ (n − α2)m

4π(1 + α2)
r (n−1)(γ−1)
+

−q2
(
1 + α2

)
r3−2n+

π
(
α2 + n − 2

) (r+
b

)2γ (n−2)

×2F1

([
1

2
,
α2 + n − 2

2 (n − 1)

]
,

[
α2 + 3n − 4

2 (n − 1)

]
,−�+

)
,

(12)

where �+ = q2
( r+

b

)2γ (n−1)

β2r2(n−1)
+

. The entropy and the finite mass

of the black hole can be obtained with the following forms
[72]:

S = n−1b(n−1)γ

4
r (n−1)(1−γ )
+ , (13)

M = n−1b(n−1)γ

16π

(
n − 1

1 + α2

)
m, (14)

where m is the (geometrical) mass parameter of the black
hole which can be expressed in terms of the event horizon
radius,

m|r=r+ = −
(n − 2)

(
α2 + 1

)2
r−γ (n−1)+n−2
+(

n + α2 − 1
) (

α2 − 1
) (r+

b

)2γ

+
2�

(
1 + α2

)2
b2γ r−γ (n+1)+n

+
(n − 1)

(
α2 − n

)

−
4β2

(
1 + α2

)2
b2γ r−γ (n+1)+n

+
(n − 1)

(
α2 − n

)

×
{

1 − 2F1

([
−1

2
,

α2 − n

2 (n − 1)

]
,

[
α2 + n − 2

2 (n − 1)

]
, −�+

)}
.

(15)

Now, we extend the phase space by defining a thermody-
namical pressure proportional to cosmological constant and
its corresponding conjugate quantity as the volume. Using
the concept of the energy-momentum tensor, one can find
the generalized definition for the pressure in the presence of
a dilaton field [71]

P = − �

8π

(
b

r+

)2γ

, (16)

where in the absence of the dilaton field (α = γ = 0), the
well-known relation P = −�

8π
is recovered.

By regarding the relation between cosmological constant
and thermodynamical pressure, one may interpret the mass
as enthalpy. Hence we can calculate the generalized volume
as

V =
(

∂H

∂P

)
S,Q

=
(

∂M

∂P

)
S,Q

= n−1
(
1 + α2

)
rn+

n − α2

(
b

r+

)γ (n−1)

, (17)

where in the absence of dilaton field, one obtains V =
n−1rn+

n , as expected.
Now, we are in a position to study the phase transition

through the P–V and G–T diagrams. The equation of state
of the black hole can be written, using Eqs. (12) and (16), in
the following form:

P = (n − 2) (n − 1)

16π
(
α2 − 1

) (r+
b

)2γ

r−2+

+ (n − 1) T

4
(
1 + α2

)
r+

+ β2

4π

(
b

r+

)2γ (√
1 + �+ − 1

)
.

(18)

Due to the relation between the volume and radius of the
black hole, we use the horizon radius (specific volume) in
order to investigate the critical behavior of these systems
[64–66]. Considering the mentioned equation of state, one
can investigate the inflection point of P–r+ diagram to obtain
the phase transition point. The inflection point of isothermal
curves in P–r+ diagram has the following properties:
(

∂P

∂r+

)
T

= 0, (19)

(
∂2P

∂r2+

)

T

= 0. (20)

One can use Eqs. (19) and (20) with the equation of state
(18) to calculate the critical values for temperature, pressure,
and volume. In addition, we can study the phase transition
through calculation of the Gibbs free energy. Since we are
working in the extended first law of black hole thermodynam-
ics, M (the finite mass of the black hole) will be interpreted
as the enthalpy instead of the internal energy, and therefore,
the Gibbs free energy of the black hole can be written as

G = H − T S = M − T S, (21)

where, after some manipulations, we obtain the following
Gibbs free energy per unit volume n−1:

G =
(
α4 − 1

)
β2rn+

(
1 − √

1 + �+
)

4π (n − 1)
(
n − α2

) ( r+
b

)γ (n+1)

+
(
1 + α2

)
(n − 2) rn−2+

16π
(
n + α2 − 2

)
(

b

r+

)γ (n−3)

+
(
α4 − 1

)
Prn+

(n − 1)
(
n − α2

)
(

b

r+

)γ (n−1)

123



Eur. Phys. J. C (2016) 76 :263 Page 5 of 15 263

+
(
1 + α2

)
(n − 1) q2√1 + �+

4π
(
n − α2

) (
n + α2 − 2

)
rn−2+

(r+
b

)γ (n−3)

×2F1

([
1, 1 + α2 − 1

2 (n − 1)

]
,

[
α2 + 3n − 4

2 (n − 1)

]
,−�+

)
.

(22)

We should note that the characteristic swallow-tail behav-
ior in G–T diagrams guarantees the existence of the phase
transition.

2.2 Black hole solutions in BD-BI gravity

In this section, we discuss the possibility of BD-BI solu-
tions which are conformally related to the obtained BI-dilaton
black holes. To do so, one should find a suitable conformal
transformation to obtain BD-BI counterpart of action (1). In
the action of BD theory, the dilaton field should be decou-
pled from matter field (electrodynamics) and be coupled with
gravity. In other words, one should find a suitable conformal
transformation in which it transforms the action (1) to the
following well-known BD-BI action [73]:

IBD−BI

= − 1

16π

∫
M

dn+1x
√−g

(
�R − ω

�
(∇�)2 − V (�) + L(F)

)
,

(23)

where L(F) is the Lagrangian of the BI theory [33],

L(F) = 4β2

(
1 −

√
1 + F

2β2

)
. (24)

In Eq. (23) R is the Ricci scalar, ω is the coupling constant,
� denotes the BD scalar field, and V (�) is a self-interaction
potential for �. It is notable that in the limit of β → ∞,
L(F) reduces to the standard Maxwell form L(F) = −F ,
as it should.

It is a matter of calculation to show that there is no con-
sistent conformal transformation between the actions (1) and
(23) [74]. In other words, although the action (1) leads to the
well-known action of Maxwell-dilaton gravity for β → ∞, it
is not conformally related to the BD-BI action, and therefore,
Eq. (1) is not a suitable and consistent action. Considering
the conformally ill-defined action (1), in the next section,
we follow the method of Ref. [74] to obtain a conformally
well-defined action of BI-dilaton gravity.

3 Part B: new Lagrangian: field equations and
conformal transformations

The action of (n+1)-dimensional BD-BI theory with a scalar
field � and a self-interacting potential V (�) can be written

as Eq. (23). Variation of this action with respect to gμν , �

and Fμν leads to [73]

Gμν = ω

�2

(
∇μ�∇ν� − 1

2
gμν(∇�)2

)

−V (�)

2�
gμν + 1

�

(
∇μ∇ν� − gμν∇2�

)

+ 2

�

⎛
⎝ FμλF λ

ν√
1 + F

2β2

+ 1

4
gμνL(F)

⎞
⎠ , (25)

∇2� = 1

2 [(n − 1) ω + n]

×
⎛
⎝(n − 1)�

dV (�)

d�
− (n + 1) V (�)

+ (n + 1)L(F) + 4F√
1 + F

2β2

⎞
⎠ , (26)

∇μ

⎛
⎝ Fμν√

1 + F
2β2

⎞
⎠ = 0. (27)

Due to the appearance of the scalar field in the denominator
of field equation (25), solving Eqs. (25)–(27), directly, is a
non-trivial task. In order to remove this difficulty, one can
use the traditional approach; the conformal transformation.
Indeed, using the conformal transformation [73], the BD-
BI theory will be transformed into the Einstein–BI-dilaton
gravity. The suitable conformal transformation is as follows:

ḡμν = �2/(n−1)gμν, (28)

where

�̄ = n − 3

4α
ln �, (29)

α = (n − 3)/
√

4(n − 1)ω + 4n. (30)

Applying the mentioned conformal transformation, one finds
that the action of BD-BI and its related field equations change
to the well-known dilaton gravity with the following explicit
forms:

I G = − 1

16π

∫
M

dn+1x
√−g

×
{
R − 4

n − 1
(∇�)2 − V (�) + L

(F ,�
)}

, (31)

Rμν = 4

n − 1

(
∇μ�∇ν� + 1

4
V (�)gμν

)

− 1

n − 1
L(F,�)gμν + 2e− 4α�

n−1√
1 + Y

(
FμηF

η

ν − F
n − 1

gμν

)
,

(32)
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∇2
� = n − 1

8

∂V (�)

∂�

+ α

2(n − 3)

⎛
⎝(n + 1)L(F,�) + 4e− 4α�

n−1 F√
1 + Y

⎞
⎠ , (33)

∇μ

⎛
⎝ e− 4α�

n−1√
1 + Y

F
μν

⎞
⎠ = 0, (34)

where R and ∇ are, respectively, the Ricci scalar and covari-
ant differentiation related to the metric gμν . In addition,
the potential V

(
�
)

and the BI-dilaton coupling Lagrangian
L
(
F,�

)
are, respectively [74],

V (�) = �−(n+1)/(n−1)V (�) (35)

and

L
(F,�

) = 4β2e−4α(n+1)�/[(n−1)(n−3)]

×
⎛
⎝1 −

√
1 + e16α�/[(n−1)(n−3)]F

2β2

⎞
⎠ . (36)

It is easy to find that L
(F,�

) → 0 as β → 0, and on
the other side, it reduces to the following standard Maxwell-
dilaton Lagrangian in the limit of β → ∞:

L
(F,�

) = −e−4α�/(n−1)F . (37)

In other words, comparing both Lagrangians of BI-dilaton
theory [Eqs. (2) and (36)], one finds that although both
Lagrangians lead to the Maxwell-dilaton Lagrangian for
the weak nonlinearity strength (β → ∞), only the new
Lagrangian [Eq. (36)] is the correct and consistent one with
a conformal transformation.

It is notable that we used the following notations for writ-
ing the field equations (32)–(34):

L
(F,�

) = 4β2e−4α(n+1)�/[(n−1)(n−3)]L(Y ), (38)

where

L
(
Y
) = 1 −

√
1 + Y , (39)

Y = e16α�/[(n−1)(n−3)]F
2β2 . (40)

Taking into account the conformal relation of BD-BI theory
and BI-dilaton gravity, one can find that if

(
gμν, Fμν,�

)
is

the solution of Eqs. (32)–(34) with the potential V (�), then
[
gμν, Fμν,�

]

=
[

exp

(
− 8α�

(n − 1) (n − 3)

)
gμν, Fμν, exp

(
4α�

n − 3

)]

(41)

is the solution of BD-BI field equations [Eqs. (25)–(27)] with
potential V (�).

4 Part C: new Lagrangian: exact solutions

4.1 Black hole solutions in Einstein–BI-dilaton gravity
and BD-BI theory

4.1.1 Einstein frame

In this section, first we obtain the solutions of dilaton gravity
in the Einstein frame and then we use the conformal trans-
formation to obtain the solutions of the BD-BI theory.

We assume the following metric:

ds2 = −Z(r)dt2 + dr2

Z(r)
+ r2R2(r)d�2

k, (42)

where d�2
k was presented in Eq. (7). We obtain the consistent

dilaton field as well as metric functions. To do this, we should
consider a potential V(�). It was shown that a suitable poten-
tial is the Liouville-type potential with BI correction [74],

V(�) = 2� exp

(
4α�

n − 1

)
+ k(n − 1)(n − 2)α2

b2
(
α2 − 1

)

× exp

(
4�

(n − 1)α

)
+ W (r)

β2 , (43)

which reduces to 2� in the absence of the dilaton field.
In other words, the first two terms of Eq. (43) come from
Maxwell-dilaton gravity [71], while the third term appears
because of the nonlinearity of electrodynamics (BI effect).
Now, considering the potential (43) with Eqs. (32)–(34), one
finds

Ftr = E(r) = qe

(
4α�(r)
n−1

)

(r R(r))(n−1)

√
1 + e

(
8α�(r)
n−3

)
q2(r R(r))−2(n−1)

β2

,

(44)

� = (n − 1)α

2(1 + α2)
ln

(
b

r

)
, (45)

W (r) = 4q(n − 1)β2R(r)(
1 + α2

)
rγ bnγ

∫
E(r)

rn(1−γ )−γ
dr + 4β4

R(r)
2(n+1)
n−3

×
(

1 − E(r)R(r)(n−3)

qr1−n

)
− 4qβ2E(r)

rn−1 (
r

b
)γ (n−1),

(46)
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Z(r) = −k (n − 2)
(
α2 + 1

)2
c−2γ r2γ(

α2 + n − 2
) (

α2 − 1
)

+
(

(1 + α2)2r2

(n − 1)

)
2�

( r
b

)−2γ

(α2 − n)
− m

r (n−1)(1−γ )−1

−4(1 + α2)2q2( rb )2γ (n−2)

(n − α2)r2(n−2)

×
(

1

2(n − 1)
�1(η) − 1

α2 + n − 2
�2(η)

)
, (47)

where m and b are integration constants related to the mass
and scalar field, respectively, and

�1(η) = 2F1

([
1

2
,

(n−3)ϒ

α2+n−2

]
,

[
1 + (n−3)ϒ

α2 + n − 2

]
,−η

)
,

�2(η) = 2F1

([
1

2
,
(n − 3)ϒ

2(n − 1)

]
,

[
1 + (n − 3)ϒ

2(n − 1)

]
,−η

)
,

ϒ = α2 + n − 2

2α2 + n − 3
,

η = q2( rb )2γ (n−1)(n−5)/(n−3)

β2r2(n−1)
,

R(r) = exp

(
2α�

n − 1

)
=
( r
b

)−γ

.

It is notable that for β → ∞, the last term of Eq. (43) van-
ishes and the resultant relations reduce to dilatonic Maxwell
solutions [71]. Calculations show that the curvature scalars
diverge at the origin and they are finite for r �= 0. In
other words, since the metric function Z(r) has real posi-
tive root(s), one can interpret the singularity as a black hole.

In the next section, we use the conformal transformation
to obtain BD-BI black hole solutions.

4.1.2 Jordan frame

Now, we are going to obtain charged black hole solutions of
BD-BI theory. Using the conformal transformation (35), the
potential V(�) in the Jordan frame is

V(�) = 2��2 + k(n − 1)(n − 2)α2

b2
(
α2 − 1

)

×�[(n+1)(1+α2)−4]/[(n−1)α2] + �(n+1)/(n−1) W (r)

β2 . (48)

Taking into account the solutions in an Einstein frame with
the mentioned conformal transformation, we can obtain the
solutions of Eqs. (25)–(27). Considering the following (n +
1)-dimensional metric:

ds2 = −A(r)dt2 + dr2

B(r)
+ r2H2(r)d�2

k, (49)

we find that the functions A(r) and B(r) are

A(r) =
( r
b

)4γ /(n−3)

Z (r) , (50)

B(r) =
( r
b

)−4γ /(n−3)

Z (r) , (51)

H(r) =
( r
b

)−γ ( n−5
n−3 )

, (52)

�(r) =
( r
b

)− 2γ (n−1)
n−3

. (53)

Since the curvature scalars of the mentioned metric diverge
at r = 0, it is easy to show that the corresponding solution
can be interpreted as a black hole and it can be covered by
an event horizon which is the largest real root of Z(r). Since
it was shown that for k = 0,−1 there is no phase transition
[71]; hereafter, we choose the positive curvature constant
boundary (k = 1) to investigate the phase transition.

4.2 Thermodynamic properties and P–V criticality:
dilatonic-BI vs. BD-BI black holes

4.2.1 Thermodynamic properties

In this section, we focus on the conserved and thermody-
namic quantities of the black hole solutions in both Einstein
and Jordan frames. In order to calculate the Hawking tem-
perature, one can use the surface gravity interpretation,

T = κ

2π
=
⎧⎨
⎩

Z ′(r+)
4π

, dilatonic BI,

1
4π

√
B(r)
A(r) A

′(r+), BD-BI.
(54)

It is easy to show that the Hawking temperature in an Einstein
frame is exactly equal to that in a Jordan frame, with the
following form:

T =
(
α2 + 1

)
2π (n − 1)

×
[
− (n − 2) (n − 1)

2
(
α2 − 1

)
r+

(r+
b

)2γ − �r+
(r+
b

)−2γ + �+

]
,

dilatonic BI & BD-BI, (55)

where

�+ = −
(
α2 + 1

)2
q2

2π(n − 1)

(r+
b

)2γ (n−2)

r3−2n+ �1(η+), (56)

η+ = η(r = r+). (57)

Since the conformal transformation is a regular smooth func-
tion at the horizon, this equality is expected. In addition, the
finite mass and the entropy of the black hole for both frames
can be obtained with the following forms:
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Fig. 1 BD-BI: P–r+ (left), G–T (right) diagrams for b = 1, n = 4, q = 1, β = 0.5 and ω = 100. P–r+ diagram, from bottom to up T = 0.1Tc,
T = Tc and T = 2Tc, respectively. G–T diagram, from bottom to up P = 0.5Pc, P = Pc and P = 1.5Pc, respectively

Fig. 2 BI-dilaton: P–r+ (left), G–T (right) diagrams for b = 1, n = 4, q = 1, β = 0.5 and ω = 100. P–r+ diagram, from bottom to up
T = 0.1Tc, T = Tc and T = 2Tc, respectively. G–T diagram, from bottom to up P = 0.5Pc, P = Pc and P = 1.5Pc, respectively

M = n−1b(n−1)γ

16π

(
n − 1

1 + α2

)
m, (58)

S = n−1b(n−1)γ

4
r (n−1)(1−γ )
+ . (59)

Using the Gauss law, the electric charge would have the fol-
lowing form:

Q = q

4π
, (60)

which is valid for both frames.
Now, we extend the phase space by defining a thermody-

namical pressure proportional to the cosmological constant

and its corresponding conjugate quantity as the volume. Fol-
lowing the method of [71], one finds the generalized defini-
tion for the pressure in the presence of a dilaton field as

P = − �

8π
×
{( r+

b

)−2γ
, dilatonic BI( r+

b

)− 2γ (n−1)
n−3 , BD-BI.

(61)

We should note that in the absence of a dilaton field (α =
γ = 0), the well-known relation P = −�

8π
is recovered. In

order to calculate the volume, we should obtain the enthalpy.
Following the previous interpretation of mass and enthalpy,
we can calculate the generalized volume as
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Fig. 3 BD-BI: P–r+ (left), G–T (right) diagrams for b = 1, n = 6, q = 1, β = 0.5 and ω = 100. P–r+ diagram, from bottom to up T = 0.1Tc
and T = Tc, T = 2Tc, respectively. G–T diagram, from bottom to up P = 0.5Pc, P = Pc and P = 1.5Pc, respectively

Fig. 4 BI-dilaton: P–r+ (left), G–T (right) diagrams for b = 1, n = 6, q = 1, β = 0.5 and ω = 100. P–r+ diagram, from bottom to up
T = 0.1Tc, T = Tc and T = 2Tc, respectively. G–T diagram, from bottom to up P = 0.5Pc, P = Pc and P = 1.5Pc, respectively

V =
n−1

(
1 + α2

)
rn+

n − α2

⎧⎨
⎩
( r+
b

)−γ (n−1)
, dilatonic BI,

( r+
b

)− γ (n2−4n−1)
n−3 , BD-BI,

(62)

where, for α → 0, we obtain V = n−1rn+
n , as expected. It is

worthwhile to mention that although P and V are different
for the Einstein and Jordan frames, both frames have the same
multiplication of “P × V ”.

4.2.2 P–V criticality of dilatonic BI vs. BD-BI

Now, we are in a position to study the phase transition through
the P–V and G–T diagrams. The equation of state of the

black hole can be written, using Eqs. (54), (61), and (62), in
the following form:

P =
[

(n − 1)(n − 2)

16π(α2 − 1)r2+

(r+
b

)2γ + (n − 1)T

4(1 + α2)r+

+ q2

8πr2(n−1)
+

(r+
b

)2γ (n−2)

�1(η+)

]
�, (63)

where

� =
{

1, dilatonic BI,

(
r+
b )−

4γ
n−3 , BD-BI.
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Fig. 5 BD-BI: P–r+ (left), G–T (right) diagrams for b = 1, ω = 100, β = 0.5, q = 1. P–r+ diagram, for T = Tc, n = 4 (solid line), n = 5
(dotted line) and n = 6 (dashed line). G–T diagram, for P = 0.5Pc, n = 4 (solid line), n = 5 (dotted line), and n = 6 (dashed line)

Fig. 6 BI-dilaton: P–r+ (left), G–T (right) diagrams for b = 1, ω = 100, β = 0.5, q = 1. P–r+ diagram, for T = Tc, n = 4 (solid line), n = 5
(dotted line), and n = 6 (dashed line). G–T diagram, for P = 0.5Pc, n = 4 (solid line), n = 5 (dotted line), and n = 6 (dashed line)

Now, one can consider the mentioned equation of state to
obtain critical quantities through the properties of the inflec-
tion point of the P–r+ diagram [Eqs. (19) and (20)]. In addi-
tion, we can use Eq. (21) to obtain the Gibbs free energy
of the black holes. After some manipulations, we obtain the
Gibbs free energy per unit volume n−1 as

G = (1 + α2)(n − 2)

16π(α2 + n − 2)

(r+
b

)−γ (n−3)

rn−2+

+ (α4 − 1)q2

8π(α2 − n)(n − 1)

(r+
b

)γ (n−3)

r (2−n)
+ �1(η+)

− (n − 1)(1 + α2)q2

4π(α2 − n)(α2 + n − 2)

(r+
b

)γ (n−3)

r (2−n)
+ �2(η+)

+ P(1 − α4)rn+
(α2 − n)(n − 1)

G, (64)

where

G =

⎧⎪⎨
⎪⎩

( r+
b

)−γ (n−1)
, dilatonic BI,

( r+
b

) 2γ (n−1)
(n−3)

−γ (n+1)
, BD-BI.

As we mentioned before, the existence of the characteristic
swallow-tail behavior in G–T diagrams helps us to obtain the
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Fig. 7 BD-BI: P–r+ (left), G–T (right) diagrams for b = 1, n = 4, β = 0.5 and q = 1. P–r+ diagram, for T = Tc, ω = 50 (solid line), ω = 100
(dotted line), and ω = 300 (dashed line). G–T diagram, for P = 0.9Pc, ω = 50 (solid line), ω = 100 (dotted line), and ω = 300 (dashed line)

Fig. 8 BI-dilaton: P–r+ (left), G–T (right) diagrams for b = 1, n = 4, β = 0.5 and q = 1. P–r+ diagram, for T = Tc, ω = 50 (solid line),
ω = 100 (dotted line), and ω = 300 (dashed line). G–T diagram, for P = 0.9Pc, ω = 50 (solid line), ω = 100 (dotted line), and ω = 300 (dashed
line)

thermal phase transition (for further details, see the G–T dia-
grams and their related text). Since analytical investigation of
the critical behavior is not possible, we use numerical anal-
ysis instead. We present various tables and figures to study
such behavior.

4.3 Discussion on the results of diagrams

In Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, we show the crit-
ical behavior of the system in both BI-dilaton and BD-BI
theories. In addition, we present six tables to investigate the

critical points more clearly. As we know, the phase transition
occurs at the critical point, which demonstrates the critical
pressure, horizon radius, and temperature. Studying the G–
T diagrams of the Einstein and Jordan frames with related
tables shows that by increasing the BD coupling constant (ω)
(decreasing dilatonic coupling constant α in Einstein frame),
the critical values of temperature and horizon radius increase
(decrease) in the Jordan (Einstein) frame. Regarding the P–
r+ diagrams and related tables, we find that by increasing ω,
the critical pressure and also the ratio Pcrc

Tc
increase in both

BD-BI gravity and its conformally related BI-dilaton gravity.
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Fig. 9 BD-BI: P–r+ (left), G–T (right) diagrams for b = 1, n = 4, ω = 100, q = 1. P–r+ diagram, for T = Tc, β = 0.5 (solid line), β = 0.8
(dotted line), and β = 5 (dashed line). G–T diagram, for P = 0.5Pc and β = 0.5 (solid line), β = 0.8 (dotted line), and β = 5 (dashed line)

Fig. 10 BI-dilaton: P–r+ (left), G–T (right) diagrams for b = 1, n = 4, ω = 100, q = 1. P–r+ diagram, for T = Tc, β = 0.5 (solid line),
β = 0.8 (dotted line), and β = 5 (dashed line). G–T diagram, for P = 0.5Pc and β = 0.5 (solid line), β = 0.8 (dotted line), and β = 5 (dashed
line)

Table 1 Critical quantities of BD-BI for q = 1, β = 0.5, and n = 4

ω rc Tc Pc
Pcrc
Tc

50.0000 1.240340 0.181745 0.040835 0.278683

100.0000 1.240487 0.181762 0.041042 0.280102

300.0000 1.240588 0.181775 0.041183 0.281068

Comparing the right panels of Figs. 7 and 8 with Tables 1
and 2, we find an interesting result. According to the tables,
one finds increasing ω leads to increasing (decreasing) Tc in

Table 2 Critical quantities of BI-dilaton for q = 1, β = 0.5, and n = 4

ω rc Tc Pc
Pcrc
Tc

50.0000 1.242259 0.182185 0.041158 0.280643

100.0000 1.241457 0.181986 0.041206 0.281096

300.0000 1.240914 0.181850 0.041238 0.281401

BD-BI (BI-dilaton) gravity. While regarding the right panels
of Figs. 7 and 8, we find that for P < Pc, the phase transition
temperature is a decreasing function in both frames.
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Table 3 Critical quantities of BD-BI for q = 1, β = 0.5, and ω = 100

n rc Tc Pc
Pcrc
Tc

4 1.240487 0.181762 0.041042 0.280103

5 1.084670 0.338047 0.122431 0.392837

6 1.046170 0.497403 0.243913 0.513014

Table 4 Critical quantities of BI-dilaton for q = 1, β = 0.5, and
ω = 100

n rc Tc Pc
Pcrc
Tc

4 1.241457 0.181986 0.041206 0.281096

5 1.085655 0.338704 0.123083 0.394521

6 1.047004 0.498614 0.245419 0.527308

Table 5 Critical quantities of BD-BI for q = 1, n = 4, and ω = 100

β rc Tc Pc
Pcrc
Tc

0.5 1.240488 0.181762 0.041042 0.280103

0.8 1.428906 0.173651 0.036966 0.304179

5.0 1.493876 0.170385 0.035439 0.310717

Table 6 Critical quantities of BI-dilaton for q = 1, n = 4, and ω = 100

β rc Tc Pc
Pcrc
Tc

0.5 1.241457 0.181986 0.041206 0.281096

0.8 1.429402 0.173883 0.037131 0.305235

5.0 1.494287 0.170617 0.035603 0.311816

We can also examine the effects of dimensionality on the
critical values and phase transition of the system in Figs. 5
and 6 and the related Tables 3 and 4. By considering the G–
T and P–r+ plots of Figs. 5 and 6, we can find that when
n increases, the critical values of temperature and pressure,
and the size of the swallow tail and the ratio Pcrc

Tc
increase,

while the critical horizon radius decreases.
In addition, by studying Tables 5 and 6, we can find

when the nonlinearity parameter increases, the critical hori-
zon radius and the ratio Pcrc

Tc
increase, but the critical values

of temperature and pressure decrease in both frames. One
can confirm this behavior in Figs. 9 and 10.

To sum up, we can say that by increasing ω, we have an
increment in critical value of pressure in both theories and a
reduction in the critical values of horizon radius and temper-
ature in dilaton gravity, but in BD-BI gravity they increase.
On the other hand, we can see that increasing the dimension
leads to a reduction in horizon radius and an increment in
critical values of the pressure and temperature. In addition,
by increasing β, we have an increment in critical value of
horizon radius and a reduction in the critical values of pres-
sure and temperature in both frames. Furthermore regarding
G–T diagrams, it is clear that although increasing β leads
to increasing G, the Gibbs free energy decreases when we
increase n and ω. It is also notable that when we increase
ω, n, and β, the ratio Pcrc

Tc
increases too. Furthermore, we

should note that although the related figures of both frames
are very similar, they are not completely a match to each
other (see Fig. 11 for more clarifications). As a final com-
ment, we should note that for ω → ∞ (α → 0) and β → ∞,
the solutions of BD-BI reduce to Reissner–Nordström black

Fig. 11 P–r+ (left panel for T = Tc) and G–T (right panel for P = 0.92Pc) diagrams for b = 1, n = 6, ω = 300, q = 1 and β = 0.5. BI-dilaton
gravity (solid line) and BD-BI gravity (dashed line)
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hole solutions. As a result, in order to have sensible effects
for the BD and BI parameters, we should regard small values.

5 Conclusions

In this paper, the main goal was studying the properties of
BD-BI black hole solutions. At first, we have given a brief dis-
cussion regarding to the old Lagrangian of BI-dilaton grav-
ity. Since this Lagrangian was not consistent with the well-
known BD-BI gravity, we had to define a new Lagrangian.
This new BI-dilaton Lagrangian emanates from conformal
transformation and it is a well-behaved Lagrangian for β →
∞. We have obtained new field equations and calculated
exact black hole solutions of field equations in both Einstein
and Jordan frames.

We have considered both BD-BI and BI-dilaton theories
with spherically symmetric horizon and studied their phase
structure. By considering cosmological constant proportional
to thermodynamical pressure and its conjugate variable as
volume, we have investigated the extended phase space and
used the interpretation of the total mass of a black hole as the
enthalpy.

Studying calculated critical values through two different
types of phase diagrams (related to both frames) resulted in
a phase transition taking place in the critical values. Study-
ing P–r+ and G–T diagrams we presented a similar Van der
Waals behavior near the critical point. We have also shown
that both scalar field and nonlinearity parameter of the elec-
tromagnetic field have considerable effects on the critical
quantities. We have examined the effects of the BD cou-
pling constant, the nonlinearity parameter, and the dimen-
sionality on the critical quantities. We have found that an
increasing BD coupling constant leads to an increment in
all critical quantities in a Jordan frame. In addition, for both
frames, increasing dimensionality leads to increasing critical
values of temperature and pressure, but decreasing the criti-
cal horizon radius. Also, regarding the effects of β, we have
found that its reduction leads to reduction (increment) of the
critical pressure (critical temperature and horizon radius).
It is notable that although changing ω does not have the
same effects on some values of the critical quantities in both
frames, variations of n and β have the same effects for both
the Einstein and the Jordan frames. In addition, we should
note that increasing ω, n, and β leads to increasing the ratio
Pcrc
Tc

, regardless of Pc, rc and Tc behaviors (for both Einstein
and Jordan frames).

Another interesting result of this paper is based on compar-
ing the consequences of both frames. Comparing the figures
of BD-BI with BI-dilaton branches, we have found that the
total behavior of the figures are very similar to each other.
This is due to the fact that the conformal factor is a regular
smooth function at the horizon and most of the thermody-

namic quantities are the same for both frames. But as we
have found in some figures (specially Fig. 11) and related
tables, the critical quantities are not exactly the same in both
frames.

Following the same adapted approach, the extended phase
space and P–V criticality conditions of other models of non-
linear electrodynamics are under investigation. In addition,
the phase transition of such solutions can be studied through
geometrical thermodynamics. This issue will be addressed
in future work.
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