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Abstract In this paper, we investigate one-loop radiative
corrections to the Casimir energy in the presence of two per-
fectly conducting parallel plates for QED theory within the
renormalized perturbation theory. In fact, there are three con-
tributions for radiative corrections to the Casimir energy, up
to order α. Only the two-loop diagram, which is of order α,
has been computed by Bordag et. al (Ann. Phys. 165:192,
1985), approximately. Here, up to this order, we consider
corrections due to two one-loop terms, i.e., photonic and
fermionic loop corrections resulting from renormalized QED
Lagrangian, more precisely. Our results show that only the
fermionic loop has a very minor correction and the correction
of photonic loop vanishes.

1 Introduction

The Casimir effect is a physical manifestation of changes in
the zero point energy of a quantum field for different config-
urations. The zero point configuration refers to one in which
there does not exist any on-shell physical excitation of the
field.

In 1948 Casimir predicted the existence of this effect as
an attractive force between two infinite parallel uncharged
perfectly conducting plates in vacuum [1]. This effect was
observed experimentally by Sparnaay [2] and Arnold et al [3]
(for a general review on the Casimir effect, see Refs. [4,5]).
Similar measurements have been done for other geometries,
and their precisions have been greatly improved [6–11]. The
manifestations of the Casimir effect have been studied in
many different areas of physics. For example, the magni-
tude of the cosmological constant has been estimated using
the Casimir effect [12–14]. This effect has been also studied
within the context of string theory [15]. It has been inves-
tigated in connection with the properties of the spacetime
with extra dimensions [16–18]. The majority of the investi-
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gations related to the Casimir effect concerns with the calcu-
lation of this energy or the consequence forces for different
fields in different geometries, such as parallel plates [1,19],
cubes [20–28], cylinders [27,29–31], and spherical geome-
tries [27,32–34].

Although the Casimir effect has been known for nearly
70 years, the question of what are the leading radiative cor-
rections to this effect is still a subject of discussion. The first
endeavors to compute the radiative corrections to the Casimir
energy were reported in a paper by Bordag, Robaschik, and
Wieczorek (BRW) [35]. There exist many works on the radia-
tive corrections to the Casimir energy for various cases (see
for example [35–48]). In the case of a real massive scalar
field, Next to Leading Order (NLO) correction to the energy
has been computed in [4,28,44–53]. Moreover, the two-
loop radiative corrections for some effective field theories
have been investigated in [40–42]. Bordag and his collab-
orators have approximately calculated radiative correction
to the Casimir energy due to one of the three related terms
of order of α, , in the presence of two perfectly con-

ducting parallel plates for QED theory. In this viewpoint,
the photon propagator satisfies boundary conditions on the
plates, while the plates are transparent to the electrons. They
found the correction E (1) = π2α

2560ma4 to the popular lead-

ing term of Casimir energy (per unit area) E (0)
em = − π2

720a3 ,
where a is the distance between plates and m is the elec-
tron mass. In 1998 this result with another approach has
been reported [36–39]. Although they postulate no bound-
ary conditions for the electron field because such condi-
tions would lead to additional contributions in zeroth order
which have not been observed, the fermionic term [54],
E (0)

fermion = − m2

4π2a

∑
n=1 − 1

j2 [2K2(2amj) − K2(4amj)] is
exist (Here, Kn(x) is the modified Bessel function of order
n). However, due to its Yukawa form for the large mass case,

E (0)
fermion ∼ − m2

4π2a

√
π
ma e

−2ma , at distances much larger than

a few Compton wave length of electron it has really too small
value to be observed.
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In the context of perturbation theory we need the renormal-
ization to compute loop diagrams. There are two completely
equivalent methods for renormalization; first, bare perturba-
tion theory: working with the bare parameters and relate them
to their physical values at the end of calculations, second,
renormalized perturbation theory: using counterterms at the
starting point to absorb unphysical part of parameters. Both
of them need renormalization conditions to fix the infinities
in certain conditions. The differences between two renormal-
ization procedures are purely a matter of bookkeeping. In
the framework of renormalized perturbation theory for QED
there are three vacuum bubbles of order of α. Up to now, all
the papers on the Casimir effect, that we are aware of, have not

been calculated two of those, namely: photonic loop

resulting from electromagnetic field and fermionic loop

related to the spinor field. Note that, although according to
the common understanding we use the same counterterms
for two different situations (with and without plates), the dif-
ference of vacuum energies may still be nonzero due to the
difference of boundary conditions applying on loop propa-
gators.

The main purpose of this paper is to directly calculate
radiative correction to the Casimir energy resulting from
one-loop corrections namely: one-loop photon and one-loop
fermion, in the framework of the renormalized perturbation
theory for QED theory. These corrections are of order α. In
order to do this, we use Green’s functions in the presence
of plates for Electromagnetic field with Dirichlet boundary
condition and for spinor field with MIT bag boundary condi-
tion as propagators. Our main regularization is dimensional
regularization.

Our approach for the calculation of radiative corrections
to Casimir energy is the most direct one. In this way we
subtract two infinite energies: one relate to presence and the
other without presence of two plates. We adjust both of their
regulators in such a way that the divergences removed and
the physical result is obtained.

To have a throughout complete correction, up to order
α, one must also compute two-loop term once the fermionic
field is submitted to MIT bag boundary conditions. However,
it is notable that almost all the Casimir forces for various
massive fields, which precisely calculated in the literature,
have Yukawa asymptotic forms (usually Kn(ma)) even for
leading term in different dimensions. Therefore, here we only
calculate the one-loop diagram which seems more important
than two-loop one that has two fermion propagators.

We organized the paper as follows: In Sect. 2 we briefly
review the renormalization of quantum electrodynamics. In
Sect. 3 using analogies between an electromagnetic field and
a massless scalar field, photonic loop correction is consid-
ered. We use the Dirichlet boundary condition on the two

plates. In Sect. 4 we directly calculate radiative correction to
the Casimir energy resulting from fermionic loop where MIT
bag boundary condition, as constraints on both of the plates,
is considered. In Sect. 5 we summarize our results and state
our conclusions.

2 Renormalization of quantum electrodynamics: a brief
review

In this section we briefly review systematics of renormal-
ization for QED theory (see for complete details [55]). The
original QED Lagrangian is

LQED = −1

4
(Fμν)

2 + ψ̄(i /∂ − m0)ψ − e0ψ̄γμψ Aμ. (1)

By replacing ψ = z
1
2
2 ψr and Aμ = z

1
2
3 Aμ

r , it becomes

LQED = −1

4
z3(F

r
μν)

2 + z2ψ̄r (i /∂ − m0)ψr

−e0z2z
1
2
3 ψ̄rγμψr A

μ
r , (2)

where e0 is the bare electric charge and z2 and z3 are the
field-strength renormalizations for ψ and Aμ respectively.
We define a scaling factor z1 as follows:

ez1 = e0z2z
1
2
3 . (3)

We can split each term of the Lagrangian into two pieces as
follows:

LQED = −1

4
(Fr

μν)
2 + ψ̄r (i /∂ − m)ψr − eψ̄rγ

μψr A
μ
r

−1

4
δ3(F

μν
r )2 + ψ̄r (iδ2 /∂ − δm)ψr − eδ1ψ̄γμψr A

μ
r , (4)

where δ3 = z3 − 1, δ2 = z2 − 1, δm = z2m0 − m and

δ1 = z1 − 1 = ( e0
e )z2z

1
2
3 − 1 are counterterms. Here, m and

e are the physical mass and physical charge of the electron
which measured at large distances. Now, the Feynman rules
for this Lagrangian are

μ

= −ieγμ

(5)

μ

= −ie 1γ
μ

(6)

νμ

k

=
−i

k2 + i
gμν − (1 − ξ)

kμkν

k2

(7)

νμ = −i(gμνk2 − kμkν) 3
(8)
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p
=

i

p − m + i
(9)

= i(p 2 − m).
(10)

Each of the four counterterms must be fixed by renormal-
ization conditions. For QED theory these conditions are (see
please [55])

1PI = −iΣ(p)
(11)

νμ 1PI = iΠμν(q) = i(gμνk2 − kμkν)Π(k2)
(12)

μ

amputated

= −ieΓμ(p , p).

(13)

In the above equations −i	(p) denotes the sum of all one-
particle irreducible (1PI) diagrams with two external fermion
lines. By pretending that the photon has a small nonzero mass
μ to control the infrared divergences, up to leading order in
α, the one-loop diagram contributing to −i	(p) becomes

−i	(p) =
O(α)

−e2
∫ 1

0
dx

×
∫

d4l

(2π)4

−2x /p + 4m

[l2 − x(1 − x)p2 − xμ2 − (1 − x)m2]2 .

(14)

One can evaluate the diagrams in dimensional regulariza-
tion. If fact, we compute them as an analytic function of
the dimensionality of spacetime d. The final expression for
any observable quantity should have a well-defined limit as
d → 4. Up to leading order in α, i	(p) becomes

−i	(p) = −i
e2m

(4π)
d
2

∫ 1

0
dx

× 
(2 − d
2 )

(

(1 − x)2m2 + xμ2 − x(1 − x)p2

)2− d
2

×[(4 − ε)m − (2 − ε)xp]. (15)

with ε = 4 − d. Since we prefer to work with dimensionless
parameters we convert this formula as

−i	(p) = −i
e2

ad−3(4π)
d
2

∫ 1

0
dx

× 
(2 − d
2 )

(

(1 − x)2m̃2 + xμ̃2 − x(1 − x) p̃2

)2− d
2

×[(4 − ε)m̃ − (2 − ε)x p̃], (16)

where l̃ = la, p̃ = pa, μ̃ = μa, m̃ = ma. Here 1/a is
an arbitrary scale with mass dimension 1 (in the problem of
Casimir effect a can be the plates separation.)

Moreover, i�(k2) defines the sum of all 1PI insertions
into the photon propagator and up to order α becomes

�(k2) = −e2

ad−4(4π)
d
2

∫ 1

0
dx

× 
(2 − d
2 )

(

m̃2 − x(1 − x)k̃2

)2− d
2

8x(1 − x), (17)

where k̃ = ka. In Eq.(13), 
μ(p′, p) denotes the sum of
vertex diagrams. More accurately


μ(p′, p) = γ μF1(k
2) + iσμνkν

2m
F2(k

2), (18)

where F1 and F2 are unknown functions of k2 called form
factors and σμν = i

2 [γ μ, γ ν]. To lowest order, F1 = 1 and
F2 = 0, we have 
μ = γ μ. By using Eqs. (16), (17) and
(18), up to leading order in α, the counterterms are derived
as follows:

δ3 = −e2

ad−4(4π)
d
2

∫ 1

0
dx


(2 − d
2 )

(m̃2)2− d
2

8x(1 − x), (19)

δm = m̃δ2

ad−3 − e2m̃

ad−3(4π)
d
2

∫ 1

0
dx


(2 − d
2 )

×
[
(1 − x)2m̃2 + xμ̃2

]2− d
2
(4 − 2x − ε(1 − x)),

(20)

δ2 = −e2

ad−4(4π)
d
2

∫ 1

0
dx


(2 − d
2 )

[
(1 − x)2m̃2 + xμ̃2

]2− d
2

×
[

(2−ε)x − ε

2

2x(1−x)m̃2

(1−x)2m̃2+xμ̃2 (4−2x−ε(1 − x))

]

,

(21)

δ1 = −e2

ad−4(4π)
d
2

∫ 1

0
dz(1 − z)

{

(2 − d

2 )

((1 − z)2m̃2 + zμ̃2)2− d
2

× (2 − ε)2

2
+ 
(3 − d

2 )

[(1 − z)2m̃2 + zμ̃2]3− d
2

×[2(1 − 4z + z2) − ε(1 − z)2]m̃2
}

. (22)

According to the above discussion three vacuum bubbles

contribute to the Casimir energy: , , . Two

first diagrams arise from Eqs. (8) and (10). Bordag et al.
have computed only the last one, though approximately. In
the next two sections we will consider the effect of the other
two vacuum bubbles.
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3 Photonic loop

In this section, we calculate NLO radiative correction to the
Casimir energy due to the photonic loop. We use Dirichlet
boundary condition on the two parallel perfectly conduct-
ing plates in (3+1) dimensions. Although electromagnetic
field cannot be submitted to Dirichlet boundary conditions
itself, one can describe the TE and TM modes of the elec-
tromagnetic field in the presence of the conducting plates
as two scalar fields submitted to Dirichlet boundary condi-
tions. Obviously in the presence of the two plates, propaga-
tors automatically incorporate the boundary conditions and
are position dependent. The contribution of one-loop photon
to the vacuum energy in the interval

(−a
2 , a

2

)
is

ΔEPh =
a/2

−a/2
d3x Ω|H

I
|Ω = i

a/2

−a/2
d3x + O(α2),

(23)

using Eq.(8) it becomes

�E (1)
Ph = i

∫ a/2

−a/2
d3x DB(x, x)[−i(gμνk2 − kμkν)δ3],

(24)

where DB(x, x
′
) is the propagator of electromagnetic field

in the bounded space. For overall consistency, we use dimen-
sional regularization to control ultraviolet divergences, and a
photon mass μ to control infrared divergences. Using analo-
gies between an electromagnetic field and a massless scalar
field, photon propagator is considered as

DB(x, x
′
) = −2igμν

a

∫
dω

2π

∫
dd−2k⊥
(2π)d−2

×
∑

n

e−iω(t−t
′
)e−ik⊥.(x⊥−x

′
⊥) sin(kn(z+ a

2 )) sin(kn(z
′+ a

2 ))

ω2−k2⊥−k2
n+μ2

.

(25)

Here k⊥ and kn denote the parallel and the perpendicular
momenta to plates (in z-direction), respectively. Note that,
both contributions related to TE mode and TM mode are
considered to be the same, hence the final energy should
become twice. After the usual Wick rotation and using Eqs.
(19) and (25), with x = x ′, and carrying out the integration
over the space then over solid angle in the d-dimensional
Euclidean space we have

�E (1)
Ph = 12Sδ3π

d−1
2

(2π)d−1
( d−1
2 )

∫

dkEk
d−2
E

∑

n

k2
E + k2

n

k2
E + k2

n + μ2
,

(26)

where S is the area of the planes, k2
E = ω2 + k2⊥ and kn is

obtained using the Dirichlet boundary condition on the walls,

kn = nπ

a
, n = 1, 2, 3, . . . . (27)

The one-loop photon correction to the vacuum energy in
free space is

�E ′(1)
Ph = i

∫

d3x DF (x, x)[−i(gμνk2 − kμkν)δ3], (28)

where DF (x, x ′) is the propagator of electromagnetic field
in free space in Feynman gauge (ξ = 1). We can use a trivial
periodic boundary condition on the walls located at −L/2
and +L/2. Carrying out the space integrations gives

�E ′(1)
Ph = 12SLδ3π

d−1
2

(2π)d
( d−1
2 )

∫

dkEk
d−2
E

∫

dk
k2
E + k2

k2
E + k2 + μ2

.

(29)

To get a vacuum energy comparable with the volume between
plates, we should multiply the above energy by a factor a

L
then take the limit L → ∞. We carry out kE integration
and import δ3 from Eq. (19). Here we have two types of
regulators, d and μ, to control the ultraviolet and infrared
divergences, respectively. We first work with d to eliminate
some of divergences and derive a result for a photon with
mass μ, finally we will approach μ to zero. As d → 4 we can
cancel the divergent terms using our full freedom to choose
two different dimensional regulators d corresponding to free
and bounded cases. Then we can perform the integration of
x parameter of δ3 to get

�EPh
Cas. = �E (1)

Ph − �E ′(1)
Ph + O(α2) = 2αSμ′2

a3

×
[ ∑

n=1

√
n2 + μ′2

(
γ − 1 + ln

√
n2 + μ′2

)

−
∫ ∞

0
dk′√k′2 + μ′2

(
γ − 1 + ln

√
k′2 + μ′2

) ]

+ O(α2),

(30)

where γ is the Euler-Mascheroni number and we have
changed the variables as k′ = ak

2π
and μ′ = aμ

2π
. Now, we can

use the Abel-Plana summation formula (APSF) [56], which
basically converts our summation into an integration,

∞∑

n=1

f (n) = − f (0)

2
+

∫ ∞

0
f (x)dx

+i
∫ ∞

0

dt

e2π t − 1
[ f (i t) − f (−i t)]. (31)

Apply this formula for Eq. (30) yields (see Appendix for
details)

�EPh
Cas. = 2Sαμ′2

a3

[

− μ′

2

(
γ − 1 + ln μ′2) (32)

+2
∫ ∞

μ′
dt

e2π t − 1

√
t2 − μ′2

(
γ − 1 + ln

√
t2 − μ′2

) ]

+O(α2). (33)
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It is obvious that as μ tends to zero, EPh
Cas. approaches zero,

up to order α:

lim
μ→0

�EPh
Cas. = 0. (34)

Therefore, the photonic loop does not contribute to O(α)

radiative correction to the Casimir energy.

4 Fermionic Loop

In this section, we calculate NLO radiative correction to the

Casimir energy due to fermionic loop . We use the MIT
bag boundary condition on the plates. According to MIT bag
boundary condition there is no flux of fermions through the
boundary, this means that

nμ jμ = 0, (35)

where jμ indicates the current of the Dirac field and nμ is
the normal unit vector to the boundary, or more strictly it
implies to complete confinement of the spinor field. Note that,
ideal conductor boundary condition for the electromagnetic
field and bag boundary conditions for the spinor field can go
together. This can be seen from the field equations (Maxwell
equations) written in the form

∂μF
μν = eψ̄γ νψ, (36)

after multiplying with the normal vector nν

∂μnνF
μν = eψ̄nνγ

νψ. (37)

Dirichlet boundary condition on the walls vanishes the left
side, so that we can use the bag boundary condition. Then
MIT bag boundary condition turns out to be [58–61]

[1 + i(n̂.γ )]ψ(x) = 0, (38)

which is satisfied on the boundary, more accurate on the
plates. Applying this condition to Dirac spinor field, one can
derive

pa cot(pa) = −ma, (39)

which determines quantized modes. Two limits are interest-
ing to calculate; small mass and large mass limits. As a matter
of fact, the mass is small (large) in comparison with the dis-
tance a, i.e. ma � 1 (ma � 1). For small mass limit the
solutions of Eq. (39) are (see for more details [62])

pn = (n + 1

2
)
π

a
with n = 0, 1, 2, . . . (40)

where pn denotes the parallel momenta to the plates (in z-
direction). Now, again for the bounded space we have

ΔEF =
a/2

−a/2
d3x Ω|H

I
|Ω = i

a/2

−a/2
d3x + O(α2)

= i
a/2

−a/2
d3x Tr[SB(x, x)i(p 2 − m)] + O(α2),

(41)

where SB(x, x
′
), the Feynman propagator of spinor field

between plates, is

SB(x, x
′
) = i

a

∫
dω

2π

∫
d2 p⊥
(2π)2

×
∑

n=0

/p + m

ω2 − p2⊥ − p2
n − m2 + iε

×e−iω(t−t
′
)e−i p⊥(x⊥−x ′⊥)e−i pn(z−z

′
). (42)

Here p⊥ and pn indicate the parallel and the perpendicular
momenta to the plates, respectively. Converting the integrals
into dimensionless form in d spacetime dimensions we have

SB(x, x
′
) = i

ad−1

∫
dω̃

2π

∫
dd−2 p̃⊥
(2π)d−2

×
∑

n=0

/̃p + m̃

ω̃2 − p̃2⊥ − p2
n − m̃2 + i ε̃

e−i ω̃
a (t−t

′
)

×e−i
p̃⊥
a (x⊥−x ′⊥)e−i p̃n

a (z−z
′
). (43)

After the usual Wick rotation and carrying out the integration,
one can obtain

�E (1)
F = 32S

(2π)d−1ad−1

π
d−1

2


( d−1
2 )

∫

d p̃E p̃
d−2
E

×
∑

n=0

(
p̃2
E + p̃2

n

p̃2
E + p̃2

n + m̃2
δ2 − m̃

p̃2
E + p̃2⊥ + p̃2

n + m̃2
δm

)

,

(44)

where p̃2
E = ω̃2 + p̃2⊥. Similarly, for the free space we have

�E
′(1)
F = i

∫

d3x Tr[SF (x, x)i(/pδ2 − δm)]. (45)

Using Eq. (9) for the free propagator and after integration we
obtain

�E
′(1)
F = 32S

(2π)d−1ad−2

π
d−1

2


( d−1
2 )

∫

d p̃E p̃
d−2
E

×
∫

d p̃

2π

(
p̃2
E + p̃2

p̃2
E + p̃2 + m̃2

δ2 − m̃

p̃2
E + p̃2 + m̃2

δm

)

.

(46)
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For the small mass case the radiative correction to Casimir
energy corresponding to the fermionic loop becomes

�EF
Cas. = �E (1)

F − �E ′(1)
F + O(α2)

= 32Sπ
d−1

2

(2π)d−1
( d−1
2 )

πd−1

ad−1

∫

dp′
E p

′d−2
E

×
[

δ2

( ∑

n=0

(n + 1
2 )2 + p′2

E

(n + 1
2 )2 + p′2

E + m′

−1

2

∫

dp′ p′2 + p′2
E

p′2 + p′2
E + m′2

)

−am′δm
π

( ∑

n=0

1

(n + 1
2 )2 + p′2

E + m′2

−1

2

∫

dp′ 1

p′2 + p′2
E + m′2

)]

+ O(α2), (47)

where we use the change of variables as p′ = p̃/π , p′
E =

p̃E/π and m′ = m̃/π . Integrating of p′
E yields

�EF
Cas. = 32Sπ

d−1
2

2d−1ad−1
( d−1
2 )

1

2
sec

(
dπ

2

)

×π

{

δ2m
′2
[ ∞∑

n=0

[(n + 1/2)2 + m′2] d−3
2

−
∫ ∞

0
[p′2 + m′2] d−3

2 dp′
]

+am′δm
π

[ ∞∑

n=0

[(n + 1/2)2 + m′2] d−3
2

−
∫ ∞

0
[p′2 + m′2] d−3

2 dp′
]}

+ O(α2). (48)

Here we need another type of APSF to convert the sum into
integral,

∞∑

n=0

f (n + 1

2
) =

∫ ∞

0
f (x)dx

−i
∫ ∞

0

dt

e2π t + 1
[ f (i t) − f (−i t)]. (49)

We can use the following formula to calculate the branch cut
integral: if f (z) = (zn + αm))p/2

i
∫ ∞

0

f (i t) − f (−i t)

e2π t + 1
dt

= −2 sin
( pnπ

4

) ∫ ∞

αm/n

(tn − αm)p/2

e2π t + 1
dt. (50)

In addition we know that

1

e2π t + 1
=

∞∑

j=1

(−1) j+1e−2π j t . (51)

We use these formulae, and import δm and δ2 from Eqs.
(20) and (21), respectively, into Eq. (48). Again, similar to
the procedure adopted in photonic loop, which lad to Eq.
(30), we first expand the expression about d = 4 then take
the limit d → 4. No divergent term remains due to the usual
subtraction in Casimir effect. We then, do the x integration.
Finally, taking the limit μ → 0 we obtain

�EF+Ph
Cas. = �EF

Cas. + �EPh
Cas. =

∞∑

j=1

− (−1) j5Sαm2

16 j2π4a

×
{

K0(2 jam) + 2 jamK1(2 jam)

[
14

5
ln(ma) + N j

]}

,

(52)

where N j = γ − ln( jπ2) − 12+ln 8
5 . This is the final result

of the radiative correction to the Casimir energy due to
fermionic loop, for the small mass case.

The other interesting limit is the large mass limit. In this
case, Eq. (39) turns out to be

ma tan(pa) = −pa. (53)

Now, the solutions are

pn = nπ

a
with n = 1, 2, . . . . (54)

We follow the similar way for obtaining Eq. (48), but now we
should apply APSF Eq. (31) and need the following relation

1

e2π t − 1
=

∞∑

j=1

e−2π j t . (55)

Finally, our the radiative NLO correction to Casimir energy
in this case becomes

�EF+Ph
Cas. = �EF

Cas. + �EPh
Cas. =

∞∑

j=1

5Sαm2

16 j2π4a

×
{

K0(2 jam) + 2 jamK1(2 jam)

[
14

5
ln(ma) + N j

]}

(56)

The first term, in Eq. (31) (i.e. + f (0)/2) turns out to be
independent of distance between plates a. Therefore this term
has no impact on the physics of problem and we ignore it.
For the large mass case which is also equivalent to the large
distances, Eq. (56) takes the form

�EF+Ph
Cas. ∼ 23Sα

16
π−7/2m5/2a−1/2 ln(am)e−2am . (57)

The pressure on the plates related to this term is

�PF+Ph
Cas. ∼ 23α

8
π−7/2m3

√
m/a ln(am)e−2am, (58)

which clearly shows the exponentially damping structure. In
Figs. 1 and 2 we compare our result with the leading terms of
the Casimir energy for electromagnetic and fermion fields,
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Fig. 1 The ratio between the one-loop correction derived here and the leading term of electromagnetic Casimir energyEF+Ph
Cas. /E (0)

Cas., vs the plates
separation (λe denotes the Compton wavelength of electron.) Solid (dashed) line shows the large (small) mass limit

Fig. 2 The ratio between the one-loop correction derived here and the leading term of fermionic Casimir energyEF+Ph
Cas. /E (0)

Fermion, vs the plates
separation (λe denotes the Compton wavelength of electron.) Solid (dashed) line shows the large (small) mass limit

respectively. Figure 1 shows that the computed correction is
negligible even in very small separations. In Fig. 2 we see that
the impact of this correction increases in large separations.

5 Conclusions

We have calculated one-loop radiative correction to the
Casimir energy due to photonic and fermionic counterterms

within the renormalized perturbation theory for QED theory.
The topology considered here is two perfectly conducting
parallel plates in (3+1) dimensions. We have used Dirichlet
boundary condition for Electromagnetic field and MIT bag
boundary condition for electron. To control ultraviolet diver-
gences we have used dimensional regularization and a photon
mass μ also is used to control infrared divergences. It is found
that photonic loop does not have any contribution up to order
α. The force per unit area related to fermionic and photonic
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loops, up to this order, at large distances have been obtained
as �PCas.

F ∼ − 23α
8 π−7/2m3√ma ln(am)e−2am . We illus-

trate our result in Figs. 1 and 2 and compare it with the related
leading Casimir energy of electromagnetic and fermion field.
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Appendix: Calculation of the branch-cut terms

In this Appendix we calculate two types of branch-cut terms
which appear in Eq. (30). Regardless of some constants, this
equation is of the form
∑

n=1

√
n2 + b2

(
C + ln

√
n2 + b2

)

−
∫ ∞

0
dx

√
x2 + b2

(
C + ln

√
x2 + b2

)
(59)

In the APSF
∞∑

n=1

f (n) = − f (0)

2
+

∫ ∞

0
f (x)dx

+i
∫ ∞

0

dt

e2π t − 1
[ f (i t) − f (−i t)],

Assuming f (x) = √
x2 + b2

(
C + ln

√
x2 + b2

)
we can

write

f (i t) − f (−i t) = C(
√
b2 + (i t)2 −

√
b2 + (−i t)2)

+
(√

b2 + (i t)2 ln
√
b2 + (i t)2

−
√
b2 + (−i t)2 ln

√
b2 + (−i t)2

)
,

(60)

Choosing, b = |b|eiθb , t = |t |eiθt , we have for the first term
√
b2 + (i t)2 −

√
b2 + (−i t)2 =

√

|b|ei2θb + eiπ |t |2ei2θt

−
√

|b|ei2θb + e−iπ |t |2ei2θt

=
(

e
iπ
2 eiθt − e

−iπ
2 eiθt

)

×
√

|b|ei(2θb+π−2θt ) + |t |2

= 2i sin
(π

2

)√
t2 − b2.

(61)

where one should note that ei(2θb+π−2θt ) = −1 and we
assume t > |b|. For t < |b| this term is exactly zero. Simi-
larly for second term, we have
√
b2 + (i t)2 ln

√
b2 + (i t)2

−
√
b2 + (−i t)2 ln

√
b2 + (−i t)2

=
√
b2 + eiπ t2 ln

√
b2 + eiπ t2

−
√
b2 + e−iπ t2 ln

√
b2 + e−iπ t2

=
√
b2 + eiπ t2 ln(eiπ/2

√
e−iπb2 + t2))

−
√
b2 + e−iπ t2 ln(e−iπ/2

√
beiπ + t2)

= i
π

2

[√
b2 + eiπ t2 +

√
b2 + e−iπ t2

]

+
[√

b2 + eiπ t2 −
√
b2 + e−iπ t2

]
ln

√
t2 − b2. (62)

Now, the first of the last line is similar to similar to (61) but
with plus sign between its terms, so we get
√
b2 + eiπ t2 +

√
b2 + e−iπ t2 = 2

√
t2 − b2 cos

π

2
= 0.

(63)

For the second term, using Eqs. (61) and (63), we have for
t < |b|
√
b2 + eiπ t2 ln(b2 + eiπ t2) −

√
b2 + e−iπ t2

× ln(b2 + e−iπ t2) = 2i
√
t2 − b ln

√
t2 − b2. (64)

For t < |b| this term is exactly zero. Therefore, our final
result derived as follows:

i
∫ ∞

0

dt

e2π t − 1
[ f (i t) − f (−i t)]

= 2
∫ ∞

b

dt

e2π t − 1

√
t2 − b2

(
C − ln

√
t2 − b2

)
. (65)
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