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Abstract In this paper, we determine regular black hole
solutions using a very general f (R) theory, coupled to a non-
linear electromagnetic field given by a Lagrangian LNED.
The functions f (R) and LNED are in principle left unspec-
ified. Instead, the model is constructed through a choice of
the mass function M(r) presented in the metric coefficients.
Solutions which have a regular behaviour of the geometric
invariants are found. These solutions have two horizons, the
event horizon and the Cauchy horizon. All energy condi-
tions are satisfied in the whole space-time, except the strong
energy condition (SEC), which is violated near the Cauchy
horizon. We present also a new theorem related to the energy
conditions in f (R) gravity, re-obtaining the well-known con-
ditions in the context of general relativity when the geometry
of the solution is the same.

1 Introduction

The present stage of accelerate expansion of the universe
seems to be well established from the analysis of observa-
tional data. Besides the supernova Ia data [1–3], the data from
the observation of the anisotropy of the cosmic microwave
background radiation (CMB) [4,5], the baryonic acoustic
oscillations [6–11], large scale structures [12–14], weak lens-
ing [15] and the differential age of old galaxies (H(z0) [16–
21] give strong evidence for the present accelerated expan-
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sion phase. Since gravity is attractive, the cosmic acceleration
expansion requires some new form of exotic matter, which
leads to a violation of the strong energy condition (SEC)
[22–24], as far as general relativity (GR) is considered. This
exotic component is dubbed dark energy.

The most popular, and most simple, candidate for dark
energy is the cosmological constant. Interpreted as a mani-
festation of the quantum vacuum energy, the cosmological
constant faces, however, a huge discrepancy between the
observed value and the predicted one. The exact value of
this discrepancy depends on many details, but in general it
amounts to many dozen orders of magnitude [25].

The incertitude about the dynamical origin of the observed
accelerated expansion led to many speculations about pos-
sible extensions of GR in such way that the accelerated
expansion could be obtained without the introduction of dark
energy. In this sense, one of these possible extensions is to
generalise the Einstein–Hilbert action including non-linear
geometric terms. One of these proposals is the class of f (R)

theories [26–30], where the non-linear terms are combina-
tions of the Ricci scalar R. Such theories may give very
good results at cosmological scales but must be comple-
mented with a screening mechanism in order not to spoil
the achievements of GR at scales of the solar system [31].
There is a long list of other possible, and generally more
complex, modifications of GR [32–61].

Another problem concerning the applications of GR to
concrete problems is the presence of singularities, as that pre-
dicted in the primordial universe and in the end of the life of
some massive stars. The presence of such singularities seems
to point to the limit of application of GR, requiring perhaps to
consider quantum effects in the strong gravitational regime.
Some other possibility to cure this singularity problem, yet
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in the context of a classical theory, is to consider as source
of the gravitational equations matter fields that may lead to
violation of at least some of the energy conditions. Examples
are given by non-linear gauge fields, like the electromagnetic
field. Non-linear electromagnetism [64] has been conceived
originally to cure singularity problems in Maxwell theory.
In theories of gravity, the electromagnetic field appears as
one of the sources of the structure of the space-time. In such
a context, some success in avoiding singularities has been
obtained in implementing such an extension of the classical
Maxwell field [65–88].

In Ref. [62] both proposals of extensions of the usual grav-
itational and gauge field theories were considered. In that
paper, the emphasis was on the study of black hole con-
figurations. A very general form of this theory, mixing the
f (R) theory and the non-linear electromagnetic Lagrangian
LNED, has been considered. A static, spherically symmetric
space-time has been used. Particularly, solutions with hori-
zon (thus, candidates to represent a black hole) were found,
but without the singularity existing in the usual black hole
solutions of GR. This singularity-free black hole solutions
imply the violation of the SEC only in certain regions of the
space-time. However, the other energy conditions are gen-
erally satisfied. We remember that the energy conditions are
directly connected with the existence of singularities in GR
theory [22–24].

In the present paper, we revisit the problem treated in Ref.
[62], and we show that new non-singular solutions are pos-
sible. This new solutions emerge from a specific, but very
appealing, choice of the mass function M(r), which will be
properly defined later. The mass function we will use was
constructed in Ref. [63], with GR theory coupled to a non-
linear electromagnetic field, in order to satisfy some require-
ments, like to avoid violation of the weak energy condi-
tion (WEC) and to have the Reissner–Nordström asymptotic
limit: the mass function M(r) given in Ref. [63] is the most
general functional form satisfying the WEC in GR. As found
for other mass functions in Ref. [62], the employment of the
mass function of Ref. [63] in our general context implies
that the violation of SEC occurs only in a limited region of
the space-time, the other energy conditions being satisfied
in the entire space-time. We will prove a new theorem for
the energy conditions for f (R) gravity according to which
we must recover the same conditions of GR when the same
geometry is simultaneously a solution for the equations of
GR and f (R) gravity.

This paper is organised as follows. In the next section, the
equations of motion are written down. In Sect. 3, we deter-
mine the new non-singular solutions and analyse the fate of
the energy conditions for these solutions. The final conclu-
sions are presented in Sect. 4. In the Appendix, it is shown
explicitly that the solutions found here are asymptotically
regular.

2 The equations of motion in f (R) gravity

f (R) gravity is defined by the action

S f (R) =
∫

d4x
√−g

[
f (R) + 2κ2Lm

]
, (1)

where g stands for the determinant of the metric gμν , f (R)

is a given function of the Ricci scalar R, Lm represents
the Lagrangian density of the matter and other fields, and
κ2 = 8πG/c4, with G and c being the Newton gravitational
constant and the speed of light, respectively.

There are two main approaches for this theory, the first
one supposing the dynamical fields are the metric and the
matter field, known as the metric formalism, and the second
one, called the Palatini formalism, for which the dynamical
fields are the metric, the matter field, but with the Levi-Civita
connection independent of the metric. In the following we
will use the first approach.

Applying the variational principle in terms of the metric
to the action (1), we find the following field equations:

fR R
μ
ν − 1

2
δμ
ν f + (

δμ
ν � − gμβ∇β∇ν

)
fR = κ2�μ

ν, (2)

where fR ≡d f (R)/dR, Rμ
ν is the Ricci tensor, ∇ν stands for

the covariant derivative,� ≡ gαβ∇α∇β is the d’Alembertian,
and �μν is the matter energy–momentum tensor.

In the present work, we will analyse the coupling of
the f (R) gravity with a non-linear electrodynamic theory
(NED), given by Lm ≡ LNED(F), where F = (1/4)Fμν

Fμν , and with Fμν being the Maxwell tensor, and LNED(F)

is an arbitrary function of F . A similar structure was exploited
in Ref. [62]. We will first review the methodology employed
in that reference, which will be applied in the present paper
in order to find new regular black hole solutions.

Considering the NED coupling, the energy–momentum
tensor for matter in (2) is given by

�μ
ν = δμ

ν LNED − ∂LNED(F)

∂F
FμαFνα. (3)

In the particular case of the Maxwell LagrangianLNED ≡ F ,
the energy–momentum tensor of the linear Maxwell electro-
dynamics is re-obtained.

Defining the Maxwell tensor in terms of the four-potential
Fμν = ∂μAν − ∂ν Aμ, the variation of the functional (1)
with respect to the potential can be performed, leading to the
generalised Maxwell equation,

∇μ

[
FμνLF

] ≡ ∂μ

[√−gFμνLF
] = 0, (4)

where LF = ∂LNED/∂F .
We then consider a spherically symmetric and static space-

time, whose line element, in Schwarzschild coordinates,
reads
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ds2 = ea(r)dt2 − eb(r)dr2 − r2
[
dθ2 + sin2 θdφ2

]
, (5)

where a(r) and b(r) are arbitrary functions of the radial coor-
dinate r . We will consider the particular case where there is
only electric field, the components connected with the mag-
netic field of the Maxwell tensor Fμν being zero. Impos-
ing spherical symmetry, through the Killing vectors and the
equation LζμFαβ(t, r, θ, φ) ≡ 0, we can show that the only
non-null component of the Maxwell tensor is F10(r) [89,90].
The generalised Maxwell equation (4) for ν = 0 is

F10(r) = q

r2 e
−[a(r)+b(r)]/2L−1

F (r), (6)

where q ∈ � is an integration constant representing the elec-
tric charge of the source.

The equations of motion for the f (R) gravity coupled
to a NED are then found by using the line element (5), the
energy–momentum (3), with the only non-null component
given by (6), and the field equations (2):

e−b

4r

{
4r

d2 fR
dr2 + 2

[
4 − rb′] d fR

dr

+[
ra′b′ − 2ra′′ − r(a′)2 − 4a′] fR + 2reb f

}

= −κ2
[
LNED + q2

r4 L
−1
F

]
, (7)

e−b

4r

{
2

[
4 + ra′] d fR

dr

+
[
(4 + ra′)b′ − 2ra′′ − r(a′)2

]
fR + 2reb f

}

= −κ2
[
LNED + q2

r4 L
−1
F

]
, (8)

e−b

2r2

{
2r2 d2 fR

dr2

+[r2(a′ − b′) + 2r ]d fR
dr

+ [r(b′ − a′)

+2(eb − 1)] fR + r2eb f
}

= −κ2LNED, (9)

where the prime (′) stands for the total derivative with respect
to the radial coordinate r .

In the next section, we will use an algebraic methodology
to solve these equations and to obtain new regular solutions.

3 New generalisations for regular black holes on GR to
f (R) gravity

We will simplify the equations of motion in such a way that
a new class of solution can be determined. Subtracting Eq.
(8) from Eq. (7) we have

e−b

2r

[
2r

d2 fR
dr2 −

(
r

d fR
dr

+ 2 fR

)
(a′ + b′)

]
= 0 . (10)

We have now a second order differential equation, with vari-
able coefficients, given in terms of the function fR . This
equation does not have an analytical solution in general and
we must choose a given restriction in order to solve it. There
are two obvious possibilities. The first one corresponds to
choosing the quasi-global system of coordinates

b(r) = −a(r). (11)

This is an additional requirement to the metric functions since
the coordinate system has already been fixed. However, the
fact that the functions f (R) and LNED are, for the moment,
arbitrary ensures the possibility to impose such a new con-
dition, as will be verified later. In GR, when the spherical
symmetry is fixed, implying �0

0 ≡ �1
1, the identity (11)

comes out directly. But, in f (R) gravity this does not hap-
pen, and an extra condition must be imposed to simplify the
equations of motion.

The second choice is b(r) �= −a(r), which does not lead
to a solution of the equations of motion unless there is the
relation b(r) = −a(r) + b1(r), with b1(r) given in such a
way that an analytical solution can be determined for (10).
An example is given in Ref. [93].

The determination of new solutions for the f (R) gravity,
in the case with spherical symmetry, has been studied also in
Refs. [94–98].

Imposing the quasi-global coordinate condition for (10),
we obtain

e−b d2 fR
dr2 = 0. (12)

Integrating this expression,

fR(r) = c1r + c0, (13)

where the integration constants c0, c1 ∈ � appear. Here, we
must make the following observations. First, for the particular
case c1 ≡ 0, c0 = 1, GR is recovered, since the integration
of (13) with respect to R leads to f (R) = R. Second, if the
line element (5) is considered, the Ricci scalar becomes

R = e−b
[
a′′ + (

a′ − b′) (
a′

2
+ 2

r

)
+ 2

r2

]
− 2

r2

= ea
[
a′′ + 2a′

(
a′

2
+ 2

r

)
+ 2

r2

]
− 2

r2 . (14)

In order to have a better description of the new regular
black hole solutions, it is useful to define

ea(r) = 1 − 2M(r)

r
, (15)

where M(r) is the mass function, which for the regular solu-
tions satisfies the condition limr→0[M(r)/r ] ≡ 0. The mass
function M(r) must coincide with the ADM mass m in the
spatial infinity limit, where the radial coordinate r goes to
infinity.
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Inserting (15) and (11) in (14), the curvature scalar can be
rewritten as

R(r) = − 2

r2 [rM ′′(r) + 2M ′(r)], (16)

which, for a given M(r) model, may allow one to invert Eq.
(16), to obtain r(R). After integration of (13) it leads to

f (R) = c0R + c1

∫
r(R)dR . (17)

It is also possible to obtain f (R) from the expression
fR = (d f/dr)(dR/dr)−1. After integration and using (16)
we obtain

f (r) =
∫

fR(r)
dR(r)

dr
dr. (18)

Now, we use the methodology presented in [62] to solve the
equations of motion. Taking Eqs. (11), (15), (13) and (18),
we can solve Eqs. (7)–(9) to obtain LNED and LF as

LNED = − 1

2κ2r2

[
r2 f (r) + 4c0M

′(r) + 2c1r
]
, (19)

LF = −κ2 q
2

r2

[
(c1r + c0)rM

′′(r) − (2c0 + c1r)M
′(r)

−3c1M(r) + c1r
]−1

. (20)

The solution above satisfies the equations of motion. How-
ever, its consistency can be verified through the Lagrangian
density LNED and its derivative with respect to F , LF . By
definition, we have

LF = ∂LNED

∂F
= ∂LNED

∂r

∂r

∂F
= ∂LNED

∂r

(
∂F

∂r

)−1

. (21)

To perform such a verification we must remember that F =
(1/4)FμνFμν = −(1/2)ea+b[F10(r)]2, and that the only
non-null component of the Maxwell tensor, for this symme-
try, is obtained from Eqs. (11), (15) and (20), which, consid-
ering (6), leads to

F10(r) = 1

qκ2

{
3c1M(r) + (2c0 + c1r)M

′(r)

−r [c1 + (c0 + c1r)M
′′(r)]

}
. (22)

Now, using Eqs. (11), (13), (15), (16), (18)–(20) and (22),
it is possible to verify that the constraint (21) is satisfied.
Hence, the solution is consistent.

In order to perform an analysis of the physical properties
of this class of solutions, we must take into account the energy
condition relations for the f (R) theory. Following the results
of Refs. [91,92], Eq. (2) is rewritten as

Rμν − 1

2
gμνR = f −1

R

[
κ2�μν + 1

2
gμν ( f − R fR)

− (
gμν� − ∇μ∇ν

)
fR

] = κ2T (eff)
μν , (23)

where T (eff)
μν is the effective energy–momentum tensor, and

the perfect fluid content is identified by the relationsT 0(eff)
0 =

ρ(eff), T 1(eff)
1 = −p(eff)

r , T 2(eff)
2 = T 3(eff)

3 = −p(eff)
t , where

ρ(eff), p(eff)
r and p(eff)

t are the energy density, radial and
tangential pressures, respectively. The explicit expressions
for the energy–momentum tensor can be found in Ref. [62].
With these expressions, the energy conditions for the f (R)

theory can be written as

NEC1,2(r) = ρ(eff) + p(eff)
r,t ≥ 0 , (24)

SEC(r) = ρ(eff) + p(eff)
r + 2p(eff)

t ≥ 0 , (25)

WEC1,2(r) = ρ(eff) + p(eff)
r,t ≥ 0 , (26)

DEC1(r) = ρ(eff) ≥ 0, (27)

DEC2,3(r) = ρ(eff) − p(eff)
r,t ≥ 0 , (28)

where, in view of the identity WEC3(r) ≡ DEC1(r), one of
the conditions was not written.

We call to attention that the effective energy–momentum
tensor in (23) is equal to the Einstein tensor, which is in the
left hand side of that equation. This means that the energy
conditions are related only to the type of geometry for which
the solution is written, and they can be the same for two
different theories as, in the present case, for GR and f (R)

gravity. We can then state the following theorem.

Teorema Given a solution of Eqs. (7)–(9) of the f (R) grav-
ity, described by S1 = {a(r), b(r), f (R),LNED, F10(r)}, if
there exists a solution in GR S2 = {a(r), b(r), L̄NED, F̄10

(r)}, then the energy conditions (24)–(28) are identical for
S1 and S2.

Proof If S1 = {a(r), b(r), f (R),LNED, F10(r)} is a solu-
tion of the equations of motion (7)–(9) then it can be rewrit-
ten as in (23), where we have the expression Gμν(a, b) =
κ2T (eff)

μν . If there exists a similar solution of GR for the geo-
metric part, it can take the form Gμν(a, b) = κ2T GR

μν . Using

these identities we have the equivalence T (eff)
μν ≡ T GR

μν ,
which models the energy–momentum tensor for a perfect
fluid, implying that the energy conditions must be the same
for the two solutions. ��

We will verify this theorem for the new solutions we will
write down later.

In the next subsection, we will use a specific model for
the general mass function M(r), coming from GR, in order
to obtain a generalisation of this class of solutions.

3.1 New regular black hole solutions

As it has been shown in Ref. [62], there is no model for the
mass function M(r) that leads to a generalisation of a solu-
tion of GR to the f (R) gravity theory, with a function f (R)

containing non-linear terms. Physically, our motivation is to
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generalise a given GR model where at most the SEC energy
condition is the only one to be violated. Using the energy con-
dition theorem of the previous section, we can determine the
most general mass function M(r) which satisfies the WEC in
f (R) gravity, as in Ref. [63]. We will use a model obtained by
integration of the general mass function satisfying the WEC
given by [63], which reads

M(r) = 63m4r3

q6

�3(4/a1)�(b1/a1)

�3(a−1
1 )�[(b1 − 3)/a1] 2

× F1

[
3

a1
; b1

a1
; a1 + 3

a1
;−

(
6�(4/a1)

�(a−1
1 )�[(a1 + 3)/a1]

m

q2 r

)a1
]

,

(29)

where 2F1[k1; k2; k3; z] is the Gauss hypergeometric func-
tion.

This model is, in general, very complicated. It is possible
to express the solutions in terms of integrals, which may or
may not be analytical. It is more instructive to work with
some particular cases. Let us first take the case where a1 = 2
and b1 = 4, for which the metric functions (11) and (15) are
given by

ea = e−b = 1 + 32m2q2

π2q4 + 64m2r2 − 4m

πr
arctan

[
8mr

πq2

]
.

(30)

This solution represents a charged, regular black hole,
asymptotically flat, with two horizons: rH (an event horizon)
and r− (inner or Cauchy horizon). It is possible to verify that
this solution is regular in all space-time by inspecting the
Ricci and Kretschmann scalars, which read

R = − 16384m4π2q6

(π2q4 + 64m2r2)3 , (31)

K = RαβμνRαβμν

= 64m2

r6

{
64m2q4r2

(π2q4 + 64m2r2)6

×(3π4q8 + 256π2m2q4r2 + 20480m4r4)

×(π4q8 + 256π2m2q4r2 + 28672m4r4)

+ 1

π2 arctan

(
8mr

πq2

) [
3 arctan

(
8mr

πq2

)

− 16mπq2r

(π2q4 + 64m2r2)3

×(3π4q8 + 512m2π2q4r2 + 36864m4r4)
]}

. (32)

These scalars are finite in all space-time. The limits in the ori-
gin of the radial coordinate and in the spatial infinity are given
by limr→0{R,K} = {−(16384m4)/(π4q6), (134217728m8)

/(3π8q12)} and limr→∞{R,K} = {0, 0}.

Equation (31) implies

r(R) = q

8m

√
−π2q2 + 16(2πm2)2/3

(−R)1/3 . (33)

From (31) it can be verified that R ≤ 0, which must be taken
into account in order to define correctly (33) in the usual limit
0 ≤ r ≤ +∞.

Now, the function f (R) can be obtained inserting (33) in
(17), leading to

f (R) = c0R + c1

8mq3π8/3

√
−π2q2 + 16(2πm2)2/3

(−R)1/3

×[
192(2m8)1/3(−R)1/3 + 4(4π4m4)1/3(−R)2/3 − π8/3q4(−R)

]

+768c1m3

π3q4 arctan−1
{
πq

[
− π2q2 + 16(2πm2)2/3

(−R)1/3

]−1/2
}

. (34)

We can now see clearly that the last two terms that multiply
the constant c1 generalise the GR solution to f (R) gravity,
including non-linear terms in the Ricci scalar R. In the par-
ticular case where c1 = 0, GR is recovered.

We perform now a brief analysis of the stability of this
solution. Following the results of [99], a small perturbation
in the Ricci scalar, R̃ = R + δR(r, t), leads to the following
equation after taking the trace of Eq. (2):
[

∂2

∂t2 − ∇2
]

δR(r, t) = −m2
RδR(r, t), m2

R ∼ 1

3 fRR
, (35)

where fRR = d fR/dR. Hence, the stability condition for a
static spherically symmetric configuration is given by

m2
R ∼ 1

3 fRR
> 0. (36)

The second derivative of (34) with respect to R, leads to

fRR = 22/3(πm)1/3q2c1

3R4/3q
√

−π4/3q2 + 214/3m4/3

(−R)1/3

. (37)

From (36) and (37) this solution turns out to be stable for
c1 > 0.

It is not possible to obtain analytically a functional rela-
tion between the scalar F and the Lagrangian density LNED.
Hence, using (22), with (29), we obtain

F10(r) = 1

πqκ2(π2q4 + 64m2r2)3

×
{

− πr
[

− 524288c0m
6q2r3 + c1

×
(
π6q12 + 4096m4π2q4r2(2q2 + 3r2) + 65536m6r4

×(−3q2 + 4r2) + 48m2π4q8(q2 + 4r2)
)]

+6c1m(π2q4 + 64m2r2)3 arctan

(
8mr

πq2

)}
. (38)
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Fig. 1 Parametric representation {LNED, F} of the solution (30), with
q = 10,m = 80, c0 = 1, c1 = 2, κ2 = 8π

Now, LNED can be obtained through (19):

LNED(r) = − 1

κ2

{
c1

r
− 8192m4π2q6

(π2q4 + 64m2r2)3 (c0 + c1r)

+ 2048m4q2

(π2q4 + 64m2r2)2 (2c0 + c1r)

+ 3072c1m4r

π2q2(π2q4 + 64m2r2)

+384c1m3

π3q4 arctan

(
8mr

πq2

) }
. (39)

It is possible to represent parametrically a graphicLNED(F)×
F , where F = (1/4)FμνFμν . This behaviour is displayed in
Fig. 1.

The energy conditions can now be verified. Taking explic-
itly the effective density and pressure [62] for our particular
case (30), we find the following expressions for the energy
conditions:

NEC1(r) = WEC1(r) = 0, NEC2(r) = WEC2(r)

= 524288m6q2r2

κ2(π2q4 + 64m2r2)3 , (40)

DEC1(r) = 1

2
DEC2(r) = 4096m4q2

κ2(π2q4 + 64m2r2)2 , DEC3(r)

= 8192m4π2q6

κ2(π2q4 + 64m2r2)3 , (41)

SEC(r) = 8192m4q2[(8mr)2 − π2q4]
κ2(π2q4 + 64m2r2)3 . (42)

The energy conditions NEC, WEC and DEC are satisfied in
all space-time. However, the SEC energy condition (42) is
violated for r < [πq2/(8m)], which, for the values m =
8q, q = 10, represents a region very near the Cauchy hori-
zon (πq2/(8m) = 0.490874, rCauchy = 0.0419174, rH =
159.373).

Let us stress the main differences between the GR solution
given by the mass function (29), with a1 = 2 and b1 = 4,

and our solution for f (R) gravity, obtained for the same
mass function and parameters a1 and b1. The actions for these
theories are completely different: while for GR the geometric
part is given by SEH = ∫

d4x
√−gR, for the solution we

have determined above we have S f (R) = ∫
d4x

√−g f (R),
with f (R) given by (34). The actions corresponding to the
matter and electromagnetic components are also different:
for GR the Lagrangian density behaves asymptotically as
the Reissner–Nordström case; for our case we do not have
such a restriction.

Let us show a second analytical example for the general
mass (29). For the values a1 = 3 and b1 = 4, using the same
procedure as before, the following functions characterise the
solutions:

ea(r) = e−b(r) = 1 − 2m

r

[
1 − q2

(q6 + 8m3r3)1/3

]
, R(r)

= − 64m4q8

(q6 + 8m3r3)7/3 , (43)

F10(r) = 256c0m7q2r5

κ2q(q6 + 8m3r3)7/3 + c1

κ2q

×
[

3m − r + 256m7q2r6

(q6 + 8m3r3)7/3 − 8m4q2r3

(q6 + 8m3r3)4/3

− 3mq2

(q6 + 8m3r3)1/3

]
, (44)

K = 16m2

r6(q6 + 8m3r3)14/3

×
[
3q28 + 112m3q22r3 + 1856m6q16r6

+ 14336m9q10r9 + 57344m12q4r12 − (q6 + 8m3r3)1/3 ×
× (

6q26 + 208m3q20r3 + 2944m6q14r6 + 19456m9q8r9

+ 49152m12q2r12)

+ (q6 + 8m3r3)2/3
(

3q24 + 96m3q18r3

+ 1152m6q12r6 + 6144m9q6r9 + 12288m12r12
)]

(45)

f (R) = c0R+ c1

2mq12(mq2)16/3 (−R)16/21[4 × 24/7(mq2)12/7

−q6(−R)3/7]4/3[3 × 24/7(mq2)12/7(−R)4/7 − q6R] .

(46)

In spatial infinity, we have limr→+∞{ea(r), eb(r)} = {1, 1}
and limr→+∞{R(r),K} = {0, 0}, showing the regularity in
the asymptotical region. When the radial coordinate goes to
zero it is necessary to perform an expansion around r = 0
to analyse the behaviour of the solution in this limit. Taking
ea(r) and R(r), (43),K inserting in (45), we find the following
expansions around r = 0:

ea(r) ∼ 1 − 16m4

3q6 r2 + O
(
r3

)
,

R(r) ∼ −64m4

q6 + O
(
r3

)
,

K ∼ 2048m8

3q12 + O
(
r3

)
. (47)
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Fig. 2 Parametric representation of the density and effective pressures
of the solution (30) (left up panel) and of the solution (43) (right
up panel). Also displayed are the fractions ωr = p(eff)

r /ρ(eff), ωt =

p(eff)
t /ρ(eff), ωeff = (p(eff)

r + 2p(eff)
r )/ρ(eff) and p(eff)

r /p(eff)
t . We used

q = 10,m = 80, c0 = 1, c1 = 2, κ2 = 8π

When r goes to zero, we have limr→0{ea(r), eb(r)} = {1, 1}
and limr→0{R(r),K} = {−64m4/q6, 2048m8/q12}, show-
ing the regularity in the origin of the radial coordinate. Hence,
we have shown that the solution (43) corresponds to a regu-
lar black hole in all space-time. This black hole has spherical
symmetry, and it is charged and asymptotically flat.

The stability of the solution can be briefly analysed. Taking
the second derivative of (46) with respect to R, we find

fRR = 211/7q2c1

7R10/7(mq2)9/7

[
1

m3 − 218/7

(mq2)9/7(−R)3/7

]−2/3

.

(48)

From (48) we see that the stability condition (36) is satisfied
for c1 > 0, and the solution is stable.

Let us verify now the energy conditions for this case. They
read

NEC1(r) = WEC1(r) = 0, NEC2(r) = WEC2(r)

= 256m7q2r3

κ2(q6 + 8m3r3)7/3 , (49)

DEC1(r) = 1

2
DEC2(r) = 16m4q2

κ2(q6 + 8m3r3)4/3 ,

DEC3(r) = 32m4q8

κ2(q6 + 8m3r3)7/3 , (50)

SEC(r) = 32m4q2(8m3r3 − q6)

κ2(q6 + 8m3r3)7/3 . (51)

The conditions NEC, WEC and DEC are satisfied in all space-
time. However, the SEC condition, given by (51), is violated
for r < q2/(2m). For the values m = 8q, q = 10, this
violation occurs in a region very near the Cauchy horizon
(q2/(2m) = 0.625, rCauchy = 0.0676869, rH = 159.373).

To complete our analysis, we display in Fig. 2 the
graphics for the density, the radial and tangential effective
pressures for the solutions (30) and (43). We show also
the graphics for the relative fractions of these quantities,
ωr = p(eff)

r /ρ(eff), ωt = p(eff)
t /ρ(eff), ωeff = (p(eff)

r +
2p(eff)

r )/ρ(eff) and p(eff)
r /p(eff)

t .
It can be seen from Fig. 2 that the radial pressure reveals

always the relation p(eff)
r = −ρ(eff) for both solutions. The

tangential pressure has this behaviour only very near the ori-
gin of the radial coordinate. For both solutions, there is a
small difference between these two pressures that grows as
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r increases. This fact reveals the anisotropy of the effective
matter content for the theory.

Again the main differences between the solution coming
from GR and our solution are in the geometric and matter
parts of the total action, as commented on before for the first
solution.

4 Conclusion

In this paper, we have investigated the existence of reg-
ular black hole structures for a general f (R) theory,
sourced by non-linear electromagnetic terms expressed by
the Lagrangian LNED. Our approach follows very closely the
one employed in Ref. [62]: instead of choosing specific forms
for the f (R) and LNED functions, the approach consists in
expressing the metric in terms of a mass function M(r) and
to choose a mass function that satisfies some requirements.
Specifically, we have used the mass function determined
in Ref. [63]. Such a mass function was constructed, in the
context of GR theory coupled to non-linear electromagnetic
field, in order to satisfy the WEC and to have an asymptotic
Reissner–Nordström limit. In fact, the chosen mass function
M(r) is the most general functional form satisfying the WEC
in GR.

Applied to the case of general f (R) and LNED functions,
the mass function of Ref. [63] leads to regular black hole
solutions which contain two horizons, the event horizon and
the Cauchy horizon. We worked out completely two specific
cases of that mass function, by choosing specific values for
the free parameters in the model developed in Ref. [63]. The
regular character of the solutions is attested by the regular
behaviour of the geometric invariants, like the Ricci scalar
and the Kretschmann scalar. Asymptotically, as expected, the
metric functions reproduces the Reissner–Nordström solu-
tion of GR.

The energy conditions are satisfied for the two specific
cases studied here, except for the case of the strong energy
condition (SEC) which is violated in the vicinity of the
Cauchy horizon. Of course, a violation of at least some of the
energy conditions must occur if a regular solution must be
extracted from the original theory. In this case, the violation
is quite mild since it is only the energy condition connected
with the convergence of the geodesics that is violated (SEC),
and even though in a quite restricted region of the whole
space-time.

The stability of the two solutions determined here has been
briefly discussed and it has been shown that the two solutions
obey the stability condition.

Evidently, there are many open issues related to the prob-
lem treated here, like the complete determination of theLNED

function corresponding to the configurations found, and the
stability problem. We postpone such a new analysis to future
works.
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Appendix: Asymptotic analysis of the new solutions

Let us analyse the regularity of the solutions in the limit
r → ∞. The radial coordinate is redefined as x = 1/r .
Hence, r → ∞ implies x → 0. The metric function ea(r),
for the solution (30), behaves in this limit as

ea(r) ∼ 1 − 2mx + q2x2 + O(x3). (52)

From this behaviour, it is possible to verify that the metric
behaves, up to second order, as in the Reissner–Nordström
solution. In this limit we have

f (R) ∼ 1

π2q2

[
38c1

m3

q4 + O(x5)

]
. (53)

Hence, the function f (R) becomes asymptotically a con-
stant, which depends on c1, which cannot be made zero.
The Lagrangian density LNED becomes also a constant. We
can verify this by using Eq. (19) for the model (29), which
becomes

LNED ∼ −192c1m3

π2q4κ2 − c1x

κ2 + O(x3). (54)

From this expression, it is possible to verify that the
Lagrangian density becomes also a constant, which is mul-
tiplied, in the action, by 2κ2: it is zero in this limit, which is
normal for solutions that are asymptotically flat. Performing
the same analysis for the Lagrangian density given by (20),
we find

LF ∼ −q2κ2

c1
x3 + O(x4). (55)

The component F10 of the electric field (22) approximates

F10 ∼ 3m

κ2q
c1 − c1

κ2qx
+ 2c0q

κ2 x2 + O(x3). (56)

Note that there is a divergence. But this divergence does not
affect the physical quantities, nor the equations of motion
for this solution. In order to verify this, we will evaluate the
electric energy density. Hence, let us turn attention to other
physical quantities like the electrical energy density (right
side to Eq. (7)), which becomes

ρ ∼ 192m3

π2q2 c1 + 2c1x + O(x2). (57)
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The electrical energy density goes to a constant in the limit
r → +∞. On the other hand, the effective electric energy
density is given, in this limit, by

ρeff ∼ q2

κ2 x
4 + O(x5), (58)

which goes asymptotically to zero.
For the solution (30) the left side for first equation of

motion, in the limit r → +∞, leads to

192c1
m3

π2q4 + 2c1x − 3c1mx2 + O(x3). (59)

This result shows that the infinite quantity coming from
fR(r) = c0 + c1r does not affect the equations of motion.
The same happens for the second equation of motion. For the
third equation of motion, we find

192c1
m3

π2q4 + c1x + O(x3). (60)

Hence, the equations of motion are regular in the limit r →
+∞: the equations are consistent since the infinity coming
from fR(r) = c0 + c1r is compensated by other terms.

Now, we perform a similar asymptotical analysis (r →
+∞, with x = 1/r ) for the second solution given by (43).
In this case,

ea(r) ∼ 1 − 2mx + q2x2 + O(x3), (61)

showing that asymptotically the metric coincides with the
Reissner–Nordström case.

The function f (R) for this solution reads

f (R) ∼ 24c1
m3

q4 + O(x5). (62)

Again, the function f (R) becomes asymptotically a constant
which depends on c1, which cannot be made zero. Inspecting
the action, we have f (R) ∼ constant or f (R) ∼ −2�. On
the other hand, the component F10 becomes

F10 ∼ − c1

qκ2x
+ 3c1m

qκ2 + 2c0q

κ2 x2 + O(x3). (63)

Hence, the component F10 diverges in the limit r → +∞.
But this does not imply the presence of divergences in quanti-
ties like the energy density, among others, nor in the equations
of motion. In fact, the Lagrangian LNED becomes

LNED ∼ −12c1
m3

q4κ2 − c1

κ2 x + O(x3), (64)

leading to

LF ∼ −q2κ2

c1
+ O(x4). (65)

For the electrical energy density we find

ρ ∼ 12c1
m3

q4 + 2c1x − 3c1mx2 + O(x3), (66)

which is a constant in the limit r → +∞. For the effective
energy density, we find

ρeff ∼ 3q6

4m2κ2 x
6 + O(x7), (67)

which goes to zero in the limit r → +∞.
Let us now verify how the equations of motion behave.

The left hand side of the first one reads in that limit

12c1
m3

q4 + 2c1x − 3c1mx2 + O(x3). (68)

This shows that the infinity introduced by fR(r) = c0 +
c1r = c0 + c1x (−1) is cancelled and does not contribute to
the equations of motion. The same happens for the second
equation (by symmetry). For the third equation, we find

12c1
m3

q4 + c1x + O(x3). (69)

Hence, we confirm that a regular behaviour is also verified
for the second solution, since there is no divergence in the
physically relevant quantities, nor in the equations of motion.
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