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Abstract In this article, our prime objective is to study
the inflationary paradigm in the context of the generalized
tachyon (GTachyon) living on the world volume of a non-
BPS string theory. The tachyon action is considered here
is modified compared to the original action. One can quan-
tify the amount of the modification via a power q instead of
1/2 in the effective action. Using this set-up we study infla-
tion by various types of tachyonic potentials, using which
we constrain the index q within, 1/2 < q < 2, and a spe-
cific combination (∝ α′M4

s /gs) of the Regge slope α′, the
string coupling constant gs and the mass scale of tachyon
Ms , from the recent Planck 2015 and Planck+BICEP2/Keck
Array joint data. We explicitly study the inflationary con-
sequences from single field, assisted field and multi-field
tachyon set-ups. Specifically for the single field and assisted
field cases we derive the results in the quasi-de Sitter back-
ground in which we will utilize the details of cosmological
perturbations and quantum fluctuations. Also we derive the
expressions for all inflationary observables using any arbi-
trary vacuum and the Bunch–Davies vacuum. For the single
field and the assisted field cases we derive the inflationary
flow equations, new sets of consistency relations. Also we
derive the field excursion formula for the tachyon, which
shows that assisted inflation is on the safe side compared
to the single field case to validate the effective field theory
framework. Further we study the features of the CMB angu-
lar power spectrum from TT, TE and EE correlations from
scalar fluctuations within the allowed range of q for each
of the potentials from the single field set-up. We also put
constraints from the temperature anisotropy and polarization
spectra, which shows that our analysis is consistent with the
Planck 2015 data. Finally, using the δN formalism we derive
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the expressions for inflationary observables in the context of
multi-field tachyons.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 2
2 GTachyon in string theory . . . . . . . . . . . . . . 4
3 Variants of tachyonic models in string theory . . . . 7

3.1 Model I: inverse cosh potential . . . . . . . . . 9
3.2 Model II: logarithmic potential . . . . . . . . . 10
3.3 Model III: exponential potential Type-I . . . . . 11
3.4 Model IV: exponential potential Type-II (Gaus-

sian) . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Model V: inverse power-law potential . . . . . 14

4 Cosmological dynamics from GTachyon . . . . . . 15
4.1 Unperturbed evolution . . . . . . . . . . . . . 15
4.2 Dynamical solution for various phases . . . . . 21

5 Inflationary paradigm from GTachyon . . . . . . . . 29
5.1 Computation for single field inflation . . . . . . 30

5.1.1 Condition for inflation . . . . . . . . . . 30
5.1.2 Analysis using slow-roll formalism . . . 32
5.1.3 Basics of tachyonic perturbations . . . . 37
5.1.4 Computation of scalar power spectrum . . 40
5.1.5 Computation of tensor power spectrum . 46
5.1.6 Modified consistency relations . . . . . . 51
5.1.7 Field excursion for tachyon . . . . . . . . 55
5.1.8 Semi-analytical study and cosmological

parameter estimation . . . . . . . . . . . 61
5.1.9 Analyzing CMB power spectrum . . . . . 81

5.2 Computation for assisted inflation . . . . . . . 84
5.2.1 Condition for inflation . . . . . . . . . . 84
5.2.2 Analysis using slow-roll formalism . . . 92
5.2.3 Basics of tachyonic perturbations . . . . 96
5.2.4 Computation of scalar power spectrum . . 99
5.2.5 Computation of tensor power spectrum . 101
5.2.6 Modified consistency relations . . . . . . 102
5.2.7 Field excursion for tachyon . . . . . . . . 105

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-4072-2&domain=pdf
mailto:sayantan@theory.tifr.res.in
mailto:sayanphysicsisi@gmail.com


278 Page 2 of 130 Eur. Phys. J. C (2016) 76 :278

5.2.8 Semi-analytical study and cosmological
parameter estimation . . . . . . . . . . . 110

5.3 Computation for the multi-field inflation . . . . 111
5.3.1 Condition for inflation . . . . . . . . . . 112
5.3.2 Analysis using slow-roll formalism . . . 113
5.3.3 The δN formalism for Multi tachyons . . 116
5.3.4 Computation of scalar power spectrum . . 118
5.3.5 Computation of tensor power spectrum . 122
5.3.6 Analytical study for the multi-field model 123

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . 125
References . . . . . . . . . . . . . . . . . . . . . . . . 127

1 Introduction

The primordial inflationary paradigm is a very sublime
thought aimed to explain various aspects of the early uni-
verse, in which perturbations occur and matter is created.
For recent developments see Refs. [1–10]. The success of pri-
mordial inflation can be gauged by the current observations
arising from the cosmic microwave background (CMB) radi-
ation [11–13]. The observations from Planck have put inter-
estingly tight bounds on a number of cosmological observ-
ables related to the perturbations, which also determines
any departure from the Gaussian perturbations and the con-
straint on the tensor-to-scalar ratio, r�, which can potentially
reveal the scale of New Physics within any given effective
field theory set-up. But a big issue may crop up in model
discrimination and also in the removal of the degeneracy
of cosmological parameters obtained from CMB observa-
tions. Non-canonical interactions in the effective theory set-
up [14–23] are among the possibilities through which one
can address this issue.1 The natural source for such non-
canonical interactions is string theory. The most promising
example is the Dirac–Bonn–Infeld (DBI) effective action for
the tachyon field [48–51]. In this paper, we will only focus
on tachyons in weakly coupled Type-IIA/IIB string theory
[52,53].

The phenomenon of tachyon condensation was introduced
in Refs. [48,49], where Type-IIA/IIB string theory and the
tachyon instability on D-branes have been studied elabo-
rately. The rolling tachyon [54–56] in weakly coupled Type-
IIA/IIB string theory may be described in terms of an effec-
tive field theory for the tachyon condensate in Refs. [57–
73]. The cosmological implications of the tachyon were
studied in [74–86]. For more details see also Refs. [87–
95]. In the context of cosmology, the detailed conse-

1 The other possibilities are: non-minimal interactions between the
matter and gravity sector [(example: SM Higgs with Einstein grav-
ity [24,25]], addition of higher derivative terms in the gravity sector
(example: Starobinsky model [26]), modification of the gravity sector
through extra dimensions (example: 5D membrane models [27–47]).

quences have been studied in the following topics over many
years:

1. Inflationary paradigm [75–86,92],
2. Primordial non-Gaussianity and CMB aspects [96–104],
3. Reheating scenario and particle creation [105,106],
4. Late time cosmic acceleration (dark energy) [107–110].

In this work, we introduce the most generalized version of
the tachyon effective action in which we are interested to
study the cosmological consequences from the non-canonical
higher-dimensional effective field theory operators, originat-
ing from string theory. Technically we rename such a non-
canonical field a generalized tachyon (GTachyon), which
name we will frequently use throughout the rest of the paper.
The prime motivation of writing this paper is the following:2

• To update the present status of non-canonical interaction
for stringy tachyon field appearing within the framework
of string theory after releasing the Planck 2015 data.

• To explicitly study the role of tachyon field and its gener-
alized version, GTachyon, to explain the observed tem-
perature anisotropy and polarization in the CMB angular
power spectrum.

• To study the specific role of the most generalized ver-
sion of non-canonical higher-dimensional effective field
theory Wilsonian operators.

• To give a broad overview of the present constraints on the
inflationary paradigm from the most generalized version
of the tachyon string theory.

• To test the explicit dynamical features of various tachy-
onic potentials obtained from string theory and also to
learn about the specific structural form of effective field
theory operators for a specific type of potential.

Throughout the paper we have taken the following assump-
tions:

1. The tachyon field T is minimally coupled to the Einstein
gravity sector.

2. The initial condition for inflation is fixed via Bunch–
Davies (BD) vacuum [111]. For completeness we also
present the results obtained from an arbitrary vacuum
(AV). For a classical initial condition the amplitude of

2 Since the Gtachyon contains non-minimal interactions, it is naturally
expected that it will sufficiently modify the consistency relations. Also
due to such non-canonical interactions it is expected that the amount of
primordial non-Gaussianity is getting enhanced by a sufficient amount,
by breaking the non-Gaussian consistency relations known in cosmo-
logical literature. For completeness it is important to mention here
that we have not investigated the issues related to primordial non-
Gaussianity yet in this paper. We will report on these issues in our
future work.

123



Eur. Phys. J. C (2016) 76 :278 Page 3 of 130 278

the primordial gravitational waves would be very tiny and
practically undetectable, therefore this can be treated as
the first observable evidence of quantum theory gravity,
such as string theory. However, apart from the impor-
tance and applicability of the quantum version of a
Bunch–Davis vacuum on its theoretical and observa-
tional ground, it is still not at all well understood from
the previous works in this area whether the quantum
Bunch–Davies vacuum is the only possible source gen-
erating a large value of the tensor-to-scalar ratio during
the inflationary epoch or not. One of the prime possi-
bilities coming from the deviation from the quantum
Bunch–Davies vacuum and consideration of the quantum
non-Bunch–Davies or an arbitrary vacuum in the present
non-canonical picture may also be responsible for the
generation of a large tensor-to-scalar ratio and large non-
Gaussianity during inflation. Within the framework of
effective field theory, such an arbitrary vacuum is com-
monly identified with the α-vacuum [112–118], which
has a string theoretic origin.

3. We would like to point out that the tachyon mode appears
in the quantization of the open string struck to the non-
BPS brane. The effective action of this tachyon field is
constructed on the assumption that the tachyon field cou-
ples only to the graviton of the closed string sector with
fixed vacuum expectation value for the dilation field. The
open string tachyon condensation phenomenon fits in
well with this assumption.

4. The sound speed is cS < 1 in general for non-canonical
interactions [14–23], which is the most promising ingre-
dient for a tachyonic set-up, to generate simultaneously
a detectable value of the tensor-to-scalar ratio and large
non-Gaussianity. This fact can be more clearly visualized
when we go to an all higher order expansion in slow-roll
or more precisely by taking the exact solution of the mode
functions for scalar and tensor fluctuations as obtained
from cosmological perturbation theory by appropriately
choosing the Bunch–Davies case or any arbitrary initial
conditions for inflation.

5. UV cut-off of the effective field theory is fixed at �UV ∼
Mp, where Mp = 2.43×1018 GeV is the reduced Planck
mass. But in principle one can fix the scale between GUT
scale and the reduced Planck scale, i.e., �GUT < �UV ≤
Mp. But in such a situation �UV acts as a regulating
parameter in the effective field theory [23,119].

6. Within the region of N�(=Ncmb) ≈ O(50–70) e-
foldings, we will use the following constraints in the
background of �CDM model for:

Planck (2015)+WMAP-9+high L(TT) data: [120]

r(k�) ≤ 0.11 (within 2σ C.L .), (1.1)

ln(1010PS) = 3.089 ± 0.036 (within 2σ C.L .), (1.2)

nS = 0.9569 ± 0.0077 (within 3σ C.L .), (1.3)

αS = dnS/d ln k = 0.011+0.014
−0.013 (within 1.5σ C.L .),

(1.4)

κS = d2nS/d ln k2 = 0.029+0.015
−0.016 (within 1.5σ C.L .).

(1.5)

Planck (2015)+BICEP2/Keck Array joint data: [121]

r(k�) ≤ 0.12 (within 2σ C.L .), (1.6)

ln(1010PS) = 3.089+0.024
−0.027 (within 2σ C.L .), (1.7)

nS = 0.9600 ± 0.0071 (within 3σ C.L .), (1.8)

αS = dnS/d ln k = −0.022 ± 0.010

(within 1.5σ C.L .), (1.9)

κS = d2nS/d ln k2 = 0.020+0.016
−0.015

(within 1.5σ C.L .). (1.10)

The plan of the paper is as follows:

• In Sect. 2, we have discussed the role of tachyon in non-
BPS barnes in weakly coupled Type-IIA/IIB string theory
and also introduced the GTachyon in the effective action
of string theory.

• In Sect. 3, we have introduced and studied the features
from variants of the tachyonic potentials inspired by non-
BPS branes in string theory.

• In Sect. 4, we have studied the cosmological dynamics
from GTachyons, in which we have explicitly discussed
the unperturbed evolution and dynamical solution in var-
ious phases of the universe.

• In Sect. 5, we have explicitly studied inflationary
paradigm from single, assisted and multi-field Gtachyons.
Particularly for the single field and assisted field cases in
the presence of GTachyon, we have derived the inflation-
ary Hubble flow and potential dependent flow equations,
new sets of consistency relations, which are valid in the
slow-roll regime and field excursion formula for tachyon
in terms of the inflationary observables.

• In Sect. 6, we have mentioned the future prospects of the
present work and summarized the context of the present
work.

In this paper, we have explored various cosmological conse-
quences from the GTachyonic field. We start with the basic
introduction of tachyons in the context of non-BPS string
theory, where we also introduce the GTachyon field, in the
presence of which the tachyon action is modified and one
can quantify the amount of the modification via a super-
script q instead of 1/2. This modification exactly mimics
the role of effective field theory operators and studying the
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various cosmological features from this theory, one of our
final objectives is to constrain the index q and a specific
combination (∝ α′M4

s /gs) of the Regge slope parameter α′,
the string coupling constant gs and mass scale of tachyon
Ms , from the recent Planck 2015 and Planck+BICEP2/Keck
Array joint data. To serve this purpose, we introduce var-
ious types of tachyonic potentials: the inverse cosh, loga-
rithmic, exponential and inverse polynomials, using which
we constrain the index q. To explore this issue in detail, we
start with the characteristic features of the each potentials.
Next we discuss the dynamics of GTachyon as well as usual
tachyon for single, assisted and multi-field scenario. Next
we have explicitly studied the inflationary paradigm from
a single field, assisted field and multi-field tachyon set-up.
Specifically for the single field and assisted field cases we
have derived the results in the quasi-de Sitter background
in which we have utilized the details of: (1) cosmological
perturbations and quantum fluctuations for scalar and ten-
sor modes, (2) the slow-roll prescription. In this context we
have derived the expressions for all inflationary observables
using any arbitrary vacuum and also for Bunch–Davies vac-
uum. For single field and assisted field case in the presence of
GTachyon we have derived the inflationary Hubble flow and
potential dependent flow equations, new sets of consistency
relations valid in the slow-roll regime and also derived the
expression for the field excursion formula for the tachyon
in terms of the inflationary observables from both of the
solutions obtained from arbitrary and Bunch–Davies initial
conditions for inflation. Particularly the derived formula for
the field excursion for GTachyon can be treated as an one
of the important probes through which one can distinguish
between various tachyon models and also check the valid-
ity of effective field theory prescription and compare the
results obtained from assisted inflation as well. The results
obtained in this context explicitly show that assisted inflation
is better compared to single field inflation from the tachyon
portal, provided the number of identical tachyon fields is
required to be large to validate effective field theory pre-
scription. Next using the explicit form of the tachyonic poten-
tials we have studied the inflationary constraints and quan-
tify the allowed range of the generalized index q for each of
the potentials. Hence using each specific form of the tachy-
onic potentials in the context of the single field scenario, we
have studied the features of CMB angular power spectrum
from TT, TE and EE correlations from scalar fluctuations
within the allowed range of q for each potentials. We also
put the constraints from the Planck temperature anisotropy
and polarization data, which shows that our analysis is consis-
tent with the data. We have additionally studied the features
of the tensor contribution in the CMB angular power spec-
trum from TT, BB, TE and EE correlations, which will give
more interesting information in near future while the signa-
ture of primordial B-modes can be detected. Further, using

the δN formalism, we have derived the expressions for infla-
tionary observables in the context of multi-field tachyons and
demonstrated the results for inverse cosh potential for com-
pleteness.

2 GTachyon in string theory

In this section we explicitly study the world volume actions
for non-BPS branes which finally govern their cosmological
dynamics. For the sake of simplicity in this discussion we
neglect the contribution from the fermions and concentrate
only on the massless bosonic fields for the non-BPS branes.
The world volume action for non-BPS branes is described
by the sum of the Dirac–Born–Infeld (DBI) and the Wess–
Zumino (WZ) terms in Type-IIA/IIB string theory. The effec-
tive action for DBI in a non-BPS p-brane is given by [122–
124]

S(p)
DBI = −Tp

∫
dp+1σ e−φ

√
−det

(
Zμν + Fμν

)
, (2.1)

where the metric has signature (−,+,+,+) and Zμν is
defined as

Zμν = Gμν + α′∂μT ∂νT . (2.2)

Here T is the dimensionless tachyon field whose properties
have been discussed later in detail. Also in Eq. (2.1) Tp rep-
resents the brane tension defined as [122–124]

Tp = √
2(2π)−pg−1

s (2.3)

and α′ represents the Regge slope parameter in string theory.
Here Type-IIA/IIB string theory contains the non-BPS Dp-
branes [125], which have precisely those dimensions which
BPS D-branes do not have explicitly. This implies that Type-
IIA string theory has non-BPS Dp-branes for only odd p
and Type-IIB string theory has non-BPS Dp-branes only for
even p in the present context. Additionally, it is important to
note that gs characterizes the string coupling constant. Also
in Eq. (2.1), Gμν is defined via the following transformation
equation:

Gμν = GMN ∂μX
M∂νX

N . (2.4)

In Eq. (2.4) M, N characterize the ten-dimensional (D = 10)
indices, which run from 0, 1, . . . , 9; σμ(0 ≤ μ ≤ p) denotes
the world volume coordinates of the Dp brane. Also it is
important to note that, in this discussion, GMN represents
the ten-dimensional (D = 10) background metric for Type-
IIA/IIB string theory.

It is important to mention here that, in the context of
non-BPS D-brane, the stringy tachyon comes from only one
specific sector of string theory and consequently it is a real
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scalar field using which we will explain the cosmological
dynamics in this article for p = 3. Additionally it is also
important to note that Type-IIA/IIB string theories contain
unstable non-BPS D-branes in their spectra. The most eas-
iest way to define these types of D-branes in the context
of IIA/IIB string theory is to start the computation with a
coincident BPS Dp-D̄p-brane pair in Type-IIB/IIA string
theory, and then take a specific orbifold of the string theory
by (−1)FL , where FL signifies the specific contribution to
the space-time fermion number from the left-moving sec-
tor of the world-sheet string theory. Now in this context the
Ramond–Ramond (RR) fields are odd under (−1)FL trans-
formation and consequently all the Ramond–Ramond (RR)
fields of Type-IIB/IIA string theory are projected out by the
same amount via (−1)FL projection. As a result the twisted
sector stringy states then give us back the RR fields of Type-
IIA/IIB string theory in the present context. Most impor-
tantly, here the (−1)FL projection reverses the signature of
the RR charge and consequently it transforms a BPS Dp-
brane to a D̄p-brane and vice versa. This further implies that
due to its operation on the open string states on a Dp–D̄p-
brane stringy system will do the job of conjugate operation
on the Chan–Paton factor by the action of exchange operator
σ1 in this context. Thus technically the modding out opera-
tion on the Dp–D̄p-brane by exactly the amount of (−1)FL

eliminates all the open string states which carry a Chan–
Paton factor σ2 and σ3, as both of them anti-commute with
the exchange operator σ1. Additionally it is important to note
that this operation finally keeps the open string states which
are characterized via the Chan–Paton factors I andσ1. Finally
all such operations give us a non-BPS Dp-brane in the present
context. Although in this discussion we are only interested
in the non-BPS D-branes, the most important characteristic
feature that distinguishes the physics of non-BPS D-branes
from BPS D-branes is that the mass spectrum of open strings
on a non-BPS D-brane contains a single mode of negative
mass squared besides an infinite number of other modes of
positive definite mass squared. This negative mass squired
mode is identified with the tachyonic mode which is exactly
equivalent to a particular linear combination of the two tachy-
onic modes living on the original brane–antibrane pair stringy
system that survives the previously mentioned (−1)FL pro-
jection and contains exactly the same mass squared contri-
bution.

In our analysis for the sake of simplicity we have neglected
the contribution from the antisymmetric Kalb–Ramond two
form field from the effective action but the gauge invari-
ance of the action requires the presence of all such anti-
symmetric tensor contributions in the original version of
the string effective action. In the present context, it is
important to note that Gμν can be physically interpreted
as the induced metric on the membrane. Additionally it
is important to note that the background metric GMN is

not at all arbitrary for the present set-up but the structural
form of the metric is restricted in the specific sense that
it has to satisfy the sets of background field equations in
this context. Also in our discussion the transverse compo-
nent of the fluctuations of the D-membrane is described
by (9 − p) scalar fields Xi , where the index i runs from
p + 1 ≤ i ≤ 9, and the gauge field Aμ describes the
fluctuations along the longitudinal direction of the mem-
brane.

Before writing down the total effective action for non-
BPS D-brane in string theory it is important to mention that
the non-BPS p-brane has an extra tachyon field appearing in
both of the Dirac–Born–Infeld (DBI) and the Wess–Zumino
(WZ) stringy effective actions. The corresponding effective
actions can be written in the non-BPS string theory set-up as
[122–124]

S(p)
DBI = −

∫
dp+1σ e−φ

√
−det

(
Zμν + Fμν

)
×�(T, ∂μT, Dμ∂νT ), (2.5)

S(p)
WZ =

∫
dp+1σ C ∧ dT ∧ eF , (2.6)

where the fieldC contains Ramond–Ramond (RR) fields and
the leading term has a (p + 1)-differential form. This also
mimics the role of a source term for the membrane and its
presence is explicitly required for consistency of the specific
version of the field theory like anomaly cancellation within
the set-up of string theory. It is important to mention here
that we have the world volume action for a Dp-brane in the
(p + 1)-dimensional case, where p characterizes the spatial
dimension and 1 stands for time. The WZ term plays an
important role since the BPS Dp-brane is charged under a
(p + 1) rank RR gauge field. Consequently the total action
is therefore the DBI action together with the WZ action. For
the non-BPS Dp-brane, the brane is charged under a rank p
RR gauge field. As a result the WZ action consists of a wedge
product of this p form and additionally a one form dT , where
T is the tachyon field. Also it is important to note that for the
non-BPS case Fμν is explicitly defined as [122–124]

Fμν = Bμν + 2πα′Fμν + ∂μY
I ∂νY

I

+ (GI J + BI J ) ∂μY
I ∂νY

J + (
GμI + BμI

)
∂νY

I

+ (GIν + BIν) ∂μY
I , (2.7)

and T represents the dimensionless tachyon field and �

characterizes the generalized functional in non-BPS p-
membrane. In Eq. (2.7), the rank-2 field strength tensor Fμν

is defined as

Fμν = ∂[μAν] (2.8)

and Bμν represents a rank-2 Kalb–Ramond field and some-
times this can be interpreted as the pullback of BMN onto
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the D-brane world volume. Using this specific action, men-
tioned in Eq. (2.7), we can compute the source contributions
and terms for various closed string fields produced by the
membrane. Additionally, it is important to note that, on a
non-BPS Dp-membrane world volume we have an infinite
tower of massive fields, a U(1) gauge field Aμ with the restric-
tion on gauge indices, 0 ≤ μ ≤ p, and a set of scalar fields
Y I , one for each direction y I transverse besides the tachy-
onic field to the D-brane. Here it is important to note that
(p + 1) ≤ I ≤ D, where D is 9 for superstring theory and
25 for bosonic string theory. Within the present set-up the
tachyon field is defined in such a way that for

T = 0, F = Tp, (2.9)

the a constraint condition is explicitly satisfied. For a non-
BPS p membrane the field content C as appearing in the
Wess–Zumino (WZ) action contains the Ramond–Ramond
(RR) fields but careful observation clearly indicates that the
leading order contribution inC is characterized by the p form
in the effective action. Also it is important to mention here
that, for constant tachyon background T , the Wess–Zumino
(WZ) effective action automatically vanishes in the present
context as

dT = 0, (2.10)

and for such a specific background the generalized functional
� can be recast in the following form:

�(T, ∂μT, Dμ∂νT ) = V (T ), (2.11)

where V (T ) represents the effective tachyon potential within
which the contribution from the membrane tension is already
taken. Consequently Eq. (2.5) can be recast in the following
simplified form:

S(p)
DBI = −

∫
dp+1σ e−φ V (T )

√
−det

(
Zμν + Fμν

)
.

(2.12)

For non-BPS string theory in the constant dilaton background
the purely tachyonic part of the action, after inclusion of the
massless fields on the Dp-membrane world volume around
the tachyon vacuum, is given by

S(p)
D = −

∫
dp+1σ V (T )

√
−det

(Zμν + Fμν + ∂μY I ∂νY I
)
.

(2.13)

After neglecting the contribution from the massless fields
for non-BPS string theory the tachyonic part of the effective
action describing the Dp-brane world volume is given by
[122–124] the following simplified form:

S(p)
D = −

∫
dp+1σ V (T )

√
−det

(
Zμν

)

= −
∫

dp+1σ V (T )

√
−det

(
Gμν + α′∂μT ∂νT

)

= −
∫

dp+1σ
√−g V (T )

√
1 + α′gμν∂μT ∂νT .

(2.14)

In a more generalized prescription Eq. (2.14) can be modified
into the following effective action:

S(pq)
D = −

∫
dp+1σ

√−g V (T )
(
1 + α′gμν∂μT ∂νT

)q
,

(2.15)

which we identified with the most generalized Gtachyon
action in string theory. Here for p = 3, i.e., for the D3 brane,
Eq. (2.14) refers to the following crucial issues:

• Here p = 3, q = 1/2 corresponds to the exact tachyonic
behavior of the effective action and it is commonly used
to describe the cosmological dynamics,

• Here p = 3, q = 1 corresponds to the single field behav-
ior in cosmological dynamics where the kinetic term of
the tachyon field is non-canonical. In this case the non-
canonical contribution in the effective action is given by
α′V (T ), where V (T ) is the tachyon effective potential.
This situation is different from the usual single field mod-
els of inflation where the kinetic term is canonical within
the framework of string theory.

• For p = 3, 1/2 < q < 1 or p = 3, q < 1/2
or p = 3, q > 1 it contains various non-trivial fea-
tures in cosmological dynamics. In this case the effective
action is significantly different from the usual tachyon
action as appearing in the context of string theory. In
this case the effective action describes a huge class of
effective field theories of inflationary models which can
be embedded within the framework of tachyon in string
theory. In the present context, the generalized factor
V (T )

(
1 + α′gμν∂μT ∂νT

)q with exponent q can be
treated as Wilsonian operators as appearing in the con-
text of effective field theory. For an example let us con-
sider a situation where we treat the Regge slope param-
eter α′ to be small. In this case the generalized factor
V (T )

(
1 + α′gμν∂μT ∂νT

)q takes the following struc-
ture:

V (T )
(
1 + α′gμν∂μT ∂νT

)q

= V (T )

q∑
k=0

qCk
(
α′gμν∂μT ∂νT

)k

= V (T )

[
1 + q

(
α′gμν∂μT ∂νT

)

+ q(q − 1)

2

(
α′gμν∂μT ∂νT

)2 + · · ·
]

, (2.16)
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where · · · contains higher order terms which are sup-
pressed by the powers of the Regge slope parameter α′.
Here for each value of k(= 0, 1, 2, . . . , q) the expansion
factor qCk

(
α′)k mimics the role of Wilson coefficients.

Here we would like to point out that the tachyon mode appears
in the quantization of the open string struck to the non-BPS
brane. The effective action of this tachyon field is constructed
on the assumption that the tachyon field couples only to the
graviton of the closed string sector with fixed vacuum expec-
tation value for dilation field. The open string tachyon con-
densation phenomenon fits in well with this assumption.

For a multi-tachyonic field scenario one can generalize the
tachyonic part of the non-BPS action as stated in Eqs. (2.14)
and (2.15):

S(p)
D = −

N∑
i=1

∫
dp+1σ

√−g V (Ti )
√

1 + α′gμν∂μTi∂νTi ,

(2.17)

S(pq)
D = −

N∑
i=1

∫
dp+1σ

√−g V (Ti )
(
1 + α′gμν∂μTi∂νTi

)q
.

(2.18)

In this case one can introduce a total effective potential of
tachyonic fields VE (T ), which can be expressed in terms of
N component tachyonic fields as

VE (T ) =
N∑
i=1

V (Ti ), (2.19)

which is very useful to study the cosmological dynamics for
the p = 3 case, i.e., for the D3 brane.

Also for the assisted case one can assume all N multi-
tachyonic fields are identical to each other, i.e.,

Ti = T ∀ i = 1, 2, 3, . . . , N . (2.20)

Consequently in such a prescription Eqs. (2.17) and (2.18)
can be rewritten as

S(p)
D = −

N∑
i=1

∫
dp+1σ

√−g V (T )

√
1 + α′gμν∂μT ∂νT

= −
∫

dp+1σ
√−g NV (T )

√
1 + α′gμν∂μT ∂νT ,

(2.21)

S(pq)
D = −

N∑
i=1

∫
dp+1σ

√−g V (T )
(
1 + α′gμν∂μT ∂νTi

)q

= −
∫

dp+1σ
√−g NV (T )

(
1 + α′gμν∂μT ∂νT

)q
.

(2.22)

In this case the total effective potential of the tachyonic fields
VE (T ) can be recast as

VE (T ) =
N∑
i=1

V (Ti ) =
N∑
i=1

V (T ) = NV (T ). (2.23)

In the next section we will discuss the various aspects of
tachyonic potential V (T ) and also mention the various mod-
els of tachyonic potential that can be derived from a string
theory background.

3 Variants of tachyonic models in string theory

On general string theoretic grounds, one can argued that at
the specified minimum T0 of the effective potential V (T )

vanishes [122–124], i.e.,

V (T0) = 0. (3.1)

Consequently the world volume action vanishes identically
and in this situation the gauge field mimics the role of
Lagrange multiplier field. Finally this imposes a constraint on
the non-BPS set-up such that the gauge current also vanishes
identically. This implies that all the states which are charged
under this gauge field are to disappear from the spectrum.
Also it is important to mention another important feature of
the tachyonic potential in which it admits kink profile for
the stringy tachyonic field. Also on an unstable non-BPS p-
brane tachyon condensation occurs to form a kink profile and
finally it forms a stable BPS (p−1) brane configuration. This
kink profile for the tachyon is expected to give a δ-function
from dT - contribution and thus to reproduce the standard WZ
term in the resulting D(p − 1)-brane. Most importantly, the
kink solution effectively reduces the dimension of the world
volume by one. Although finding an explicit form of the
tachyonic potential is a very difficult, string theory predicts
the approximated form of the tachyonic potential. Addition-
ally, we also assume that the tachyonic potential V (T ) sat-
isfies the following properties to describe the cosmological
dynamics for the non-BPS D3 brane set-up:

1. The tachyonic potential at T = 0 satisfies

V (T = 0) = λ = M4
s

(2π)3gs
, (3.2)

where gs is the string coupling constant and Ms signifies
the mass scale of the tachyonic string theory. For multi-
tachyonic field and assisted case Eq. (3.2) is modified as

VE (T = 0) =
N∑
i=1

V (Ti = 0) =
N∑
i=1

λi

=
N∑
i=1

M4
s

(2π)3g(i)
s

, (3.3)
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VE (T = 0) =
N∑
i=1

V (Ti = T = 0) =
N∑
i=1

λi = Nλ

= M4
s N

(2π)3gs
. (3.4)

Here g(i)
s represents the string coupling constant for the

i th field content, which are not same for all N tachy-
onic degrees of freedom. For the sake of simplicity, here
we also assume that the mass scale associated with N
tachyons for multi-tachyonic case and assisted case is
identical for all degrees of freedom. On the other hand,
for the assisted case we assume all couplings are exactly
identical and consequently we get an overall factor of N
multiplied with the result obtained for the single tachy-
onic field case.

2. Inflation generally takes place at an energy scale:

V 1/4
inf = V 1/4(T̃0) ∝ λ1/4 (3.5)

with the single tachyon field fixed at T ∼ T̃0, and within
the set-up of string theory T̃0 is identified to be the mass
scale of the tachyon by in the following fashion:

T̃0 ∼ Ms . (3.6)

For the multi-tachyonic field case Eqs. (3.5) and (3.6) are
modified as

V 1/4
inf = V 1/4

E =
{

N∑
i=1

V (T̃0i )

}1/4

∝
{

N∑
i=1

λi

}1/4

=
{

N∑
i=1

M4
s

(2π)3g(i)
s

}1/4

, (3.7)

T̃0 ∼
N∑
i=1

T̃0i = Ms . (3.8)

Similarly, for the assisted case Eqs. (3.5) and (3.6) are
modified as

V 1/4
inf = V 1/4

E =
{

N∑
i=1

V (T̃0i )

}1/4

∝
{

N∑
i=1

λi

}1/4

= (Nλ)1/4 =
{

M4
s N

(2π)3gs

}1/4

, (3.9)

T̃0 ∼
N∑
i=1

T̃0i =
N∑
i=1

T̃0 = NT̃0 = NMs . (3.10)

3. For T > 0 the first derivative of the single tachyonic
potential is always positive, i.e.,

V ′(T > 0) > 0 (3.11)

where ′ represents differentiation with respect to the
tachyon field T . For the multi-tachyonic and assisted
cases Eq. (3.11) can be recast as

V ′
E (T > 0) =

N∑
i=1

dV (Ti > 0)

dTi
> 0, (3.12)

V ′
E (T > 0) =

N∑
i=1

dV (Ti > 0)

dTi
=

N∑
i=1

dV (T > 0)

dT

= NV ′(T > 0) > 0. (3.13)

4. At the asymptotic case of the single tachyonic field |T | →
∞ the potential should satisfy

V (|T | → ∞) → 0. (3.14)

For the multi-tachyonic and assisted cases Eq. (3.13) can
be recast thus:

VE (|T | → ∞) =
N∑
i=1

V (|Ti | → ∞) → 0, (3.15)

VE (|T | → ∞) =
N∑
i=1

V (|Ti | → ∞)

= NV (|T | → ∞) → 0. (3.16)

5. Also one can consider that the tachyonic potential con-
tains a global maximum at T = 0, i.e.,

V ′′(T = 0) < 0 (3.17)

for which the value of the potential is given by Eq. (3.2).
Similarly for the multi-tachyonic and assisted cases
Eq. (3.18) can be recast thus:

V ′′
E (T = 0) =

N∑
i=1

d2V (Ti > 0)

dT 2
i

< 0, (3.18)

V ′′
E (T = 0) =

N∑
i=1

d2V (Ti > 0)

dT 2
i

=
N∑
i=1

d2V (T > 0)

dT 2

= NV ′′(T = 0) < 0. (3.19)

In the next subsections we mention variants of the tachy-
onic potentials which satisfy the various above mentioned
characteristics.
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3.1 Model I: inverse cosh potential

For single field case the first model of the tachyonic potential
is given by [55,56,84,126]

V (T ) = λ

cosh
(

T
T0

) , (3.20)

and for the multi-tachyonic and assisted cases the total effec-
tive potential is given by

VE (T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

λi

cosh
(

Ti
T0i

) , for Multi tachyonic,

N∑
i=1

λ

cosh
(

T
T0

)
= Nλ

cosh
(

T
T0

) , for Assisted tachyonic.

(3.21)

Here the potential satisfies the following criteria:

• At T = 0 for the single field tachyonic potential:

V (T = 0) = λ (3.22)

and for the multi-tachyonic and assisted cases we have

VE (T = 0) =
N∑
i=1

λi , (3.23)

VE (T = 0) =
N∑
i=1

λi = Nλ. (3.24)

• At T = T0 for the single field tachyonic potential:

V (T = T0) = λ

cosh(1)
�= 0 (3.25)

and for the multi-tachyonic and assisted cases we have

VE (T = 0) =
N∑
i=1

λi

cosh(1)
�= 0, (3.26)

VE (T = 0) =
N∑
i=1

λi

cosh(1)
= Nλ

cosh(1)
�= 0. (3.27)

• For the single field tachyonic potential:

V ′(T ) = − λ

T0
sech

(
T

T0

)
tanh

(
T

T0

)
, (3.28)

V ′′(T ) = − λ

T 2
0

[
sech3

(
T

T0

)

− sech

(
T

T0

)
tanh2

(
T

T0

)]
. (3.29)

Now to find the extrema of the potential we substitute

V ′(T ) = 0 (3.30)

which give rise to the following solutions for the tachy-
onic field:

|T | = 2m T0π, (2m + 1) T0π (3.31)

where m ∈ Z. Further substituting the solutions for
tachyonic field in Eq. (3.29) we get

V ′′(|T | = 2m T0π) = − λ

T 2
0

, (3.32)

V ′′(|T | = (2m + 1) T0π) = − λ

T 2
0

, (3.33)

and at these points the value of the potential is computed
as

V (|T | = 2m T0π) = λ

cosh (2m π)
= λ sech (2m π) ,

(3.34)

V (|T | = (2m + 1) T0π) = λ

cosh ((2m + 1) π)

= λ sech ((2m + 1) π) . (3.35)

It is important to note for the single tachyonic case that for
λ > 0, V ′′(|T | = 2m T0π, (2m + 1) T0π) > 0, i.e., we
get maxima on the potential and for the assisted case the
results are the same, provided the following replacement
occurs:

λ → Nλ, (3.36)

and finally for the multi-tachyonic case we have

V ′(Ti ) = − λi

T0i
sech

(
Ti
T0i

)
tanh

(
Ti
T0i

)
, (3.37)

V ′′(Ti ) = − λi

T 2
0i

[
sech3

(
Ti
T0i

)

− sech

(
Ti
T0i

)
tanh2

(
Ti
T0i

)]
. (3.38)

Now to find the extrema of the potential we substitute

V ′(Tj ) = 0 ∀ j = 1, 2, . . . , N (3.39)
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which gives rise to the following solutions for the j th
tachyonic field:

|Tj | = 2m T0 jπ, (2m + 1) T0 jπ ∀ j = 1, 2, . . . , N

(3.40)

where m ∈ Z. Further substituting the solutions for
tachyonic field in Eq. (3.38) we get

V ′′(|Tj | = 2m T0 jπ) = − λ j

T 2
0 j

, (3.41)

V ′′(|Tj | = (2m + 1) T0 jπ) = − λ j

T 2
0 j

, (3.42)

and at these points the value of the total effective potential
is computed as

V (1)
E =

N∑
j=1

V (|Tj | = 2m T0 jπ) =
N∑
j=1

λ j

cosh (2m π)

= sech (2m π)

N∑
j=1

λ j , (3.43)

V (2)
E =

N∑
j=1

V (|Tj | = (2m + 1) T0 jπ)

=
N∑
j=1

λ j

cosh ((2m + 1) π)

= sech ((2m + 1) π)

N∑
j=1

λ j . (3.44)

It is important to note for the multi-tachyonic case that
for λ j > 0, V ′′(|Tj | = 2m T0 jπ, (2m + 1) T0 jπ) > 0,
i.e., we get maxima on the potential V (Tj ) as well as in
VE (T ).

3.2 Model II: logarithmic potential

For single field case the second model of the tachyonic poten-
tial is given by [79]

V (T ) = λ

{(
T

T0

)2 [
ln

(
T

T0

)]2

+ 1

}
, (3.45)

and for the multi-tachyonic and assisted cases the total effec-
tive potential is given by

VE (T )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

λi

{(
Ti
T0i

)2 [
ln

(
Ti
T0i

)]2

+ 1

}
, for Multi tachyonic,

N∑
i=1

λ

{(
T

T0

)2 [
ln

(
T

T0

)]2

+ 1

}

= Nλ

{(
T

T0

)2 [
ln

(
T

T0

)]2

+ 1

}
, for Assisted tachyonic.

(3.46)

Here the potential satisfies the following criteria:

• At T = 0 for the single field tachyonic potential:

V (T = 0) = λ (3.47)

and for the multi-tachyonic and assisted cases we have

VE (T = 0) =
N∑
i=1

λi , (3.48)

VE (T = 0) =
N∑
i=1

λi = Nλ. (3.49)

• At T = T0 for the single field tachyonic potential:

V (T = T0) = λ, (3.50)

and for the multi-tachyonic and assisted cases we have

VE (T = T0) =
N∑
i=1

λi , (3.51)

VE (T = T0) =
N∑
i=1

λi = Nλ. (3.52)

• For the single field tachyonic potential:

V ′(T ) = 2Tλ

T 2
0

ln

(
T

T0

)[
1 + ln

(
T

T0

)]
, (3.53)

V ′′(T ) = 2λ

T 2
0

[
1 + 3 ln

(
T

T0

)
+ ln2

(
T

T0

)]
. (3.54)

Now to find the extrema of the potential we substitute

V ′(T ) = 0 (3.55)

which give rise to the following solutions for the tachy-
onic field:

T = 0, T0,
T0

e
. (3.56)
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Further substituting the solutions for the tachyonic field
in Eq. (3.54) we get

V ′′(T = 0) → ∞, (3.57)

V ′′(T = T0) = 2λ

T 2
0

, (3.58)

V ′′
(
T = T0

e

)
= − 2λ

T 2
0

, (3.59)

and at these points the value of the potential is computed
as

V (T = 0) = λ, (3.60)

V (T = T0) = λ, (3.61)

V

(
T = T0

e

)
= λ

(
1 + 1

e2

)
. (3.62)

It is important to note for the single tachyonic case that
for λ > 0, V ′′(T = T0) > 0 and V ′′(T = T0

e ) < 0 i.e.,
we get both maxima and minima on the potential. For
the assisted case the results are the same, provided the
following replacement occurs:

λ → Nλ, (3.63)

and finally for the multi-tachyonic case we have

V ′(Ti ) = 2λi Ti
T 2

0i

ln

(
Ti
T0i

)[
1 + ln

(
Ti
T0i

)]
, (3.64)

V ′′(Ti ) = 2λi

T 2
0i

[
1 + 3 ln

(
Ti
T0i

)
+ ln2

(
Ti
T0i

)]
. (3.65)

Now to find the extrema of the potential we substitute

V ′(Tj ) = 0 ∀ j = 1, 2, . . . , N (3.66)

which give rise to the following solutions for the j th
tachyonic field:

Tj = 0, T0 j ,
T0 j

e
∀ j = 1, 2, . . . , N . (3.67)

Further substituting the solutions for the tachyonic field
in Eq. (3.65) we get

V ′′(Tj = 0) → ∞, (3.68)

V ′′(Tj = T0 j ) = 2λ j

T 2
0 j

, (3.69)

V ′′
(
Tj = T0 j

e

)
= −2λ j

T 2
0 j

, (3.70)

and at these points the value of the total effective potential
is computed as

V (1)
E =

N∑
j=1

V (Tj = 0) =
N∑
j=1

λ j , (3.71)

V (2)
E =

N∑
j=1

V (Tj = T0 j ) =
N∑
j=1

λ j , (3.72)

V (3)
E =

N∑
j=1

V

(
Tj = T0 j

e

)
=
(

1 + 1

e2

) N∑
j=1

λ j . (3.73)

It is important to note for the multi-tachyonic case that
for λ j > 0, V ′′(T = T0 j ) > 0 and V ′′(T = T0 j

e ) < 0,
i.e., we get both maxima and minima on the potential
V (Tj ) as well as in VE (T ).

3.3 Model III: exponential potential Type-I

For single field case the third model of the tachyonic potential
is given by [83]

V (T ) = λ exp

(
− T

T0

)
, (3.74)

and for the multi-tachyonic and assisted cases the total effec-
tive potential is given by

VE (T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

λi exp

(
− Ti
T0i

)
, for Multi tachyonic,

N∑
i=1

λ exp

(
− T

T0

)

= Nλ exp
(
− T

T0

)
, for Assisted tachyonic.

(3.75)

Here the potential satisfies the following criteria:

• At T = 0 for the single field tachyonic potential:

V (T = 0) = λ (3.76)

and for the multi-tachyonic and assisted cases we have

VE (T = 0) =
N∑
i=1

λi , (3.77)

VE (T = 0) =
N∑
i=1

λi = Nλ. (3.78)
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• At T = T0 for the single field tachyonic potential:

V (T = T0) = λ

e
(3.79)

and for the multi-tachyonic and assisted cases we have

VE (T = T0) = 1

e

N∑
i=1

λi , (3.80)

VE (T = T0) = 1

e

N∑
i=1

λi = Nλ

e
. (3.81)

• For the single field tachyonic potential:

V ′(T ) = − λ

T0
exp

(
− T

T0

)
, (3.82)

V ′′(T ) = λ

T 2
0

exp

(
− T

T0

)
. (3.83)

Now to find the extrema of the potential we substitute

V ′(T ) = 0, (3.84)

which gives rise to the following solution for the tachy-
onic field:

T → ∞. (3.85)

Further substituting the solutions for the tachyonic field
in Eq. (3.83) we get

V ′′(T → ∞) → 0, (3.86)

and also at the points T = 0, T0 we have

V ′′(T = 0) = λ

T 2
0

, (3.87)

V ′′(T = T0) = λ

eT 2
0

, (3.88)

and at these points the value of the potential is computed
as

V (T → ∞) → 0, (3.89)

V (T = 0) = λ, (3.90)

V (T = T0) = λ

e
. (3.91)

It is important to note for the single tachyonic case that for
λ > 0, V ′′(T = 0, T0) > 0, i.e., we get an asymptotic

behavior of the potential. For the assisted case the results
are the same, provided the following replacement occurs:

λ → Nλ, (3.92)

and finally for the multi-tachyonic case we have

V ′(Ti ) = − λi

T0
exp

(
− Ti
T0i

)
, (3.93)

V ′′(Ti ) = λi

T 2
0i

exp

(
− Ti
T0i

)
. (3.94)

Now to find the extrema of the potential we substitute

V ′(Tj ) = 0 ∀ j = 1, 2, . . . , N (3.95)

which gives rise to the following solutions for the j th
tachyonic field:

Tj → ∞. (3.96)

Further substituting the solutions for the tachyonic field
in Eq. (3.94) we get

V ′′(Tj → ∞) → 0, (3.97)

and also at the points Tj = 0, T0 j we have

V ′′(Tj = 0) = λ j

T 2
0 j

, (3.98)

V ′′(Tj = T0 j ) = λ j

eT 2
0 j

, (3.99)

and at these points the value of the total effective potential
is computed as

V (1)
E =

N∑
j=1

V (Tj → ∞) → 0, (3.100)

V (2)
E =

N∑
j=1

V (Tj = 0) =
N∑
j=1

λ j , (3.101)

V (3)
E =

N∑
j=1

V (Tj = T0 j ) = 1

e

N∑
j=1

λ j . (3.102)

It is important to note for the multi-tachyonic case that for
λ j > 0, V ′′(T = 0, T0 j ) > 0, i.e., we get an asymptotic
behavior of the potential V (Tj ) as well as in VE (T ).
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3.4 Model IV: exponential potential Type-II (Gaussian)

For single field case the first model of the tachyonic potential
is given by [127]

V (T ) = λ exp

[
−
(
T

T0

)2
]

, (3.103)

and for the multi-tachyonic and assisted cases the total effec-
tive potential is given by

VE (T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

λ exp

[
−
(
T

T0

)2
]

, for Multi tachyonic

N∑
i=1

λ exp

[
−
(
T

T0

)2
]

= Nλ exp

[
−
(

T
T0

)2
]

, for Assisted tachyonic.

(3.104)

Here the potential satisfies the following criteria:

• At T = 0 for single field tachyonic potential:

V (T = 0) = λ (3.105)

and for the multi-tachyonic and assisted cases we have

VE (T = 0) =
N∑
i=1

λi , (3.106)

VE (T = 0) =
N∑
i=1

λi = Nλ. (3.107)

• At T = T0 for the single field tachyonic potential:

V (T = T0) = λ

e
(3.108)

and for the multi-tachyonic and assisted cases we have

VE (T = T0) = 1

e

N∑
i=1

λi , (3.109)

VE (T = T0) = 1

e

N∑
i=1

λi = Nλ

e
. (3.110)

• For the single field tachyonic potential:

V ′(T ) = −2λT

T 2
0

exp

[
−
(
T

T0

)2
]

, (3.111)

V ′′(T ) = − 2λ

T 2
0

exp

[
−
(
T

T0

)2
]{

1 − 2T 2

T 2
0

}
. (3.112)

Now to find the extrema of the potential we substitute

V ′(T ) = 0, (3.113)

which gives rise to the following solution for the tachy-
onic field:

T = 0, ∞. (3.114)

Further substituting the solutions for the tachyonic field
in Eq. (3.112) we get

V ′′ (T = 0) = − 2λ

T 2
0

, (3.115)

V ′′(T → ∞) → 0 (3.116)

and also additionally for T = T0 we have

V ′′(T = T0) = 2λ

eT 2
0

, (3.117)

and at these points the value of the potential is computed
as

V (T → ∞) → 0, (3.118)

V (T = 0) = λ, (3.119)

V (T = T0) = λ

e
. (3.120)

It is important to note for the single tachyonic case that
for λ > 0, V ′′(T = 0, T0) > 0, i.e., we get maxima
on the potential. For the assisted case the results are the
same, provided the following replacement occurs:

λ → Nλ, (3.121)

and finally for the multi-tachyonic case we have

V ′(Ti ) = −2λi Ti
T 2

0i

exp

[
−
(

Ti
T0i

)2
]

, (3.122)

V ′′(Ti ) = −2λi

T 2
0i

exp

[
−
(

Ti
T0i

)2
]{

1 − 2T 2
i

T 2
0i

}
.

(3.123)

Now to find the extrema of the potential we substitute

V ′(Tj ) = 0 ∀ j = 1, 2, . . . , N (3.124)

which give rise to the following solutions for the j th
tachyonic field:
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Tj = 0, ∞. (3.125)

Further substituting the solutions for the tachyonic field
in Eq. (3.123) we get

V ′′(Tj = 0) = − 2λ

T 2
0

, (3.126)

V ′′(Tj → ∞) → 0, (3.127)

Additionally for the point Tj = T0 j we have

V ′′(Tj = T0 j ) = 2λ j

eT 2
0 j

, (3.128)

and at these points the value of the total effective potential
is computed as

V (1)
E =

N∑
j=1

V (Tj → ∞) → 0, (3.129)

V (2)
E =

N∑
j=1

V (Tj = 0) =
N∑
j=1

λ j , (3.130)

V (3)
E =

N∑
j=1

V (Tj = T0 j ) = 1

e

N∑
j=1

λ j . (3.131)

It is important to note for the multi-tachyonic case that
for λ j > 0, V ′′(T = 0, T0 j ) > 0, i.e., we get maxima
on the potential V (Tj ) as well as in VE (T ).

3.5 Model V: inverse power-law potential

For the single field case the first model of the tachyonic poten-
tial is given by [86,128]

V (T ) = λ[
1 +

(
T
T0

)4
] , (3.132)

and for the multi-tachyonic and assisted cases the total effec-
tive potential is given by

VE (T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

λi[
1 +

(
Ti
T0i

)4
] , for Multi tachyonic

N∑
i=1

λ[
1 +

(
T
T0

)4
]

= Nλ[
1+

(
T
T0

)4
] , for Assisted tachyonic.

(3.133)

Here the potential satisfies the following criteria:

• At T = 0 for the single field tachyonic potential:

V (T = 0) = λ, (3.134)

and for the multi-tachyonic and assisted cases we have

VE (T = 0) =
N∑
i=1

λi , (3.135)

VE (T = 0) =
N∑
i=1

λi = Nλ. (3.136)

• At T = T0 for the single field tachyonic potential:

V (T = T0) = λ

2
(3.137)

and for the multi-tachyonic and assisted cases we have

VE (T = T0) = 1

2

N∑
i=1

λi , (3.138)

VE (T = T0) = 1

2

N∑
i=1

λi = Nλ

2
. (3.139)

• For single field tachyonic potential:

V ′(T ) = − 4λT 3

T 4
0

[
1 +

(
T
T0

)4
]2 , (3.140)

V ′′(T ) = 32λT 6

T 8
0

[
1 +

(
T
T0

)4
]3 − 12λT 2

T 4
0

[
1 +

(
T
T0

)4
]2 .

(3.141)

Now to find the extrema of the potential we substitute

V ′(T ) = 0, (3.142)

which give rise to the following solution for the tachyonic
field:

T = 0, ∞. (3.143)

Further substituting the solutions for the tachyonic field
in Eq. (3.141) we get

V ′′ (T = 0) = 0, (3.144)

V ′′(T → ∞) → 0 (3.145)
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and also additionally for T = T0 we have

V ′′(T = T0) = λ

T 2
0

, (3.146)

and at these points the value of the potential is computed
as

V (T → ∞) → 0, (3.147)

V (T = 0) = λ, (3.148)

V (T = T0) = λ

2
. (3.149)

It is important to note for the single tachyonic case that
for λ > 0, V ′′(T = 0, T0) > 0, i.e., we get maxima
on the potential. For the assisted case the results are the
same, provided the following replacement occurs:

λ → Nλ, (3.150)

and finally for the multi-tachyonic case we have

V ′(Ti ) = − 4λi T 3
i

T 4
0i

[
1 +

(
Ti
T0i

)4
]2 , (3.151)

V ′′(Ti ) = 32λi T 6
i

T 8
0i

[
1 +

(
Ti
T0i

)4
]3 − 12λi T 2

i

T 4
0i

[
1 +

(
Ti
T0i

)4
]2 .

(3.152)

Now to find the extrema of the potential we substitute:

V ′(Tj ) = 0 ∀ j = 1, 2, . . . , N (3.153)

which give rise to the following solutions for the j th
tachyonic field:

Tj = 0, ∞. (3.154)

Further substituting the solutions for the tachyonic field
in Eq. (3.152) we get

V ′′(Tj = 0) = 0, (3.155)

V ′′(Tj → ∞) → 0, (3.156)

Additionally for the point Tj = T0 j we have

V ′′(Tj = T0 j ) = λ j

T 2
0 j

, (3.157)

and at these points the value of the total effective potential
is computed as

V (1)
E =

N∑
j=1

V (Tj → ∞) → 0, (3.158)

V (2)
E =

N∑
j=1

V (Tj = 0) =
N∑
j=1

λ j , (3.159)

V (3)
E =

N∑
j=1

V (Tj = T0 j ) = 1

2

N∑
j=1

λ j . (3.160)

It is important to note for the multi-tachyonic case that
for λ j > 0, V ′′(T = 0, T0 j ) > 0, i.e., we get maxima
on the potential V (Tj ) as well as in VE (T ).

4 Cosmological dynamics from GTachyon

4.1 Unperturbed evolution

For p = 3 non-BPS branes the total tachyonic model action
can be written as

ST =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
d4σ

√−g

[
M2

p

2
R − V (T )

√
1 + α′gμν∂μT ∂νT

]
, for Single,

∫
d4σ

√−g

[
M2

p

2
R −

N∑
i=1

V (Ti )
√

1 + α′gμν∂μTi∂νTi

]
, for Multi,

∫
d4σ

√−g

[
M2

p

2
R − NV (T )

√
1 + α′gμν∂μT ∂νT

]
, for Assisted,

(4.1)
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and in a more generalized situation Eq. (4.1) is modified as

S(q)
T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
d4σ

√−g

[
M2

p

2
R − V (T )

(
1 + α′gμν∂μT ∂νT

)q
]

, for Single,

∫
d4σ

√−g

[
M2

p

2
R −

N∑
i=1

V (Ti )
(
1 + α′gμν∂μTi∂νTi

)q
]

, for Multi,

∫
d4σ

√−g

[
M2

p

2
R − NV (T )

(
1 + α′gμν∂μT ∂νT

)q
]

, for Assisted,

(4.2)

where Mp is the reduced Planck mass, Mp = 2.43 ×
1018GeV. By varying the action as stated in Eqs. (4.1) and
(4.2), with respect to the metric gμν we get the following
equation of motion:

Gμν = Tμν

M2
p

(4.3)

where Gμν is defined as

Gνν = Rμν − 1

2
gμνR (4.4)

and the energy-momentum stress tensor Tμν is defined as

Tμν = − 2√−g

δ(
√−gLTachyon)

δgμν
(4.5)

where LTachyon is the tachyonic part of the Lagrangian
for non-BPS set-up. Explicitly using Eq. (4.1) the energy-
momentum stress tensor can be computed as

Tμν =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (T )

[
α′∂μT ∂νT√

1 + α′gμν∂μT ∂νT
− gμν

√
1 + α′gμν∂μT ∂νT

]
, for Single,

N∑
i=1

V (Ti )

[
α′∂μTi∂νTi√

1 + α′gμν∂μTi∂νTi
− gμν

√
1 + α′gμν∂μTi∂νTi

]
, for Multi,

NV (T )

[
α′∂μT ∂νT√

1 + α′gμν∂μT ∂νT
− gμν

√
1 + α′gμν∂μT ∂νT

]
, for Assisted,

(4.6)

and similarly in a more generalized situation using Eq. (4.2)
the energy-momentum stress tensor can be computed as

T (q)
μν =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (T )

[
2qα′∂μT ∂νT(

1 + α′gμν∂μT ∂νT
)1−q − gμν

(
1 + α′gμν∂μT ∂νT

)q
]

, for Single,

N∑
i=1

V (Ti )

[
2qα′∂μTi∂νTi(

1 + α′gμν∂μTi∂νTi
)1−q − gμν

(
1 + α′gμν∂μTi∂νTi

)q
]

, for Multi,

NV (T )

[
2qα′∂μT ∂νT(

1 + α′gμν∂μT ∂νT
)1−q − gμν

(
1 + α′gμν∂μT ∂νT

)q
]

, for Assisted.

(4.7)

It clearly appears that, for q = 1/2, the result is per-
fectly consistent with Eq. (4.6). Further using the perfect
fluid assumption the energy-momentum stress tensor can be
written as

Tμν =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(ρ + p)uμuν + gμν p, for Single,

N∑
i=1

(ρi + pi )u
(i)
μ u(i)

ν + gμν pi , for Multi,

N
[
(ρ + p)uμuν + gμν p

]
, for Assisted,

(4.8)

where for the assisted case we assume that the density and
pressure of all identical tachyonic modes are the same. Here
uμ signifies the four velocity of the fluid, which is defined as
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uμ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂μT√
−gαβ∂αT ∂βT

, for Single,

N∑
i=1

∂μTi√
−gαβ∂αTi∂βTi

, for Multi,

N∂μT√
−gαβ∂αT ∂βT

, for Assisted.

(4.9)

Further comparing Eqs. (4.6) and (4.8) the density ρ and the
pressure p for the tachyonic field can be computed as

ρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (T )√
1 − α′Ṫ 2

, for Single,

N∑
i=1

V (T )√
1 − α′Ṫ 2

, for Multi,

NV (T )√
1 − α′Ṫ 2

, for Assisted,

(4.10)

and

p =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−V (T )
√

1 − α′Ṫ 2, for Single,

−
N∑
i=1

V (T )
√

1 − α′Ṫ 2, for Multi,

−NV (T )
√

1 − α′Ṫ 2, for Assisted.

(4.11)

Similarly for the generalized situation comparing Eqs. (4.7)
and (4.8) the density ρ and pressure p for tachyonic field can
be computed as

ρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (T )(
1 − α′Ṫ 2

)1−q

[
1 − α′(1 − 2q)Ṫ 2

]
, for Single,

N∑
i=1

V (Ti )(
1 − α′Ṫ 2

i

)1−q

[
1 − α′(1 − 2q)Ṫ 2

i

]
, for Multi,

NV (T )(
1 − α′Ṫ 2

)1−q

[
1 − α′(1 − 2q)Ṫ 2

]
, for Assisted,

(4.12)

and

p =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−V (T )
(

1 − α′Ṫ 2
)q

, for Single,

−
N∑
i=1

V (Ti )
(

1 − α′Ṫ 2
i

)q
, for Multi,

−NV (T )
(

1 − α′Ṫ 2
)q

, for Assisted.

(4.13)

Next using Eqs. (4.10) and (4.11) one can write down the
expression for the equation of state parameter:

w =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p

ρ
=
(
α′Ṫ 2 − 1

)
, for Single,

N∑
i=1

pi
ρi

=
N∑
i=1

(
α′Ṫ 2

i − 1
)

, for Multi,

Np

ρ
= N

(
α′Ṫ 2 − 1

)
, for Assisted,

(4.14)

and for the generalized case using Eqs. (4.12) and (4.13)
one can write down the expression for the equation of state
parameter:

w =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p

ρ
=

(
α′Ṫ 2 − 1

)
[
1 − α′(1 − 2q)Ṫ 2

] , for Single,

N∑
i=1

pi
ρi

=
N∑
i=1

(
α′Ṫ 2

i − 1
)

[
1 − α′(1 − 2q)Ṫ 2

i

] , for Multi,

Np

ρ
= N

(
α′Ṫ 2 − 1

)
[
1 − α′(1 − 2q)Ṫ 2

] , for Assisted.

(4.15)

Further using the spatially flat k = 0 FLRW metric defined
through the following line element:

ds2 = −dt2 + a2(t)dx2, (4.16)

the Friedmann equations can be written as

H2 =
(
ȧ

a

)2

= ρ

3M2
p
, (4.17)

Ḣ + H2 = ä

a
= − (ρ + 3p)

6M2
p

, (4.18)

where the densityρ and pressure p is computed in Eqs. (4.10)–
(4.11). Also H is the Hubble parameter, defined as

H = 1

a(t)

da(t)

dt
= ȧ

a
. (4.19)

On the other hand, varying the action as stated in Eq. (4.1)
with respect to the tachyon field the equation of motion can
be written as

123



278 Page 18 of 130 Eur. Phys. J. C (2016) 76 :278

0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1√−g
∂μ

(√−gV (T )

√
1 + gαβ∂αT ∂βT

)
= α′T̈(

1 − α′Ṫ 2
) + 3Hα′Ṫ + dV (T )

V (T )dT
, for Single,

1√−g
∂μ

(√−gV (Ti )
√

1 + gαβ∂αTi∂βTi

)
= α′T̈i(

1 − α′Ṫ 2
i

) + 3Hα′Ṫi + dV (Ti )

V (Ti )dTi
, for Multi,

1√−g
∂μ

(√−gV (T )

√
1 + gαβ∂αT ∂βT

)
= α′T̈(

1 − α′Ṫ 2
) + 3Hα′Ṫ + dV (T )

V (T )dT
, for Assisted.

(4.20)

Similarly, in the most generalized case, varying the action as stated in Eq. (4.2) with respect to the tachyon field the equation
of motion can be written as

0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√−g
∂μ

(√−gV (T )
(
1 + gαβ∂αT ∂βT

)q) = 2qα′T̈(
1 − α′Ṫ 2

) + 6qα′H Ṫ

1 − α′(1 − 2q)Ṫ 2
+ dV (T )

V (T )dT
, for Single,

1√−g
∂μ

(√−gV (Ti )
(
1 + gαβ∂αTi∂βTi

)q) = 2qα′T̈i(
1 − α′Ṫ 2

i

) + 6qα′H Ṫi
1 − α′(1 − 2q)Ṫ 2

i

+ dV (Ti )

V (Ti )dTi
, for Multi,

1√−g
∂μ

(√−gV (T )
(
1 + gαβ∂αT ∂βT

)q) = 2qα′T̈(
1 − α′Ṫ 2

) + 6qα′H Ṫ

1 − α′(1 − 2q)Ṫ 2
+ dV (T )

V (T )dT
, for Assisted.

(4.21)

Further using Eqs. (4.10), (4.11) and (5.328) the expression for the adiabatic sound speed cA turns out to be

cA =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
ṗ

ρ̇
=
√

−w

[
1 + 2

3Hα′Ṫ
dV (T )

V (T )dT

]
, for Single,

√√√√ N∑
i=1

ṗi
ρ̇i

=
√√√√ N∑

i=1

{
−wi

[
1 + 2

3Hα′Ṫi
dV (Ti )

V (Ti )dTi

]}
, for Multi,

√
N ṗ

ρ̇
=
√

−wN

[
1 + 2

3Hα′Ṫ
dV (T )

V (T )dT

]
, for Assisted,

(4.22)

and for the generalized case using Eqs. (4.10), (4.11) and (4.21) the expression for the adiabatic sound speed turns out to be:

cA =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√√√√√√
−w

[
1 + (1−α′(1−2q)Ṫ 2)

3qHα′ Ṫ
dV (T )
V (T )dT

]
[(

1
q − 1

) {
1 − (1−2q)

(1−q)
w
} {

1 + (1−α′(1−2q)Ṫ 2)
6qHα′ Ṫ

dV (T )
V (T )dT

}
− (1−α′(1−2q)Ṫ 2)

6qHα′ Ṫ
dV (T )
V (T )dT

] , for Single,

√√√√√√√
N∑
i=1

⎧⎪⎪⎨
⎪⎪⎩

−wi

[
1 +

(
1−α′(1−2q)Ṫ 2

i

)
3qHα′ Ṫi

dV (Ti )
V (Ti )dTi

]
[(

1
q − 1

) {
1 − (1−2q)

(1−q)
wi

}{
1 +

(
1−α′(1−2q)Ṫ 2

i

)
6qHα′ Ṫi

dV (Ti )
V (Ti )dTi

}
−

(
1−α′(1−2q)Ṫ 2

i

)
6qHα′ Ṫi

dV (Ti )
V (Ti )dTi

]
⎫⎪⎪⎬
⎪⎪⎭

, for Multi,

√√√√√√
−wN

[
1 + (1−α′(1−2q)Ṫ 2)

3qHα′ Ṫ
dV (T )
V (T )dT

]
[(

1
q − 1

) {
1 − (1−2q)

(1−q)
w
} {

1 + (1−α′(1−2q)Ṫ 2)
6qHα′ Ṫ

dV (T )
V (T )dT

}
− (1−α′(1−2q)Ṫ 2)

6qHα′ Ṫ
dV (T )
V (T )dT

] , for Assisted.

(4.23)

It is important to mention here that, substituting q = 1/2 in Eq. (4.23) one can get back the result obtained in Eq. (4.22).
Similarly in the present context the effective sound speed cS is defined as
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cS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√√√√ ∂p
∂ Ṫ 2

∂ρ

∂ Ṫ 2

= √−w, for Single,

√√√√√
N∑
i=1

∂pi
∂ Ṫ 2

i

∂ρi
∂ Ṫ 2

i

=
√√√√−

N∑
i=1

wi , for Multi,

√√√√N

∂p
∂ Ṫ 2

∂ρ

∂ Ṫ 2

= √−wN , for Assisted,

(4.24)

and for the generalized case the effective sound speed cS is defined as

cS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√√√√ ∂p
∂ Ṫ 2

∂ρ

∂ Ṫ 2

=
√[

1 + 2(q − 1)(1 + w)

1 + (1 − 2q)(2w + 1)

]
, for Single,

√√√√√
N∑
i=1

∂pi
∂ Ṫ 2

i

∂ρi
∂ Ṫ 2

i

=
√√√√ N∑

i=1

[
1 + 2(q − 1)(1 + wi )

1 + (1 − 2q)(2wi + 1)

]
, for Multi,

√√√√N

∂p
∂ Ṫ 2

∂ρ

∂ Ṫ 2

=
√
N

[
1 + 2(q − 1)(1 + w)

1 + (1 − 2q)(2w + 1)

]
, for Assisted.

(4.25)

Finally comparing Eqs. (4.22), (4.23), (4.24) and (4.25) we get the following relationship between adiabatic and effective
sound speed in tachyonic field theory:

cA =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
ṗ

ρ̇
= cS

√[
1 + 2

3Hα′Ṫ
dV (T )

V (T )dT

]
, for Single,

√√√√ N∑
i=1

ṗi
ρ̇i

=
√√√√ N∑

i=1

{
c2
S,i

[
1 + 2

3Hα′Ṫi
dV (Ti )

V (Ti )dTi

]}
, for Multi,

√
N ṗ

ρ̇
= cS

√[
1 + 2

3Hα′Ṫ
dV (T )

V (T )dT

]
, for Assisted,

(4.26)

and for the generalized case we get

cA =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√√√√√√√√√

c2
S[

1+ (1−2q)
(1−q)

(
c2
S−1

)]
[

1 +
(
1−α′(1−2q)Ṫ 2

)
3qHα′ Ṫ

dV (T )
V (T )dT

]

[(
1
q − 1

){
1 +

(1−2q)
(1−q)

c2
S[

1+ (1−2q)
(1−q)

(
c2
S−1

)]
}{

1 +
(
1−α′(1−2q)Ṫ 2

)
6qHα′ Ṫ

dV (T )
V (T )dT

}
−

(
1−α′(1−2q)Ṫ 2

)
6qHα′ Ṫ

dV (T )
V (T )dT

] , for Single,

√√√√√√√√√√
N∑
i=1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c2
S,i[

1+ (1−2q)
(1−q)

(
c2
S,i−1

)]
[

1 +
(

1−α′(1−2q)Ṫ 2
i

)

3qHα′ Ṫi
dV (Ti )
V (Ti )dTi

]

[(
1
q − 1

){
1 +

(1−2q)
(1−q)

c2
S,i[

1+ (1−2q)
(1−q)

(
c2
S,i−1

)]
}{

1 +
(

1−α′(1−2q)Ṫ 2
i

)

6qHα′ Ṫi
dV (Ti )
V (Ti )dTi

}
−

(
1−α′(1−2q)Ṫ 2

i

)

6qHα′ Ṫi
dV (Ti )
V (Ti )dTi

]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, for Multi,

√√√√√√√√√√√√√√

c2
S[

1+ (1−2q)
(1−q)

(
c2
S
N −1

)]
[

1 +
(
1−α′(1−2q)Ṫ 2

)
3qHα′ Ṫ

dV (T )
V (T )dT

]

⎡
⎢⎢⎣
(

1
q − 1

)
⎧⎪⎪⎨
⎪⎪⎩

1 +
(1−2q)
(1−q)

c2
S

N

[
1+ (1−2q)

(1−q)

(
c2
S
N −1

)]

⎫⎪⎪⎬
⎪⎪⎭
{

1 +
(
1−α′(1−2q)Ṫ 2

)
6qHα′ Ṫ

dV (T )
V (T )dT

}
−

(
1−α′(1−2q)Ṫ 2

)
6qHα′ Ṫ

dV (T )
V (T )dT

⎤
⎥⎥⎦

, for Assisted.

(4.27)
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Let us mention other crucial issues which we use through-
out the analysis performed in this paper:

1. At early times the tachyonic field satisfies the follow-
ing small field criteria to validate the effective field the-
ory prescription within the framework of tachyonic string
theory:

|T |
Mp

<< 1, (4.28)

|Ṫ | <<
1√
α′ (4.29)

and for the generalized q �= 1/2 case additionally we
have to satisfy another constraint:

√
(1 − 2q)|Ṫ | <<

1√
α′ . (4.30)

2. At early times using Eqs. (4.28), (4.29) and (4.30) in
Eqs. (4.14) and (4.15), the equation of state parameter
w can be approximated by

w ≈ −1. (4.31)

3. At late times the tachyonic field satisfies the following
small field criteria within the framework of tachyonic
string theory:

|T |
Mp

∼ 1, (4.32)

|Ṫ |
M2

p
∼ 1√

α′ (4.33)

and for the generalized q �= 1/2 case additionally we
have to satisfy another constraint:

√
(1 − 2q)|Ṫ | ∼ 1√

α′ . (4.34)

4. At late times using Eqs. (4.32), (4.33) and (4.34) in
Eqs. (4.14) and (4.15), the equation of state parameter
w can be approximated by

w ≈ 0. (4.35)

5. There might be another interesting possibility appear in
the present context, where the tachyonic modes satisfy
the large field criteria, represented by the following con-
straint:

|T |
Mp

>> 1, (4.36)

|Ṫ | >>
1√
α′ (4.37)

and for the generalized q �= 1/2 case additionally we
have to satisfy another constraint:

√
(1 − 2q)|Ṫ | >>

1√
α′ . (4.38)

6. Further using Eqs. (4.36), (4.37) and (4.38) in Eqs. (4.14)
and (4.15), the equation of state parameter w can be
approximated by

w =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p

ρ
= α′Ṫ 2, for Single,

N∑
i=1

pi
ρi

=
N∑
i=1

α′Ṫ 2
i , for Multi,

Np

ρ
= Nα′Ṫ 2, for Assisted,

(4.39)

and for the generalized q �= 1/2 case we have

w =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p

ρ
= 1

(2q − 1)
, for Single,

N∑
i=1

pi
ρi

=
N∑
i=1

1

(2q − 1)
, for Multi,

Np

ρ
= N

(2q − 1)
, for Assisted.

(4.40)

Here one can control the parameter q and N to get the
desired value of equation of state parameter w, which is
necessarily required to explain the cosmological dynam-
ics.

7. Additionally, it is important to note that, within the set-
up of string theory, the tachyonic modes can form cluster
on small cosmological scales. Consequently tachyonic
string theory can be treated as a unified prescription to
explain the inflationary paradigm and dark matter.

8. Reheating and creation of matter particles in a class of
specific models where the minimum of the tachyon poten-
tial V (T ) is at T → ∞, which is a pathological issue
in the present context because the tachyon field in such
a type of string theories does not participate in oscilla-
tions.3 To solve this crucial pathological problem in the
present context, one can think about a particular phys-
ical situation where the universe is initially dominated
by a inflationary epoch and this can be explained via the
energy density of the tachyon condensate as mentioned

3 Here it is important to note that the oscillations are necessarily
required to explain the reheating phenomenon.
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in the introduction of this article and according to this
proposal the set-up will always remain dominated by
the tachyons. To resolve this pathological issue it may
happen that the tachyon condensation phenomenon is
potentially responsible for a short period of an inflation-
ary epoch prior, which occurs at a Planckian mass scale,
Mp ∼ 2.43 × 1018 GeV and also one needs to require
a second stage of inflationary epoch just followed by

the previous one which occurs at the vicinity of the GUT
scale (1016 GeV). This directly implies that the tachyon
serves no crucial purpose in the post inflationary epoch
till at the very later stages of its cosmological evolution
on time scales. All these crucial pathological problems
do not appear in the context of the well-known hybrid
inflationary set-up where the complex tachyon field has
a specific minimum value at the sub-Planckian (<Mp)
regime given by the list of constraint equations as stated
in Eqs. (4.28), (4.29), and Eq. (4.30). In this paper, we
have studied the cosmological consequences from dif-
ferent classes of tachyonic potentials appearing in the
context of string theory which have no connection to
the hybrid inflationary model, but to explain CMB con-
straints the tachyon condensation phenomenon plays an
important role. Instead of studying the tachyon conden-
sation phenomenon, in this paper we study the cosmolog-
ical perturbation theory and its physical consequences in
detail in later sections.

9. The energy density of tachyons after inflation should be
fine tuned to be sub-dominant until the very later stages
of the cosmological evolution of the universe.

4.2 Dynamical solution for various phases

In this section our prime objective is to study the dynam-
ical behavior of the tachyonic field in the background

of spatially flat FLRW metric and in the presence of the
Einstein–Hilbert term in the gravity sector. Below we explic-
itly show that the solution for the tachyonic field can
explain various phases of the universe starting from inflation
to the dust formation. To study the cosmological dynam-
ics from the tachyonic string field theoretic set-up let us
start with the following solution ansatz of the tachyon
field:

Ṫ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
α′

⎛
⎝exp

(
2t
bT0

)
− 1

exp
(

2t
bT0

)
+ 1

⎞
⎠ = 1√

α′ tanh

(
t

bT0

)
, for Single,

N∑
i=1

Ṫi =
N∑
i=1

1√
α′

⎛
⎝exp

(
2t
bT0i

)
− 1

exp
(

2t
bT0i

)
+ 1

⎞
⎠ =

N∑
i=1

1√
α′ tanh

(
t

bT0i

)
, for Multi,

N√
α′

⎛
⎝exp

(
2t
bT0

)
− 1

exp
(

2t
bT0

)
+ 1

⎞
⎠ = N√

α′ tanh

(
t

bT0

)
, for Assisted,

(4.41)

which will satisfy the equation of motion of the tachyon field
as stated in Eqs. (5.328) and (4.21) respectively. Here b is a
new parameter of the theory which has inverse square mass
dimension, i.e., [M]−1. Consequently the argument of the
hyperbolic functions, i.e., ( t

bT0
) is dimensionless. From var-

ious cosmological observations it is possible to put strin-
gent constraint on the newly introduced parameter b. Further
integrating Eq. (4.41) we get the following solutions for the
tachyonic field:

T (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bT0√
α′ ln

[
cosh

(
t

bT0

)]
, for Single,

N∑
i=1

Ti (t) =
N∑
i=1

bT0i√
α′ ln

[
cosh

(
t

bT0i

)]
, for Multi,

NbT0√
α′ ln

[
cosh

(
t

bT0

)]
, for Assisted.

(4.42)

For both of the cases we fix the boundary condition in such a
way that the tachyonic field T satisfy the constraint: T (t =
0) = T (0) = 0. Further using Eqs. (4.17) and (5.328) we
get the following constraint condition for the cosmological
time dependent potential V (t):

123



278 Page 22 of 130 Eur. Phys. J. C (2016) 76 :278

0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣ 1

bT0
+ V̇

V
coth

(
t

bT0

)
+
√√√√ 3V

cosh
(

t
bT0

) sinh
(

t
bT0

)

Mp

⎤
⎥⎦ , for Single,

N∑
i=1

⎡
⎢⎣ 1

bT0i
+ V̇

V
coth

(
t

bT0i

)
+
√√√√ 3V

cosh
(

t
bT0i

) sinh
(

t
bT0i

)

Mp

⎤
⎥⎦ , for Multi,

N

⎡
⎢⎣ 1

bT0
+ V̇

V
coth

(
t

bT0

)
+
√√√√ 3V

cosh
(

t
bT0

) sinh
(

t
bT0

)

Mp

⎤
⎥⎦ , for Assisted,

(4.43)

and for the generalized case we get

0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣ 1

bT0
+ 1

2q

V̇

V
coth

(
t

bT0

)
+

√
3V

cosh
(

t
bT0

) sinh
(

t
bT0

)

Mp

[
1 − (1 − 2q)tanh2

(
t

bT0

)]
⎤
⎥⎥⎦ , for Single,

N∑
i=1

⎡
⎢⎢⎣ 1

bT0i
+ 1

2q

V̇

V
coth

(
t

bT0i

)
+

√
3V

cosh
(

t
bT0i

) sinh
(

t
bT0i

)

Mp

[
1 − (1 − 2q)tanh2

(
t

bT0i

)]
⎤
⎥⎥⎦ , for Multi,

N

⎡
⎢⎢⎣ 1

bT0
+ 1

2q

V̇

V
coth

(
t

bT0

)
+

√
3V

cosh
(

t
bT0

) sinh
(

t
bT0

)

Mp

[
1 − (1 − 2q)tanh2

(
t

bT0

)]
⎤
⎥⎥⎦ , for Assisted.

(4.44)

The solutions of Eqs. (4.43) and (4.44) are given by

V (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ

cosh
(

t
bT0

)
⎡
⎣ 1

1 +
√

3λbT0
2Mp

{
t

bT0
− tanh

(
t

bT0

)}
⎤
⎦

2

, for Single,

N∑
i=1

Vi (t) =
N∑
i=1

λi

cosh
(

t
bT0i

)
⎡
⎣ 1

1 +
√

3λbT0i
2Mp

{
t

bT0i
− tanh

(
t

bT0i

)}
⎤
⎦

2

, for Multi,

Nλ

cosh
(

t
bT0

)
⎡
⎣ 1

1 +
√

3λbT0
2Mp

{
t

bT0
− tanh

(
t

bT0

)}
⎤
⎦

2

, for Assisted,

(4.45)

and for the generalized case we get

V (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ[
cosh

(
t

bT0

)]2q

⎡
⎣ 1

1 +
√

3λbT0
2Mp

{
t

bT0
− tanh

(
t

bT0

)}
⎤
⎦

2

, for Single,

N∑
i=1

Vi (t) =
N∑
i=1

λi[
cosh

(
t

bT0i

)]2q

⎡
⎣ 1

1 +
√

3λbT0i
2Mp

{
t

bT0i
− tanh

(
t

bT0i

)}
⎤
⎦

2

, for Multi,

Nλ[
cosh

(
t

bT0

)]2q

⎡
⎣ 1

1 +
√

3λbT0
2Mp

{
t

bT0
− tanh

(
t

bT0

)}
⎤
⎦

2

, for Assisted,

(4.46)
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where to get the analytical solution from the generalized case we assume that the time scale of our consideration satisfies the
following constraint:

t << bT0 tanh−1

[√
1

2q − 1

]
(4.47)

which is valid for all values of q except q �= 1/2. For the usual tachyonic case and for the generalized situation we use the
following normalization condition:

V (t = 0) = V (0) = λ (4.48)

to fix the value of arbitrary integration constant. Further using the explicit solution for the tachyonic field as appearing in
Eq. (4.42), we can write the time as a function of tachyonic field as

t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bT0

[
cosh−1

{
exp

(√
α′T
bT0

)}]
, for Single

N∑
i=1

bT0i

[
cosh−1

{
exp

(√
α′T

bT0i

)}]
, for Multi,

NbT0

[
cosh−1

{
exp

(√
α′T
bT0

)}]
, for Assisted,

(4.49)

and further substituting Eq. (4.49) in Eqs. (4.45) and (4.46) we get the following expression for the potential as a function of
tachyonic field:

V (T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ exp

(
−

√
α′T
bT0

)⎡
⎣ 1

1 +
√

3λbT0
2Mp

{
cosh−1

{
exp

(√
α′T
bT0

)}
− tanh

(
cosh−1

{
exp

(√
α′T
bT0

)})}
⎤
⎦

2

, for Single,

N∑
i=1

λi exp

(
−

√
α′Ti
bT0i

)⎡
⎣ 1

1 +
√

3λbT0i
2Mp

{
cosh−1

{
exp

(√
α′Ti
bT0i

)}
− tanh

(
cosh−1

{
exp

(√
α′Ti
bT0i

)})}
⎤
⎦

2

, for Multi,

Nλ exp

(
−

√
α′T
bT0

)⎡
⎣ 1

1 +
√

3λbT0
2Mp

{
cosh−1

{
exp

(√
α′T
bT0

)}
− tanh

(
cosh−1

{
exp

(√
α′T
bT0

)})}
⎤
⎦

2

, for Assisted,

(4.50)

and for the generalized case we get

V (T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(
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√
α′T

bT0

)⎡
⎢⎣ 1

1 +
√

3λbT0
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{
cosh−1
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exp

(
2q

√
α′T

bT0
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− tanh

(
cosh−1
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exp

(
2q

√
α′T

bT0

)})}
⎤
⎥⎦

2

, for Single,

N∑
i=1

λi exp

(
−2q

√
α′Ti
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)⎡
⎢⎣ 1

1 +
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√
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(
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{
exp

(
2q
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α′Ti

bT0i

)})}
⎤
⎥⎦

2

, for Multi,

Nλ exp

(
−2q

√
α′T

bT0

)⎡
⎢⎣ 1

1 +
√

3λbT0
2Mp

{
cosh−1
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exp
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√
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(
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)})}
⎤
⎥⎦

2

, for Assisted.

(4.51)
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Next we use the following redefinition in the tachyonic field:
√

α′T
bT0

→ T

T0
, (4.52)

√
α′T

bT0i
→ T

T0i
. (4.53)

Hence using the redefinition, the potential as stated in Eqs. (4.50) and (4.51) can be re-expressed as

V (T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ exp

(
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T0
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⎣ 1
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{
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exp

(√
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(
cosh−1
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)})}
⎤
⎦

2

, for Single,
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⎣ 1
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{
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⎦

2

, for Multi,

Nλ exp
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⎣ 1

1 +
√

3λbT0
2Mp

{
cosh−1

{
exp

(√
α′T
bT0

)}
− tanh

(
cosh−1

{
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)})}
⎤
⎦

2

, for Assisted,

(4.54)

and for the generalized case we get

V (T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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√
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{
exp

(
2q

√
α′T
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(
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⎤
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2

, for Single,
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(
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(
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)})}
⎤
⎥⎦

2

, for Multi,

Nλ exp

(
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)⎡
⎢⎣ 1
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{
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{
exp
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√
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{
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2

, for Assisted.

(4.55)

Now let us explicitly study the limiting behavior of the potential V (T ) in detail, which is appended below:

• At T << T0 and Ti << T0i limiting case one can use the following approximation for the usual tachyonic case:

ln

[
cosh

(
t

bT0

)]
<< 1, (4.56)

ln

[
cosh

(
t

bT0i

)]
<< 1. (4.57)

Using this approximation one can use the following expansion:

ln

[
cosh

(
t

bT0

)]
≈ 1

2

(
t

bT0

)2

, (4.58)

ln

[
cosh

(
t

bT0i

)]
≈ 1

2

(
t

bT0i

)2

. (4.59)
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• Hence using the solution obtained for the tachyonic field
as stated in Eq. (4.42) we get

T (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T0

2

(
t

bT0

)2

, for Single,

N∑
i=1

Ti (t) =
N∑
i=1

T0i

2

(
t

bT0i

)2

, for Multi,

NT0

2

(
t

bT0

)2

, for Assisted,

(4.60)

and by inverting Eq. (4.78) the associated time scale can
be computed as

t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bT0

√
2T

T0
, for Single,

N∑
i=1

bT0i

√
2T

T0i
, for Multi,

NbT0

√
2T

T0
, for Assisted.

(4.61)

Consequently we have

Single : tanh

(
t

bT0

)
≈ tanh

(√
2T

T0

)
≈
√

2T

T0
,

(4.62)

Multi : tanh

(
t

bT0i

)
≈ tanh

(√
2T

T0i

)
≈
√

2T

T0i
,

(4.63)

Assisted : tanh

(
t

bT0

)
≈ tanh

(√
2T

T0

)
≈
√

2T

T0
.

(4.64)

and finally for the usual tachyonic case the potentialV (T )

can be approximated by

V (T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ exp

(
− T
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)
, for Single,

N∑
i=1

V (Ti ) =
N∑
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λi exp

(
− Ti
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)
, for Multi,
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(
− T

T0

)
, for Assisted,

(4.65)

and for the generalized case we have

V (T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ exp

(
−2qT

T0

)
, for Single,

N∑
i=1

V (Ti ) =
N∑
i=1

λi exp

(
−2qTi

T0i

)
, for Multi,

Nλ exp

(
−2qT

T0

)
, for Assisted,

(4.66)

where the behavior of these types of potentials has been
elaborated in the earlier section.

• At T >> T0 and Ti >> T0i limiting case one can use the
following approximation for the usual tachyonic case:

ln

[
cosh

(
t

bT0

)]
>> 1, (4.67)

ln

[
cosh

(
t

bT0i

)]
>> 1. (4.68)

Using this approximation one can use the following
expansion:

ln

[
cosh

(
t

bT0

)]
≈ ln

[
1

2
exp

(
t

bT0

)]
≈ t

bT0
,

(4.69)

ln

[
cosh

(
t

bT0i

)]
≈ ln

[
1

2
exp

(
t

bT0i

)]
≈ t

bT0i
.

(4.70)

Hence using the solution obtained for the tachyonic field
as stated in Eq. (4.42) we get

T (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

t

b
, for Single

N∑
i=1

Ti (t) =
N∑
i=1

t

2b
= Nt

b
, for Multi,

Nt

b
, for Assisted,

(4.71)

and by inverting Eq. (4.71) the associated time scale can
be computed as

t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bT, for Single,
N∑
i=1

bTi , for Multi,

NbT, for Assisted.

(4.72)
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Consequently we have

Single : tanh

(
t

bT0

)
≈ 1, (4.73)

Multi : tanh

(
t

bT0i

)
≈ 1, (4.74)

Assisted : tanh

(
t

bT0

)
≈ 1. (4.75)

and finally for the usual tachyonic case the potentialV (T )

can be approximated by

V (T )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4M2
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3b2T 2
0

(
T0

T

)2
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(
− T

T0

)
, for Single,

N∑
i=1

V (Ti ) =
N∑
i=1

4M2
p

3b2T 2
0i

(
T0i

Ti

)2

exp

(
− Ti
T0i

)
, for Multi,

4M2
p N

3b2T 2
0

(
T0

T

)2

exp

(
− T

T0

)
, for Assisted,

(4.76)

and for the generalized case we have

V (T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4M2
p

3b2T 2
0

(
T0

T

)2

exp

(
− 2qT

T0

)
, for Single,

N∑
i=1

V (Ti ) =
N∑
i=1

4M2
p

3b2T 2
0i

(
T0i

Ti

)2

exp

(
− 2qTi

T0i

)
, for Multi,

4M2
p N

3b2T 2
0

(
T0

T

)2

exp

(
− 2qT

T0

)
, for Assisted,

(4.77)

where the scale of inflation for the usual tachyonic case
is fixed by:

V 1/4
inf ∝

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1/4, for Single
{

N∑
i=1

λi

}1/4

, for Multi,

(Nλ)1/4, for Assisted,

(4.78)

and for the generalized case it is fixed by

V 1/4
inf ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
4M2

p

3b2T 2
0

)1/4

, for Single,

{
N∑
i=1

4M2
p

3b2T 2
0i

}1/4

, for Multi,

(
4M2

pN

3b2T 2
0

)1/4

, for Assisted.

(4.79)

Here the potential should satisfy the following criteria:

– At T = 0 for the single field tachyonic potential:

V (T = 0) → ∞, (4.80)

and for the multi-tachyonic and assisted cases we
have

VE (T = 0) → ∞. (4.81)

– At T = T0 for the single field tachyonic potential:

V (T = T0) = 4M2
p

3eb2T 2
0

(4.82)

and also for the multi-tachyonic and assisted cases
we have

VE (T = T0) =
N∑
i=1

4M2
p

3eb2T 2
0i

, (4.83)

VE (T = T0) = 4M2
pN

3eb2T 2
0

. (4.84)

For the generalized case one can repeat the same
computation with the following redefinition of the
b parameter of tachyonic field theory:

b−2 exp(−2q) → b−2. (4.85)

– For single field tachyonic potential:

V ′(T ) = − 4M2
p

3b2T 3 exp

(
− T

T0

)(
2 + T

T0

)
, (4.86)

V ′′(T ) = 4M2
p

3b2T 4 exp

(
− T

T0

)

×
{

6 + 4

(
T

T0

)
+
(
T

T0

)2
}

. (4.87)

Now to find the extrema of the potential we substitute

V ′(T ) = 0 (4.88)

which give rise to the following solution for the tachy-
onic field:

T = −2T0, ∞. (4.89)

Further substituting the solutions for the tachyonic
field in Eq. (4.87) we get

V ′′ (T = −2T0) = e2M2
p

6b2T 4
0

, (4.90)

V ′′(T → ∞) → 0 (4.91)

and also additionally for T = T0 we have

V ′′(T = T0) = 44M2
p

3eb2T 4
0

, (4.92)

and at these points the value of the potential is com-
puted as
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V (T → ∞) → 0, (4.93)

V (T = −2T0) = e2M2
p

3b2T 2
0

, (4.94)

V (T = T0) = 4M2
p

3b2T 2
0

. (4.95)

It is important to note for the single tachyonic case
that:

• for b2 > 0, V ′′(T = −2T0, T0) > 0, i.e., we
get maxima on the potential.

• for b2 < 0, V ′′(T = −2T0, T0) < 0, i.e., we
get minima on the potential.

and for the assisted case the results are the same,
provided the following replacement occurs:

λ → Nλ, (4.96)

and finally for the multi-tachyonic case we have

V ′(Ti ) = − 4M2
p

3b2T 3
i

exp

(
− Ti
T0i

)(
2 + Ti

T0i

)
,

(4.97)

V ′′(Ti ) = 4M2
p

3b2T 4
i

exp

(
− Ti
T0i

)

×
{

6 + 4

(
Ti
T0i

)
+
(

Ti
T0i

)2
}

. (4.98)

Now to find the extrema of the potential we substitute:

V ′(Tj ) = 0 ∀ j = 1, 2, . . . , N (4.99)

which give rise to the following solutions for the j th
tachyonic field:

Tj = −2T0 j , ∞. (4.100)

Further substituting the solutions for the tachyonic
field in Eq. (4.98) we get

V ′′ (Tj = −2T0 j
) = e2M2

p

6b2T 4
0 j

, (4.101)

V ′′(Tj → ∞) → 0. (4.102)

Additionally for the point Tj = T0 j we have

V ′′(Tj = T0 j ) = 44M2
p

3eb2T 4
0 j

, (4.103)

and at these points the value of the total effective
potential is computed as

V (1)
E =

N∑
j=1

V (Tj → ∞) → 0, (4.104)

V (2)
E =

N∑
j=1

V (Tj =−2T0 j )=
N∑
j=1

e2M2
p

3b2T 2
0 j

, (4.105)

V (3)
E =

N∑
j=1

V (Tj = T0 j ) = 4NM2
p

3b2T 2
0

. (4.106)

It is important to note for the multi-tachyonic case
that:

• for b2 > 0, V ′′(T = −2T0 j , T0 j ) > 0, i.e.,
we get maxima on the potential Vj (T ) as well in
VE (T ).

• for b2 < 0, V ′′(T = −2T0 j , T0 j ) < 0, i.e.,
we get minima on the potential Vj (T ) as well in
VE (T ).

Next using Eq. (4.17) the Hubble parameter can be
expressed in terms of the usual tachyonic potential V (T )

as

H2(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ

3M2
p

⎡
⎣ 1

1 +
√

3λbT0
2Mp

{
t

bT0
− tanh

(
t

bT0

)}
⎤
⎦

2

, for Single,

N∑
i=1

Hi (t) =
N∑
i=1

λi

3M2
p

⎡
⎣ 1

1 +
√

3λbT0i
2Mp

{
t

bT0i
− tanh

(
t

bT0i

)}
⎤
⎦

2

, for Multi,

Nλ

3M2
p

⎡
⎣ 1

1 +
√

3λbT0
2Mp

{
t

bT0
− tanh

(
t

bT0

)}
⎤
⎦

2

, for Assisted,

(4.107)
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and for the generalized case we have

H2(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ

3M2
p

[
cosh

(
t

bT0

)]2(2q−1)

⎡
⎣ 1

1 +
√

3λbT0
2Mp

{
t

bT0
− tanh

(
t

bT0

)}
⎤
⎦

2

, for Single

N∑
i=1

λi

3M2
p

[
cosh

(
t

bT0i

)]2(2q−1)

⎡
⎣ 1

1 +
√

3λbT0i
2Mp

{
t

bT0i
− tanh

(
t

bT0i

)}
⎤
⎦

2

, for Multi,

Nλ

3M2
p

[
cosh

(
t

bT0

)]2(2q−1)

⎡
⎣ 1

1 +
√

3λbT0
2Mp

{
t

bT0
− tanh

(
t

bT0

)}
⎤
⎦

2

, for Assisted.

(4.108)

Let us study the limiting situation from the expression obtained for the Hubble parameter explicitly:

• In the T << T0 and Tj << T0 j limiting situation the Hubble parameter can be approximated for the usual tachyonic
case as:

H2(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ

3M2
p
, for Single,

N∑
i=1

λi

3M2
p
, for Multi,

Nλ

3M2
p
, for Assisted,

(4.109)

and for the generalized case we have

H2(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ

3M2
p

[
cosh

(
t

bT0

)]2(2q−1)
, for Single,

N∑
i=1

λi

3M2
p

[
cosh

(
t

bT0i

)]2(2q−1)
, for Multi,

Nλ

3M2
p

[
cosh

(
t

bT0

)]2(2q−1)
, for Assisted.

(4.110)

In this limiting situation the solution for the scale factor a(t) from Eq. (4.109) can be expressed as

a(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ainf exp

[ √
λ√

3Mp
(t − tinf)

]
, for Single,

N∑
i=1

ainf exp

[√
λi

3M2
p

(t − tinf)

]
, for Multi,

ainf exp

[ √
Nλ√

3Mp
(t − tinf)

]
, for Assisted,

(4.111)

which is exactly the de Sitter solution required for inflation. Here at the inflationary time scale t = tinf the scale factor is
given by

ainf = a(t = tinf). (4.112)
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On the other hand for the generalized case we have the
following solution for the scale factor a(t):

a(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ainf exp

[√
λbT0√
3Mp

{
sinh

(
t

bT0

)
2F1

[
1

2
, q; 3

2
;− sinh2

(
t

bT0

)]}t

tinf

]
, for Single,

N∑
i=1

ainf exp

[√
λi bT0i√
3Mp

{
sinh

(
t

bT0i

)
2F1

[
1

2
, q; 3

2
;− sinh2

(
t

bT0i

)]}t

tinf

]
, for Multi,

ainf exp

[√
NλbT0√
3Mp

{
sinh

(
t

bT0

)
2F1

[
1

2
, q; 3

2
;− sinh2

(
t

bT0

)]}t

tinf

]
, for Assisted,

(4.113)

which replicates the behavior of quasi-de Sitter solution
during inflation. For the q = 1/2 case it exactly follows
the de Sitter behavior.

• In the T >> T0 and Tj >> T0 j limiting situation
the Hubble parameter can be approximated for the usual
tachyonic case as:

H2(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

4

9t2 , for Single

N∑
i=1

4

9t2 , for Multi,

4N

9t2 , for Assisted,

(4.114)

and for the generalized case we have

H2(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4

9t2
[

1
2 exp

(
t

bT0

)]2(2q−1)
, for Single

N∑
i=1

4

9t2
[

1
2 exp

(
t

bT0i

)]2(2q−1)
, for Multi,

4N

9t2
[

1
2 exp

(
t

bT0

)]2(2q−1)
, for Assisted.

(4.115)

In this limiting situation the solution for the scale factor
a(t) from Eq. (4.114) can be expressed as

a(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

adust

(
t

tdust

)2/3

, for Single,

N∑
i=1

adust

(
t

tdust

)2/3

, for Multi,

adust

(
t

tdust

)2/3

, for Assisted,

(4.116)

which is exactly the dust like solution required for the
formation of dark matter. Here at the inflationary time
scale t = tdust the scale factor is given by

adust = a(t = tdust). (4.117)

On the other hand for the generalized case we have the
following solution for the scale factor a(t):

a(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

adust exp

[
4q

3

{
Ei

[(
t

bT0

)
− 2q

]

−Ei
[(

tdust
bT0

)
− 2q

]}]
, for Single,

N∑
i=1

adust exp

[
4q

3

{
Ei

[(
t

bT0i

)
− 2q

]

−Ei
[(

tdust
bT0i

)
− 2q

]}]
, for Multi,

adust exp

[
N4q

3

{
Ei

[(
t

bT0

)
− 2q

]

−Ei
[(

tdust
bT0

)
− 2q

]}]
, for Assisted,

(4.118)

which replicates the behavior of quasi-dust like solution.
For the q = 1/2 case it exactly follows the dust like
behavior.

5 Inflationary paradigm from GTachyon

It is a very well known fact that during cosmological infla-
tion, quantum fluctuations are stretched on the scales larger
than the size of the horizon. Consequently, they are frozen
until they re-enter the horizon at the end of inflationary phase.
In the present context a single tachyonic field drives the infla-
tionary paradigm, which finally gives rise to the large-scale
perturbations with a quasi-scale invariant primordial power
spectrum corresponding to the scalar and tensor modes. Devi-
ations from the scale invariance in the primordial power spec-
trum can be measured in terms of the slow-roll parameters
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which we will explicitly discuss in the next subsections. By
detailed computation we explicitly show that at lowest order
of the primordial spectrum the scalar perturbations is exactly
the same as that obtained for the usual single field inflation-
ary set-up. For completeness the next to leading order cor-
rections to the cosmological perturbations are also derived,
which finally give rise to the sufficient change in the cos-
mological consistency relations with respect to the results
obtained for the usual single field inflationary set-up. Hence
we apply all the derived results for the tachyonic inflationary
models as explicitly mentioned in the previous section and
study the CMB constraints by applying the recent Planck
2015 data.

5.1 Computation for single field inflation

5.1.1 Condition for inflation

For single field tachyonic inflation, the prime condition for
inflation is given by

Ḣ + H2 =
(
ä

a

)
= − (ρ + 3p)

6M2
p

> 0, (5.1)

which can be re-expressed in terms of the following con-
straint condition in the context of single field tachyonic infla-
tion:

V (T )

3M2
p

√
1 − α′Ṫ 2

(
1 − 3

2
α′Ṫ 2

)
> 0. (5.2)

Here Eq. (5.6) implies that, to satisfy inflationary constraints
in the slow-roll regime, the following constraint always holds
good:

Ṫ <

√
2

3α′ , (5.3)

T̈ < 3HṪ <

√
6

α′ H. (5.4)

Consequently the field equations are approximated by

3Hα′Ṫ + dV (T )

V (T )dT
≈ 0. (5.5)

Similarly, in the most generalized case,

V (T )

3M2
p

(
1 − α′Ṫ 2

)1−q

(
1 − (1 + q)α′Ṫ 2

)
> 0. (5.6)

Here Eq. (5.6) implies that to satisfy inflationary constraints
in the slow-roll regime the following constraint always holds
good:

Ṫ <

√
1

α′(1 + q)
, (5.7)

T̈ < 3HṪ <

√
9

α′(1 + q)
H. (5.8)

Consequently the field equations are approximated by

6qα′HṪ + dV (T )

V (T )dT
≈ 0. (5.9)

Also for both cases in the slow-roll regime the Friedmann
equation is modified as

H2 ≈ V (T )

3M2
p

. (5.10)

Further substituting Eq. (5.10) in Eqs. (5.5) and (5.9) we get

√
3V (T )

Mp
α′Ṫ + dV (T )

V (T )dT
≈ 0, (5.11)

6q

√
V (T )√
3Mp

α′Ṫ + dV (T )

V (T )dT
≈ 0. (5.12)

Finally the general solution for both cases can be expressed
in terms of the single field tachyonic potential V (T ) as

t − ti ≈ −
√

3α′

Mp

∫ T

Ti
dT

V 3/2(T )

V ′(T )
, (5.13)

t − ti ≈ − 6qα′
√

3Mp

∫ T

Ti
dT

V 3/2(T )

V ′(T )
. (5.14)

Let us now re-write Eqs. (5.332) and (5.333), in terms of the
string theoretic tachyonic potentials as already mentioned in
the last section. For the q = 1/2 situation we get
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t − ti ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α′T 2
0

2Mp

√
3λ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln

⎡
⎢⎢⎢⎣

(√
sech

(
Ti
T0

)
+ 1

)(
1 −

√
sech

(
T
T0

))

(√
sech

(
T
T0

)
+ 1

)(
1 −

√
sech

(
Ti
T0

))

⎤
⎥⎥⎥⎦

+2 tan−1

⎡
⎢⎢⎣

√
sech

(
Ti
T0

)
−
√

sech
(

T
T0

)

1 +
√

sech
(
Ti
T0

)
sech

(
T
T0

)

⎤
⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, for Model 1,

−α′T 2
0

2Mp

√
3λ ln

⎛
⎝ ln

(
T
T0

) (
ln
(
Ti
T0

)
+ 1

)

ln
(
Ti
T0

) (
ln
(

T
T0

)
+ 1

)
⎞
⎠ , for Model 2,

−2α′T 2
0

Mp

√
3λ

{
exp

[
− T

2T0

]
− exp

[
− Ti

2T0

]}
, for Model 3,

−α′T 2
0

4Mp

√
3λ

{
Ei

(
− T 2

i

2T 2
0

)
− Ei

(
− T 2

2T 2
0

)}
, for Model 4,

α′T 2
0

8Mp

√
3λ

⎧⎨
⎩ln

⎛
⎝
√
T 4

0 + T 4 + T 2

√
T 4

0 + T 4
i + T 2

i

⎞
⎠ +

√
1 +

(
T0

Ti

)4

−
√

1 +
(
T0

T

)4
⎫⎬
⎭ , for Model 5,

(5.15)

and for any arbitrary q we get the following generalized result:

t − ti ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3qα′T 2
0

Mp

√
λ

3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln

⎡
⎢⎢⎢⎣

(√
sech

(
Ti
T0

)
+ 1

)(
1 −

√
sech

(
T
T0

))

(√
sech

(
T
T0

)
+ 1

)(
1 −

√
sech

(
Ti
T0

))

⎤
⎥⎥⎥⎦

+2 tan−1

⎡
⎢⎢⎣

√
sech

(
Ti
T0

)
−
√

sech
(

T
T0

)

1 +
√

sech
(
Ti
T0

)
sech

(
T
T0

)

⎤
⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, for Model 1,

−3qα′T 2
0

Mp

√
λ

3
ln

⎛
⎝ ln

(
T
T0

) (
ln
(
Ti
T0

)
+ 1

)

ln
(
Ti
T0

) (
ln
(

T
T0

)
+ 1

)
⎞
⎠ , for Model 2,

−12qα′T 2
0

Mp

√
λ

3

{
exp

[
− T

2T0

]
− exp

[
− Ti

2T0

]}
, for Model 3,

−3qα′T 2
0

2Mp

√
λ

3

{
Ei

(
− T 2

i

2T 2
0

)
− Ei

(
− T 2

2T 2
0

)}
, for Model 4,

3qα′T 2
0

4Mp

√
λ

3

⎧⎨
⎩ln

⎛
⎝
√
T 4

0 + T 4 + T 2

√
T 4

0 + T 4
i + T 2

i

⎞
⎠ +

√
1 +

(
T0

Ti

)4

−
√

1 +
(
T0

T

)4
⎫⎬
⎭ . for Model 5.

(5.16)
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Further using Eqs. (5.15), (5.16) and (5.10) we get the fol-
lowing solution for the scale factor in terms of the tachyonic
field for the usual q = 1/2 and for a generalized value of q
as:

a = ai ×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp

[
− α′

M2
p

∫ T

Ti
dT

V 2(T )

V ′(T )

]
, for q = 1/2,

exp

[
−2qα′

M2
p

∫ T

Ti
dT

V 2(T )

V ′(T )

]
, for any arbitrary q.

(5.17)

Finally re-writing Eq. (5.334), in terms of the string theoretic
tachyonic potentials as already mentioned in the last section
for q = 1/2, we get

a ≈ ai ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

⎡
⎣α′T 2

0 λ

M2
p

ln

⎛
⎝ tanh

(
T

2T0

)

tanh
(

Ti
2T0

)
⎞
⎠
⎤
⎦ , for Model 1,

exp

⎡
⎣−α′T 2

0 λ

2M2
p

ln

⎛
⎝ ln

(
T
T0

) (
ln
(

Ti
T0

)
+ 1

)

ln
(

Ti
T0

) (
ln
(

T
T0

)
+ 1

)
⎞
⎠
⎤
⎦ , for Model 2,

exp

[
α′T 2

0 λ

M2
p

(
exp

[
− Ti
T0

]
− exp

[
− T

T0

])]
, for Model 3,

exp

[
−α′T 2

0 λ

4M2
p

{
Ei

(
− T 2

i

T 2
0

)
− Ei

(
− T 2

T 2
0

)}]
, for Model 4,

exp

[
−α′T 4

0 λ

8M2
p

(
1

T 2 − 1

T 2
i

)]
, for Model 5,

(5.18)

and for any arbitrary q we get

a ≈ ai ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

⎡
⎣ 2qα′T 2

0 λ

3M2
p

ln

⎛
⎝ tanh

(
T

2T0

)

tanh
(

Ti
2T0

)
⎞
⎠
⎤
⎦ , for Model 1,

exp

⎡
⎣− qα′T 2

0 λ

M2
p

ln

⎛
⎝ ln

(
T
T0

) (
ln
(

Ti
T0

)
+ 1

)

ln
(

Ti
T0

) (
ln
(

T
T0

)
+ 1

)
⎞
⎠
⎤
⎦ , for Model 2,

exp

[
2qα′T 2

0 λ

M2
p

(
exp

[
− Ti
T0

]
− exp

[
− T

T0

])]
, for Model 3,

exp

[
− qα′T 2

0 λ

2M2
p

{
Ei

(
− T 2

i

T 2
0

)
− Ei

(
− T 2

T 2
0

)}]
, for Model 4,

exp

[
− qα′T 4

0 λ

4M2
p

(
1

T 2 − 1

T 2
i

)]
. for Model 5.

(5.19)

Hence using Eqs. (5.15), (5.16), (5.18) and (5.19) one can
study the parametric behavior of the scale factor a(t) with
respect to time t and expected to be as like exact de Sitter
or quasi-de Sitter solution during the inflationary slow-roll
phase, as explicitly derived in the previous section.

5.1.2 Analysis using slow-roll formalism

Here our prime objective is to define slow-roll parameters for
tachyon inflation in terms of the Hubble parameter and the
single field tachyonic inflationary potential. Using the slow-
roll approximation one can expand various cosmological
observables in terms of small dynamical quantities derived
from the appropriate derivatives of the Hubble parameter
and of the inflationary potential. To start with here we use
the horizon-flow parameters based on derivatives of Hub-
ble parameter with respect to the number of e-foldings N ,
defined as

N (t) =
∫ tend

t
H(t) dt, (5.20)

where tend signifies the end of inflation. Further using
Eqs. (5.5), (5.9), (5.10) and (5.335) we get

dT

dN
= Ṫ

H

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 2H ′

3α′H3 , for q = 1/2,

− 2H ′

3α′H3

(
1 − α′(1 − 2q)Ṫ 2

2q

)
, for any arbitrary q,

(5.21)

where H ′ > 0 which makes always Ṫ > 0 during the infla-
tionary phase. Further using Eq. (5.21) we get the following
differential operator identity for tachyonic inflation:

1

H

d

dt
= d

dN
= d

d ln k

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 2H ′

3α′H3

d

dT
, for q = 1/2,

− 2H ′

3α′H3

(
1 − α′(1 − 2q)Ṫ 2

2q

)
d

dT
, for any arbitrary q.

(5.22)

Next we define the following Hubble slow-roll parameters:

ε0 = H�

H
, (5.23)

εi+1 = d ln |εi |
dN

, i ≥ 1 (5.24)

where H� is the Hubble parameter at the pivot scale. Fur-
ther using the differential operator identity as mentioned in
Eq. (5.22) we get the following Hubble flow equation for
tachyonic inflation for i ≥ 0:
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1

H

dεi

dt
= dεi

dN
= εi+1εi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 2H ′

3α′H3

dεi

dT
, for q = 1/2,

− 2H ′

3α′H3

(
1 − α′(1 − 2q)Ṫ 2

2q

)
dεi

dT
, for any arbitrary q.

(5.25)

For a realistic estimate from the single field tachyonic inflationary model substituting the free index i to i = 0, 1, 2 in
Eqs. (5.23) and (5.25) we get the contributions from the first three Hubble slow-roll parameter, which can be depicted as

ε1 = d ln |ε0|
dN

= − Ḣ

H2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

3α′

(
H ′

H2

)2

= 3

2
α′Ṫ 2, for q = 1/2

2

3α′

(
H ′

H2

)2 (1 − α′(1 − 2q)Ṫ 2

2q

)

= 3

2
α′Ṫ 2

(
2q

1 − α′(1 − 2q)Ṫ 2

)
, for any arbitrary q,

(5.26)

ε2 = d ln |ε1|
dN

= Ḧ

H Ḣ
+ 2ε1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2

3α′ε1

ε′
1

H
= 2

T̈

H Ṫ
, for q = 1/2

√
2

3α′ε1

(
1 − α′(1 − 2q)Ṫ 2

2q

)
ε′

1

H

= 2T̈

H Ṫ
(
1 − α′(1 − 2q)Ṫ 2

) , for any arbitrary q,

(5.27)

ε3 = d ln |ε2|
dN

= 1

ε2

[ ...
H

H2 Ḣ
− 3

Ḧ

H3 − Ḧ2

H2 Ḣ2
+ 4

Ḣ2

H4

]

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
2ε1

3α′
ε′

2

H
=
[

2
...
T

H2Ṫ ε2
+ ε1 − ε2

2

]
, for q = 1/2,

√
2ε1

3α′

(
1 − α′(1 − 2q)Ṫ 2

2q

)
ε′

2

H
=

[
2
...
T

H2 Ṫ ε2
+ ε1 − ε2

2

]
(
1 − α′(1 − 2q)Ṫ 2

) +
4α′(1−2q)T̈ 2

H(
1 − α′(1 − 2q)Ṫ 2

)2 , for any arbitrary q.

(5.28)

It is important to note that:

• In the present context ε1 is characterized by the part of the total tachyonic energy density Ṫ 2. Inflation occurs when ε1 < 1
and ends when ε1 = 1, which is exactly the same as the other single field slow-roll inflationary paradigm.

• The slow-roll parameter ε2 characterizes the ratio of the field acceleration relative to the frictional contribution acting on
it due to the expansion.

• The third slow-roll parameter ε3 is made up of both ε1 and ε2. More precisely, ε3 is made up of Ṫ , T̈ and
...
T . This clearly

implies that the third slow-roll parameter ε3 carries the contribution from the part of total tachyonic energy density, field
acceleration relative to the frictional contribution and rate of change of field acceleration.

• The slow-roll conditions stated in Eqs. (5.3) and (5.4) are satisfied when the slow-roll parameters satisfy ε1 << 1,
ε2 << 1 and ε3 << 1. This also implies that in the slow-roll regime of the tachyonic inflation product of the two slow-roll
parameters are also less than unity. For an example from Eq. (5.38) it is clearly observed that to satisfy the slow-roll
condition we need to have additionally ε2ε3 << 1.

Now for the sake of clarity, using Hamilton–Jacobi formalism, the Friedman equations and conservation equation can be
rewritten as
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0 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
H ′(T )

]2 − 9α′

4
H4(T ) + α′

4M4
p
V 2(T ), for q = 1/2,

H2(T )

[
1− 4

[
H ′(T )

]2

9α′H4(T )

(
1−α′(1−2q)Ṫ 2

2q

)2]1−q

−V (T )

3M2
p

[
1 − 4(1 − 2q)

[
H ′(T )

]2

9α′H4(T )

(
1 − α′(1 − 2q)Ṫ 2

2q

)2]
, for any arbitrary q,

(5.29)

and

H ′(T ) ≈

⎧⎪⎪⎨
⎪⎪⎩

−3α′

2
H2(T )Ṫ , for q = 1/2,

−3α′

2
H2(T )Ṫ

(
2q

1 − α′(1 − 2q)Ṫ 2

)
, for any arbitrary q.

(5.30)

Further using the definition of the first Hubble slow-roll parameter ε1 in Eq. (5.29) we get⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H2(T )

[
1 − 2

3
ε1(T )

]1/2

= V (T )

3M2
p

, for q = 1/2,

H2(T )

[
1 − 1

3q
ε1(T )

]1−q

≈ V (T )

3M2
p

[
1 − (1 − 2q)

3q
ε1(T )

]
, for any arbitrary q,

(5.31)

where for the arbitrary q we have used the following constraint condition:

1 − α′(1 − 2q)Ṫ 2︸ ︷︷ ︸
<<1

≈ 1. (5.32)

Now as in the slow-roll regime of tachyonic inflation ε1(T ) << 1, consequently one can expand the exponents appearing in
the left hand side of Eq. (5.31), which leads to the following simplified expression:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H2(T )

[
1 − 1

3
ε1(T )

]
+ O(ε2

1(T )) = V (T )

3M2
p

, for q = 1/2,

H2(T )

[
1 − 1 − q

3q
ε1(T )

]
+ O(ε2

1(T )) ≈ V (T )

3M2
p

[
1 − (1 − 2q)

3q
ε1(T )

]
, for any arbitrary q.

(5.33)

It is important to mention here that:

• The result for q = 1/2 implies that except for the second order correction term in slow-roll i.e., O(ε2
1(T )) the rest of the

contribution exactly matches with the known result for the single field slow-roll inflationary models. But in the non-slow-
roll limiting situation truncating at second order in slow-roll is not allowed and in that case for correct computation one
needs to consider the full binomial series expansion.

• For q �= 1
2 , i.e., for any other arbitrary q in the slow-roll regime of tachyonic inflation we have allowed the second order

correction term in slow-roll i.e., O(ε2
1(T )) as appearing for q �= 1

2 . But the final result implies significant deviation from
the result that is well known for single field slow-roll inflationary models in the slow-roll regime. As mentioned earlier
in the non-slow-roll limiting situation truncating at a certain order in slow-roll is not allowed and in that case for correct
computation one needs to consider the full binomial series expansion.Also for q �= 1

2 case, the right hand side of Eq. (5.33)
gets modified in the presence of slow-roll parameter ε1.

Our next objective is to express the Hubble slow-roll parameters in terms of the tachyon potential dependent slow-roll
parameters. To serve this purpose let us start with writing the expression for the derivatives of the potential in terms of the
Hubble slow-roll parameters. Allowing up to the second order contribution in the Hubble slow-roll parameters we get [86]
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M2
p

V ′(T )

V (T )H(T )
= −√

6ε1

(
1 − 2

3ε1 + ε2
6

)
(
1 − 2

3ε1
) , (5.34)

M4
p

V ′′(T )

V (T )H2(T )
= 6ε1

(
1 − 2

3ε1 + ε2
6

) (
1 − 2

3ε1 − ε2
3

)
(
1 − 2

3ε1
)2

+ε2

2

(
5ε1 − ε2

3 − ε3
)

(
1 − 2

3ε1
) + 3

(
ε1 − ε2

2

)
, (5.35)

Further using Eqs. (5.36), (5.37), (5.38), (5.34) and (5.35) one can re-express the Hubble slow-roll parameters in terms of the
potential dependent slow-roll parameter as

ε1 ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M2
p

2α′
V

′2(T )

V 3(T )
= εV

V (T )α′ ≡ ε̄V , for q = 1/2,

M2
p

4qα′
V

′2(T )

V 3(T )
= εV

2qV (T )α′ ≡ ε̄V

2q
, for any q,

(5.36)

ε2 ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M2
p

α′

(
3
V

′2(T )

V 3(T )
− 2

V ′′(T )

V 2(T )

)
= 2 (3εV − ηV )

V (T )α′ = 2 (3ε̄V − η̄V ) , for q = 1/2,

M2
p√

2qα′

(
3
V

′2(T )

V 3(T )
− 2

V ′′(T )

V 2(T )

)
=

√
2
q (3εV − ηV )

V (T )α′ =
√

2

q
(3ε̄V − η̄V ) . for any q

(5.37)

ε3ε2 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M4
p

V 2(T )α
′2

(
2
V ′′′(T )V ′(T )

V 2(T )
− 10

V ′′(T )V
′2(T )

V 3(T )
+ 9

V
′4(T )

V 4(T )

)

=
(
2ξ2

V − 5ηV εV + 36ε2
V

)
V 2(T )α

′2 =
(

2ξ̄2
V − 5η̄V ε̄V + 36ε̄2

V

)
, for q = 1/2,

M4
p√

2qV 2(T )α
′2

(
2
V ′′′(T )V ′(T )

V 2(T )
− 10

V ′′(T )V
′2(T )

V 3(T )
+ 9

V
′4(T )

V 4(T )

)

=
(
2ξ2

V − 5ηV εV + 36ε2
V

)
√

2qV 2(T )α
′2 =

(
2ξ̄2

V − 5η̄V ε̄V + 36ε̄2
V

)
√

2q
, for any q,

(5.38)

where the potential dependent slow-roll parameters εV , ηV , ξ2
V , σ 3

V are defined as

εV = M2
p

2

(
V ′(T )

V (T )

)2

, (5.39)

ηV = M2
p

(
V ′′(T )

V (T )

)
, (5.40)

ξ2
V = M4

p

(
V ′(T )V ′′′(T )

V 2(T )

)
, (5.41)

σ 3
V = M6

p

(
V

′2(T )V ′′′′(T )

V 3(T )

)
, (5.42)

which is exactly similar to the expression for the slow-roll parameter as appearing in the context of single field slow-roll
inflationary models. However, for the sake of clarity here we introduce new sets of potential dependent slow-roll parameters
for tachyonic inflation by rescaling with the appropriate powers of α′V (T ):
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ε̄V = εV

α′V (T )
= M2

p

2α′V (T )

(
V ′(T )

V (T )

)2

, (5.43)

η̄V = ηV

α′V (T )
= M2

p

α′V (T )

(
V ′′(T )

V (T )

)
, (5.44)

ξ̄2
V = ξ2

V

α
′2V 2(T )

= M4
p

α
′2V 2(T )

(
V ′(T )V ′′′(T )

V 2(T )

)
, (5.45)

σ̄ 3
V = σ 3

V

α
′3V 3(T )

= M6
p

α
′3V 3(T )

(
V

′2(T )V ′′′′(T )

V 3(T )

)
. (5.46)

Further using Eqs. (5.39)–(5.46) we get the following operator identity for tachyonic inflation:

1

H

d

dt
= d

dN
= d

d ln k
≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
2ε̄V

V (T )α′ Mp

(
1 − 2

3
ε̄V

)1/4 d

dT
, for q = 1/2,

√
2ε̄V

V (T )α′
Mp

2q

(
1 − 1

3q
ε̄V

)1/4 d

dT
, for any arbitrary q.

(5.47)

Finally using Eq. (5.47) we get the following sets of flow equations in the context of tachyonic inflation:

dε1

dN
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dε̄V

dN
= 2ε̄V (η̄V − 3ε̄V )

(
1 − 2

3
ε̄V

)1/4

, for q = 1/2,

1

2q

dε̄V

dN
= ε̄V

q
(η̄V − 3ε̄V )

(
1 − 1

3q
ε̄V

)1/4

, for any q,

(5.48)

dε2

dN
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
(

10ε̄V η̄V − 18ε̄2
V − ξ̄2

V

)(
1 − 2

3
ε̄V

)1/4

, for q = 1/2,

√
2

q

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)(
1 − 1

3q
ε̄V

)1/4

, for any q,

(5.49)

d(ε2ε3)

dN
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
2σ̄ 3

V − 216ε̄3
V + 2ξ̄2

V η̄V − 7ξ̄2
V ε̄V + 194ε̄2

V η̄V − 10η̄2
V ε̄V

)(
1 − 2

3
ε̄V

)1/4

, for q = 1/2,

(
2σ̄ 3

V − 216ε̄3
V + 2ξ̄2

V η̄V − 7ξ̄2
V ε̄V + 194ε̄2

V η̄V − 10η̄2
V ε̄V

)
√

2q

(
1 − 1

3q
ε̄V

)1/4

, for any q,

(5.50)

where we use the following consistency conditions for the rescaled potential dependent slow-roll parameters:

dε̄V

dN
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2ε̄V (η̄V − 3ε̄V )

(
1 − 2

3
ε̄V

)1/4

, for q = 1/2,

2ε̄V (η̄V − 3ε̄V )

(
1 − 1

3q
ε̄V

)1/4

. for any q

(5.51)

dη̄V

dN
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
ξ̄2
V − 4ε̄V η̄V

)(
1 − 2

3
ε̄V

)1/4

, for q = 1/2,

(
ξ̄2
V − 4ε̄V η̄V

)(
1 − 1

3q
ε̄V

)1/4

. for any q,

(5.52)

dξ̄2
V

dN
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
σ̄ 3
V + ξ̄2

V η̄V − ξ̄2
V ε̄V

)(
1 − 2

3
ε̄V

)1/4

, for q = 1/2,

(
σ̄ 3
V + ξ̄2

V η̄V − ξ̄2
V ε̄V

)(
1 − 1

3q
ε̄V

)1/4

. for any q

(5.53)
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dσ̄ 3
V

dN
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ̄ 3
V (η̄V − 12ε̄V )

(
1 − 2

3
ε̄V

)1/4

, for q = 1/2,

σ̄ 3
V (η̄V − 12ε̄V )

(
1 − 1

3q
ε̄V

)1/4

, for any q.

(5.54)

In terms of the slow-roll parameters, the number of e-foldings
can be re-expressed as

N (T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
3α′
2

∫ Tend

T

H(T )√
ε1

dT

=
√

3α′
2

∫ Tend

T

H(T )√
ε̄V

dT

≈ α′

M2
p

∫ T

Tend

V 2(T )

V ′(T )
dT, for q = 1/2

2q

√
3α′
2

∫ Tend

T

H(T )√
ε1

dT

= √
3α′q

∫ Tend

T

H(T )√
ε̄V

dT

≈
√

2qα′

M2
p

∫ T

Tend

V 2(T )

V ′(T )
dT . for any q

(5.55)

where Tend characterizes the tachyonic field value at the end
of inflation t = tend. It is important to mention here that
in the single field tachyonic inflationary paradigm the field
value of the tachyon at the end of inflation is computed from
the following condition:

maxφ=φe

[
εV , |ηV |, |ξ2

V |, |σ 3
V |
]

≡ 1. (5.56)

Let T� denote the value of tachyonic field T at which a length
scale or more precisely the modes crosses the Hubble radius
during inflation, which is given by the momentum at pivot
scale k� = a�H�. Here a� and H� signify the scale factor
and Hubble parameter at the horizon crossing scale or at the
pivot scale. Then the definition of the number of e-foldings
as stated in Eqs. (5.335) and (5.55) gives

N� = N (T�) = ln

(
aend

a�

)
, (5.57)

where aend is the scale factor at the end of inflation. Then
using Eq. (5.57) the corresponding horizon crossing momen-
tum scale or the pivot scale can be computed as

cSk� = a�H� = aendH� exp (−N�) . (5.58)

Now at any arbitrary momentum scale the number of e-
foldings, N (k), between the Hubble exit of the relevant
modes and the end of inflation can be expressed as

N (k) ≈ 71.21 − ln

(
k

k0

)
+ 1

4
ln

(
V (T�)

M4
p

)

+1

4
ln

(
V (T�)

ρend

)
+ 1 − 3wint

12(1 + wint)
ln

(
ρreh

ρend

)
,

(5.59)

where ρend is the energy density at the end of inflation, ρreh

is an energy scale during reheating, cSk0 = a0H0 is the
present Hubble scale, V (T�) corresponds to the potential
energy when the relevant modes left the Hubble patch dur-
ing inflation corresponding to the momentum scale cSk� =
a�H� = cSkcmb, and wint characterizes the effective equation
of state parameter between the end of inflation and the energy
scale during reheating. Further using Eq. (5.59) in Eq. (5.57)
we get the following expression:

N� ≈ 71.21 − ln

(
k�

k0

)
+ 1

4
ln

(
V (T�)

M4
p

)

+1

4
ln

(
V (T�)

ρend

)
+ 1 − 3wint

12(1 + wint)
ln

(
ρreh

ρend

)
, (5.60)

which is very useful to fix the number of e-foldings within
50 < N� < 70 for tachyonic inflation.

5.1.3 Basics of tachyonic perturbations

In this subsection we explicitly discuss the cosmological lin-
ear perturbation theory within the framework of tachyonic
inflation. Let us clearly mention that here we have vari-
ous ways of characterizing cosmological perturbations in the
context of inflation, which finally depend on the choice of
gauge. Let us do the computation in the longitudinal guage,
where the scalar metric perturbations of the FLRW back-
ground are given by the following infinitesimal line element:

ds2 = − (1 + 2�(t, x)) dt2

+ a2(t) (1 − 2�(t, x)) δi jdx
idx j , (5.61)

where a(t) is the scale factor, �(t, x) and �(t, x) charac-
terizes the gauge invariant metric perturbations. Specifically,
the perturbation of the FLRW metric leads to the perturba-
tion in the energy-momentum stress tensor via the Einstein
field equation or equivalently through the Friedmann equa-
tions. For the perturbed metric as mentioned in Eq. (5.61),
the perturbed Einstein field equations can be expressed for
the q = 1/2 case of the tachyonic inflationary set-up as

3H
(
H�(t, k) + �̇(t, k)

) + k2

a2(t)
= − 1

2M2
p
δρ, (5.62)
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�̈(t, k) + 3H
(
H�(t, k) + �̇(t, k)

) + H�̇(t, k) + 2Ḣ�(t, k) + k2

3a2(t)
(�(t, k) − �(t, k)) = 1

2M2
p
δp, (5.63)

�̇(t, k) + H�(t, k) = − α′V (T )√
1 − α′Ṫ 2

Ṫ

M2
p
δT, (5.64)

�(t, k) − �(t, k) = 0. (5.65)

Similarly, for any arbitrary q the perturbed Einstein field equations can be expressed as

3H
(
H�(t, k) + �̇(t, k)

) + k2

a2(t)
= − 1

2M2
p
δρ, (5.66)

�̈(t, k) + 3H
(
H�(t, k) + �̇(t, k)

) + H�̇(t, k) + 2Ḣ�(t, k) + k2

3a2(t)
(�(t, k) − �(t, k)) = 1

2M2
p
δp, (5.67)

�̇(t, k) + H�(t, k) = −α′V (T )
[
1 − α′(1 − 2q)Ṫ 2

]
(
1 − α′Ṫ 2

)1−q

Ṫ

M2
p
δT,

(5.68)

�(t, k) − �(t, k) = 0. (5.69)

Here �(t, k) and �(t, k) are the two gauge invariant metric perturbations in the Fourier space, defined via the following
transformation:

�(t, x) =
∫

d3k �(t, k) exp(ik.x), (5.70)

�(t, x) =
∫

d3k �(t, k) exp(ik.x). (5.71)

Additionally, it is important to note that in Eq. (5.65), the two gauge invariant metric perturbations �(t, k) and �(t, k) are
equal in the context of minimally coupled tachyonic string field theoretic model with an Einstein gravity sector. In Eqs. (5.62)
and (5.63) the perturbed energy density δρ and pressure δp are given by

δρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ′(T )δT√
1 − α′Ṫ 2

+ α′V (T )
(
Ṫ δṪ + Ṫ 2�(t, k)

)
(
1 − α′Ṫ 2

)3/2 , for q = 1/2,

{
V ′(T )

[
1 − α′(1 − 2q)Ṫ 2

]
δT − 4α′(1 − 2q)V (T )Ṫ δṪ

}
(
1 − α′Ṫ 2

)1−q

+2α′(1 − q)V (T )
[
1 − α′(1 − 2q)Ṫ 2

] (
Ṫ δṪ + Ṫ 2�(t, k)

)
(
1 − α′Ṫ 2

)2−q , for any arbitrary q,

(5.72)

and

δp =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−V ′(T )
√

1 − α′Ṫ 2δT + α′V (T )
(
Ṫ δṪ + Ṫ 2�(t, k)

)
√

1 − α′Ṫ 2
, for q = 1/2,

−V ′(T )
(

1 − α′Ṫ 2
)q

δT + 2qα′V (T )
(
Ṫ δṪ + Ṫ 2�(t, k)

)
(
1 − α′Ṫ 2

)1−q , for any arbitrary q.

(5.73)

Similarly after the variation of the tachyoinic field equation motion we get the following expressions for the perturbed equation
of motion:
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0 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δT̈ + 3HδṪ + 2α′T̈
(
Ṫ δṪ + Ṫ 2�(t, k)

)
(
1 − α′Ṫ 2

) + Mp

√
1 − α′Ṫ 2

α′V (T )

[(
k2

a2 − 3Ḣ

)
�(t, k) − 2k2

a2 �(t, k)

−3
(
�̈(t, k) + 4H�̇(t, k) + H�̇(t, k) + Ḣ�(t, k) + 4H2�(t, k)

) ]

−
{

6Hα′Ṫ 3 − 2V ′(T )
α′V (T )

(
1 − α′Ṫ 2

)}
�(t, k) − (

�̇(t, k) + 3�̇(t, k)
)
Ṫ − Mp

(
1−α′ Ṫ 2)
α′

(
V ′′(T )
V (T )

− V
′2(T )

V 2(T )

)
, for q = 1/2,

δT̈ + 3HδṪ + 2α′T̈
(
Ṫ δṪ + Ṫ 2�(t, k)

)
(
1 − α′Ṫ 2

)2(1−q)
+ Mp

(
1 − α′Ṫ 2

)1−q

α′V (T )
[
1 − α′(1 − 2q)Ṫ 2

]
[(

k2

a2 − 3Ḣ

)
�(t, k) − 2k2

a2 �(t, k)

− 3
(
�̈(t, k) + 4H�̇(t, k) + H�̇(t, k) + Ḣ�(t, k) + 4H2�(t, k)

) ]
−
{

6Hα′Ṫ 3 −
√

2

q

V ′(T )

α′V (T )

(
1 − α′Ṫ 2

)2(1−q)
}

×�(t, k) − (
�̇(t, k) + 3�̇(t, k)

)
Ṫ − Mp

(
1 − α′Ṫ 2

)2(1−q)

√
2qα′

(
V ′′(T )

V (T )
− V

′2(T )

V 2(T )

)
, for any q.

(5.74)

Further we will perform the following steps throughout the
next part of the computation:
• First of all we decompose the scalar perturbations into

two components-(1) entropic or isocurvature perturba-
tions which can be usually treated as the orthogonal pro-
jective part to the trajectory and (2) adiabatic or curva-
ture perturbations which can be usually treated as the
parallel projective part to the trajectory.

• If inflation is governed by a single scalar field then we
deal with adiabatic or curvature perturbations. On the
other hand for multiple scalar fields we deal with entropic
or isocurvature perturbations.

• In the present context the inflationary dynamics is gov-
erned by a single tachyonic field, which implies the sur-
viving part of the cosmological perturbations are gov-
erned by the adiabatic contribution.

• Within the framework of first order cosmological per-
turbation theory we define a gauge invariant primordial
curvature perturbation on the scales outside the horizon:

ζ = � − H

ρ̇
δρ. (5.75)

• Next we consider the uniform density hypersurface in
which

δρ = 0. (5.76)

Consequently the curvature perturbation is governed by

ζ = �. (5.77)

• Further, the time evolution of the curvature perturbation
can be expressed as

ζ̇ = H

(
δ p̄

ρ + p

)
, (5.78)

where δ p̄ characterizes the non-adiabatic or entropic con-
tribution in the first order linearized cosmological pertur-
bation. In the present context δ p̄ can be expressed as

δ p̄ = � ṗ, (5.79)

where � characterizes the relative displacement between
hypersurfaces of uniform pressure and density. Addi-
tionally, it is important to note that Eq. (5.375) signi-
fies the change in the curvature perturbation on the uni-
form density hypersurfaces on the large scales. Also from
Eq. (5.375) it is clearly observed that the contribution
from the time evolution of the adiabatic or curvature per-
turbations are directly proportional to the non-adiabatic
contribution which comes from significantly from the
isocurvature part of pressure perturbation δp and are com-
pletely independent of the specific mathematical struc-
ture of the gravitational field equations in the context of
Einstein gravity framework. In a generalized prescrip-
tion the pressure perturbation in arbitrary gauge can be
decomposed into the following two contributions:

δp = c2
Sδρ + δ p̄, (5.80)

where c2
S is the effective sound speed, which is mentioned

in the earlier section of the paper.
• Now let us consider a situation where the pressure pertur-

bation is completely made up of adiabatic contribution
from the cosmological perturbation on large cosmologi-
cal scales. Consequently we get

δ p̄ = � ṗ = 0 ⇒ ζ = Constant, (5.81)

which is consistent with the single field slow-roll condi-
tions in the context of the tachyonic inflationary set-up.
Finally, in the uniform density hypersurfaces, the curva-
ture perturbation can be written in terms of the tachyonic
field fluctuations on spatially flat hypersurfaces as
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ζ = −H

(
δT

Ṫ

)
. (5.82)

5.1.4 Computation of scalar power spectrum

In this subsection our prime objective is to compute the primordial power spectra of scalar quantum fluctuations from tachy-
onic inflation and study the cosmological consequences from the previously mentioned string theory originating tachyonic
potentials in the light of Planck 2015 data. To serve this purpose let us start with the following canonical variable vk, which
can be quantized with the standard techniques:

vk ≡ z Mp ζk, (5.83)

where ζk is the curvature perturbation in the momentum space, which can be expressed in terms of the curvature perturbation
in position space through the following Fourier transformation:

ζ(t, x) =
∫

d3k ζk(t) exp(ik.x). (5.84)

Also z is defined as

z = a(t)

cSHMp

√
ρ + p =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
3α′a(t)Ṫ√
1 − α′Ṫ 2

= a(t)

cS

√
2ε1 = a(t)

cS

√
2ε̄V , for q = 1/2,

√
6qα′a(t)Ṫ√
1 − α′Ṫ 2

√
1 + (1 − 2q)α′Ṫ 2

1 − (1 − 2q)α′Ṫ 2
= a(t)

√
2ε1

cS
= a(t)

√
2ε̄V√

2qcS
, for any q.

(5.85)

Next we use conformal time η instead of using the time t , which is defined via the following infinitesimal transformation:

dt = a dη (5.86)

using which one can redefine the Hubble parameter in conformal coordinate system as

H(η) = 1

a(η)

da(η)

dη
= a H(t). (5.87)

Further we derive the equation of motion of the scalar fluctuation by extremizing the tachyonic model action as[
d2

dη2 +
(
c2
Sk

2 − 1

z

d2z

dη2

)]
vk = 0 (5.88)

where

1

z

d2z

dη2 = 2a2H2 +

Higher order slow−roll correction︷ ︸︸ ︷
2

3

(
1
z

dz
dη

dε1
dη

+ 1
2

d2ε1
dη2

)
(
1 − 2

3ε1
) + 1

9

(
dε1
dη

)2

(
1 − 2

3ε1
)2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a2H2 + 2

3

(
1
z

dz
dη

dε̄V
dη

+ 1
2

d2 ε̄V
dη2

)
(
1 − 2

3 ε̄V
) + 1

9

(
dε̄V
dη

)2

(
1 − 2

3 ε̄V
)2

= a2H2
[

2 + 8ε̄V − 3η̄V + (3ε̄V − η̄V )2 + ε̄V (3ε̄V − η̄V ) + 1

2

(
2ξ̄2

V − 5η̄V ε̄V + 36ε̄2
V

)]
+ · · · , for q = 1/2,

2a2H2 + 1

3q

(
1
z

dz
dη

dε̄V
dη

+ 1
2

d2 ε̄V
dη2

)
(

1 − 1
3q ε̄V

) + 1

36q2

(
dε̄V
dη

)2

(
1 − 1

3q ε̄V

)2

= a2H2
[

2 +
(

9√
2q

− 1

2q

)
ε̄V − 3√

2q
η̄V + 1

2q
(3ε̄V − η̄V )2 + 1

(2q)3/2 ε̄V (3ε̄V − η̄V )

+ 1
2
√

2q

(
2ξ̄2

V − 5η̄V ε̄V + 36ε̄2
V

) ] + · · · , for any q,

(5.89)
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and the factor aH can be expressed in terms of the conformal
time η as

η ≈

⎧⎪⎪⎨
⎪⎪⎩

− 1

aH
(1 + ε̄V ) + · · · , for q = 1/2,

− 1

aH

(
1 + ε̄V

2q

)
+ · · · , for any arbitrary q.

(5.90)

Further replacing the factor aH in Eq. (5.89), we finally get
the following simplified expression:

1

z

d2z

dη2 ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

η2

[(
3

2
+ 4ε̄V − η̄V

)2

− 1

4

]
+ · · · , for q = 1/2,

1

η2

[{
3

2
+
(

1

2q
+ 3√

2q

)
ε̄V − 1√

2q
η̄V

}2

− 1

4

]
+ · · · , for any q.

(5.91)

Now for further simplification in the computation of scalar
power spectrum we introduce a new factor ν, which is defined
as

ν ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
3

2
+ 4ε̄V − η̄V

)
+ · · · , for q = 1/2,

{
3

2
+
(

1

2q
+ 3√

2q

)
ε̄V − 1√

2q
η̄V

}
+ · · · , for any q.

(5.92)

Hence using Eq. (5.100) in Eq. (5.88), we get the following
simplified form of the equation of motion:[

d2

dη2 +
(
c2
Sk

2 −
(
ν2 − 1

4

)
η2

)]
vk(η) = 0, (5.93)

and the most general solution of Eq. (5.123) is given by

vk(η) = √−η
[
C1H

(1)
ν (−kcSη) + C2H

(2)
ν (−kcSη)

]
,

(5.94)

where C1 and C2 are two arbitrary integration constants,
which can be fixed from the appropriate choice of the bound-
ary conditions. Additionally H (1)

ν and H (2)
ν represent the

Hankel function of the first and second kind with rank ν. Now
to impose the well known Bunch–Davies boundary condition
at early times we have used:

lim
kcSη→−∞ H (1)

ν (−kcSη)

=
√

2

π

1√−η
exp (ikcSη) exp

(
i
π

2

(
ν + 1

2

))
, (5.95)

lim
kcSη→−∞ H (2)

ν (−kcSη)

=
√

2

π

1√−η
exp (−ikcSη) exp

(
−i

π

2

(
ν + 1

2

))
.

(5.96)

As a result the previously mentioned integration constants

are fixed at the values C1 =
√

π
2 , C2 = 0. Consequently the

solution of the mode function for scalar fluctuations takes the
following form:

vk(η) =
√

−ηπ

2
H (1)

ν (−kcSη) . (5.97)

On the other hand, the solution stated in Eq. (5.94) determines
the future evolution of the mode including its super-horizon

dynamics at cSk << aH or |kcSη| << 1 or kcSη → 0 and
this is due to

lim
kcSη→0

H (1)
ν (−kcSη) = i

π
�(ν)

(−kcSη

2

)−ν

. (5.98)

Consequently the solution of the mode function for scalar
fluctuations takes the following form:

vk(η) =
√

−ηπ

2

i

π
�(ν)

(−kcSη

2

)−ν

. (5.99)

Finally combining the results obtained in Eqs. (5.94), (5.97)
and (5.128) we get

vk(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√−η
[
C1H

(1)
ν (−kcSη)

+C2H
(2)
ν (−kcSη)

]
, for AV,

√
−ηπ

2
H (1)

ν (−kcSη) , for BD + |kcSη| >> 1,

√
−ηπ

2

i

π
�(ν)

(−kcSη

2

)−ν

, for BD + |kcSη| << 1,

(5.100)

where AV and BD signify the arbitrary vacuum and the
Bunch–Davies vacuum respectively. Finally the two point
function from a scalar fluctuation for both AV and BD can
be expressed as

〈ζkζk′ 〉 =
(
H

Ṫ

)2

〈δTkδTk′ 〉 = 1

z2M2
p
〈vkvk′ 〉

= (2π)3δ3(k + k′)2π2

k3 �ζ (k), (5.101)

where the primordial power spectrum for the scalar modes at
any arbitrary momentum scale k can be written for both AV
and BD with q = 1/2 as
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�ζ (k) ≡ k3Pζ (k)

2π2 = k3|vk |2
2π2z2M2

p
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

22ν−3 (−kηcS)3−2ν H2

8cS ε̄V (1 + ε̄V )2π2M2
p

∣∣∣∣∣
�(ν)

�
( 3

2

)
∣∣∣∣∣
2

, for |kcSη| << 1,

22ν−3c2−2ν
S (1 + ε̄V )1−2ν H2

8ε̄Vπ2M2
p

∣∣∣∣∣
�(ν)

�
( 3

2

)
∣∣∣∣∣
2

, for |kcSη| = 1,

(−kηcS)3 H2|H (1)
ν (−kcSη) |2

8cS ε̄V (1 + ε̄V )2πM2
p

, for |kcSη| >> 1,

for BD,

(−kηcS)3 H2
∣∣∣C1H

(1)
ν (−kcSη) + C2H

(2)
ν (−kcSη)

∣∣∣2
4cS ε̄V (1 + ε̄V )2π2M2

p
, for AV,

(5.102)

and similarly the primordial power spectrum for the scalar modes at any arbitrary momentum scale k can be written for both
AV and BD with any arbitrary q as

�ζ (k) ≡ k3Pζ (k)

2π2 = k3|vk |2
2π2z2M2

p
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

22ν−3q (−kηcS)3−2ν H2

4cS ε̄V
(

1 + 1
2q ε̄V

)2
π2M2

p

∣∣∣∣∣
�(ν)

�
( 3

2

)
∣∣∣∣∣
2

, for |kcSη| << 1,

22ν−3q c2−2ν
S

(
1 + 1

2q ε̄V

)1−2ν

H2

4ε̄Vπ2M2
p

∣∣∣∣∣
�(ν)

�
( 3

2

)
∣∣∣∣∣
2

, for |kcSη| = 1,

q (−kηcS)3 H2|H (1)
ν (−kcSη) |2

4cS ε̄V
(

1 + 1
2q ε̄V

)2
πM2

p

, for |kcSη| >> 1.

for BD

q (−kηcS)3 H2
∣∣∣C1H

(1)
ν (−kcSη) + C2H

(2)
ν (−kcSη)

∣∣∣2

2cS ε̄V
(

1 + 1
2q ε̄V

)2
π2M2

p

, for AV,

(5.103)

where the effective sound speed cS is given by

cS =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
1 − 2

3
ε1 =

√
1 − 2

3
ε̄V , for q = 1/2,

√√√√ 1 − 2
3ε1

1 + 2(1−2q)
3q ε1

=
√√√√ 1 − 1

3q ε̄V

1 + (1−2q)

3q2 ε̄V
, for any q.

(5.104)

Now starting from the expression for primordial power spectrum for the scalar modes one can compute the spectral tilt at any
arbitrary momentum scale k for both AV and BD with q = 1/2 as
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nζ (k) − 1 ≡ d ln �ζ (k)

d ln k
= d ln �ζ (k)

dN

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3 − 2ν)

[
1 − 2

3
ε̄V (η̄V − 3ε̄V )

(
1 − 2

3
ε̄V

)1/4
]

+ · · · , for |kcSη| << 1

(3 − 2ν)

[
1 − 2

3
ε̄V (η̄V − 3ε̄V )

(
1 − 2

3
ε̄V

)1/4
]

+ · · · , for |kcSη| = 1,

ε̄V −
[

2

3
ε̄V (η̄V − 3ε̄V ) + 2(η̄V − 3ε̄V )

](
1 − 2

3
ε̄V

)1/4

+
(−cSη)

[
H (1)

ν−1 (−kcSη) − H (1)
ν+1 (−kcSη)

]

H (1)
ν (−kcSη)

+ · · · , for |kcSη| >> 1,

for BD,

ε̄V −
[

2

3
ε̄V (η̄V − 3ε̄V ) + 2(η̄V − 3ε̄V )

](
1 − 2

3
ε̄V

)1/4

+
(−cSη)C1

[
H (1)

ν−1 (−kcSη) − H (1)
ν+1 (−kcSη)

]
[
C1H

(1)
ν (−kcSη) + C2H

(2)
ν (−kcSη)

]

+ (−cSη)C2

[
H (2)

ν−1(−kcSη)−H (2)
ν+1(−kcSη)

]
[
C1H

(1)
ν (−kcSη)+C2H

(2)
ν (−kcSη)

] + · · · , for AV.

(5.105)

and for both AV and BD with any arbitrary q as

nζ (k) − 1 ≡ d ln �ζ (k)

d ln k
= d ln �ζ (k)

dN

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3 − 2ν)

[
1 − 1

3q
ε̄V (η̄V − 3ε̄V )

(
1 − 1

3q
ε̄V

)1/4
]

+ · · · , for |kcSη| << 1,

(3 − 2ν)

[
1 − 1

3q
ε̄V (η̄V − 3ε̄V )

(
1 − 1

3q
ε̄V

)1/4
]

+ · · · , for |kcSη| = 1,

ε̄V

2q
−
[

1

3q
ε̄V (η̄V − 3ε̄V ) + 1

q
(η̄V − 3ε̄V )

](
1 − 2

3
ε̄V

)1/4

+
(−cSη)

[
H (1)

ν−1 (−kcSη) − H (1)
ν+1 (−kcSη)

]

H (1)
ν (−kcSη)

+ · · · , for |kcSη| >> 1,

for BD,

ε̄V

2q
−
[

1

3q
ε̄V (η̄V − 3ε̄V ) + 1

q
(η̄V − 3ε̄V )

](
1 − 2

3
ε̄V

)1/4

+
(−cSη)C1

[
H (1)

ν−1 (−kcSη) − H (1)
ν+1 (−kcSη)

]
[
C1H

(1)
ν (−kcSη) + C2H

(2)
ν (−kcSη)

]

+
(−cSη)C1

[
H (2)

ν−1 (−kcSη) − H (2)
ν+1 (−kcSη)

]
[
C1H

(1)
ν (−kcSη) + C2H

(2)
ν (−kcSη)

] + · · · , for AV.

(5.106)

One can also consider the following approximations to simplify the final derived form of the primordial scalar power spectrum
for the BD vacuum with the |kcSη| = 1 case:
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1. We start with the Laurent expansion of the Gamma function:

�(ν) = 1

ν
− γ + 1

2

(
γ 2 + π2

6

)
ν − 1

6

(
γ 3 + γπ2

2
+ 2ζ(3)

)
ν2 + O(ν3). (5.107)

where γ being the Euler–Mascheroni constant and ζ(3) characterizing the Riemann zeta function of order 3 originating
in the expansion of the gamma function.

2. Hence using the result of Eq. (5.107) for q = 1/2 and for arbitrary q we can write:

�(ν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1( 3
2 + 4ε̄V − η̄V

) − γ + 1

2

(
γ 2 + π2

6

)(
3

2
+ 4ε̄V − η̄V

)

−1

6

(
γ 3 + γπ2

2
+ 2ζ(3)

)(
3

2
+ 4ε̄V − η̄V

)2

+ · · · , for q = 1/2,

1{
3
2 +

(
1

2q + 3√
2q

)
ε̄V − 1√

2q
η̄V

} − γ

+ 1

2

(
γ 2 + π2

6

){
3

2
+
(

1

2q
+ 3√

2q

)
ε̄V − 1√

2q
η̄V

}

− 1

6

(
γ 3 + γπ2

2
+ 2ζ(3)

){
3

2
+
(

1

2q
+ 3√

2q

)
ε̄V − 1√

2q
η̄V

}2

+ · · · , for any q.

(5.108)

3. In the slow-roll regime of inflation all the slow-roll parameters satisfy the following constraint:

ε̄V << 1, (5.109)

|η̄V | << 1, (5.110)

|ξ̄2
V | << 1, (5.111)

|σ̄ 3
V | << 1. (5.112)

Using these approximations the primordial scalar power spectrum can be expressed as

�ζ,� ≈
{[

1 − (CE + 1)ε1 − CE
2

ε2

]2 H2

8π2M2
pcSε1

}

k�=a�H�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
[1 − (CE + 1)ε̄V − CE (3ε̄V − η̄V )]2 H2

8π2M2
pcS ε̄V

}

k�=a�H�

, for q = 1/2,

{[
1 − (CE + 1)

ε̄V

2q
− CE√

2q
(3ε̄V − η̄V )

]2 qH2

4π2M2
pcS ε̄V

}

k�=a�H�

, for any q,

(5.113)

where CE is given by

CE = −2 + ln 2 + γ ≈ −0.72. (5.114)

4. Using the slow-roll approximations one can further approximate the expression for the sound speed as

c2
S =

⎧⎪⎪⎨
⎪⎪⎩

1 − 2

3
ε̄V + O(ε̄2

V ) + · · · , for q = 1/2,

1 − (1 − q)

3q2 ε̄V + O(ε̄2
V ) + · · · , for any q.

(5.115)
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5. Hence using the result in Eq. (5.169) we get the following simplified expression for the primordial scalar power spectrum:

�ζ,� ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{[
1 −

(
CE + 5

6

)
ε̄V − CE (3ε̄V − η̄V )

]2 H2

8π2M2
p ε̄V

}

k�=a�H�

, for q = 1/2,

{[
1 − (CE + 1 − �)

ε̄V

2q
− CE√

2q
(3ε̄V − η̄V )

]2 qH2

4π2M2
p ε̄V

}

k�=a�H�

, for any q,

(5.116)

where the factor � is defined as

� =

⎧⎪⎪⎨
⎪⎪⎩

1

6
, for q = 1/2

1 − q

6q
, for any q.

(5.117)

6. Next one can compute the scalar spectral tilt (nS) of the primordial scalar power spectrum as

nζ,� − 1 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2ε1 − ε2 − 2ε2
1 −

(
2CE + 8

3

)
ε1ε2 − CEε2ε3 + · · ·

= 2η̄V − 8ε̄V − 2ε̄2
V − 2

(
2CE + 8

3

)
ε̄V (3ε̄V − η̄V )

−CE
(
2ξ̄2

V − 5η̄V ε̄V + 36ε̄2
V

) + · · · , for q = 1/2,

−2ε1 − ε2 − 2ε2
1 − (2CE + 3 − 2�) ε1ε2 − CEε2ε3 + · · ·

=
√

2

q
η̄V −

(
1

q
+ 3

√
2

q

)
ε̄V − ε̄2

V

2q2 − 2

(2q)3/2 (2CE + 3 − 2�) ε̄V (3ε̄V − η̄V )

− CE√
2q

(
2ξ̄2

V − 5η̄V ε̄V + 36ε̄2
V

)
+ · · · , for any q.

(5.118)

7. Next one can compute the running of the scalar spectral tilt (αS) of the primordial scalar power spectrum as

αζ,� =
(

dnζ (k)

d ln k

)
k�=a�H�

=
(

dnζ (k)

dN

)
k�=a�H�

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
{[

4ε̄V (1 + ε̄V )(η̄V − 3ε̄V ) + 2
(

10ε̄V η̄V − 18ε̄2
V − ξ̄2

V

)]

−CE
(

2σ̄ 3
V − 216ε̄3

V + 2ξ̄2
V η̄V − 7ξ̄2

V ε̄V + 194ε̄2
V η̄V − 10η̄V ε̄V

)

−
(

2CE + 8

3

)[
2ε̄V

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)
− 4ε̄V (3ε̄V − η̄V )2

]}(
1 − 2

3
ε̄V

)1/4

+ · · · , for q = 1/2,

−
{[√

2

q

ε̄V

q

(
1 + ε̄V

2q

)
(η̄V − 3ε̄V ) +

√
2

q

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)]

− CE√
2q

(
2σ̄ 3

V − 216ε̄3
V + 2ξ̄2

V η̄V − 7ξ̄2
V ε̄V + 194ε̄2

V η̄V − 10η̄V ε̄V

)

−
(

2CE + 8

3

)[√
2

q
ε̄V

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)
− 4

(2q)3/2 ε̄V (3ε̄V − η̄V )2

]}

×
(

1 − 1

3q
ε̄V

)1/4

+ · · · , for any q.

(5.119)
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8. Finally, one can also compute the running of the running
of scalar spectral tilt (κS) of the primordial scalar power
spectrum as

κζ,� =
(

d2nζ (k)

d ln k2

)
k�=a�H�

=
(

d2nζ (k)

dN 2

)
k�=a�H�

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
[
8ε̄V (1 + ε̄V )(η̄V − 3ε̄V )2 + 8ε̄2

V (η̄V − 3ε̄V )2 + 8ε̄V (1 + ε̄V )
(
ξ̄2
V − 10ε̄V η̄V + 18ε̄2

V

)

+2
(

20ε̄V η̄V (η̄V − 3ε̄V ) + 10ε̄V

(
ξ̄2
V − 4ε̄V η̄V

)

−72ε̄2
V (η̄V − 3ε̄V ) −

(
σ̄ 3
V + ξ̄2

V η̄V − ξ̄2
V ε̄V

))](
1 − 2

3
ε̄V

)1/4

+ · · · , for q = 1/2,

−
[(

2

q

)3/2

ε̄V

(
1 + ε̄V

2q

)
(η̄V − 3ε̄V )2 +

√
2

q

2

q2 ε̄2
V (η̄V − 3ε̄V )2

+
√

2

q

2

q
ε̄V

(
1 + ε̄V

2q

)(
ξ̄2
V − 10ε̄V η̄V + 18ε̄2

V

)
+
√

2

q

(
10

q
ε̄V η̄V (η̄V − 3ε̄V ) + 10ε̄V

(
ξ̄2
V − 4ε̄V η̄V

)

−36

q
ε̄2
V (η̄V − 3ε̄V ) −

(
σ̄ 3
V + ξ̄2

V η̄V − ξ̄2
V ε̄V

))](
1 − 1

3q
ε̄V

)1/4

+ · · · , for any q.

(5.120)

5.1.5 Computation of tensor power spectrum

In this subsection our prime objective is to compute the
primordial power spectra of tensor quantum fluctuations
from tachyonic inflation and study the cosmological con-
sequences from the previously mentioned string theory orig-
inating tachyonic potentials in the light of Planck 2015 data.
To serve this purpose let us start with the following canon-
ical variable uk, which can be quantized with the standard
techniques:

uγ

k ≡ a√
2
Mp h

γ

k , (5.121)

where hγ

k is the curvature perturbation in the momentum
space, which can be expressed in terms of the curvature
perturbation in position space through the following Fourier
transformation:

hγ (t, x) =
∫

d3k hγ

k (t) exp(ik.x). (5.122)

Here the superscript γ stands for the helicity index for the
transverse and traceless spin-2 graviton degrees of freedom.
In general, the tensor modes can be written in terms of the
two orthogonal polarization basis vectors.

Further we derive the equation of motion of the tensor
fluctuation by extremizing the tachyonic model action as

[
d2

dη2 +
(
k2 − 1

a

d2a

dη2

)]
uk = 0, (5.123)

where the helicity index γ is summed over in the Fourier
modes for the tensor contribution uk and

1

a

d2a

dη2 =

⎧⎪⎨
⎪⎩
a2H2 [2 − ε̄V ] + · · · , for q = 1/2,

a2H2
[

2 − 1

2q
ε̄V

]
+ · · · , for any q.

(5.124)

Further replacing the factor aH in Eq. (5.89), we finally get
the following simplified expression:

1

a

d2a

dη2 ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

η2

[(
3

2
+ ε̄V

)2

− 1

4

]
+ · · · , for q = 1/2,

1

η2

[{
3

2
+ 1

2q
ε̄V

}2

− 1

4

]
+ · · · , for any q.

(5.125)

Now for further simplification in the computation of tensor
power spectrum we introduce a new factor μ which is defined
as

μ ≈

⎧⎪⎪⎨
⎪⎪⎩

(
3

2
+ ε̄V

)
+ · · · , for q = 1/2,

{
3

2
+ 1

2q
ε̄V

}
+ · · · , for any q.

(5.126)

Hence using Eq. (5.126) in Eq. (5.123), we get the following
simplified form of the equation of motion:[

d2

dη2 +
(
k2 −

(
μ2 − 1

4

)
η2

)]
uk(η) = 0, (5.127)

and the most general solution of Eq. (5.127) is given by

uk(η) = √−η
[
D1H

(1)
μ (−kη) + D2H

(2)
μ (−kη)

]
, (5.128)
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where D1 and D2 are two arbitrary integration constants,
which can be fixed from the appropriate choice of the bound-
ary conditions. Additionally H (1)

μ and H (2)
μ represent the

Hankel function of the first and second kind with rank μ. Now
to impose the well-known Bunch–Davies boundary condi-
tion at early times we have used

lim
kη→−∞ H (1)

μ (−kη)

=
√

2

π

1√−η
exp (ikη) exp

(
i
π

2

(
μ + 1

2

))
, (5.129)

lim
kη→−∞ H (2)

μ (−kη)

=
√

2

π

1√−η
exp (−ikη) exp

(
−i

π

2

(
μ + 1

2

))
. (5.130)

As a result the previously mentioned integration constants
are fixed at the following values:

D1 =
√

π

2
, (5.131)

D2 = 0. (5.132)

Consequently the solution of the mode function for tensor
fluctuations takes the following form:

uk(η) =
√

−ηπ

2
H (1)

μ (−kη) . (5.133)

On the other hand, the solution stated in Eq. (5.128) deter-
mines the future evolution of the mode including its super-
horizon dynamics at k << aH or |kη| << 1 or kη → 0 and
this is due to

lim
kη→0

H (1)
μ (−kη) = i

π
�(μ)

(−kη

2

)−μ

. (5.134)

Consequently the solution of the mode function for tensor
fluctuations takes the following form:

uk(η) =
√

−ηπ

2

i

π
�(μ)

(−kη

2

)−μ

. (5.135)

Finally combining the results obtained in Eqs. (5.94), (5.97)
and (5.128) we get

uk(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√−η
[
D1H

(1)
μ (−kη) + D2H

(2)
μ (−kη)

]
, for AV,

√
−ηπ

2
H (1)

μ (−kη) , for BD + |kη| >> 1,

√
−ηπ

2

i

π
�(μ)

(−kη

2

)−μ

, for BD + |kη| << 1,

(5.136)

where AV and BD signify an arbitrary vacuum and the
Bunch–Davies vacuum respectively. Finally the two point
function from the tensor fluctuations for both AV and BD
can be expressed as

〈hkhk′ 〉 =
(

4

M2
p

)
〈δψkδψk′ 〉 = 2

a2M2
p
〈ukuk′ 〉

= (2π)3δ3(k + k′)2π2

k3 �h(k), (5.137)

where the primordial power spectrum for tensor modes at
any arbitrary momentum scale k can be written for both AV
and BD with q = 1/2 as

�h(k) ≡
Due to graviton helicity︷︸︸︷

2 ×k3Ph(k)

2π2 = k3|uk |2
π2a2M2

p

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

22μ−2 (−kη)3−2μ H2

(1 + ε̄V )2π2M2
p

∣∣∣∣∣
�(μ)

�
( 3

2

)
∣∣∣∣∣
2

, for |kη| << 1

22μ−2 (1 + ε̄V )1−2μ H2

π2M2
p

∣∣∣∣∣
�(μ)

�
( 3

2

)
∣∣∣∣∣
2

, for |kη| = 1

(−kη)3 H2|H (1)
μ (−kη) |2

(1 + ε̄V )2πM2
p

, for |kη| >> 1,

for BD,

2 (−kη)3 H2
∣∣∣D1H

(1)
μ (−kη) + D2H

(2)
μ (−kη)

∣∣∣2
(1 + ε̄V )2π2M2

p
, for AV,

(5.138)
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and similarly the primordial power spectrum for tensor modes at any arbitrary momentum scale k can be written for both AV
and BD with any arbitrary q as

�h(k) ≡
Due to graviton helicity︷︸︸︷

2 ×k3Ph(k)

2π2 = k3|uk |2
π2a2M2

p

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

22μ−1q (−kη)3−2μ H2

(
1 + 1

2q ε̄V

)2
π2M2

p

∣∣∣∣∣
�(μ)

�
( 3

2

)
∣∣∣∣∣
2

, for |kη| << 1

22μ−1q
(

1 + 1
2q ε̄V

)1−2μ

H2

π2M2
p

∣∣∣∣∣
�(μ)

�
( 3

2

)
∣∣∣∣∣
2

, for |kη| = 1

2q (−kη)3 H2|H (1)
μ (−kη) |2

ε̄V

(
1 + 1

2q ε̄V

)2
πM2

p

, for |kη| >> 1.

for BD

4q (−kη)3 H2
∣∣∣C1H

(1)
μ (−kη) + C2H

(2)
μ (−kη)

∣∣∣2
(

1 + 1
2q ε̄V

)2
π2M2

p

, for AV.

(5.139)

Now starting from the expression for the primordial power spectrum for the tensor modes one can compute the spectral tilt
at any arbitrary momentum scale k for both AV and BD with q = 1/2 as

nh(k) ≡ d ln �h(k)

d ln k
= d ln �h(k)

dN

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3 − 2μ)

[
1 − 2

3
ε̄V (η̄V − 3ε̄V )

(
1 − 2

3
ε̄V

)1/4
]

+ · · · , for |kη| << 1,

(3 − 2μ)

[
1 − 2

3
ε̄V (η̄V − 3ε̄V )

(
1 − 2

3
ε̄V

)1/4
]

+ · · · , for |kη| = 1,

ε̄V − 2

3
ε̄V (η̄V − 3ε̄V )

(
1 − 2

3
ε̄V

)1/4

− 2(η̄V − 3ε̄V )

(
1 − 2

3
ε̄V

)1/4

(−η)
[
H (1)

μ−1 (−kη) − H (1)
μ+1 (−kη)

]

H (1)
μ (−kη)

+ · · · , for |kη| >> 1,

for BD,

ε̄V − 2

3
ε̄V (η̄V − 3ε̄V )

(
1 − 2

3
ε̄V

)1/4

− 2(η̄V − 3ε̄V )

(
1 − 2

3
ε̄V

)1/4

(−η)C1

[
H (1)

μ−1 (−kη) − H (1)
μ+1 (−kη)

]
[
C1H

(1)
μ (−kη) + C2H

(2)
μ (−kη)

] (−η)C1

[
H (2)

μ−1 (−kη) − H (2)
μ+1 (−kη)

]
[
C1H

(1)
μ (−kη) + C2H

(2)
μ (−kη)

] + · · · , for AV,

(5.140)
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and for both AV and BD with any arbitrary q as

nh(k) ≡ d ln �h(k)

d ln k
= d ln �h(k)

dN

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3 − 2μ)

[
1 − 1

3q
ε̄V (η̄V − 3ε̄V )

(
1 − 1

3q
ε̄V

)1/4
]

+ · · · , for |kη| << 1,

(3 − 2μ)

[
1 − 1

3q
ε̄V (η̄V − 3ε̄V )

(
1 − 1

3q
ε̄V

)1/4
]

+ · · · , for |kη| = 1,

ε̄V

2q
− 1

3q
ε̄V (η̄V − 3ε̄V )

(
1 − 1

3q
ε̄V

)1/4

− 1

q
(η̄V − 3ε̄V )

(
1 − 2

3
ε̄V

)1/4

(−η)
[
H (1)

μ−1 (−kη) − H (1)
μ+1 (−kη)

]

H (1)
μ (−kη)

+ · · · , for |kη| >> 1,

for BD,

ε̄V

2q
− 1

3q
ε̄V (η̄V − 3ε̄V )

(
1 − 1

3q
ε̄V

)1/4

− 1

q
(η̄V − 3ε̄V )

(
1 − 2

3
ε̄V

)1/4

(−η)C1

[
H (1)

μ−1 (−kη) − H (1)
μ+1 (−kη)

]
[
C1H

(1)
μ (−kη) + C2H

(2)
μ (−kη)

]

(−η)C1

[
H (2)

μ−1 (−kη) − H (2)
μ+1 (−kη)

]
[
C1H

(1)
μ (−kη) + C2H

(2)
μ (−kη)

] + · · · , for AV.

(5.141)

One can also consider the following approximations to simplify the final derived form of the primordial scalar power spectrum
for the BD vacuum with |kcSη| = 1 case:

1. We start with the Laurent expansion of the Gamma function:

�(μ) = 1

μ
− γ + 1

2

(
γ 2 + π2

6

)
μ − 1

6

(
γ 3 + γπ2

2
+ 2ζ(3)

)
μ2 + O(μ3). (5.142)

where γ being the Euler–Mascheroni constant and ζ(3) characterizing the Riemann zeta function of order 3 originating
in the expansion of the gamma function.

2. Hence using the result of Eq. (5.142) for q = 1/2 and for arbitrary q we can write:

�(μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1( 3
2 + ε̄V

) − γ + 1

2

(
γ 2 + π2

6

)(
3

2
+ ε̄V

)

−1

6

(
γ 3 + γπ2

2
+ 2ζ(3)

)(
3

2
+ ε̄V

)2

+ · · · , for q = 1/2,

1{
3
2 + 1

2q ε̄V

} − γ + 1

2

(
γ 2 + π2

6

){
3

2
+ 1

2q
ε̄V

}

− 1

6

(
γ 3 + γπ2

2
+ 2ζ(3)

){
3

2
+ 1

2q
ε̄V

}2

+ · · · , for any q.

(5.143)
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3. In the slow-roll regime of inflation all the slow-roll parameters satisfy the following constraint:

ε̄V << 1, (5.144)

|η̄V | << 1, (5.145)

|ξ̄2
V | << 1, (5.146)

|σ̄ 3
V | << 1. (5.147)

Using these approximations the primordial scalar power spectrum can be expressed as

�ζ,� ≈
{[

1 − (CE + 1)ε1 − CE
2

ε2

]2 H2

8π2M2
pcSε1

}

k�=a�H�

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
[1 − (CE + 1)ε̄V − CE (3ε̄V − η̄V )]2 H2

8π2M2
pcS ε̄V

}

k�=a�H�

, for q = 1/2,

{[
1 − (CE + 1)

ε̄V

2q
− CE√

2q
(3ε̄V − η̄V )

]2 qH2

4π2M2
pcS ε̄V

}

k�=a�H�

, for any q,

(5.148)

where CE is given by

CE = −2 + ln 2 + γ ≈ −0.72. (5.149)

4. Next one can compute the scalar spectral tilt (nS) of the primordial scalar power spectrum as

nh,� ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2ε1 [1 + ε1 + (CE + 1) ε2] + · · ·
= −2ε̄V [1 + ε̄V + 2 (CE + 1) (3ε̄V − η̄V )] + · · · , for q = 1/2,

−2ε1 [1 + ε1 + (CE + 1) ε2] + · · ·

= − ε̄V

q

[
1 + ε̄V

2q
+
√

2

q
(CE + 1) (3ε̄V − η̄V )

]
+ · · · , for any q.

(5.150)

5. Next one can compute the running of the tensor spectral tilt (αh) of the primordial scalar power spectrum as

αh,� =
(

dnh(k)

d ln k

)
k�=a�H�

=
(

dnh(k)

dN

)
k�=a�H�

(5.151)

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
[
4ε̄V (1 + ε̄V )(η̄V − 3ε̄V ) + 4ε̄2

V (η̄V − 3ε̄V ) − 8 (CE + 1) ε̄V (η̄V − 3ε̄V )2

−2ε̄V

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)]
�

(
1 − 2

3
ε̄V

)1/4

�

+ · · · , for q = 1/2,

−
[

2
ε̄V

q

(
1 + ε̄V

2q

)
(η̄V − 3ε̄V ) + 1

q2 ε̄2
V (η̄V − 3ε̄V ) − 8

(2q)5/2 (CE + 1) ε̄V (η̄V − 3ε̄V )2

−
√

2

q
ε̄V

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)]

�

(
1 − 1

3q
ε̄V

)1/4

�

+ · · · , for any q.

(5.152)

123



Eur. Phys. J. C (2016) 76 :278 Page 51 of 130 278

6. Finally, one can also compute the running of the running of scalar spectral tilt (κS) of the primordial scalar power spectrum
as

κh,� =
(

d2nh(k)

d ln k2

)
k�=a�H�

=
(

d2nh(k)

dN 2

)
k�=a�H�

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− [
8ε̄V (1 + ε̄V )(η̄V − 3ε̄V )2 + 8ε̄2

V (η̄V − 3ε̄V )2

−16 (CE + 1) ε̄V
{
(η̄V − 3ε̄V )3 − (η̄V − 3ε̄V )

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)}

−4ε̄V (1 + ε̄V )
(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)]
�

(
1 − 2

3
ε̄V

)1/4

�

+ · · · , for q = 1/2,

−
[

4

q
ε̄V

(
1 + ε̄V

2q

)
(η̄V − 3ε̄V )2 + 2

q2 ε̄2
V (η̄V − 3ε̄V )2 + 2

q
ε̄V

(
1 + ε̄V

2q

) (
ξ̄2
V − 10ε̄V η̄V + 18ε̄2

V

)

− 8

q
(CE + 1) ε̄V

{
(η̄V − 3ε̄V )3 − (η̄V − 3ε̄V )

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)}]
�

(
1 − 1

3q ε̄V

)1/4

�
+ · · · , for any q.

(5.153)

5.1.6 Modified consistency relations

In this subsection we derive the new (modified) consistency relations for single tachyonic field inflation:

1. Let us first start with the tensor-to-scalar ratio r , which can be defined at any arbitrary momentum scale k for the q = 1/2
case as

r(k) ≡ �h(k)

�ζ (k)
= 2

Ph(k)

Pζ (k)
= 2

|uk |2
|vk |2

( z
a

)2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

16 × 22(μ−ν)ε̄V (−kηcS)
2(ν−μ) c2μ−2

S

∣∣∣∣�(μ)

� (ν)

∣∣∣∣
2

, for |kcSη| << 1

16 × 22(μ−ν)ε̄V (1 + ε̄V )2(ν−μ) c2ν−2
S

∣∣∣∣�(μ)

� (ν)

∣∣∣∣
2

, for |kcSη| = 1

8ε̄V

c2
S

× |H (1)
μ (−kη) |2

|H (1)
ν (−kcSη) |2

, for |kcSη| >> 1.

for BD

8ε̄V

c2
S

×
∣∣∣D1H

(1)
μ (−kη) + D2H

(2)
μ (−kη)

∣∣∣2
∣∣∣C1H

(1)
ν (−kcSη) + C2H

(2)
ν (−kcSη)

∣∣∣2
, for AV.

(5.154)

Similarly for arbitrary q one can write the following expression for the tensor-to-scalar ratio r at any arbitrary momentum
scale:

r(k) ≡ �h(k)

�ζ (k)
= 2

Ph(k)

Pζ (k)
= 2

|uk |2
|vk |2

( z
a

)2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

16 × 22(μ−ν)ε̄V (−kηcS)
2(ν−μ) c2μ−2

S

∣∣∣∣�(μ)

� (ν)

∣∣∣∣
2

, for |kcSη| << 1

16 × 22(μ−ν)ε̄V

(
1 + ε̄V

2q

)2(ν−μ)

c2ν−2
S

∣∣∣∣�(μ)

� (ν)

∣∣∣∣
2

, for |kcSη| = 1

8ε̄V

c2
S

× |H (1)
μ (−kcSη) |2

|H (1)
ν (−kcSη) |2

, for |kcSη| >> 1.

for BD

8ε̄V

c2
S

×
∣∣∣D1H

(1)
μ (−kcSη) + D2H

(2)
μ (−kcSη)

∣∣∣2
∣∣∣C1H

(1)
ν (−kcSη) + C2H

(2)
ν (−kcSη)

∣∣∣2
, for AV.

(5.155)
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2. Next for the BD vacuum with |kcSη| = 1 case within the slow-roll regime we can approximately write the following
expression for the tensor-to-scalar ratio:

r� = �h(k�)

�ζ (k�)
= 2

Ph(k�)

Pζ (k�)
= 2

|uk� |2
|vk� |2

( z
a

)2

�
(5.156)

=
⎡
⎢⎣16ε1cS

[1 − (CE + 1)ε1]2

[
1 − (CE + 1)ε1 − CE

2 ε2

]2

⎤
⎥⎦
k�=a�H�

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
16ε̄V cS

[1 − (CE + 1)ε̄V ]2

[1 − (CE + 1)ε̄V − CE (3ε̄V − η̄V )]2

]

k�=a�H�

=
⎡
⎢⎣16ε̄V

[1 − (CE + 1)ε̄V ]2

[
1 −

(
CE + 5

6

)
ε̄V − CE (3ε̄V − η̄V )

]2

⎤
⎥⎦
k�=a�H�

, for q = 1/2,

⎡
⎢⎣ 8

q
ε̄V cS

[
1 − (CE + 1)

ε̄V
2q

]2

[
1 − (CE + 1)

ε̄V
2q − CE√

2q
(3ε̄V − η̄V )

]2

⎤
⎥⎦
k�=a�H�

=
⎡
⎢⎣ 8

q
ε̄V

[
1 − (CE + 1)

ε̄V
2q

]2

[
1 − (CE + 1 − �)

ε̄V
2q − CE√

2q
(3ε̄V − η̄V )

]2

⎤
⎥⎦
k�=a�H�

, for any q.

(5.157)

3. Hence the consistency relation between the tensor-to-scalar ratio r and spectral tilt nh for tensor modes for the BD vacuum
with the |kcSη| = 1 case can be written as

r� = −8nh,� ×
⎡
⎢⎣cS [1 − (CE + 1)ε1]2

[
1 − (CE + 1)ε1 − CE

2 ε2

]2
[1 + ε1 + (CE + 1) ε2]

⎤
⎥⎦
k�=a�H�

≈ −8nh,� ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
cS

[1 − (CE + 1)ε̄V ]2

[1 − (CE + 1)ε̄V − CE (3ε̄V − η̄V )]2 [1 + ε̄V + 2 (CE + 1) (3ε̄V − η̄V )]

]

k�=a�H�

=
⎡
⎢⎣ [1 − (CE + 1)ε̄V ]2

[
1 −

(
CE + 5

6

)
ε̄V − CE (3ε̄V − η̄V )

]2
[1 + ε̄V + 2 (CE + 1) (3ε̄V − η̄V )]

⎤
⎥⎦
k�=a�H�

, for q = 1/2,

⎡
⎢⎣cS

[
1 − (CE + 1)

ε̄V
2q

]2

[
1 − (CE + 1)

ε̄V
2q − CE√

2q
(3ε̄V − η̄V )

]2 [
1 + ε̄V

2q +
√

2
q (CE + 1) (3ε̄V − η̄V )

]
⎤
⎥⎦
k�=a�H�

=
⎡
⎢⎣

[
1 − (CE + 1)

ε̄V
2q

]2

[
1 − (CE + 1 − �)

ε̄V
2q − CE√

2q
(3ε̄V − η̄V )

]2 [
1 + ε̄V

2q +
√

2
q (CE + 1) (3ε̄V − η̄V )

]
⎤
⎥⎦
k�=a�H�

, for any q.

︸ ︷︷ ︸
Correction factor

(5.158)
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4. Next one can express the first two slow-roll parameters ε̄V and η̄V in terms of the inflationary observables as

ε̄V ≈

⎧⎪⎨
⎪⎩

ε1 ≈ −nh,�

2
+ · · · ≈ r�

16
+ · · · , for q = 1/2,

2qε1 ≈ −qnh,� + · · · ≈ qr�
8

+ · · · , for any q,

η̄V ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3ε1 − ε2

2
≈ 1

2

(
nζ,� − 1 + r�

2

)
+ · · · ≈ 1

2

(
nζ,� − 1 − 4nh,�

) + · · · , for q = 1/2,

6qε1 −
√
q

2
ε2 ≈

√
q

2

(
nζ,� − 1 +

(
1

q
+ 3

√
2

q

)
qr�
8

)
+ · · ·

≈
√
q

2

(
nζ,� − 1 − q

(
1

q
+ 3

√
2

q

)
nh,�

)
+ · · · , for any q.

(5.159)

5. Then the connecting consistency relation between tensor and scalar spectral tilt and tensor-to-scalar ratio can be expressed
as

nh,� ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− r�
8cS

[
1 − r�

16
+ (

1 − nζ,�

) − CE
{r�

8
+ (

nζ,� − 1
)}] + · · · , for q = 1/2,

− r�
8cS

[
1 +

{(
3q

8

√
2

q
−
(√

2

q
+ 5

)
1

16

)
r� +

(
1 − nζ,�

)
√

2q

}

+
√

2

q
CE

(
3qr�

8
− 1

2

{
nζ,� − 1 +

(
1

q
+ 3

√
2

q

)
qr�
8

})]
+ · · · , for any q.

(5.160)

Finally, using the approximated version of the expression for cS in terms of slow-roll parameters, one can recast this
consistency condition as

nh,� ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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{r�

8
+ (

nζ,� − 1
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−r�
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[
1 +
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√
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1
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(
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√
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}

+
√
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q
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(
3qr�

8
− 1

2

{
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(
1

q
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√
2

q

)
qr�
8

})]
+ · · · , for any q.

(5.161)

6. Next the running of the sound speed cS can be written in terms of slow-roll parameters as

S = ċS
HcS

= d ln cS
dN

= d ln cS
d ln k

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2

3
ε̄V (η̄V − 3ε̄V )

(
1 − 2

3
ε̄V

)1/4

+ · · · , for q = 1/2,

− (1 − q)

3q2 ε̄V (η̄V − 3ε̄V )

(
1 − 1

3q
ε̄V

)1/4

+ · · · , for any q,

(5.162)

which can be treated as another slow-roll parameter in the present context. One can also recast the slow-roll parameter S
in terms of the inflationary observables as

S = ċS
HcS

= d ln cS
dN

= d ln cS
d ln k

=

⎧⎪⎪⎨
⎪⎪⎩

− r�
48

(
nζ,� − 1 + r�

8

) (
1 − r�

24

)1/4 + · · · , for q = 1/2,

− (1 − q)

24q2

√
q

2
r�
(
nζ,� − 1 + r�

8

) (
1 − r�

24

)1/4 + · · · , for any q.

(5.163)
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7. Further the running of the tensor spectral tilt can be written in terms of the inflationary observables as

αh,� =
(

dnh(k)

d ln k

)
k�=a�H�

=
(

dnh(k)

dN

)
k�=a�H�

(5.164)

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(5.165)

8. Next the scalar power spectrum can be expressed in terms of the other inflationary observables as

�ζ,� ≈
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(5.166)

9. Further the tensor power spectrum can be expressed in terms of the other inflationary observables as

�h,� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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(5.167)

10. Next the running of the tensor-to-scalar ratio can be expressed in terms of the inflationary observables as

αr,� =
(
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d ln k

)
�

=
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)
�

= −8αh,� + · · ·

≈
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(5.168)
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11. Finally the scale of single field tachyonic inflation can be expressed in terms of the Hubble parameter and the other
inflationary observables as

Hinf = H� ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
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2 πMp[
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8
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√
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2 πMp[
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2

(
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8

)] + · · · , for any q.

(5.169)

One can recast this statement in terms of the inflationary potential as

4
√
Vinf = 4

√
V� ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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√
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(5.170)

5.1.7 Field excursion for tachyon

In this subsection we explicitly derive the expression for the field excursion4 for tachyonic inflation defined as

|�T | = |Tcmb − Tend| = |T� − Tend| (5.171)

where Tcmb, Tend and T� signify the tachyon field value at the time of horizon exit, at end of inflation and at pivot scale
respectively. Here we perform the computation for both AV and BD vacuum. For for the sake of simplicity the pivot scale is
fixed at the horizon exit scale. To compute the expression for the field excursion we perform the following steps:

1. We start with the operator identity for single field tachyon using which one can write expression for the tachyon field
variation with respect to the momentum scale (k) or number of e-foldings (N ) in terms of the inflationary observables as

1

H

dT

dt
= dT

dN
= dT

d ln k
≈
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⎪⎪⎩
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√
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2q

(
1 − r

24

)1/4 + · · · , for any arbitrary q,

(5.172)

where the tensor-to-scalar ratio r is a function of k or N .
2. Next using Eq. (5.172) we can write the following integral equation:
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kend
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(5.173)

4 In the context of effective field theory, with a minimally coupled scalar field with Einstein gravity we compute the field excursion formula in
Refs. [44,129–132].
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3. Next we parametrize the form of the tensor-to-scalar ratio for q = 1/2 and for any arbitrary q at any arbitrary scale as

r(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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∣∣∣2
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(5.174)

where k∗ is the pivot scale of momentum. One can also express Eq. (5.174) in terms of the number of e-foldings (N ) as

r(N ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r� for Case I,

r� exp
[
(N − N�)(nh,� − nζ,� + 1)

]
for Case II,

r� exp

[
(N − N�)

{
(nh,� − nζ,� + 1)

+αh,� − αζ,�

2! (N − N�) + · · ·
}]

for Case III,

for BD,

qr�
2c2

S

×
∣∣∣D1H

(1)
μ (−k�cSη exp [N − N�]) + D2H

(2)
μ (−k�cSη exp [N − N�])

∣∣∣2
∣∣∣C1H

(1)
ν (−k�cSη exp [N − N�]) + C2H
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ν (−k�cSη exp [N − N�])

∣∣∣2
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(5.175)

where k and N are connected through the following expression: k
k�

= exp [(N − N�)] . Here the three possibilities for the
BD vacuum are:
Case I stands for a situation where the spectrum is scale invariant. This is a similar situation to the one considered in the
case of the Lyth bound. This possibility also surmounts to the Harrison & Zeldovich spectrum, which is completely ruled
out by Planck 2015+WMAP9 data within 5σ C.L.
Case II stands for a situation where the spectrum shows a power-law feature through the spectral tilt (nζ , nh). This
possibility is also tightly constrained by the WMAP9 and Planck 2015+WMAP9 data within 2σ C.L.
Case III signifies a situation where the spectrum shows deviation from power low in the presence of running of the spectral
tilt (αζ , αh) along with logarithmic correction in the momentum scale as appearing in the exponent. This possibility is
favored by WMAP9 data and tightly constrained within 2σ window by Planck+WMAP9 data.
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4. For any value of q including q = 1/2 we need to compute the following integral:
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(5.176)

Similarly for AV we get the following result:

∫ k�

kend

d ln k

√
qr

4α′
Mp

2q

(
1 − r

24

)1/4

≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
r�

8α′
Mp

2cS

(
1 − qr�

48c2
S

)1/4

ln

(
k�

kend

)
for Case I,

√
r�

8α′
Mp |D|
2cS |C |

(
1 − qr�

48c2
S

|D|2
|C |2

)1/4

ln

(
k�

kend

)
for Case II,

for AV.

(5.177)

In terms of the number of e-foldings N one can re-express Eqs. (5.176) and (5.177) as
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kend
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(5.178)

∫ k�

kend

d ln k
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≈
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(5.179)

Here the two possibilities for AV vacuum are:
Case I stands for a situation where the spectrum is characterized by the constraint i) D1 = D2 = C1 = C2 �= 0, ii)
D1 = D2, C1 = C2 = 0, iii) D1 = D2 = 0, C1 = C2.
Case II stands for a situation where the spectrum is characterized by the constraint i) μ ≈ ν, D1 = D2 = D �= 0 and
C1 = C2 = C �= 0, ii) μ ≈ ν, D1 = D �= 0, D2 = 0 and C1 = C �= 0, C2 = 0, iii) μ ≈ ν, D2 = D �= 0, D1 = 0 and
C2 = C �= 0, C1 = 0.

5. Next we assume that the generic tachyonic potential V (T ) can be expressed as

V (T ) = V0 +
∞∑
n=1

1

n!
(

dnV (T )

dT n

)
T=T0

(T − T0)
n , (5.180)

where the contribution from V0 fix the scale of potential and the higher order Taylor expansion co-efficients characterize
the shape of potential.
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6. Further we need to compute the following integral:
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⎪⎭ (5.181)

7. Next we assume that

1

V0

(
dnV (T )

dT n

)
T=T0

[
(T� − T0)

n+1 − (Tend − T0)
n+1]

�T
<< 1. (5.182)

Consequently from Eq. (5.181) we get

∫ T�

Tend

dT
√
V (T ) ≈ √

V0�T (5.183)

8. Finally using Eqs. (5.178), (5.179), (5.183) and (5.173) we get
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≈
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for Case III,

for BD, (5.184)
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for AV. (5.185)
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9. Next using Eq. (5.170) in Eqs. (5.184) and (5.185) we get

�T

Mp
≈
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for Case III,

for BD, (5.186)
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123



Eur. Phys. J. C (2016) 76 :278 Page 61 of 130 278

Further using the approximated form of the sound speed cS
the expression for the field excursion for AV can be rewritten
as

�T

Mp
≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
r�

8α′

(
1 − qr�

48
[
1− (1−q)

3q
r�
8

]
)1/4

(N� − Nend)

2
√

1 − (1−q)
3q

r�
8

√
3�ζ,�r�

2 πM2
p[

1 − (CE + 1 − �)
r�
16

+ CE
2
√

2q

(
nζ,� − 1 +

(
1 + 3

√
2q − 6q

) r�
8

)]
for Case I,

√
r�

8α′

|D|
(

1 − qr�

48
[
1− (1−q)

3q
r�
8

] |D|2
|C|2

)1/4

(N� − Nend)

2
√

1 − (1−q)
3q

r�
8 |C |

√
3�ζ,�r�

2 πM2
p[

1 − (CE + 1 − �)
r�
16

+ CE
2
√

2q

(
nζ,� − 1 +

(
1 + 3

√
2q − 6q

) r�
8

)]
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5.1.8 Semi-analytical study and cosmological parameter
estimation

In this subsection our prime objective are:

• To compute various inflationary observables from vari-
ants of tachyonic single field potentials as mentioned ear-
lier in this paper.

• To estimate the relevant cosmological parameters from
the proposed models.

• Next to compare the effectiveness of all of these models
in the light of recent Planck 2015 data alongwith other
combined constraints.

• Finally to check the compatibility of all of these models
with the CMB TT, TE and EE angular power spectra as
observed by Planck 2015.

Model I: inverse cosh potential

For the single field case the first model of the tachyonic poten-
tial is given by

V (T ) = λ

cosh
(

T
T0

) , (5.189)

where λ characterizes the scale of inflation and T0 is the
parameter of the model. In Fig. 1 we have depicted the sym-
metric behavior of the inverse cosh potential with respect to
scaled field coordinate T/T0 in dimensionless units around
the origin fixed at T/T0 = 0. In this case the tachyon field
started rolling down from the top height of the potential and
takes part in the inflationary dynamics.

Next using specified form of the potential the potential
dependent slow-roll parameters are computed as

ε̄V = 1

2g

sinh2
(

T
T0

)

cosh
(

T
T0

) , (5.190)

η̄V = 1

g

⎡
⎣ sinh2

(
T
T0

)

cosh
(

T
T0

) − sech

(
T

T0

)⎤
⎦ , (5.191)

ξ̄2
V = 1

g2

sinh2
(

T
T0

)

cosh
(

T
T0

)
⎡
⎣ sinh2

(
T
T0

)

cosh
(

T
T0

) − 5 sech

(
T

T0

)⎤
⎦ ,

(5.192)

σ̄ 3
V = 1

g3

sinh2
(

T
T0

)

cosh
(

T
T0

)
⎡
⎣ sinh2

(
T
T0

)

cosh
(

T
T0

)

×
⎧⎨
⎩

sinh2
(

T
T0

)

cosh
(

T
T0

) − 18 sech

(
T

T0

)⎫⎬
⎭ + 5 sech2

(
T

T0

)⎤
⎦ ,

(5.193)

where the factor g is defined as

g = α′λT 2
0

M2
p

= M4
s

(2π)3gs

α′T 2
0

M2
p

. (5.194)

Fig. 1 Variation of the inverse cosh potential V (T )/λ with field T/T0
in dimensionless units
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Next we compute the number of e-foldings from this model:

N (T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g ln
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)
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)
⎤
⎦ , for q = 1/2,

√
2q g ln

⎡
⎣ tanh

(
Tend
2T0

)

tanh
(

T
2T0

)
⎤
⎦ , for any arbitrary q.

(5.195)

Further using the condition to end inflation:

ε̄V (Tend) = 1, (5.196)

|η̄V (Tend)| = 1, (5.197)

we get the following field value at the end of inflation:

Tend = T0 sech−1(g). (5.198)

Next using N = Ncmb = N� and T = Tcmb = T� at the horizon crossing we get

T� = 2T0 ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
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(
1

2
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)]
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(5.199)

Consequently the field excursion can be computed as

|�T | = T0 ×
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)
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(
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2
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∣∣∣∣ , for any q.

(5.200)

In the slow-roll regime of inflation the following approximations hold good:

cosh

(
T�

T0

)
≈
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(5.201)

sinh
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1
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1
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(

N�√
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) , for any arbitrary q.

(5.202)

Using Eqs. (5.201) and (5.202) in the definition of potential dependent slow-roll parameter finally we compute the following
inflationary observables:

�ζ,� ≈ gλ

12π2M4
p

×

⎧⎪⎪⎪⎨
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(
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2q sinh2
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N�√
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(5.203)
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nζ,� − 1 ≈ − 2
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(5.204)
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(5.205)

κζ,� ≈ − 4
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(5.206)

r� ≈ 16

g
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(5.207)

For the inverse cosh potential we get the following con-
sistency relations:

r� ≈ 4(1 − nζ,�)

×
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(5.208)
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(5.209)
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(5.210)

αζ,� ≈ 2
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(5.211)

κζ,� ≈ 2

g2 × (
nζ,� − 1

)

×
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1
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) , for q = 1/2,

1

2q sinh2
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N�√
2qg

) , for any arbitrary q.

(5.212)

Let us now discuss the general constraints on the parame-
ters of tachyonic string theory including the factor q and on
the parameters appearing in the expression for the inverse
cosh potential. In Fig. 2a, b, we have shown the behavior of
the tensor-to-scalar ratio r with respect to the scalar spec-
tral index nζ and the model parameter g for the inverse cosh
potential respectively. In both the figures the purple and blue
colored line represent the upper bound of the tensor-to-scalar
ratio allowed by Planck+ BICEP2+Keck Array joint con-
straint and only Planck 2015 data respectively. For both the
figures the red, green, brown, orange colored curves repre-
sent q = 1/2, q = 1, q = 3/2 and q = 2, respectively. The
cyan color shaded region bounded by two vertical black col-
ored lines in Fig. 2a represent the Planck 2σ allowed region
and the rest of the light gray shaded region shows the 1σ

allowed range, which is at present disfavored by the Planck
2015 data and Planck+ BICEP2+Keck Array joint constraint.
The rest of the region is completely ruled out by the present
observational constraints. From Fig. 2a, b, it is also observed
that, within 50 < N� < 70, the inverse cosh potential is
favored only for the characteristic index 1/2 < q < 2, by
Planck 2015 data and Planck+ BICEP2+Keck Array joint
analysis. Also in Fig. 2a for q = 1/2, q = 1, q = 3/2
and q = 2 we fix N�/g ∼ 0.8. This implies that for
50 < N� < 70, the prescribed window for g from the r–nζ

plot is given by 63 < g < 88. In Fig. 2b, we have explic-
itly shown that the in r–g plane the observationally favored
lower bound for the characteristic index is q ≥ 1/2. It is
additionally important to note that, for q >> 2, the tensor-
to-scalar ratio computed from the model is negligibly small
for the inverse cosh potential. This implies that if the infla-
tionary tensor mode is detected close to its present upper
bound on tensor-to-scalar ratio then all q >> 2 possibilities
for tachyonic inflation can be discarded for the inverse cosh
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(a)

(b)

vs .

vs .

Fig. 2 Behavior of the tensor-to-scalar ratio r with respect to a the
scalar spectral index nζ and b the parameter g for the inverse cosh
potential. The purple and blue colored line represent the upper bound
of tensor-to-scalar ratio allowed by Planck+ BICEP2+Keck Array joint
constraint and only Planck 2015 data respectively. For both the figures
the red, green, brown, orange colored curves represent q = 1/2, q = 1,
q = 3/2 and q = 2 respectively. The cyan color shaded region bounded
by two vertical black colored lines in a represents the Planck 2σ

allowed region and the rest of the light gray shaded region shows the 1σ

allowed range, which is at present disfavored by the Planck data and
Planck+ BICEP2+Keck Array joint constraint. From a and b, it is also
observed that, within 50 < N� < 70, the inverse cosh potential is
favored only for the characteristic index 1/2 < q < 2, by Planck 2015
data and Planck+ BICEP2+Keck Array joint analysis. In b, we have
explicitly shown that in the r–g plane the observationally favored lower
bound for the characteristic index is q ≥ 1/2

potential. On the contrary, if inflationary tensor modes are
never detected by any of the future observational probes then
the q >> 2 possibilities for tachyonic inflation in the case
of the inverse cosh potential are highly prominent. Also it
is important to mention that, in Fig. 2b within the window
0 < g < 100, if we take a smaller value of g, then the
inflationary tensor-to-scalar ratio also gradually decreases.
To analyze the results more clearly let us describe the cos-
mological features from Fig. 2a in detail. Let us first start
with the q = 1/2 situation, in which the 2σ constraint on the
scalar spectral tilt is satisfied within the window of tensor-
to-scalar ratio, 0.015 < r < 0.025 for 50 < N� < 70. Next
for the q = 1 case, the same constraint is satisfied within
the window of the tensor-to-scalar ratio, 0.050 < r < 0.075
for 50 < N� < 70. Further for the q = 3/2 case, the same

constraint on scalar spectral tilt is satisfied within the win-
dow of the tensor-to-scalar ratio, 0.090 < r < 0.12 for
50 < N� < 70. Finally, for the q = 2 situation, the value
for the tensor-to-scalar ratio is r < 0.12, which is tightly
constrained from the upper bound of the spectral tilt from
Planck 2015 observational data.

In Fig. 3a–c, we have depicted the behavior of the scalar
power spectrum �ζ vs. the stringy parameter g, scalar spec-
tral tilt nζ vs. the stringy parameter g and scalar power spec-
trum �ζ vs. scalar spectral index nζ for the inverse cosh
potential respectively. It is important to note that, for all of
the figures the red, green, brown, orange colored curves rep-
resent q = 1/2, q = 1, q = 3/2 and q = 2 respectively.
The purple and blue colored line represent the upper and
lower bound allowed by WMAP+Planck 2015 data respec-
tively. The cyan color shaded region bounded by two vertical
black colored lines represent the Planck 2σ allowed region
and the rest of the light gray shaded region is the 1σ region,
which is presently disfavored by the joint Planck+WMAP
constraints. The rest of the region is completely ruled out
by the present observational constraints. From Fig. 3a it is
clearly observed that the observational constraints on the
amplitude of the scalar mode fluctuations satisfy within the
window 80 < g < 100. For g > 100 the corresponding
amplitude falls down in a non-trivial fashion by following
the exact functional form as stated in Eq. (5.203). Next using
the behavior as shown in Fig. 3b, the lower bound on the
stringy parameter g is constrained by g > 50 by using the
non-trivial relationship as stated in Eq. (5.204). But at this
lower bound of the parameter g the amplitude of the scalar
power spectrum is larger compared to the present observa-
tional constraints. This implies that, to satisfy both the con-
straints from the amplitude of the scalar power spectrum
and its spectral tilt, within 2σ CL the constrained numeri-
cal value of the stringy parameter is lying within the window
80 < g < 100. Also in Fig. 3c for q = 1/2, q = 1, q = 3/2
and q = 2 we fix N�/g ∼ 0.8, which further implies that for
50 < N� < 70, the prescribed window for g from �ζ –nζ

plot is given by 63 < g < 88. If we additionally impose
the constraint from the upper bound on tensor-to-scalar ratio
then also the allowed parameter range is lying within a sim-
ilar window, i.e., 88 < g < 100.

In Fig. 4a, b, we have shown the behavior of the running
of the scalar spectral tilt αζ and running of the running of the
scalar spectral tilt κζ with respect to the scalar spectral index
nζ for the inverse cosh potential with g = 88, respectively.
For both the figures the red, green, brown, orange colored
curves representq = 1/2,q = 1,q = 3/2 andq = 2, respec-
tively. The cyan color shaded region bounded by two vertical
black colored lines in both the plots represent the Planck 2σ

allowed region and the rest of the light gray shaded region
shows the 1σ allowed range, which is at present disfavored
by the Planck data and Planck+ BICEP2+Keck Array joint
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Fig. 3 Variation of the a scalar
power spectrum �ζ vs. scalar
spectral index nζ , b scalar
power spectrum �ζ vs. the
stringy parameter g and c scalar
spectral tilt nζ vs. the stringy
parameter g. The purple and
blue colored line represent the
upper and lower bound allowed
by WMAP+Planck 2015 data
respectively. The green dotted
region bounded by two vertical
black colored lines represent the
Planck 2σ allowed region and
the rest of the light gray shaded
region is disfavored by the
Planck+WMAP constraint

(a) (b)

(c)

Δζ gvs . nζ gvs .

Δζ nζvs .

constraint. From both of these figures, it is also observed
that, within 50 < N� < 70, the inverse cosh potential is
favored for the characteristic index 1/2 < q < 2, by Planck
2015 data and Planck+ BICEP2+Keck Array joint analysis.
From Fig. 4a, b, it is observed that within the 2σ observed
range of the scalar spectral tilt nζ , as the value of the char-
acteristic parameter q increases, the value of the running αζ

and running of the running κζ decreases for the inverse cosh
potential. It is also important to note that for 1/2 < q < 2,
the numerical value of the running αζ ∼ O(−10−4) and
running of the running κζ ∼ O(−10−6), which are perfectly
consistent with the 1.5σ constraints on running and running
of the running as obtained from Planck 2015 data.

Model II: logarithmic potential
For single field case the second model of tachyonic potential
is given by

V (T ) = λ

{(
T

T0

)2 [
ln

(
T

T0

)]2

+ 1

}
, (5.213)

whereλ characterize the scale of inflation andT0 is the param-
eter of the model. In Fig. 5 we have depicted the behavior
of the logarithmic potential with respect to scaled field coor-
dinate T/T0 in dimensionless units. In this case the tachyon
field started rolling down from the top height of the potential
either from the left or right hand side and takes part in the
inflationary dynamics.

Next using specified form of the potential the potential
dependent slow-roll parameters are computed as

ε̄V = 1

2g

4
(

T
T0

)2
ln2

(
T
T0

) [
1 + ln

(
T
T0

)]2

[
1 +

(
T
T0

)2
ln2

(
T
T0

)]3 , (5.214)

η̄V = 1

g

2

{
ln
(

T
T0

)
+
[
1 + ln

(
T
T0

)]2
}

[
1 +

(
T
T0

)2
ln2

(
T
T0

)]2 , (5.215)
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(a)

(b)

αζ nζVS .

κζ nζVS .

Fig. 4 Behavior of the a running of the scalar spectral tilt αζ and b
running of the running of the scalar spectral tilt κζ with respect to the
scalar spectral index nζ for the inverse cosh potential with g = 88. For
both figures the red, green, brown, orange colored curves represent
q = 1/2, q = 1, q = 3/2 and q = 2 respectively. The cyan color
shaded region bounded by two vertical black colored lines in a represent
the Planck 2σ allowed region and the rest of the light gray shaded region
shows the 1σ allowed range, which is at present disfavored by the Planck
data and Planck+ BICEP2+Keck Array joint constraint. From a and b,
it is also observed that, within 50 < N� < 70, the inverse cosh potential
is favored for the characteristic index 1/2 < q < 2, by Planck 2015
data and Planck+ BICEP2+Keck Array joint analysis

Fig. 5 Variation of the logarithmic potential V (T )/λ with field T/T0
in dimensionless units

ξ̄2
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) [
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(
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)]4 , (5.216)

σ̄ 3
V = − 1
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(5.217)

where the factor g is defined as

g = α′λT 2
0

M2
p

= M4
s

(2π)3gs

α′T 2
0

M2
p

. (5.218)

Next we compute the number of e-foldings from this model:

N (T )=
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(5.219)

Further using the condition to end inflation:

ε̄V (Tend) = 1, (5.220)

|η̄V (Tend)| = 1, (5.221)

we get the following transcendental equation:
[

1 + ln

(
Tend

T0

)]2
{(

Tend

T0

)2

ln2
(
Tend

T0

)
− 1

}

= ln

(
Tend

T0

)
, (5.222)

from which we get the following sets of real solutions for the
field value:

Tend = (0.07 T0, 0.69 T0, 1.83 T0) . (5.223)

Then using this result we need to numerically solve the tran-
scendental equation of T� which involves N� explicitly. How-
ever, in the slow-roll regime of inflation we get the following
simplified expression for the field value T� in terms of N�,
Tend and T0:
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T� ≈ T0 ×
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(5.224)

where we have explicitly used the fact that in the slow-roll regime the quadratic term gives the dominant contribution in N�.
Also the field excursion can be computed as

|�T | = T0 ×
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(5.225)

where c = 0.07, 0.69, 1.83. During the numerical estimation we have taken c = 0.07 as it is compatible with the observational
constraints from Planck 2015 data.

Finally using the previously mentioned definition of potential dependent slow-roll parameter we compute the following
inflationary observables:
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nζ,� − 1 ≈ 4
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where
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Here the constants G and P are defined as

G = 1

2q

(
1 + 2
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, (5.230)

P = 1√
2q

. (5.231)

For the inverse cosh potential we get the following consistency relations:

r� ≈ 8(1 − nζ,�) ×
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Let us now discuss the general constraints on the parameters of tachyonic string theory including the factor q and on
the paramters appearing in the expression for the logarithmic potential. In Fig. 6a, b, we have shown the behavior of the
tensor-to-scalar ratio r with respect to the scalar spectral index nζ and the model parameter g for the logarithmic potential
respectively. In both the figures the purple and blue colored line represent the upper bound of the tensor-to-scalar ratio allowed
by Planck+ BICEP2+Keck Array joint constraint and only Planck 2015 data respectively. For both the figures the red, green,
brown, orange colored curves represent q = 1/2, q = 1, q = 3/2 and q = 2, respectively. The cyan color shaded region
bounded by two vertical black colored lines in Fig. 6a represent the Planck 2σ allowed region and the rest of the light gray
shaded region shows the 1σ allowed range, which is at present disfavored by the Planck 2015 data and Planck+ BICEP2+Keck
Array joint constraint. The rest of the region is completely ruled out by the present observational constraints. From Fig. 6a, b,
it is also observed that, within 50 < N� < 70, the logarithmic potential is favored for the characteristic index 1/2 < q < 2,
by Planck 2015 data and Planck+ BICEP2+Keck Array joint analysis. Also in Fig. 6a for q = 1/2, q = 1, q = 3/2 and
q = 2 we fix N�/g ∼ 0.7. This implies that for 50 < N� < 70, the prescribed window for g from r–nζ plot is given
by 71.4 < g < 100. In Fig. 6b, we have explicitly shown that the in r − g plane the observationally favored lower bound for
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(a)

(b) vs .

vs .

Fig. 6 Behavior of the tensor-to-scalar ratio r with respect to a the
scalar spectral index nζ and b the parameter g for the logarithmic poten-
tial. The purple and blue colored line represent the upper bound of
tensor-to-scalar ratio allowed by Planck+ BICEP2+Keck Array joint
constraint and only Planck 2015 data respectively. For both figures
the red, green, brown, orange colored curves represent q = 1/2,
q = 1, q = 3/2 and q = 2, respectively. The cyan color shaded region
bounded by two vertical black colored lines in a represent the Planck
2σ allowed region and the rest of the light gray shaded region shows
the 1σ allowed range, which is at present disfavored by the Planck data
and Planck+ BICEP2+Keck Array joint constraint. From a and b, it is
also observed that, within 50 < N� < 70, the logarithmic potential is
favored for the characteristic index 1/2 < q < 2, by Planck 2015 data
and Planck+ BICEP2+Keck Array joint analysis. In a, we have explic-
itly shown that in the r–nζ plane the observationally favored lower
bound for the characteristic index is q ≥ 1/2

the characteristic index is q ≥ 1/2. It is additionally impor-
tant to note that, for q >> 2, the tensor-to-scalar ratio com-
puted from the model is negligibly small for the logarithmic
potential. This implies that if the inflationary tensor mode is
detected close to its present upper bound on tensor-to-scalar
ratio then all q >> 2 possibilities for tachyonic inflation can
be discarded for the logarithmic potential. On the contrary,
if inflationary tensor modes are never detected by any of the
future observational probes then the q >> 2 possibilities
for tachyonic inflation in the case of a logarithmic potential
are highly prominent. Also it is important to mention that, in
Fig. 6b within the window 40 < g < 150, if we increase
the value of g, then the inflationary tensor-to-scalar ratio

also gradually decreases. After that within 71 < g < 300
the value of the tensor-to-scalar ratio slightly increases and
again it falls down to lower value within the the interval
120 < g < 1000.

In Fig. 7a–c, we have depicted the behavior of the scalar
power spectrum �ζ vs. the stringy parameter g, scalar spec-
tral tilt nζ vs. the stringy parameter g and scalar power
spectrum �ζ vs. scalar spectral index nζ for the logarith-
mic potential respectively. It is important to note that, for all
of the figures the red, green, brown, orange colored curves
represent q = 1/2, q = 1, q = 3/2 and q = 2 respectively.
The purple and blue colored line represent the upper and
lower bound allowed by WMAP+Planck 2015 data respec-
tively. The cyan color shaded region bounded by two vertical
black colored lines represent the Planck 2σ allowed region
and the rest of the light gray shaded region is the 1σ region,
which is presently disfavored by the joint Planck+WMAP
constraints. The rest of the region is completely ruled out
by the present observational constraints. From Fig. 7a it is
clearly observed that the observational constraints on the
amplitude of the scalar mode fluctuations satisfy within the
window g = (26, 90) for q = 1/2, g = (20, 60) for q = 1,
g = (18, 48) for q = 3/2 and g = (16, 38) for q = 2. For
all the cases outside the mentioned window for the param-
eter g the corresponding amplitude gradually increases in a
non-trivial fashion by following the exact functional form as
stated in Eq. (5.226). Next using the behavior as shown in
Fig. 7b, the lower bound on the stringy parameter g is con-
strained by g > 45 by using the non-trivial relationship as
stated in Eq. (5.227) for q = 2. Similarly by observing the
Fig. 7b one can find the other lower bounds on g from differ-
ent value of q. But at this lower bound of the parameter g the
amplitude of the scalar power spectrum is very larger com-
pared to the present observational constraints. This implies
that, to satisfy both the constraints from the amplitude of the
scalar power spectrum and its spectral tilt within 2σ CL the
constrained numerical value of the stringy parameter is lying
within the window 48 < g < 90 in which q = 2 case is
slightly disfavored compared to the other lower values of q
studied in the present context. Also in Fig. 7c for q = 1/2,
and q = 1 we fix N�/g ∼ 0.7, which further implies that
for 50 < N� < 70, the prescribed window for g from the
�ζ –nζ plot is given by 71.4 < g < 100. If we additionally
impose the constraint from the upper bound on tensor-to-
scalar ratio then also the allowed parameter range is lying
within a similar window, i.e., 71.4 < g < 90 and combin-
ing all the constraints the allowed value of the characteristic
index is lying within 1/2 < q < 1. However, q = 1/2 is
tightly constrained as depicted in Fig. 7c.

Model III: exponential potential Type I
For the single field case the third model of the tachyonic
potential is given by
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Fig. 7 Variation of the a scalar
power spectrum �ζ vs. scalar
spectral index nζ , b scalar
power spectrum �ζ vs. the
stringy parameter g and c scalar
spectral tilt nζ vs. the stringy
parameter g. The purple and
blue colored line represent the
upper and lower bound allowed
by WMAP+Planck 2015 data
respectively. The green dotted
region bounded by two vertical
black colored lines represent the
Planck 2σ allowed region and
the rest of the light gray shaded
region is disfavored by the
Planck+WMAP constraint

(a) (b)

(c)

Δζ gvs . nζ gvs .

Δζ nζvs .

V (T ) = λ exp

(
− T

T0

)
, (5.235)

where λ characterizes the scale of inflation and T0 is the
parameter of the model. In Fig. 8 we have depicted the behav-
ior of the exponential potential Type-I with respect to the
scaled field coordinate T/T0 in dimensionless units. In this
case the tachyon field started rolling down from the top height
of the potential from the left hand side and takes part in the
inflationary dynamics.

Next using specified form of the potential the potential
dependent slow-roll parameters are computed as

ε̄V = 1

2g
exp

(
T

T0

)
, (5.236)

η̄V = 1

g
exp

(
T

T0

)
, (5.237)

ξ̄2
V = 1

g2 exp

(
2T

T0

)
, (5.238)

σ̄ 3
V = 1

g3 exp

(
3T

T0

)
, (5.239)

Fig. 8 Variation of the exponential potential Type-I V (T )/λ with field
T/T0 in dimensionless units

where the factor g is defined as

g = α′λT 2
0

M2
p

= M4
s

(2π)3gs

α′T 2
0

M2
p

. (5.240)
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Next we compute the number of e-foldings from this model:

N (T ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g

[
exp

(
− T

T0

)
− exp

(
− Tend

T0

)]
, for q = 1/2,

√
2qg

[
exp

(
−T

T0

)
−exp

(
−Tend

T0

)]
, for any arbitrary q.

(5.241)

Further using the condition to end inflation:

ε̄V (Tend) = 1, (5.242)

we get the following field value at the end of inflation:

Tend = T0 ln(2g). (5.243)

Next using N = Ncmb = N� and T = Tcmb = T� at the
horizon crossing we get

T� = T0 ×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ln

[
g

1
2 + N�

]
, for q = 1/2,

ln

⎡
⎣ g

1
2 + N�√

2q

⎤
⎦ , for any arbitrary q.

(5.244)

Also the field excursion can be computed as

|�T | = T0 ×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∣∣∣∣ln
[

1

1 + 2N�

]∣∣∣∣ , for q = 1/2,

∣∣∣∣∣∣ln
⎡
⎣ 1

1 + 2N�√
2q

⎤
⎦
∣∣∣∣∣∣ , for any arbitrary q.

(5.245)

Finally we compute the following inflationary observ-
ables:

�ζ,� ≈ gλ

12π2M4
p

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
N� + 1

2

g

)2

, for q = 1/2,

2q

⎛
⎝

N�√
2q

+ 1
2

g

⎞
⎠

2

, for any arbitrary q,

(5.246)

nζ,� − 1 ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 2

N� + 1
2

, for q = 1/2,

− 2
√

2q
(

N�√
2q

+ 1
2

) , for any arbitrary q,

(5.247)

αζ,� ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 2(
N� + 1

2

)2 , for q = 1/2,

− 2

2q
(

N�√
2q

+ 1
2

)2 , for any arbitrary q,

(5.248)

κζ,� ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 4(
N� + 1

2

)3 , for q = 1/2,

− 4

(2q)3/2
(

N�√
2q

+ 1
2

)3 , for any arbitrary q,

(5.249)

r� ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8(
N� + 1

2

) , for q = 1/2,

8

2q
(

N�√
2q

+ 1
2

) , for any arbitrary q.
(5.250)

For the inverse cosh potential we get the following consis-
tency relations:

r� ≈ 4(1 − nζ,�) ×
⎧⎨
⎩

1, for q = 1/2,
1√
2q

, for any arbitrary q,

(5.251)

�ζ,� ≈ λ

3gπ2M4
p(1 − nζ,�)2 ×

{
1, for q = 1/2,

1, for any arbitrary q,

(5.252)

�ζ,� ≈ 2λ

3gπ2M4
pr�

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
N� + 1

2

)
, for q = 1/2,

(
N�√
2q

+ 1

2

)
, for any arbitrary q,

(5.253)

αζ,� ≈ −1

2

(
nζ,� − 1

)2 ×
{

1, for q = 1/2,

1, for any arbitrary q,

(5.254)

κζ,� ≈ 1

2

(
nζ,� − 1

)3 ×
{

1, for q = 1/2,

1, for any arbitrary q.
(5.255)

Let us now discuss the general constraints on the param-
eters of tachyonic string theory including the factor q and
on the parameters appearing in the expression for expo-
nential potential Type-I. In Fig. 9a, we have shown the
behavior of the tensor-to-scalar ratio r with respect to the
scalar spectral index nζ for exponential potential Type-I
respectively. In both the figures the purple and blue colored
line represent the upper bound of the tensor-to-scalar ratio
allowed by Planck+ BICEP2+Keck Array joint constraint
and only Planck 2015 data respectively. For both the fig-
ures the red, green, brown, orange colored curve represent
q = 1/2, q = 1, q = 3/2 and q = 2, respectively. The cyan
color shaded region bounded by two vertical black colored
lines in Fig. 9a represent the Planck 2σ allowed region and
the rest of the light gray shaded region shows the 1σ allowed
range, which is at present disfavored by the Planck 2015 data
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(a) (b)vs . Δζ nζvs .

Fig. 9 In a the behavior of the tensor-to-scalar ratio r with respect
to the scalar spectral index nζ and b the parameter g for exponential
potential Type-I. The purple and blue colored line represent the upper
bound of the tensor-to-scalar ratio allowed by Planck+ BICEP2+Keck
Array joint constraint and only Planck 2015 data respectively. For both
figures the red, green, brown, orange colored curves represent q = 1/2,
q = 1, q = 3/2 and q = 2, respectively. The cyan color shaded region
bounded by two vertical black colored lines in a represent the Planck
2σ allowed region and the rest of the light gray shaded region shows the
1σ allowed range, which is at present disfavored by the Planck data and
Planck+ BICEP2+Keck Array joint constraint. In a, we have explicitly

shown that in r − nζ plane the observationally favored lower bound
for the characteristic index is q ≥ 1/2. Variation of the scalar power
spectrum �ζ vs. scalar spectral index nζ is shown in b. The purple
and blue colored line represent the upper and lower bounds allowed
by WMAP+Planck 2015 data respectively. The green dotted region
bounded by two vertical black colored lines represents the Planck 2σ

allowed region and the rest of the light gray shaded region is disfavored
by the Planck+WMAP constraint. From a and b, it is also observed that,
within 50 < N� < 70, the exponential potential Type-I is favored for
the characteristic index 1 < q < 2, by Planck 2015 data and Planck+
BICEP2+Keck Array joint analysis

and Planck+ BICEP2+Keck Array joint constraint. The rest
of the region is completely ruled out by the present obser-
vational constraints. From Fig. 9a, it is also observed that,
within 50 < N� < 70, the exponential potential Type-I is
favored for the characteristic index 1/2 < q < 2, by Planck
2015 data and Planck+ BICEP2+Keck Array joint analysis.
Also in Fig. 9a for q = 1/2, q = 1, q = 3/2 and q = 2
we fix N�/g ∼ 0.8. This implies that for 50 < N� < 70,
the prescribed window for g from r–nζ plot is given by
63 < g < 88. To analyze the results more clearly let us
describe the cosmological features from Fig. 9a in detail.
Let us first start with the q = 1/2 situation, in which the
2σ constraint on the scalar spectral tilt is satisfied within
the window of the tensor-to-scalar ratio, 0.10 < r < 0.12
for 50 < N� < 70. Next for the q = 1 case, the same
constraint is satisfied within the window of the tensor-to-
scalar ratio, 0.07 < r < 0.11 for 50 < N� < 70. Further
for the q = 3/2 case, the same constraint on scalar spec-
tral tilt is satisfied within the window of the tensor-to-scalar
ratio, 0.06 < r < 0.085 for 50 < N� < 70. Finally, for
q = 2 situation, the value for the tensor-to-scalar ratio is
0.05 < r < 0.075.

In Fig. 9b, we have depicted the behavior of the scalar
power spectrum �ζ vs. scalar spectral tilt nζ for exponential
potential Type-I respectively. It is important to note that, for

all of the figures the red, green, brown, orange colored curves
represent q = 1/2, q = 1, q = 3/2 and q = 2 respectively.
The purple and blue colored line represent the upper and
lower bound allowed by WMAP+Planck 2015 data respec-
tively. The cyan color shaded region bounded by two vertical
black colored lines represent the Planck 2σ allowed region
and the rest of the light gray shaded region is the 1σ region,
which is presently disfavored by the joint Planck+WMAP
constraints. The rest of the region is completely ruled out
by the present observational constraints. Also in Fig. 9b for
q = 1/2, q = 1, q = 3/2 and q = 2 we fix N� ∼ 70. But
the plots can be reproduced for 50 < N� < 70 also consid-
ering the present observational constraints from Planck 2015
data. It is important to mention here that if we combine the
constraints obtained from Fig. 9a, b, then by comparing the
behavior of the GTachyon in the r–nζ and �ζ –nζ planes we
clearly observe that the q = 1/2 case is almost discarded as
it is not consistent with both of the 2σ constraints simulta-
neously.

In Fig. 10a, b, we have shown the behavior of the run-
ning of the scalar spectral tilt αζ and running of the run-
ning of the scalar spectral tilt κζ with respect to the scalar
spectral index nζ for exponential potential Type I respec-
tively. For both the figures the red colored curve represent
the behavior for any arbitrary values of q. The cyan color
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(a)

(b)

αζ nζVS .

κζ nζVS .

Fig. 10 Behavior of the a running of the scalar spectral tilt αζ and b
running of the running of the scalar spectral tilt κζ with respect to the
scalar spectral index nζ for exponential potential Type-I. For both the
figures red colored curves represent for any value of q, respectively. The
cyan color shaded region bounded by two vertical black colored lines
in a represent the Planck 2σ allowed region and the rest of the light
gray shaded region shows the 1σ allowed range, which is at present
disfavored by the Planck data and Planck+ BICEP2+Keck Array joint
constraint. From a and b, it is also observed that, within 50 < N� < 70,
the exponential potential Type-I is favored for the characteristic index
1 < q < 2, by Planck 2015 data and Planck+ BICEP2+Keck Array
joint analysis

shaded region bounded by two vertical black colored lines
in both the plots represent the Planck 2σ allowed region and
the rest of the light gray shaded region shows the 1σ allowed
range, which is at present disfavored by the Planck data and
Planck+ BICEP2+Keck Array joint constraint. From both of
these figures, it is also observed that, within 50 < N� < 70,
the exponential potential Type-I is favored for the char-
acteristic index 1 < q < 2, by Planck 2015 data and
Planck+ BICEP2+Keck Array joint analysis. It is also impor-
tant to note that for any values of q, the numerical value
of the running αζ ∼ O(−10−4) and running of the run-
ning κζ ∼ O(−10−5), which are perfectly consistent with
the 1.5σ constraints on running and running of the running
as obtained from Planck 2015 data. For q = 1/2, q = 1,
q = 3/2 and q = 2 g is not explicitly appearing in the var-
ious inflationary observables except the amplitude of scalar

Fig. 11 Variation of the exponential potential Type-II V (T )/λ with
field T/T0 in dimensionless units

power spectrum in this case. To produce the correct value of
the amplitude of the scalar power spectra we fix the parameter
360 < g < 400.

Model IV: exponential potential-type II

For the single field case the first model of the tachyonic poten-
tial is given by

V (T ) = λ exp

[
−
(
T

T0

)2
]

, (5.256)

whereλ characterize the scale of inflation andT0 is the param-
eter of the model. In Fig. 11 we have depicted the symmetric
behavior of the exponential potential Type-I with respect to
the scaled field coordinate T/T0 in dimensionless units. In
this case the tachyon field started rolling down from the top
height of the potential situated at the origin and takes part in
the inflationary dynamics.

Next using specified form of the potential the potential
dependent slow-roll parameters are computed as

ε̄V = 1

2g
4

(
T

T0

)2

exp

[(
T

T0

)2
]

, (5.257)

η̄V = 1

g

[
2

(
T

T0

)2

− 1

]
exp

[(
T

T0

)2
]

, (5.258)

ξ̄2
V = 1

g2 8

(
T

T0

)2
[

2

(
T

T0

)2

− 3

]
exp

[
2

(
T

T0

)2
]

,

(5.259)

σ̄ 3
V = 1

g3 16

(
T

T0

)2
[

4

(
T

T0

)4

− 12

(
T

T0

)2

+ 3

]

× exp

[
3

(
T

T0

)2
]

, (5.260)
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where the factor g is defined as

g = α′λT 2
0

M2
p

= M4
s

(2π)3gs

α′T 2
0

M2
p

. (5.261)

Next we compute the number of e-foldings from this model:5

N (T ) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g

[
ln

(
T

T0

)
− ln

(
Tend

T0

)]
, for q = 1/2,

√
2q g

[
ln

(
T

T0

)
− ln

(
Tend

T0

)]
, for any arbitrary q.

(5.263)

Further using the condition to end inflation:

ε̄V (Tend) = 1. (5.264)

we get the following transcendental equation to determine
the field value at the end of inflation:(
Tend

T0

)2

exp

[(
Tend

T0

)2
]

= g

2
(5.265)

which we need to solve numerically for a given value of g.
For the sake of simplicity in the further computation one can
consider the following possibilities:

Tend ≈
⎧⎨
⎩
T0, for g

2 ∼ e√
g

2
T0, for g

2 << 1
(5.266)

5 It is important to note that here we have used the following approxi-
mation:

Ei

[
−
(
T

T0

)2
]

≈ γ + 2 ln

(
T

T0

)
+ · · · (5.262)

where all the terms represented via · · · are negligibly small in the series
expansion. Here γ represents the Euler constant, with the numerical
value γ � 0.577216.

Next using N = Ncmb = N� and T = Tcmb = T� at the
horizon crossing we get

T� = T0 ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

[
N�

g
+ ln

(
Tend

T0

)]
, for q = 1/2,

exp

[
N�√
2qg

+ln

(
Tend

T0

)]
, for any arbitrary q.

(5.267)

Also the field excursion can be computed as

|�T |=T0 ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣∣∣exp

[
N�

g
+ ln p

]
− p

∣∣∣∣ , for q = 1/2,

∣∣∣∣exp

[
N�√
2qg

+ln p

]
− p

∣∣∣∣ , for any arbitrary q

(5.268)

where p = 1,

√
g
2 . But during numerical estimation we only

take p =
√

g
2 because p = 1 is disfavored by the Planck

2015 data.
Finally we compute the following inflationary observ-

ables:

�ζ,� ≈ gλ

48π2M4
p

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩
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−2 exp
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2N�

g + 2 ln
(
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)])

exp
[
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2q
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(
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)])

exp
[

2N�√
2qg
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(
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)] , for any arbitrary q,

(5.269)

nζ,� − 1 ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 2

g

{
1 + 2

(
Tend
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)2
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[
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g

]}
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− 2√
2q g

{
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(
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[
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2qg
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, for any arbitrary q.

(5.270)
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αζ,� ≈ 8

g2 ×
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(5.271)

κζ,� ≈ −16
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(5.272)

r� ≈ 32

g
×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Tend

T0

)2

exp

[
2N�

g
+
(
Tend

T0

)2

exp

[
2N�

g

]]
, for q = 1/2,

1

2q

(
Tend

T0

)2

exp

[
2N�√
2qg

+
(
Tend

T0

)2

exp

[
2N�√
2qg

]]
, for any arbitrary q.

(5.273)

For the inverse cosh potential we get the following consistency relations:

r� ≈ 16

g
×
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(5.274)

�ζ,� ≈ gλ

24π2M4
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×
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(5.275)

�ζ,� ≈ 2λ
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(5.276)
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(5.277)

κζ,� ≈ − 8
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Fig. 12 Behavior of the tensor-to-scalar ratio r with respect to a the
scalar spectral index nζ and b the parameter g for exponential potential
Type-II. The purple and blue colored line represent the upper bound
of the tensor-to-scalar ratio allowed by Planck+ BICEP2+Keck Array
joint constraint and only Planck 2015 data respectively. For both figures
the red, green, brown, orange colored curves represent q = 1/2, q = 1,
q = 3/2 andq = 2, respectively. The cyan color shaded region bounded
by two vertical black colored lines in a represent the Planck 2σ allowed
region and the rest of the light gray shaded region shows the 1σ allowed
range, which is at present disfavored by the Planck data and Planck+
BICEP2+Keck Array joint constraint. From a and b, it is also observed
that, within 50 < N� < 70, the logarithmic potential is favored for the
characteristic index 1/2 < q < 2, by Planck 2015 data and Planck+
BICEP2+Keck Array joint analysis

Let us now discuss the general constraints on the parame-
ters of tachyonic string theory including the factor q and on
the parameters appearing in the expression for exponential
potential Type-II. In Fig. 12a, b, we have shown the behav-
ior of the tensor-to-scalar ratio r with respect to the scalar
spectral index nζ and the model parameter g for exponential
potential Type-II respectively. In both the figures the purple
and blue colored line represent the upper bound of tensor-to-
scalar ratio allowed by Planck+ BICEP2+Keck Array joint
constraint and only Planck 2015 data respectively. For both
the figures the red, green, brown, orange colored curve rep-

resent q = 1/2, q = 1, q = 3/2 and q = 2, respectively.
The cyan color shaded region bounded by two vertical black
colored lines in Fig. 12a represent the Planck 2σ allowed
region and the rest of the light gray shaded region shows
the 1σ allowed range, which is at present disfavored by the
Planck 2015 data and Planck+ BICEP2+Keck Array joint
constraint. The rest of the region is completely ruled out by
the present observational constraints. From Fig. 12a, b, it
is also observed that, within 50 < N� < 70, the exponen-
tial potential Type-II is favored only for the characteristic
index 1/2 < q < 2, by Planck 2015 data and Planck+
BICEP2+Keck Array joint analysis. Also in Fig. 12a for
q = 1/2, q = 1, q = 3/2 and q = 2 we fix N�/g ∼ 0.85.
This implies that for 50 < N� < 70, the prescribed window
for g from r–nζ plot is given by 59 < g < 82.3 consider-
ing 1/2 < q < 2. It is additionally important to note that,
for q << 1/2, the tensor-to-scalar ratio computed from the
model is negligibly small for exponential potential Type-II.
This implies that if the inflationary tensor mode is detected
near its present upper bound on the tensor-to-scalar ratio then
all q << 1/2 possibilities for tachyonic inflation can be dis-
carded for exponential potential Type-II. On the contrary, if
inflationary tensor modes are never detected by any of the
future observational probes then q << 1/2 possibilities for
tachyonic inflation in the case of an exponential potential
Type-II is highly prominent. Also it is important to mention
that, in Fig. 12b within the window 30 < g < 93, if we take a
smaller value of g, then the inflationary tensor-to-scalar ratio
also gradually decreases. To analyze the results more clearly
let us describe the cosmological features from Fig. 12a in
detail. Let us first start with the q = 1/2 situation, in which
the 2σ constraint on the scalar spectral tilt is satisfied within
the window of the tensor-to-scalar ratio, 0 < r < 0.065 for
50 < N� < 70. Next for the q = 1 case, the same con-
straint is satisfied within the window of the tensor-to-scalar
ratio, 0.030 < r < 0.12 for 50 < N� < 70. Further for
the q = 3/2 case, the same constraint on scalar spectral tilt
is satisfied within the window of the tensor-to-scalar ratio,
0.045 < r < 0.12 for 50 < N� < 70. Finally, for the
q = 2 situation, the value for the tensor-to-scalar ratio is
0.060 < r < 0.12, which is tightly constrained from the
upper bound of spectral tilt from Planck 2015 observational
data.

In Fig. 13a–c, we have depicted the behavior of the scalar
power spectrum �ζ vs. the stringy parameter g, scalar spec-
tral tilt nζ vs. the stringy parameter g and scalar power spec-
trum �ζ vs. scalar spectral index nζ for exponential potential,
Type-II respectively. It is important to note that, for all of the
figures the red, green, brown, orange colored curves rep-
resent q = 1/2, q = 1, q = 3/2 and q = 2 respectively.
The purple and blue colored line represent the upper and
lower bound allowed by WMAP+Planck 2015 data respec-
tively. The cyan color shaded region bounded by two vertical
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Fig. 13 Variation of the a
scalar power spectrum �ζ vs.
scalar spectral index nζ , b scalar
power spectrum �ζ vs. the
stringy parameter g and c scalar
spectral tilt nζ vs. the stringy
parameter g. The purple and
blue colored line represent the
upper and lower bound allowed
by WMAP+Planck 2015 data
respectively. The green dotted
region bounded by two vertical
black colored lines represent the
Planck 2σ allowed region and
the rest of the light gray shaded
region is disfavored by the
Planck+WMAP constraint

(a) (b)

(c)

Δζ g.vs nζ g.vs

Δζ vs nζ. 

black colored lines represent the Planck 2σ allowed region
and the rest of the light gray shaded region is the 1σ region,
which is presently disfavored by the joint Planck+WMAP
constraints. The rest of the region is completely ruled out
by the present observational constraints. From Fig. 13a it
is clearly observed that the observational constraints on the
amplitude of the scalar mode fluctuations satisfy within the
window 55 < g < 93 considering 1/2 < q < 2. For
g > 93 the corresponding amplitude falls down in a non-
trivial fashion by following the exact functional form as
stated in Eq. (5.269). Next using the behavior as shown in
Fig. 13b, the lower bound on the stringy parameter g is con-
strained by g > 73 by using the non-trivial relationship as
stated in Eq. (5.270). But at this lower bound of the param-
eter g the amplitude of the scalar power spectrum is slightly
outside to the present observational constraints. This implies
that, to satisfy both the constraints from the amplitude of
the scalar power spectrum and its spectral tilt, within 2σ CL
the constrained numerical value of the stringy parameter is
lying within the window 73 < g < 93. Also in Fig. 13c for
q = 1/2, q = 1, q = 3/2 and q = 2 we fix N�/g ∼ 0.85,

which further implies that for 50 < N� < 70, the prescribed
window for g from �ζ –nζ plot is given by 59 < g < 82.3. If
we additionally impose the constraint from the upper bound
on the tensor-to-scalar ratio then also the allowed parameter
range is lying within the window, i.e., 73 < g < 82.3.

In Fig. 14a, b, we have shown the behavior of the running
of the scalar spectral tilt αζ and running of the running of the
scalar spectral tilt κζ with respect to the scalar spectral index
nζ for exponential potential Type II with g = 76, respec-
tively. For both the figures the red, green, brown, orange
colored curves represent q = 1/2, q = 1, q = 3/2 and
q = 2, respectively. The cyan color shaded region bounded
by two vertical black colored lines in both plots represent the
Planck 2σ allowed region and the rest of the light gray shaded
region shows the 1σ allowed range, which is at present disfa-
vored by the Planck data and Planck+ BICEP2+Keck Array
joint constraint. From both of these figures, it is also observed
that, within 50 < N� < 70, the exponential potential Type-II
is favored for the characteristic index 1/2 < q < 2, by the
Planck 2015 data and Planck+ BICEP2+Keck Array joint
analysis. From Fig. 14a, b, it is observed that within the 2σ
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(a)

(b)

αζ nζ. vs

κζ nζ.vs

Fig. 14 Behavior of the a running of the scalar spectral tilt αζ and b
running of the running of the scalar spectral tilt κζ with respect to the
scalar spectral index nζ for the inverse cosh potential with g = 88. For
both figures the red, green, brown, orange colored curves represent
q = 1/2, q = 1, q = 3/2 and q = 2 respectively. The cyan color
shaded region bounded by two vertical black colored lines in a represent
the Planck 2σ allowed region and the rest of the light gray shaded region
shows the 1σ allowed range, which is at present disfavored by the Planck
data and Planck+ BICEP2+Keck Array joint constraint. From a and b,
it is also observed that, within 50 < N� < 70, the inverse cosh potential
is favored for the characteristic index 1/2 < q < 2, by Planck 2015
data and Planck+ BICEP2+Keck Array joint analysis

observed range of the scalar spectral tilt nζ , as the value of
the characteristic parameter q increases, the value of the run-
ning αζ decreases and running of the running κζ increases
for exponential potential Type-II. It is also important to note
that for 1/2 < q < 2, the numerical value of the running
αζ ∼ O(10−4) and running of the running κζ ∼ O(−10−6),
which are perfectly consistent with the 1.5σ constraints on
running and running of the running as obtained from the
Planck 2015 data.

Model V: inverse power-law potential

For single field case the first model of tachyonic potential is
given by

V (T ) = λ[
1 +

(
T
T0

)4
] , (5.279)

Fig. 15 Variation of the inverse power-law potential V (T )/λ with the
field T/T0 in dimensionless units

whereλ characterize the scale of inflation andT0 is the param-
eter of the model. In Fig. 15 we have depicted the symmetric
behavior of the inverse power-law potential with respect to
the scaled field coordinate T/T0 in dimensionless units. In
this case the tachyon field started rolling down from the top
height of the potential situated at the origin and takes part in
the inflationary dynamics.

Next using specified form of the potential the potential
dependent slow-roll parameters are computed as

ε̄V = 1

2g

16
(

T
T0

)6

[
1 +

(
T
T0

)4
] , (5.280)

η̄V = 1

g

4

[
5
(

T
T0

)4 − 3

]
[

1 +
(

T
T0

)4
] , (5.281)

ξ̄2
V = 1

g2

96
(

T
T0

)2
[

5
(

T
T0

)8 − 10
(

T
T0

)4 + 1

]

[
1 +

(
T
T0

)4
]2 , (5.282)

σ̄ 3
V = 1

g3

384
(

T
T0

)6
[

5
(

T
T0

)4
(

7
(

T
T0

)8−31
(

T
T0

)4+13

)
−1

]

[
1+

(
T
T0

)4
]3 ,

(5.283)

where the factor g is defined as

g = α′λT 2
0

M2
p

= M4
s

(2π)3gs

α′T 2
0

M2
p

. (5.284)
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Next we compute the number of e-foldings from this model:

N (T )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g

8

⎡
⎢⎣ 1(

T
T0

)2 − 1(
Tend
T0

)2

⎤
⎥⎦ , for q = 1/2,

√
2q

g

8

⎡
⎢⎣ 1(

T
T0

)2 − 1(
Tend
T0

)2

⎤
⎥⎦ , for any arbitrary q.

(5.285)

Further using the condition to end inflation:

ε̄V (Tend) = 1, (5.286)

we get the following field values at the end of inflation:

Tend ∼
√
g

8
T0. (5.287)

Next using N = Ncmb = N� and T = Tcmb = T� at the
horizon crossing we get

T� = T0 ×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1√
8
g (N� + 1)

, for q = 1/2,

1√
8
g

(
N�√
2q

+ 1
) , for any arbitrary q,

(5.288)

Also the field excursion can be computed as

|�T | = T0

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣
1√

8
g (N� + 1)

−
√
g

8

∣∣∣∣∣∣ , for q = 1/2,

∣∣∣∣∣∣∣∣
1√

8
g

(
N�√
2q

+ 1
)−

√
g

8

∣∣∣∣∣∣∣∣
, for any arbitrary q.

(5.289)

Finally we compute the following inflationary observ-
ables:

�ζ,� ≈ gλ

12π2M4
p

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

16
(

8
g (N� + 1)

)3 , for q = 1/2,

2q

16
(

8
g

(
N�√
2q

+ 1
))3 , for any arbitrary q,

(5.290)

nζ,� − 1 ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 3

(N� + 1)
, for q = 1/2,

− 3(
N�√
2q

+ 1
) , for any arbitrary q.

(5.291)

αζ,� ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 3

(N� + 1)2 , for q = 1/2,

− 3
√

2q
(

N�√
2q

+ 1
)2 , for any arbitrary q,

(5.292)

κζ,� ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 6

(N� + 1)3 , for q = 1/2,

− 6

2q
(

N�√
2q

+ 1
)3 , for any arbitrary q,

(5.293)

r� ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

16

(N� + 1)
, for q = 1/2,

16

2q
(

N�√
2q

+ 1
) , for any arbitrary q.

(5.294)

For the inverse cosh potential we get the following consis-
tency relations:

r� ≈ 16

3
(1 − nζ,�) ×

⎧⎪⎨
⎪⎩

1, for q = 1/2,

1

2q
, for any arbitrary q,

(5.295)

�ζ,� ≈ g4λ(1 − nζ,�)
3

12π2M4
p

×

⎧⎪⎨
⎪⎩

1

221184
, for q = 1/2,

2q

221184
, for any arbitrary q,

(5.296)

�ζ,� ≈ g4λr3
�

12π2M4
p

×

⎧⎪⎪⎨
⎪⎪⎩

1

33554432
, for q = 1/2,

(2q)3

33554432
, for any arbitrary q,

(5.297)

αζ,� ≈ −1

3

(
nζ,� − 1

)2 ×

⎧⎪⎨
⎪⎩

1, for q = 1/2,

1√
2q

, for any arbitrary q,

(5.298)

κζ,� ≈ 2

9

(
nζ,� − 1

)3 ×

⎧⎪⎨
⎪⎩

1, for q = 1/2,

1

2q
, for any arbitrary q.

(5.299)

Let us now discuss the general constraints on the param-
eters of tachyonic string theory including the factor q and
on the parameters appearing in the expression for inverse
power-law potential. In Fig. 16a, we have shown the behav-
ior of the tensor-to-scalar ratio r with respect to the scalar
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(a) (b)r nζ Δζ nζvs vs

Fig. 16 In a the behavior of the tensor-to-scalar ratio r with respect to
the scalar spectral index nζ and b the parameter g for inverse power-law
potential. The purple and blue colored line represent the upper bound
of the tensor-to-scalar ratio allowed by Planck+ BICEP2+Keck Array
joint constraint and only Planck 2015 data respectively. For both figures
the red, green, brown, orange colored curves represent q = 1/2, q = 1,
q = 3/2 andq = 2, respectively. The cyan color shaded region bounded
by two vertical black colored lines in a represent the Planck 2σ allowed
region and the rest of the light gray shaded region shows the 1σ allowed
range, which is at present disfavored by the Planck data and Planck+
BICEP2+Keck Array joint constraint. In a, we have explicitly shown
that in r–nζ plane the observationally disfavored value of the charac-

teristic index is q ≥ 1/2. Variation of the scalar power spectrum �ζ

vs. scalar spectral index nζ is shown in b. The purple and blue colored
line represent the upper and lower bound allowed by WMAP+Planck
2015 data respectively. The green dotted region bounded by two verti-
cal black colored lines represent the Planck 2σ allowed region and the
rest of the light gray shaded region is disfavored by the Planck+WMAP
constraint. In b, we have explicitly shown that in �ζ − nζ plane the
observationally favored value of the characteristic index is q = 1 and
q = 3/2. From a and b, it is also observed that, within 50 < N� < 70,
the inverse power-law potential is favored for the characteristic index
3/2 < q < 1, by Planck 2015 data and Planck+ BICEP2+Keck Array
joint analysis

spectral index nζ for inverse power-law potential respec-
tively. In both the figures the purple and blue colored
line represent the upper bound of the tensor-to-scalar ratio
allowed by Planck+ BICEP2+Keck Array joint constraint
and only Planck 2015 data respectively. For both the fig-
ures the red, green, brown, orange colored curve represent
q = 1/2, q = 1, q = 3/2 and q = 2, respectively. The
cyan color shaded region bounded by two vertical black
colored lines in Fig. 16a represent the Planck 2σ allowed
region and the rest of the light gray shaded region shows
the 1σ allowed range, which is at present disfavored by the
Planck 2015 data and Planck+ BICEP2+Keck Array joint
constraint. The rest of the region is completely ruled out
by the present observational constraints. From Fig. 16a, it
is also observed that, within 50 < N� < 70, the inverse
power-law potential is favored for the characteristic index
1 < q < 2, by Planck 2015 data and Planck+ BICEP2+Keck
Array joint analysis. Also in Fig. 16a for q = 1/2, q = 1,
q = 3/2 and q = 2 we fix N� ∼ 70. One can draw
similar characteristic curves for any value of the number
of e-foldings lying within the window 50 < N� < 70
also. To analyze the results more clearly let us describe the
cosmological features from Fig. 16a in detail. Let us first
start with the q = 1/2 situation, in which the 2σ con-
straint on the scalar spectral tilt is disfavored for 50 <

N� < 70. Next for the q = 1 case, the same constraint
is satisfied within the window of the tensor-to-scalar ratio,

0.07 < r < 0.10 for 50 < N� < 70. Further for the
q = 3/2 case, the same constraint on scalar spectral tilt
is satisfied within the window of the tensor-to-scalar ratio,
0.05 < r < 0.07 for 50 < N� < 70. Finally, for the
q = 2 situation, the value for the tensor-to-scalar ratio is
0.035 < r < 0.05.

In Fig. 16b, we have depicted the behavior of the scalar
power spectrum �ζ vs. scalar spectral tilt nζ for inverse
power-law potential respectively. It is important to note that,
for all of the figures the red, green, brown, orange colored
curves represent q = 1/2, q = 1, q = 3/2 and q = 2
respectively. The purple and blue colored line represent the
upper and lower bound allowed by WMAP+Planck 2015
data respectively. The cyan color shaded region bounded
by two vertical black colored lines represent the Planck 2σ

allowed region and the rest of the light gray shaded region
is the 1σ region, which is presently disfavored by the joint
Planck+WMAP constraints. The rest of the region is com-
pletely ruled out by the present observational constraints.
Also in Fig. 16b for q = 1/2, q = 1, q = 3/2 and
q = 2 we fix N� ∼ 70. But the plots can be reproduced
for 50 < N� < 70 also considering the present observational
constraints from Planck 2015 data. It is clearly observed from
Fig. 16b that the Planck 2015 constraint on amplitude of the
scalar power spectrum �ζ and the scalar spectral tilt nζ dis-
favor q = 1/2 and q = 2 values for inverse power-law
potential.
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(a)

(b)

αζ nζ.vs

κζ nζvs .

Fig. 17 Behavior of the a running of the scalar spectral tilt αζ and b
running of the running of the scalar spectral tilt κζ with respect to the
scalar spectral index nζ for the inverse cosh potential with g = 88. For
both figures the red, green, brown, orange colored curves represent q =
1/2, q = 1, q = 3/2 and q = 2 respectively. The cyan color shaded
region bounded by two vertical black colored lines in a and a represent
the Planck 2σ allowed region and the rest of the light gray shaded region
shows the 1σ allowed range, which is at present disfavored by the Planck
data and Planck+ BICEP2+Keck Array joint constraint. From a and b,
it is also observed that, within 50 < N� < 70, the inverse cosh potential
is favored for the characteristic index 1/2 < q < 2, by Planck 2015
data and Planck+ BICEP2+Keck Array joint analysis

In Fig. 17a, b, we show the behavior of the running of the
scalar spectral tilt αζ and running of the running of the scalar
spectral tilt κζ with respect to the scalar spectral index nζ for
inverse power-law potential respectively. For both the figures
the red, green, brown, and orange colored curves represent
q = 1/2, q = 1, q = 3/2, and q = 2, respectively. The cyan
color shaded region bounded by two vertical black colored
lines in both plots represent the Planck 2σ allowed region
and the rest of the light gray shaded region shows the 1σ

allowed range, which is at present disfavored by the Planck
data and Planck+ BICEP2+Keck Array joint constraint. From
both of these figures, it is also observed that, within 50 <

N� < 70, the inverse power-law potential is favored for the
characteristic index 1/2 < q < 2, by Planck 2015 data
and a Planck+ BICEP2+Keck Array joint analysis. If we
additionally impose the constraints from the r–nζ and the

�ζ –nζ plane then the stringent window on the characteristic
index of GTachyon is lying within 1 < q < 3/2. It is also
important to note that for any values of q, the numerical
value of the running αζ ∼ O(−10−4) and running of the
runningκζ ∼ O(−10−5), which are perfectly consistent with
the 1.5σ constraints on running and running of the running
as obtained from Planck 2015 data. For q = 1/2, q = 1,
q = 3/2 and q = 2 g does not explicitly appear in the various
inflationary observables except the amplitude of scalar power
spectrum in this case. To produce the correct value of the
amplitude of the scalar power spectra we fix the parameter
600 < g < 700.

5.1.9 Analyzing CMB power spectrum

In this section we explicitly study the cosmological conse-
quences from the CMB TT, TE, EE, BB angular power spec-
trum computed from all the proposed models of inflation.6

The angular power spectra or equivalently the two point cor-
relator of the X and Y fields are defined as [10]

CXY
� ≡ 1

2� + 1

l∑
m=−l

〈a∗
X,�maY,�m〉, X,Y = T, E, B.

(5.300)

Here l characterizes the CMB multipole and m signifies
the magnetic quantum number, which runs from m =
−l, . . . ,+l. In general, the field X (n̂) and Y (n̂) can be
expressed in terms of the following harmonic expansion:

X (n̂),Y (n̂) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
l=0

+l∑
m=−l

aT,lmVlm(n̂), for X = T,

∞∑
l=0

+l∑
m=−l

aE,lmVlm(n̂), for X = E,

∞∑
l=0

+l∑
m=−l

aB,lmVlm(n̂), for X = B,

(5.301)

where n̂ is the arbitrary directional unit vector in CMB map.
Here Vlm(n̂) are the spherical harmonics which are chosen
to be the basis of the harmonic expansion of the temperature
anisotropy and the E and B polarization. Further using the
inflationary power spectra at any momentum scale k:

�(k) ≡ {�ζ (k),�h(k)} (5.302)

6 In this work we have not considered the possibility of other cross
correlators, i.e., TB, EB as there is no observational evidence of such
contributions in the CMB map. Also till date there is no observational
evidence for inflationary origin of BB angular power spectrum except
from CMB lensing [133]. However, for the sake of completeness in
this paper we show the theoretical BB angular power spectra from the
various models of the tachyonic potential.
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the angular power spectra for CMB temperature fluctuations
and polarization can be expressed as [10]

CXY
� = 2

π

∫
k2dk �(k)︸︷︷︸

Inflation

�X�(k)�Y �(k)︸ ︷︷ ︸
Anisotropies

, (5.303)

where the anisotropic integral kernel can be written as [10]

�X�(k) =
∫ η0

0
dη SX (k, η)︸ ︷︷ ︸

Sources

PX�(k[η0 − η])︸ ︷︷ ︸
Projection

. (5.304)

The integral (5.303) relates the inhomogeneities predicted
by inflation, �(k), to the anisotropies observed in the CMB,
CXY

� . The correlations between the different X and Y modes
are related by the transfer functions �X�(k) and �Y �(k).
The transfer functions may be written as the line-of-sight
integral Eq. (5.304) which factorizes into physical source
terms SX (k, η) and geometric projection factors PX�(k[η0 −
η]) through combinations of Bessel functions.

Further expressing Eq. (5.303) in terms of TT, TE, EE,
BB correlation we get

For curvature perturbation

CTT
� = 2

π

∫
k2dk �S(k)�T �(k)�T �(k), (5.305)

CT E
� = (4π)2

∫
k2dk �S(k) �T �(k)�E�(k), (5.306)

CEE
� = (4π)2

∫
k2dk �S(k)�E�(k)�E�(k), (5.307)

For tensor perturbation

CBB
� = (4π)2

∫
k2dk �h(k)�B�(k)�B�(k) (5.308)

CTT
� = 2

π

∫
k2dk �h(k)�T �(k)�T �(k), (5.309)

CT E
� = (4π)2

∫
k2dk �h(k)�T �(k)�E�(k), (5.310)

CEE
� = (4π)2

∫
k2dk �h(k)�E�(k)�E�(k), (5.311)

where the inflationary power spectra {�ζ (k),�h(k)} are
parametrized at any arbitrary momentum scale k as7

�ζ (k) = �ζ,�

(
k

cSk�

)nζ,�−1+ αζ,�
2 ln

(
k

cSk�

)
+ κζ,�

6 ln2
(

k
cSk�

)
+···

,

(5.312)

7 However, it is important to mention here that if we know the mode
scalar and tensor mode functions, which are obtained from the exact
solution of Mukhanov–Sasaki equation for exactly Bunch–Davies vac-
uum or for any arbitrary vacuum then one can implement the exact
structural form of the primordial power spectra. But within the slow-
roll regime of inflation the presented version of the parametrization of
the power spectra is exactly compatible with the exact power spectrum
from the solution of the Mukhanov–Sasaki equation.

�h(k) = r(k)�ζ (k)

= �h,�

(
k

k�

)nh,�+ αh,�
2 ln

(
k
k�

)
+ κh,�

6 ln2
(

k
k�

)
+···

. (5.313)

It is important to note that the cosmological significance of
the E and B decomposition of CMB polarization carries the
following significant features:

• Curvature (density) perturbations create only polarizing
E-modes.

• Vector (vorticity) perturbations create mainly B-modes.
However, it is important to note that here the contribu-
tions of vector modes decay with the expansion of the
universe and are therefore sub-dominant at the epoch of
recombination. For this reason we have neglected such
sub-dominant effects from our rest of the analysis.

• Tensor (gravitational wave) perturbations create both E-
modes and B-modes. But to quantify the exact contri-
bution of the primordial gravitational waves, specifically
in the inflationary B modes, one needs to separate all
the other significant contributions in the B modes, i.e.,
the primordial magnetic field, gravitational lensing, non-
Gaussianity, etc., But at present in the cosmological lit-
erature no such sophisticated techniques or algorithms
are available using which one can separate all of these
significant contributions completely.

To compute the momentum integrals numerically and to
analyze the various features of CMB angular power spec-
tra from all of the inflationary models mentioned in the
last section, here we use a semi-analytical code “CAMB”.
For the numerical analysis we use here the best fit model
parameters corresponding to all of the five tachyonic mod-
els, which are compatible with Planck 2015 data. Addition-
ally we take the �CDM background. Further we put all these
inputs to “CAMB” and modify the inbuilt parameterization
of the power spectrum for scalar and tensor modes accord-
ingly. After performing all the numerical computations via
“CAMB” finally from our analysis we have generated all
the theoretical CMB angular power spectra from which we
observed the following significant features:

• In Fig. 18, at low � region (2 < l < 49) the contribu-
tions from the running (αζ , αh), and running of running
(κζ , κh) are very small. Their additional contribution to
the CMB power spectrum for scalar and tensor modes
becomes unity (O(1)) within low-l region and the origi-
nal power spectrum becomes unchanged. As a result the
tachyonic models will be well fitted with the CMB TT
spectrum at low-l region within high cosmic variance as
observed by Planck except for a few outliers according
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(a) (b)

(c) (d)

(e)

l(l + 1)CTT
l /2π lvs (scalar) l(l + 1)CTT

l /2π lvs (scalar)

l(l + 1)CTT
l /2π lvs (scalar) l(l + 1)CTT

l /2π lvs (scalar)

l(l + 1)CTT
l /2π lvs (scalar)

Fig. 18 We show the variation of CMB TT angular power spectrum with respect to the multipole, l, for scalar modes for all five tachyonic models
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to the Planck 2013 data release.8 But to update our anal-
ysis with the latest Planck 2015 data set we have not
shown such high cosmic variance explicitly. In case of
WMAP9 data for CMB TT spectrum the cosmic vari-
ance in the low-l region is not very large compared to
the Planck low-l data. But our tachyonic models are also
well fitted with WMAP9 low-l data, which we have not
shown explicitly in the plot to update the analysis using
Planck 2015 data. It is also important to mention that if
we incorporate the uncertainties in the scanning multi-
pole l for the measurement of CMB TT spectrum, then
also our prescribed analysis is fairly consistent with the
Planck 2015 data. Further if we move toward the high
� regime (47 < l < 2500) the contributions of running
and running of running become stronger, and this will
enhance the power spectrum to a permissible value such
that it will accurately fit high-l data within very a small
cosmic variance as observed by Planck. In this way one
can easily scan over all the multipoles starting from low-l
to high-l using the same momentum dependent parame-
terization of the tensor-to-scalar ratio.

• From Fig. 18, we see that the Sachs–Wolfe plateau
obtained from our proposed tachyonic models is non-
flat, confirming the appearance of running, and run-
ning of the running in the spectrum observed for low
l region (l < 47). For larger values of the multipole
(47 < l < 2500), the CMB anisotropy spectrum is dom-
inated by the baryon acoustic oscillations (BAO), giving
rise to several ups and downs in the CMB TT spectrum. In
the low l region due to the presence of very large cosmic
variance there may be other pre-inflationary scenarios
which might be able to describe the TT-power spectrum
better. In our study we have considered only the pos-
sibility for which the behavior of tachyonic models is
analyzed for both low and high l regions.

• From Figs. 18, 19, 20, we observe that if we include
the uncertainties in multipole l as well in the observed
CMB angular power spectra then the proposed tachyonic
models is fairly consistent with the CMB TT, TE, EE for
scalar mode from Planck 2015 data.

• In Figs. 21, 22, 23 and 24 we have explicitly shown the
theoretical CMB BB, TT, TE and EE angular power spec-
tra from the tensor mode. Most importantly, if the infla-
tionary paradigm is responsible for the nearly de Sitter
expansion of the early universe then the CMB BB spec-
tra for tensor modes is one of the prime components
through which one can detect the contribution for pri-
mordial gravitational waves via the tensor-to-scalar ratio.

8 From Fig. 18 it is observed that for the inverse cosh and logarithmic
model q = 1/2, exponential Type-I and Type-II model q = 1, inverse
power-law model q = 1 and q = 3/2 generalized characteristic indices
are well fitted with Planck 2015 data.

But till date only the contribution from the lensing B-
modes are detected via South Pole Telescope and Planck
2015 +BICEP2/Keck Array joint mission. But confirm-
ing the sole inflationary origin from the detection of the
de-lensed version of the signal is not sufficient to draw
any final conclusion.9 There are other possibilities as
well through which it is possible to generate CMB B-
modes—those components are the primordial magnetic
field, gravitational lensing, CP asymmetry in the lepton
sector of particle physics, etc.

5.2 Computation for assisted inflation

In the case of assisted inflation [134–137] all the tachyons
would follow a similar trajectory with a unique late time
attractor.10 In more technical language one can state that

T1 ∼ T2 ∼ · · · TM ≡ Ti = T ∀ i = 1, 2, . . . , M. (5.314)

Most importantly the detailed computation of the density and
tensor perturbation responsible for the anisotropy of CMB
depends on this late time attractor behavior of the fields.

5.2.1 Condition for inflation

For assisted tachyonic inflation, the prime condition for infla-
tion is given by

Ḣ + H2 =
(
ä

a

)
= −

M∑
i=1

(ρi + 3pi )

6M2
p

= (ρ + 3p)

6M2
p

> 0

(5.315)

which can be re-expressed in terms of the following con-
straint condition in the context of assisted tachyonic infla-
tion:

M∑
i=1

V (Ti )

3M2
p

√
1 − α′Ṫ 2

i

(
1 − 3

2
α′Ṫ 2

i

)

= MV (T )

3M2
p

√
1 − α′Ṫ 2

(
1 − 3

2
α′Ṫ 2

)
> 0. (5.316)

Here Eq. (5.316) implies that to satisfy inflationary con-
straints in the slow-roll regime the following constraint
always holds good:

Ṫ <

√
2

3α′ ∀ i = 1, 2, . . . , M, (5.317)

T̈ < 3HṪ <

√
6

α′ H ∀ i = 1, 2, . . . , M. (5.318)

9 In this respect one may consider the alternative frameworks of infla-
tionary paradigm as well.
10 We also suggest the reader to read Ref. [138] for completeness.
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(a) (b)

(c) (d)

(e)

l(l + 1)CTE
l /2π l l(l + 1)CTE

l /2π l

l(l + 1)CTE
l /2π l l(l + 1)CTE

l /2π l

l(l + 1)CTE
l /2π l

vs (scalar) vs (scalar)

vs (scalar) vs (scalar)

vs (scalar)

Fig. 19 We show the variation of CMB TE angular power spectrum with respect to the multipole, l, for scalar modes for all five tachyonic models
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(a) (b)

(c) (d)

(e)

l(l + 1)CEE
l /2π lvs (scalar) l(l + 1)CEE

l /2π lvs (scalar)

l(l + 1)CEE
l /2π lvs (scalar) l(l + 1)CEE

l /2π lvs (scalar)

l(l + 1)CEE
l /2π lvs (scalar)

Fig. 20 We show the variation of CMB EE angular power spectrum with respect to the multipole, l, for scalar modes for all five tachyonic models
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(a) (b)

(c) (d)

(e)

l(l + 1)CBB
l /2π lvs (tensor) l(l + 1)CBB

l /2π l

l(l + 1)CBB
l /2π l l(l + 1)CBB

l /2π l

l(l + 1)CBB
l /2π l

vs (tensor)

vs (tensor) vs (tensor)

vs (tensor)

Fig. 21 We show the variation of CMB BB angular power spectrum with respect to the multipole, l, for tensor modes for all five tachyonic models
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(a) (b)

(c) (d)

(e)

l(l + 1)CTT
l /2π l l(l + 1)CTT

l /2π l

l(l + 1)CTT
l /2π l l(l + 1)CTT

l /2π l

l(l + 1)CTT
l /2π l (tensor)vs
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(tensor)vs (tensor)vs

Fig. 22 We show the variation of CMB TT angular power spectrum with respect to the multipole, l, for tensor modes for all five tachyonic models
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(a) (b)

(c) (d)

(e)

l(l + 1)CTE
l /2π l l(l + 1)CTE

l /2π l

l(l + 1)CTE
l /2π l l(l + 1)CTE

l /2π l

l(l + 1)CTE
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vs (tensor) vs (tensor)

Fig. 23 We show the variation of CMB TE angular power spectrum with respect to the multipole, l, for tensor modes for all five tachyonic models
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(a) (b)

(c) (d)

(e)

l(l + 1)CEE
l /2π l l(l + 1)CEE

l /2π l

l(l + 1)CEE
l /2π l l(l + 1)CEE

l /2π l
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vs (tensor)

Fig. 24 We show the variation of CMB EE angular power spectrum with respect to the multipole, l, for tensor modes for all five tachyonic models
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Consequently the field equations are approximated by

3Hα′Ṫi + dV (Ti )

V (Ti )dTi
≈ 0 ∀ i = 1, 2, . . . , M, (5.319)

Similarly, in the most generalized case,
M∑
i=1

V (Ti )

3M2
p

(
1 − α′Ṫ 2

i

)1−q

(
1 − (1 + q)α′Ṫ 2

i

)

= MV (T )

3M2
p

(
1 − α′Ṫ 2

)1−q

(
1 − (1 + q)α′Ṫ 2

)
> 0. (5.320)

Here Eq. (5.320) implies that to satisfy inflationary con-
straints in the slow-roll regime the following constraint
always holds good:

Ṫ <

√
1

α′(1 + q)
∀ i = 1, 2, . . . , M, (5.321)

T̈ < 3HṪ <

√
9

α′(1 + q)
H ∀ i = 1, 2, . . . , M. (5.322)

Consequently the field equations are approximated by

6qα′HṪi + dV (Ti )

V (Ti )dTi
≈ 0 ∀ i = 1, 2, . . . , M. (5.323)

Also for both cases in the slow-roll regime the Friedmann
equation is modified as

H2 ≈
M∑
i=1

V (Ti )

3M2
p

= MV (T )

3M2
p

. (5.324)

The equation of motions can be mapped to the equations of
a model with a single tachyonic field using the following
redefinitions:

T̃ = √
MT, (5.325)

Ṽ = V (T̃ ) = MV (T ) =
M∑
i=1

V (Ti ). (5.326)

Now to show the late time attractor behavior of the solution
of scalar fields we keep T1, but we replace the rest with the
redefined fields:

χi = Ti − T1 ∀ i = 2, . . . , M. (5.327)

Using Eq. (5.327), at late times the equation of motion can
be recast as

0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√−g
∂μ

(√−gVef f (T1, χi )

√
1 + gαβ∂αχi∂βχi

)

= α′χ̈i(
1 − α′χ̇2

i

) + 3Hα′χ̇i + dVef f (T1, χi )

Vef f (T1, χi )dχi
, for q = 1/2,

1√−g
∂μ

(√−gVef f (T1, χi )
(
1 + gαβ∂αχi∂βχi

)q)

= 2qα′χ̈i(
1 − α′χ̇2

i

) + 6qα′H χ̇i

1 − α′(1 − 2q)χ̇2
i

+ dVef f (T1, χi )

Vef f (T1, χi )dχi
, for any q,

(5.328)

where Vef f (T1, χi ) represents the effective potential. The
minimum in the χi direction is always appearing at χi = 0,
regardless of the explicit behavior of the tachyon field T1.
Consequently the late time solution has all the Ti equal. From
this analysis it is also observed that the length of the time
interval to reach this attractor behavior will depend on the
initial separation, i.e., the tachyon field valueχi and the extent
of the frictional contribution coming from the expansion rate
H .

It is important to mention that, for assisted inflation, the
equation of motion for each tachyon fields follows the fol-
lowing simple relationship:

d ln Ti
dt

� d ln T

dt
∀ i = 1, 2, . . . , M. (5.329)

Further substituting Eq. (5.324) in Eqs. (5.319) and (5.323)
we get

√
3MV (T )

Mp
α′Ṫi + dV (Ti )

V (Ti )dTi
≈ 0, (5.330)

6q

√
MV (T )√

3Mp
α′Ṫi + dV (Ti )

V (Ti )dTi
≈ 0. (5.331)

Finally the general solution for both cases can be expressed
in terms of the single field tachyonic potential V (T ) as

t − tin ≈ −
√

3Mα′

Mp

∫ Ti

Tin
dTi

√
V (T )V (Ti )

V ′(Ti )
, (5.332)

t − tin ≈ −6q
√
Mα′

√
3Mp

∫ Ti

Tin
dTi

√
V (T )V (Ti )

V ′(Ti )
. (5.333)

Further using Eqs. (5.15), (5.16) and (5.324) we get the fol-
lowing solution for the scale factor in terms of the tachyonic
field for the usual q = 1/2 and for a generalized value of q:

a = ain ×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp

[
−α′M

M2
p

∫ Ti

Tin
dTi

V (T )V (Ti )

V ′(Ti )

]
, for q = 1/2,

exp

[
− 2qα′M

M2
p

∫ Ti

Tin
dTi

V (T )V (Ti )

V ′(Ti )

]
, for any arbitrary q.

(5.334)
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5.2.2 Analysis using slow-roll formalism

Here our prime objective is to define slow-roll parameters for tachyon inflation in terms of the Hubble parameter and the
assisted tachyonic inflationary potential. Using the slow-roll approximation one can expand various cosmological observables
in terms of small dynamical quantities derived from the appropriate derivatives of the Hubble parameter and of the inflationary
potential. To start with here we use the horizon-flow parameters based on the derivatives of the Hubble parameter with respect
to the number of e-foldings N , defined as

N (t) =
∫ tend

t
H(t) dt, (5.335)

where tend signifies the end of inflation. Further, using Eqs. (5.5), (5.9), (5.10) and (5.335), we get

dTi
dN

= Ṫi
H

=

⎧⎪⎪⎨
⎪⎪⎩

− 2H ′

3α′H3 , for q = 1/2,

− 2H ′

3α′H3

(
1 − α′(1 − 2q)Ṫ 2

i

2q

)
, for any arbitrary q,

(5.336)

where H ′ > 0, which makes always Ṫi > 0 during inflationary phase. Further using Eq. (5.336) we get the following
differential operator identity for tachyonic inflation:

1

H

d

dt
= d

dN
= d

d ln k
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 2H ′

3α′H3

d

dTi
, for q = 1/2,

− 2H ′

3α′H3

(
1 − α′(1 − 2q)Ṫ 2

i

2q

)
d

dTi
, for any arbitrary q.

(5.337)

Further using the differential operator identity as mentioned in Eq. (5.337) we get the following Hubble flow equation for
tachyonic inflation for j ≥ 0:

1

H

dεi

dt
= dε j

dN
= ε j+1ε j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 2H ′

3α′H3

dε j

dTi
, for q = 1/2,

− 2H ′

3α′H3

(
1 − α′(1 − 2q)Ṫ 2

i

2q

)
dε j

dTi
, for any arbitrary q.

(5.338)

For a realistic estimate from the single field tachyonic inflationary model substituting the free index j to j = 0, 1, 2 in
Eqs. (5.23) and (5.338) we get the contributions from the first three Hubble slow-roll parameters, which can be represented as

ε1 = d ln |ε0|
dN

= − Ḣ

H2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

3α′

(
H ′

H2

)2

= 3

2
α′Ṫ 2

i , for q = 1/2,

2

3α′

(
H ′

H2

)2
(

1 − α′(1 − 2q)Ṫ 2
i

2q

)

= 3

2
α′Ṫ 2

i

(
2q

1 − α′(1 − 2q)Ṫ 2
i

)
, for any arbitrary q,

(5.339)

ε2 = d ln |ε1|
dN

= Ḧ

H Ḣ
+ 2ε1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2

3α′ε1

ε′
1

H
= 2

T̈i
H Ṫi

, for q = 1/2,

√√√√ 2

3α′ε1

(
1 − α′(1 − 2q)Ṫ 2

i

2q

)
ε′

1

H

= 2T̈i
H Ṫ

(
1 − α′(1 − 2q)Ṫ 2

i

) , for any arbitrary q,

(5.340)
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ε3 = d ln |ε2|
dN

= 1

ε2

[ ...
H

H2 Ḣ
− 3

Ḧ

H3 − Ḧ2

H2 Ḣ2
+ 4

Ḣ2

H4

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2ε1

3α′
ε′

2

H
=
[

2
...
T i

H2Ṫiε2
+ ε1 − ε2

2

]
, for q = 1/2,

√√√√2ε1

3α′

(
1 − α′(1 − 2q)Ṫ 2

i

2q

)
ε′

2

H

=
[

2
...
T i

H2 Ṫi ε2
+ ε1 − ε2

2

]
(
1 − α′(1 − 2q)Ṫ 2

i

) +
4α′(1−2q)T̈ 2

i
H(

1 − α′(1 − 2q)Ṫ 2
i

)2 , for any arbitrary q.

(5.341)

Further using Eqs. (5.339), (5.340), (5.343), (5.34) and (5.35) one can re-express the Hubble slow-roll parameters in terms
of the potential dependent slow-roll parameter as

ε1 ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M2
p

2α′
V

′2(Ti )

MV (T )V 2(Ti )
= εV (Ti )

MV (T )α′ ≡ ε̄V (Ti ), for q = 1/2,

M2
p

4qα′
V

′2(Ti )

MV (T )V 2(Ti )
= εV (Ti )

2qMV (T )α′ ≡ ε̄V (Ti )

2q
, for any q,

(5.342)

ε2 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M2
p

α′M

(
3

V
′2(Ti )

V (T )V 2(Ti )
− 2

V ′′(Ti )
V (T )V (Ti )

)

= 2 (3εV (Ti ) − ηV (Ti ))

MV (T )α′ = 2 (3ε̄V (Ti ) − η̄V (Ti )) , for q = 1/2,

M2
p√

2qα′M

(
3

V
′2(Ti )

V (T )V 2(Ti )
− 2

V ′′(Ti )
V (T )V (Ti )

)

=
√

2
q (3εV (Ti ) − ηV (Ti ))

MV (T )α′ =
√

2

q
(3ε̄V (Ti ) − η̄V (Ti )) , for any q

ε3ε2 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M4
p

M2V 2(T )α
′2

(
2
V ′′′(Ti )V ′(Ti )

V 2(Ti )
− 10

V ′′(Ti )V
′2(Ti )

V 3(Ti )
+ 9

V
′4(Ti )

V 4(Ti )

)

=
(
2ξ2

V (Ti ) − 5ηV (Ti )εV (Ti ) + 36ε2
V (Ti )

)
M2V 2(T )α

′2

=
(

2ξ̄2
V (Ti ) − 5η̄V (Ti )ε̄V (Ti ) + 36ε̄2

V (Ti )
)

, for q = 1/2,

M4
p

M2
√

2qV 2(T )α
′2

(
2
V ′′′(Ti )V ′(Ti )

V 2(Ti )
− 10

V ′′(Ti )V
′2(Ti )

V 3(Ti )
+ 9

V
′4(Ti )

V 4(Ti )

)

=
(
2ξ2

V (Ti ) − 5ηV (Ti )εV (Ti ) + 36ε2
V (Ti )

)
M2

√
2qV 2(T )α

′2

=
(
2ξ̄2

V (Ti ) − 5η̄V (Ti )ε̄V (Ti ) + 36ε̄2
V (Ti )

)
√

2q
, for any q,

(5.343)
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where ′ = d/dTi and the potential dependent slow-roll parameters εV , ηV , ξ2
V , σ 3

V are defined as

εV (Ti ) = M2
p

2

(
V ′(Ti )
V (Ti )

)2

, (5.344)

ηV (Ti ) = M2
p

(
V ′′(Ti )
V (Ti )

)
, (5.345)

ξ2
V (Ti ) = M4

p

(
V ′(Ti )V ′′′(Ti )

V 2(Ti )

)
, (5.346)

σ 3
V (Ti ) = M6

p

(
V

′2(Ti )V ′′′′(Ti )
V 3(Ti )

)
, (5.347)

which is exactly similar to the expression for the slow-roll parameter as appearing in the context of single field slow-roll
inflationary models. However, for the sake of clarity here we introduce new sets of potential dependent slow-roll parameters
for tachyonic inflation by rescaling with the appropriate powers of α′V (T ):

ε̄V (Ti ) = εV (Ti )

Mα′V (T )
= M2

p

2Mα′V (T )

(
V ′(Ti )
V (Ti )

)2

= ε̄V

M
,

(5.348)

η̄V (Ti ) = ηV (Ti )

Mα′V (T )
= M2

p

Mα′V (T )

(
V ′′(Ti )
V (Ti )

)
= η̄V

M
,

(5.349)

ξ̄2
V (Ti ) = ξ2

V (Ti )

M2α
′2V 2(T )

= M4
p

M2α
′2V 2(T )

(
V ′(Ti )V ′′′(Ti )

V 2(Ti )

)
= ξ̄2

V

M2 , (5.350)

σ̄ 3
V (Ti ) = σ 3

V (Ti )

M3α
′3V 3(T )

= M6
p

M2α
′3V 3(T )

(
V

′2(Ti )V ′′′′(Ti )
V 3(Ti )

)
= σ̄ 3

V

M3 . (5.351)

where ε̄V , η̄V , ξ̄2
V and σ̄ 3

V are the single field tachyonic slow-roll parameters. Further using Eqs. (5.344)–(5.470) we get the
following operator identity for tachyonic inflation:

1

H

d

dt
= d

dN
= d

d ln k
≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
2ε̄V (Ti )

MV (T )α′ Mp

(
1 − 2

3
ε̄V (Ti )

)1/4 d

dTi
, for q = 1/2,

√
2ε̄V (Ti )

MV (T )α′
Mp

2q

(
1 − 1

3q
ε̄V (Ti )

)1/4 d

dTi
, for any arbitrary q.

(5.352)

Finally using Eq. (5.352) we get the following sets of flow equations in the context of tachyonic inflation:

dε1

dN
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dε̄V (Ti )

dN
= 2

M2 ε̄V (η̄V − 3ε̄V )

(
1 − 2

3

ε̄V

M

)1/4

, for q = 1/2,

1

2q

dε̄V (Ti )

dN
= ε̄V

qM2 (η̄V − 3ε̄V )

(
1 − 1

3q

ε̄V

M

)1/4

, for any q,

(5.353)

dε2

dN
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

M2

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)(
1 − 2

3

ε̄V

M

)1/4

, for q = 1/2,√
2
q

M2

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)(
1 − 1

3q

ε̄V

M

)1/4

, for any q,

(5.354)
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d(ε2ε3)

dN
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

M3

(
2σ̄ 3

V − 216ε̄3
V + 2ξ̄2

V η̄V − 7ξ̄2
V ε̄V

+ 194ε̄2
V η̄V − 10η̄V ε̄V

)(
1 − 2

3
ε̄V

ε̄V

M

)1/4

, for q = 1/2,

1

M3
√

2q

(
2σ̄ 3

V − 216ε̄3
V + 2ξ̄2

V η̄V − 7ξ̄2
V ε̄V

+ 194ε̄2
V η̄V − 10η̄V ε̄V

)(
1 − 1

3q

ε̄V

M

)1/4

, for any q,

(5.355)

where we use the following consistency conditions for the rescaled potential dependent slow-roll parameters:

dε̄V

dN
=

⎧⎪⎪⎨
⎪⎪⎩

2

M2 ε̄V (η̄V − 3ε̄V )

(
1 − 2

3

ε̄V

M

)1/4

, for q = 1/2,

2

M2 ε̄V (η̄V − 3ε̄V )

(
1 − 1

3q

ε̄V

M

)1/4

, for any q,

(5.356)

dη̄V

dN
=

⎧⎪⎪⎨
⎪⎪⎩

1

M2

(
ξ̄2
V − 4ε̄V η̄V

)(
1 − 2

3

ε̄V

M

)1/4

, for q = 1/2,

1

M2

(
ξ̄2
V − 4ε̄V η̄V

)(
1 − 1

3q

ε̄V

M

)1/4

, for any q,

(5.357)

dξ̄2
V

dN
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

M3

(
σ̄ 3
V + ξ̄2

V η̄V − ξ̄2
V ε̄V

)(
1 − 2

3

ε̄V

M

)1/4

, for q = 1/2,

1

M3

(
σ̄ 3
V + ξ̄2

V η̄V − ξ̄2
V ε̄V

)(
1 − 1

3q

ε̄V

M

)1/4

, for any q,

(5.358)

dσ̄ 3
V

dN
=

⎧⎪⎪⎨
⎪⎪⎩

1

M4 σ̄ 3
V (η̄V − 12ε̄V )

(
1 − 2

3

ε̄V

M

)1/4

, for q = 1/2,

1

M4 σ̄ 3
V (η̄V − 12ε̄V )

(
1 − 1

3q

ε̄V

M

)1/4

, for any q.

(5.359)

In terms of the slow-roll parameters, the number of e-foldings can be re-expressed as

N =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
3α′
2

∫ Ti,end

Ti

H(T )√
ε1

dTi =
√

3α′
2

∫ Tend

Ti

H(T )√
ε̄V (Ti )

dT

≈ α′M
M2

p

∫ Ti

Ti,end

V (T )V (Ti )

V ′(Ti )
dTi , for q = 1/2,

2q

√
3α′
2

∫ Ti,end

Ti

H(T )√
ε1

dTi = √
3α′q

∫ Ti,end

Ti

H(T )√
ε̄V (Ti )

dTi

≈
√

2qα′M
M2

p

∫ Ti

Ti,end

V (T )V (Ti )

V ′(Ti )
dTi , for any arbitrary q,

where Ti,end characterizes the tachyonic field value at the end of inflation t = tend for all i fields participating in assisted
inflation. As in the case of assisted inflation all the M fields are identical; then one can re-express the number of e-foldings as

N =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α′M
M2

p

∫ Ti

Ti,end

V 2(Ti )

V ′(Ti )
dTi = α′M

M2
p

∫ T

Tend

V 2(T )

V ′(T )
dT, for q = 1/2,

√
2qα′M
M2

p

∫ Ti

Ti,end

V 2(Ti )

V ′(Ti )
dTi =

√
2qα′M
M2

p

∫ T

Tend

V 2(T )

V ′(T )
dT, for any arbitrary q.

(5.360)
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5.2.3 Basics of tachyonic perturbations

In this subsection we explicitly discuss the cosmological
linear perturbation theory within the framework of assisted
tachyonic inflation. Let us clearly mention that here we have
various ways of characterizing cosmological perturbations in
the context of inflation, which finally depend on the choice of
gauge. Let us do the computation in the longitudinal gauge,
where the scalar metric perturbations of the FLRW back-
ground are given by the following infinitesimal line element:

ds2 = − (1 + 2�(t, x)) dt2 + a2(t) (1 − 2�(t, x)) δi jdx
idx j ,

(5.361)

where a(t) is the scale factor, �(t, x) and �(t, x) charac-
terizes the gauge invariant metric perturbations. Specifically,
the perturbation of the FLRW metric leads to the perturba-
tion in the energy-momentum stress tensor via the Einstein
field equation or equivalently through the Friedmann equa-
tions. For the perturbed metric as mentioned in Eq. (5.361),
the perturbed Einstein field equations can be expressed for
the q = 1/2 case of the tachyonic inflationary set-up as

3H
(
H�(t, k) + �̇(t, k)

) + k2

a2(t)
= − 1

2M2
p
δρi ,

(5.362)

�̈(t, k) + 3H
(
H�(t, k) + �̇(t, k)

) + H�̇(t, k)

+ 2Ḣ�(t, k) + k2

3a2(t)
(�(t, k) − �(t, k)) = 1

2M2
p
δpi ,

(5.363)

�̇(t, k) + H�(t, k) = − α′V (Ti )√
1 − α′Ṫ 2

i

Ṫi
M2

p
δTi , (5.364)

�(t, k) − �(t, k) = 0. (5.365)

Similarly, for any arbitrary q the perturbed Einstein field
equations can be expressed as

3H
(
H�(t, k) + �̇(t, k)

) + k2

a2(t)
= − 1

2M2
p
δρi , (5.366)

�̈(t, k) + 3H
(
H�(t, k) + �̇(t, k)

) + H�̇(t, k)

+2Ḣ�(t, k) + k2

3a2(t)
(�(t, k) − �(t, k)) = 1

2M2
p
δpi ,

(5.367)

�̇(t, k) + H�(t, k)

= −α′V (Ti )
[
1 − α′(1 − 2q)Ṫ 2

i

]
(
1 − α′Ṫ 2

i

)1−q

Ṫi
M2

p
δTi , (5.368)

�(t, k) − �(t, k) = 0. (5.369)

Here �(t, k) and �(t, k) are the two gauge invariant
metric perturbations in the Fourier space. Additionally, it is
important to note that in Eq. (5.65), the two gauge invari-
ant metric perturbations �(t, k) and �(t, k) are equal in the
context of a minimally coupled tachyonic string field theo-
retic model with an Einstein gravity sector. In Eqs. (5.62) and
(5.63) the perturbed energy density δρ and pressure δp are
given by

δρi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ′(Ti )δTi√
1 − α′Ṫ 2

i

+ α′V (Ti )
(
ṪiδṪi + Ṫ 2

i �(t, k)
)

(
1 − α′Ṫ 2

i

)3/2 , for q = 1/2,

{
V ′(Ti )

[
1 − α′(1 − 2q)Ṫ 2

i

]
δTi − 4α′(1 − 2q)V (Ti )ṪiδṪi

}
(
1 − α′Ṫ 2

i

)1−q

+2α′(1 − q)V (Ti )
[
1 − α′(1 − 2q)Ṫ 2

i

] (
ṪiδṪi + Ṫ 2

i �(t, k)
)

(
1 − α′Ṫ 2

i

)2−q , for any arbitrary q.

(5.370)

δpi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−V ′(Ti )
√

1 − α′Ṫ 2
i δTi + α′V (Ti )

(
ṪiδṪi + Ṫ 2�(t, k)

)
√

1 − α′Ṫ 2
, for q = 1/2,

−V ′(Ti )
(

1 − α′Ṫ 2
i

)q
δTi + 2qα′V (Ti )

(
ṪiδṪi + Ṫ 2

i �(t, k)
)

(
1 − α′Ṫ 2

i

)1−q , for any arbitrary q.
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Similarly after the variation of the tachyonic field we
get the following expressions for the perturbed equation of
motion:

0 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δT̈i + 3HδṪi + 2α′T̈i
(
ṪiδṪi + Ṫ 2

i �(t, k)
)

(
1 − α′Ṫ 2

i

)

+
Mp

√
1 − α′Ṫ 2

i

α′V (Ti )

[(
k2

a2 − 3Ḣ

)
�(t, k) − 2k2

a2 �(t, k)

−3
(
�̈(t, k) + 4H�̇(t, k) + H�̇(t, k) + Ḣ�(t, k) + 4H2�(t, k)

)]

−
{

6Hα′Ṫ 3
i − 2V ′(Ti )

α′V (Ti )

(
1 − α′Ṫ 2

i

)}
�(t, k) − (

�̇(t, k) + 3�̇(t, k)
)
Ṫi

−Mp
(
1 − α′Ṫ 2

i

)
α′

(
V ′′(Ti )
V (Ti )

− V
′2(Ti )

V 2(Ti )

)
, for q = 1/2,

δT̈i + 3HδṪi + 2α′T̈i
(
ṪiδṪi + Ṫ 2

i �(t, k)
)

(
1 − α′Ṫ 2

i

)2(1−q)

+ Mp
(
1 − α′Ṫ 2

i

)1−q

α′V (Ti )
[
1 − α′(1 − 2q)Ṫ 2

i

]
[(

k2

a2 − 3Ḣ

)
�(t, k) − 2k2

a2 �(t, k)

−3
(
�̈(t, k) + 4H�̇(t, k) + H�̇(t, k) + Ḣ�(t, k) + 4H2�(t, k)

)]

−
{

6Hα′Ṫ 3
i −

√
2

q

V ′(Ti )
α′V (Ti )

(
1 − α′Ṫ 2

i

)2(1−q)
}

�(t, k) − (
�̇(t, k) + 3�̇(t, k)

)
Ṫi

−Mp
(
1 − α′Ṫ 2

i

)2(1−q)

√
2qα′

(
V ′′(Ti )
V (Ti )

− V
′2(Ti )

V 2(Ti )

)
, for any q.

(5.371)

Further we will perform the following steps throughout
the next part of the computation:

• First of all we decompose the scalar perturbations into
two components-(1) entropic or isocurvature perturba-
tions which can be usually treated as the orthogonal pro-
jective part to the trajectory and (2) adiabatic or curva-
ture perturbations which can be usually treated as the
parallel projective part to the trajectory.

• Within the framework of first order cosmological per-
turbation theory we define a gauge invariant primordial
curvature perturbation on the scales outside the horizon:

ζ =
M∑
i=1

(
ζr + ζT̃i

)
= � −

M∑
i=1

H

ρ̇i
δρi . (5.372)

• Next we consider the uniform density hypersurface in
which

δρi = 0 ∀ i = 1, 2, . . . , M. (5.373)

Consequently the curvature perturbation is governed by

ζ =
M∑
i=1

(
ζr + ζT̃i

)
= �. (5.374)

• Further, the time evolution of the curvature perturbation
can be expressed as

ζ̇ = H
M∑
i=1

(
δ p̄i

ρi + pi

)
, (5.375)

where δ p̄i characterizes the non-adiabatic or entropic
contribution in the first order linearized cosmological per-
turbation. In the present context δ p̄i can be expressed as

δ p̄i = � ṗi =
(

∂pi
∂S

)
S
δS, (5.376)

where � characterizes the relative displacement between
hypersurfaces of uniform pressure and density. In the case
of the assisted or multi-component fluid dynamical sys-
tem, there are two contributions to the δ p̄ appearing in
the computation:

δ p̄i = δ p̄rel,T̃i + δ p̄int, (5.377)

where δ p̄rel,i and δ p̄int characterize the relative and
intrinsic contributions to the multi-component fluid sys-
tem given by

δ p̄rel,T̃i = 1

3H ρ̇
ρ̇r ρ̇T̃i

(
c2
r − c2

S,T̃i

)
Sr T̃i ∝ ρ̇r ,

(5.378)
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δ p̄int = δ p̄int,T̃i + δ p̄int,r =
∑

α=r,T̃i

(
δpα − c2

αδρα

)
.

(5.379)

Here c2
S,T̃i

and c2
r are the effective adiabatic sound speed

and sound speed due to radiation. Also the relative
entropic perturbation is defined as

Sr T̃i = 3
(
ζr − ζT̃i

)
= −3H

(
δρr

ρ̇r
− δρT̃i

ρ̇T̃i

)

= δr

1 + wr
− δT̃i

1 + wT̃i

, (5.380)

where wr and wT̃i
signify the equation of state parameters

due to radiation and tachyonic matter, δr and δT̃i
charac-

terize the energy density contrasts due to radiation and
tachyonic matter; M is the number of tachyonic matter
contents, defined by

δα = δρα

ρα

∀ α = r, T̃i (∀i = 1, 2, . . . , M). (5.381)

In a generalized prescription the pressure perturbation in
arbitrary gauge can be decomposed into the following
contributions:

δp =
M∑
i=1

δpi =c2
Sδρ+ 1

3H ρ̇
ρ̇r

M∑
i=1

ρ̇T̃i

(
c2
r − c2

S,T̃i

)
Sr T̃i

+
M∑
i=1

∑
α=r,T̃i

(
δpα − c2

αδρα

)
. (5.382)

As δ p̄rel,T̃i ∝ ρ̇r , the relative non-adiabatic pressure per-
turbation is heavily suppressed in the computation and
one can safely ignore such contributions during the epoch
of inflation. Here the relative entropic perturbation Sr T̃i
remains small and finite in the limit of small ρ̇r due to
the smallness of the curvature perturbations ζr and ζT̃i

.
• Now let us consider a situation where the equation of

state parameter corresponding to radiation is

wr = c2
r = Constant. (5.383)

Consequently the fluctuation in pressure due to radiation
can be expressed in terms of the fluctuation of the density:

δpr = wrδρr = c2
r δρr = Constant × δρr ∝ δρr .

(5.384)

This clearly implies that

δ p̄int,r =
(
δpr − c2

r δρr

)
= 0 (5.385)

i.e., the intrinsic non-adiabatic pressure vanishes identi-
cally. However, in terms of the effective tachyonic field
T̃ this situation is not very simple, as the equation of state
parameter and the intrinsic sound speed changes with the
number of component fields M . During the inflationary
epoch all M fields obey the following equation of state:

wT̃i
= pT̃i

ρT̃i

� −1 = c2
S,T̃i

= Constant

∀ i = 1, 2, . . . , M. (5.386)

For all M effective tachyon fields the fluctuation in the
pressure can be expressed as

δpT̃i � wT̃i
δρT̃i

= c2
S,T̃i

δρT̃i
� −δρT̃i

. (5.387)

Consequently the intrinsic non-adiabatic pressure within
each tachyonic field amongst M fields can be expressed
as

δpint,T̃i = δpT̃i − c2
S,T̃i

δρT̃i
� 0. (5.388)

Now in the present context the relative contributions to
the non-adiabatic pressure of M tachyonic fields in this
context can be expressed as

δprel,T̃i T̃ j
∝
(
c2
S,T̃i

− c2
S,T̃ j

)
� 0, (5.389)

since

c2
S,T̃i

� c2
S,T̃ j

� −1 ∀ i, j = 1, 2, . . . , M. (5.390)

This implies that the total non-adiabatic pressure is neg-
ligible during inflation, i.e.,

δ p̄int = δ p̄int,T̃i + δ p̄int,r =
∑

α=r,T̃i

(
δpα − c2

αδρα

)
= 0.

(5.391)

and it is completely justified to write the fluctuation in
the pressure for M individual tachyonic field contents as

δ p̄i = δ p̄rel,T̃i = 1

3H ρ̇
ρ̇r ρ̇T̃i

(
c2
r − c2

S,T̃i

)
Sr T̃i ∝ ρ̇r .

(5.392)
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Using these results the total fluctuation in the pressure
can be re-expressed as

δp =
M∑
i=1

δpi = c2
Sδρ +

M∑
i=1

δ p̄i = c2
Sδρ + AM ρ̇r

� c2
Sδρ, (5.393)

where A is the proportionality constant and we have
safely ignored the contribution from the isocurvatrure
modes due to its smallness in the case of assisted tachy-
onic inflation. Consequently we get

δ p̄i = � ṗi = AM ρ̇r � 0

⇒ ρr = Constant ⇒ ζ = Constant, (5.394)

which is exactly similar with the usual single field slow-
roll conditions in the context of the tachyonic inflationary
set-up discussed earlier. Finally, in the uniform density
hypersurfaces, the curvature perturbation can be written
in terms of the tachyonic field fluctuations on spatially
flat hypersurfaces as

ζ = −H
M∑
i=1

(
δTi
Ṫi

)
= −HM

(
δT

Ṫ

)

= −HM

(
δT̃
˙̃T

)
. (5.395)

• But in the case of multi-tachyonic inflation where the M
number of fields are not identical with each other the sit-
uation is not simpler like assisted inflation. In that case
during the short time intervals when fields decay in a
very much faster rate and its corresponding equation of
state changes rapidly then it would be really interesting to
investigate the production of isocurvature perturbations.
On the scale smaller than the Hubble radius any entropy

perturbation rapidly becomes adiabatic perturbation of
the same amplitude, as local pressure differences, due to
the local fluctuations in the equation of state, re-distribute
the energy density. However, this change is slightly less
efficient during the epoch of radiation compared to the
tachyonic matter dominated epoch and can only occur
after the decoupling between the photons and baryons,
in the specific case of baryonic isocurvature perturbation.
Causality precludes this re-distribution on scales bigger
than the Hubble radius, and thus any entropy perturba-
tion on these scales remains with a constant amplitude.
Also it is important to note that the entropic or isocur-
vature perturbations are not affected by Silk damping,
which is exactly contrary to the curvature or adiabatic
perturbations.

5.2.4 Computation of scalar power spectrum

In this subsection we will not derive the results for assisted
inflation as it is exactly the same as derived in the case of
single tachyonic inflation. But we will state the results for
the BD vacuum where the changes will appear due to the
presence of M identical copies of the tachyon field. One can
similarly write down the detailed expressions for AV as well.
The changes will appear in the expressions for the following
inflationary observables at the horizon crossing:

• In the present context amplitude of scalar power spectrum
can be computed as

�ζ,� =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{[
1 − (CE + 1)

ε̄V

M
− CE

M
(3ε̄V − η̄V )

]2 MH2

8π2M2
pcS ε̄V

}

k�=a�H�

, for q = 1/2,

{[
1 − (CE + 1)

ε̄V

2qM
− CE√

2qM
(3ε̄V − η̄V )

]2 qMH2

4π2M2
pcS ε̄V

}

k�=a�H�

, for any q,

(5.396)

where H2 = MV/3M2
p and CE = −2 + ln 2 + γ ≈

−0.72. Using the slow-roll approximations one can fur-
ther approximate the expression for the sound speed as

c2
S =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − 2

3

ε̄V

M
+ O

(
ε̄2
V

M2

)
+ · · · , for q = 1/2,

1 − (1 − q)

3q2M
ε̄V + O

(
ε̄2
V

M2

)
+ · · · , for any q.

(5.397)
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Hence using the result in Eq. (5.408) we get the following simplified expression for the primordial scalar power spectrum:

�ζ,� ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{[
1 −

(
CE + 5

6

)
ε̄V

M
− CE

M
(3ε̄V − η̄V )

]2 MH2

8π2M2
p ε̄V

}

k�=a�H�

, for q = 1/2,

{[
1 − (CE + 1 − �)

ε̄V

2qM
− CE√

2qM
(3ε̄V − η̄V )

]2 qMH2

4π2M2
p ε̄V

}

k�=a�H�

, for any q.

(5.398)

• Next one can compute the scalar spectral tilt (nS) of the primordial scalar power spectrum as

nζ,� − 1 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

M
(2η̄V − 8ε̄V ) − 2

M2 ε̄2
V − 2

M2

(
2CE + 8

3

)
ε̄V (3ε̄V − η̄V )

− CE
M2

(
2ξ̄2

V − 5η̄V ε̄V + 36ε̄2
V

)
+ · · · , for q = 1/2,

1

M

√
2

q
η̄V − 1

M

(
1

q
+ 3

√
2

q

)
ε̄V − ε̄2

V

2q2M2

− 2

(2q)3/2M2 (2CE + 3 − 2�) ε̄V (3ε̄V − η̄V )

− CE√
2qM2

(
2ξ̄2

V − 5η̄V ε̄V + 36ε̄2
V

)
+ · · · , for any q.

(5.399)

• Next one can compute the running of the scalar spectral tilt (αS) of the primordial scalar power spectrum as

αζ,� ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
{[

4

M2 ε̄V

(
1 + ε̄V

M

)
(η̄V − 3ε̄V ) + 2

M2

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)]

− CE
M3

(
2σ̄ 3

V − 216ε̄3
V + 2ξ̄2

V η̄V − 7ξ̄2
V ε̄V + 194ε̄2

V η̄V − 10η̄V ε̄V

)

− 1

M3

(
2CE + 8

3

)[
2ε̄V

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)

−4ε̄V (3ε̄V − η̄V )2
]}(

1 − 2

3

ε̄V

M

)1/4

+ · · · , for q = 1/2,

−
{[√

2

q

ε̄V

qM2

(
1 + ε̄V

2qM

)
(η̄V − 3ε̄V ) + 1

M2

√
2

q

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)]

− CE√
2qM3

(
2σ̄ 3

V − 216ε̄3
V + 2ξ̄2

V η̄V − 7ξ̄2
V ε̄V + 194ε̄2

V η̄V − 10η̄V ε̄V

)

− 1

M3

(
2CE + 8

3

)[√
2

q
ε̄V

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)

− 4

(2q)3/2 ε̄V (3ε̄V − η̄V )2

]}(
1 − 1

3q

ε̄V

M

)1/4

+ · · · , for any q.

• Finally, one can also compute the running of the running of scalar spectral tilt (κS) of the primordial scalar power spectrum
as
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κζ,� ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

M3

[
8ε̄V (1 + ε̄V )(η̄V − 3ε̄V )2 + cε̄2

V (η̄V − 3ε̄V )2

+8ε̄V (1 + ε̄V )
(
ξ̄2
V − 10ε̄V η̄V + 18ε̄2

V

)

+2
(

20ε̄V η̄V (η̄V − 3ε̄V ) + 10ε̄V

(
ξ̄2
V − 4ε̄V η̄V

)

−72ε̄2
V (η̄V − 3ε̄V ) −

(
σ̄ 3
V + ξ̄2

V η̄V − ξ̄2
V ε̄V

)) ](
1 − 2

3

ε̄V

M

)1/4

+ · · · , for q = 1/2,

− 1

M3

[(
2

q

)3/2

ε̄V

(
1 + ε̄V

2qM

)
(η̄V − 3ε̄V )2 +

√
2

q

2

q2M
ε̄2
V (η̄V − 3ε̄V )2

+
√

2

q

2

q
ε̄V

(
1 + ε̄V

2q

)(
ξ̄2
V − 10ε̄V η̄V + 18ε̄2

V

)

+
√

2

q

(
10

q
ε̄V η̄V (η̄V − 3ε̄V ) + 10ε̄V

(
ξ̄2
V − 4ε̄V η̄V

)

−36

q
ε̄2
V (η̄V − 3ε̄V ) −

(
σ̄ 3
V + ξ̄2

V η̄V − ξ̄2
V ε̄V

))](
1 − 1

3q

ε̄V

M

)1/4

+ · · · , for any q.

(5.400)

5.2.5 Computation of tensor power spectrum

In this subsection we will not derive the results for assisted inflation as it is exactly the same as derived in the case of single
tachyonic inflation. But we will state the results for the BD vacuum where the changes will appear due to the presence of M
identical copies of the tachyon field. One can similarly write down the detailed expressions for AV as well. The changes will
appear in the expressions for the following inflationary observables at the horizon crossing:

• In the present context amplitude of tensor power spectrum can be computed as

�h,� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{[
1 − (CE + 1)

ε̄V

M

]2 2H2

π2M2
p

}

k�=a�H�

, for q = 1/2,

{[
1 − (CE + 1)

ε̄V

2qM

]2 2H2

π2M2
p

}

k�=a�H�

, for any q,

(5.401)

where CE = −2 + ln 2 + γ ≈ −0.72.

• Next one can compute the scalar spectral tilt (nS) of the primordial scalar power spectrum as

nh,� ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 2

M
ε̄V

[
1 + ε̄V

M
+ 2

M
(CE + 1) (3ε̄V − η̄V )

]
+ · · · , for q = 1/2,

− ε̄V

qM

[
1 + ε̄V

2qM
+ 1

M

√
2

q
(CE + 1) (3ε̄V − η̄V )

]
+ · · · , for any q.

(5.402)
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• Next one can compute the running of the tensor spectral tilt (αh) of the primordial scalar power spectrum as

αh,� ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
[

4

M2 ε̄V

(
1 + ε̄V

M

)
(η̄V − 3ε̄V ) + 4

M3 ε̄2
V (η̄V − 3ε̄V )

− 8

M3 (CE + 1) ε̄V (η̄V − 3ε̄V )2

− 2

M3 ε̄V

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)]
�

(
1 − 2

3

ε̄V

M

)1/4

�

+ · · · , for q = 1/2,

−
[

2
ε̄V

qM2

(
1 + ε̄V

2qM

)
(η̄V − 3ε̄V ) + 1

q2M3 ε̄2
V (η̄V − 3ε̄V )

− 8

(2q)5/2M3 (CE + 1) ε̄V (η̄V − 3ε̄V )2

− 1

M3

√
2

q
ε̄V

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)]

�

(
1 − 1

3q

ε̄V

M

)1/4

�

+ · · · , for any q.

(5.403)

• Finally, one can also compute the running of the running of scalar spectral tilt (κS) of the primordial scalar power spectrum
as

κh,� ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
[

8

M3 ε̄V (1 + ε̄V )(η̄V − 3ε̄V )2 + 8

M4 ε̄2
V (η̄V − 3ε̄V )2

− 16

M4 (CE + 1) ε̄V

{
(η̄V − 3ε̄V )3 − (η̄V − 3ε̄V )

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)}

− 4

M3 ε̄V

(
1 + ε̄V

M

)(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)]
�

(
1 − 2

3

ε̄V

M

)1/4

�

+ · · · , for q = 1/2,

−
[

4

qM3 ε̄V

(
1 + ε̄V

2qM

)
(η̄V − 3ε̄V )2 + 2

q2M4 ε̄2
V (η̄V − 3ε̄V )2

+ 2

qM3 ε̄V

(
1 + ε̄V

2q

)(
ξ̄2
V − 10ε̄V η̄V + 18ε̄2

V

)

− 8

qM4 (CE + 1) ε̄V

{
(η̄V − 3ε̄V )3 − (η̄V − 3ε̄V )

(
10ε̄V η̄V − 18ε̄2

V − ξ̄2
V

)}]
�

×
(

1 − 1

3q

ε̄V

M

)1/4

�

+ · · · , for any q.

(5.404)

5.2.6 Modified consistency relations

In this subsection we derive the new (modified) consistency relations for single tachyonic field inflation:

1. Next for the BD vacuum with |kcSη| = 1 case within slow-roll regime we can approximately write the following expression
for the tensor-to-scalar ratio:
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r� ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣16

M
ε̄V cS

[
1 − (CE + 1)

ε̄V
M

]2

[
1 − (CE + 1)

ε̄V
M − CE

M (3ε̄V − η̄V )
]2

⎤
⎥⎦
k�=a�H�

=
⎡
⎢⎣16

M
ε̄V

[
1 − (CE + 1)

ε̄V
M

]2

[
1 −

(
CE + 5

6

)
ε̄V
M − CE

M (3ε̄V − η̄V )
]2

⎤
⎥⎦
k�=a�H�

, for q = 1/2,

⎡
⎢⎣ 8

qM
ε̄V cS

[
1 − (CE + 1)

ε̄V
2qM

]2

[
1 − (CE + 1)

ε̄V
2qM − CE

M
√

2q
(3ε̄V − η̄V )

]2

⎤
⎥⎦
k�=a�H�

=
⎡
⎢⎣ 8

qM
ε̄V

[
1 − (CE + 1)

ε̄V
2qM

]2

[
1 − (CE + 1 − �)

ε̄V
2qM − CE

M
√

2q
(3ε̄V − η̄V )

]2

⎤
⎥⎦
k�=a�H�

, for any q.

(5.405)

2. Hence the consistency relation between the tensor-to-scalar ratio r and spectral tilt nT for tensor modes for BD vacuum
with |kcSη| = 1 case can be written as

r� ≈ −8nh,� ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣cS

[
1 − (CE + 1)

ε̄V
M

]2

[
1 − (CE + 1)

ε̄V
M − CE

M (3ε̄V − η̄V )
]2 [

1 + ε̄V
M + 2

M (CE + 1) (3ε̄V − η̄V )
]
⎤
⎥⎦
k�=a�H�

=
⎡
⎢⎣

[
1 − (CE + 1)

ε̄V
M

]2

[
1 −

(
CE + 5

6

)
ε̄V
M − CE

M (3ε̄V − η̄V )
]2 [

1 + ε̄V
M + 2

M (CE + 1) (3ε̄V − η̄V )
]
⎤
⎥⎦
k�

, for q = 1/2,

⎡
⎢⎣cS

[
1 − (CE + 1)

ε̄V
2qM

]2

[
1 − (CE + 1)

ε̄V
2qM − CE

M
√

2q
(3ε̄V − η̄V )

]2 [
1 + ε̄V

2qM + 1
M

√
2
q (CE + 1) (3ε̄V − η̄V )

]
⎤
⎥⎦
k�=a�H�

=
⎡
⎢⎣

[
1 − (CE + 1)

ε̄V
2qM

]2

[
1 − (CE + 1 − �)

ε̄V
2qM − CE

M
√

2q
(3ε̄V − η̄V )

]2 [
1 + ε̄V

2qM + 1
M

√
2
q (CE + 1) (3ε̄V − η̄V )

]
⎤
⎥⎦
k�

, for any q.

︸ ︷︷ ︸
Correction factor

(5.406)

3. Next one can express the first two slow-roll parameters ε̄V and η̄V in terms of the inflationary observables as

ε̄V ≈

⎧⎪⎨
⎪⎩

ε1 ≈ −nh,�M

2
+ · · · ≈ r�M

16
+ · · · , for q = 1/2,

2qε1 ≈ −qnh,�M + · · · ≈ qr�M

8
+ · · · , for any q,

(5.407)

η̄V ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

3ε1 − ε2

2
≈ M

2

(
nζ,� − 1 + r�

2

)
+ · · · ≈ M

2

(
nζ,� − 1 − 4nh,�

) + · · · , for q = 1/2,

6qε1 −
√
q

2
ε2 ≈ M

√
q

2

(
nζ,� − 1 +

(
1

q
+ 3

√
2

q

)
qr�
8

)
+ · · ·

≈ M

√
q

2

(
nζ,� − 1 − q

(
1

q
+ 3

√
2

q

)
nh,�

)
+ · · · , for any q.

(5.408)
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4. Then the connecting consistency relation between tensor and scalar spectral tilt and tensor-to-scalar ratio can be expressed
as

nh,� ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− r�
8cS

[
1 − r�

16
+ (

1 − nζ,�

) − CE
{r�

8
+ (

nζ,� − 1
)}] + · · · , for q = 1/2,

− r�
8cS

[
1 +

{(
3q

8

√
2

q
−
(√

2

q
+ 5

)
1

16

)
r� +

(
1 − nζ,�

)
√

2q

}

+
√

2

q
CE

(
3qr�

8
− 1

2

{
nζ,� − 1 +

(
1

q
+ 3

√
2

q

)
qr�
8

})]
+ · · · , for any q.

(5.409)

Finally using the approximated version of the expression for cS in terms of slow-roll parameters one can recast this
consistency condition as

nh,� ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−r�
8

[
1 − r�

24
+ (

1 − nζ,�

) − CE
{r�

8
+ (

nζ,� − 1
)}] + · · · , for q = 1/2,

−r�
8

[
1 +

{(
3q

8

√
2

q
−
(√

2

q
+ 5

)
1

16
+ �

8

)
r� +

(
1 − nζ,�

)
√

2q

}

+
√

2

q
CE

(
3qr�

8
− 1

2

{
nζ,� − 1 +

(
1

q
+ 3

√
2

q

)
qr�
8

})]
+ · · · , for any q.

(5.410)

5. Next the running of the sound speed cS can be written in terms of slow-roll parameters as

S = ċS
HcS

= d ln cS
dN

= d ln cS
d ln k

=

⎧⎪⎪⎨
⎪⎪⎩

− 2

3M2 ε̄V (η̄V − 3ε̄V )

(
1 − 2

3

ε̄V

M

)1/4

+ · · · , for q = 1/2,

− (1 − q)

3q2M2 ε̄V (η̄V − 3ε̄V )

(
1 − 1

3q

ε̄V

M

)1/4

+ · · · , for any q,

(5.411)

which can be treated as another slow-roll parameter in the present context. One can also recast the slow-roll parameter S
in terms of the inflationary observables as

S =

⎧⎪⎪⎨
⎪⎪⎩

− r�
48

(
nζ,� − 1 + r�

8

) (
1 − r�

24

)1/4 + · · · , for q = 1/2,

− (1 − q)

24q2

√
q

2
r�
(
nζ,� − 1 + r�

8

) (
1 − r�

24

)1/4 + · · · , for any q.

(5.412)

6. Further the running of the tensor spectral tilt can be written in terms of the inflationary observables as
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(5.413)
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7. Next the scalar power spectrum can be expressed in terms of the other inflationary observables as
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8

)]2 2H2
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(5.414)

8. Further the tensor power spectrum can be expressed in terms of the other inflationary observables as

�h,� =
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(5.415)

9. Next the running of the tensor-to-scalar ratio can be expressed in terms of the inflationary observables as

αr,� = −8αh,� + · · ·

≈
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(5.416)

10. Finally the scale of single field tachyonic inflation can be expressed in terms of the Hubble parameter and the other
inflationary observables as

Hinf = H� ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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(5.417)

One can recast this statement in terms of the inflationary potential as

4
√
Vinf = 4

√
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√
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(
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(5.418)

5.2.7 Field excursion for tachyon

In this subsection we explicitly derive the expression for the field excursion for tachyonic inflation defined as

|�T | = |Tcmb − Tend| = |T� − Tend| (5.419)
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where Tcmb, Tend and T� signify the tachyon field value at the time of horizon exit, at end of inflation and at pivot scale
respectively. Here we perform the computation for both AV and BD vacuum. For for the sake of simplicity the pivot scale is
fixed at the horizon exit scale. To compute the expression for the field excursion we perform the following steps:

1. We start with the operator identity for single field tachyon using which one can write expression for the tachyon field
variation with respect to the momentum scale (k) or number of e-foldings (N ) in terms of the inflationary observables as

1

H

dT

dt
= dT

dN
= dT

d ln k
≈
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⎪⎪⎩
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24
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(5.420)

where the tensor-to-scalar ratio r is a function of k or N .
2. Next using Eq. (5.172) we can write the following integral equation:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(5.421)

3. Next we use the same parametrization of the tensor-to-scalar ratio for q = 1/2 and for any arbitrary q at any arbitrary
scale as mentioned earlier for the single tachyonic field case.

4. For any value of q including q = 1/2 we need to compute the following integral:
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(5.422)
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Similarly for AV we get the following result:
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In terms of the number of e-foldings N one can re-express Eqs. (5.422) and (5.423) as
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(5.424)
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(5.425)

Here the two possibilities for AV vacuum as appearing for the assisted inflationary framework are:
Case I stands for a situation where the spectrum is characterized by the constraint i) D1 = D2 = C1 = C2 �= 0, ii)

D1 = D2, C1 = C2 = 0, iii) D1 = D2 = 0, C1 = C2.
Case II stands for a situation where the spectrum is characterized by the constraint i) μ ≈ ν, D1 = D2 = D �= 0 and

C1 = C2 = C �= 0, ii) μ ≈ ν, D1 = D �= 0, D2 = 0 and C1 = C �= 0, C2 = 0, iii) μ ≈ ν, D2 = D �= 0, D1 = 0 and
C2 = C �= 0, C1 = 0.
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5. Next following exactly the same steps for single field inflation and also using Eqs. (5.424), (5.425) and (5.421) we get
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6. Next using Eq. (5.418) in Eqs. (5.426) and (5.427) we get
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nζ,� − 1 + r�

8

)]
for Case I,

√
r�

8Mα′

|D|
(

1 − qr�
48c2

S

|D|2
|C|2

)1/4

(N� − Nend)

2cS |C |
√

3�ζ,�r�
2 πM2

p[
1 − (CE + 1 − �)

r�
16

+ CE
2

(
nζ,� − 1 + r�

8

)]
for Case II,

for AV. (5.429)

Further using the approximated form of the sound speed cS the expression for the field excursion for AV can be rewritten
as
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�T

Mp
≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
r�

8Mα′

(
1 − qr�

48
[
1− (1−q)

3q
r�
8

]
)1/4

(N� − Nend)

2
√

1 − (1−q)
3q

r�
8

√
3�ζ,�r�

2 πM2
p[

1 − (CE + 1 − �)
r�
16

+ CE
2

(
nζ,� − 1 + r�

8

)]
for Case I,

√
r�

8Mα′

|D|
(

1 − qr�

48
[
1− (1−q)

3q
r�
8

] |D|2
|C|2

)1/4

(N� − Nend)

2
√

1 − (1−q)
3q

r�
8 |C |

√
3�ζ,�r�

2 πM2
p[

1 − (CE + 1 − �)
r�
16

+ CE
2

(
nζ,� − 1 + r�

8

)]
for Case II,

for AV. (5.430)

This implies that for BD and AV we get roughly the fol-
lowing result from this analysis:
∣∣∣∣�T

Mp

∣∣∣∣
Assisted

= 1√
M

×
∣∣∣∣�T

Mp

∣∣∣∣
Single

, (5.431)

which means that if the number of tachyonic fields partici-
pating in the assisted inflation gradually increases, then the
tachyonic field excursion for assisted inflation becomes more
and more sub-Planckian compared to the single field result.

5.2.8 Semi-analytical study and cosmological parameter
estimation

In this subsection our prime objective are:

• To compute various inflationary observables from vari-
ants of tachyonic potentials in the presence of M identical
degrees of freedom.

• To estimate the relevant cosmological parameters from
the proposed models.

• To compare the effectiveness of all of these models in
the light of recent Planck 2015 data along with other
combined constraints.

• Finally to check the compatibility of all of these models
with the CMB TT, TE and EE angular power spectra as
observed by Planck 2015.

However, instead of computing everything in detail we will
not do any further computation in the context of assisted
inflation using all the individual five potentials for that we
have already done the analysis in the context of single tachy-
onic field earlier in this paper. In this context the results are
exactly the same for all potentials that have already done for a
single field, provided for all the models the stringy parameter
g, appearing almost everywhere, is rescaled by the number
of identical scalar fields in the present context, i.e., for the

sake of simplicity here we define a new stringy parameter g̃,
which is given by

g̃ = gM = α′λT 2
0

M2
p︸ ︷︷ ︸

×M = M4
s

(2π)3gs

α′T 2
0

M2
p︸ ︷︷ ︸

×M, (5.432)

where the terms pointed by the ︸︷︷︸ symbol signify the exact

contribution from the single tachyonic field. Now from the
observational constraints instead of constraining the param-
eter g here we need to constrain the value of g̃ for all five
tachyonic potentials mentioned earlier. Let us mention all
the constraints on the stringy parameter g̃ for the assisted
inflationary framework:

• Model I: inverse cosh potential
For q = 1/2, q = 1, q = 3/2 and q = 2 we fix N�/g̃ ∼
0.8, which further implies that for 50 < N� < 70, the
prescribed window for g̃ from the �ζ + nζ plot is given
by 63 < g̃ < 88. If we additionally impose the constraint
from the upper bound on the tensor-to-scalar ratio then
also the allowed parameter range is lying within a similar
window, i.e., 88 < g̃ < 100.

Model II: logarithmic potential

For q = 1/2, and q = 1 we fix N�/g̃ ∼ 0.7, which
further implies that for 50 < N� < 70, the prescribed
window for g̃ from the �ζ + nζ plot is given by 71.4 <

g < 100. If we additionally impose the constraint from
the upper bound on the tensor-to-scalar ratio then also the
allowed parameter range is lying within a similar window,
i.e., 71.4 < g̃ < 90.

Model III: exponential potential-type I

For q = 1/2, q = 1, q = 3/2 and q = 2 case g̃ is not
explicitly appearing in the various inflationary observ-
ables except the amplitude of scalar power spectrum in
this case. To produce the correct value of the ampli-
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Table 1 Comparison between the field excursion obtained from all
the tachyonic potentials from the single field and assisted inflation-
ary frameworks. Here we define y0 = T0/Mp , where Mp = 2.43 ×
1018 GeV. The numerics clearly implies that the assisted tachyonic infla-
tionary framework pushes the field excursion value to a sub-Planckian

value for large M by a large amount, compared to the value obtained
from single inflationary set-up. Technically this implies the doing effec-
tive field theory (EFT) with assisted framework is safer compared to
single field case, as it involves an additional parameter M

Model Parameters Single field Assisted
(2σ bound) XS := (|�T |/Mp)Single XA := (|�T |/Mp)Assisted

Inverse cosh potential 80 < g, g̃ < 100 0.34y0 < XS < 1.00y0
0.34y0√

M
< XA <

1.00y0√
M

1/2 < q < 2 EFT For y0 < 1.00 EFT For I. y0 < 1.00

II. M ≥ 2

Logarithmic potential 71.4 < g, g̃ < 100 0.93y0 < XS < 1.12y0
0.93y0√

M
< XA <

1.12y0√
M

1/2 < q < 1 EFT For y0 < 0.892 EFT For I. y0 < 0.892

c = 0.07 II. M ≥ 2

Exponential potential Type-I 360 < g, g̃ < 400 4.26y0 < XS < 4.27y0
4.26y0√

M
< XA <

4.27y0√
M

1 < q < 2 EFT For y0 < 0.234 EFT For I. y0 < 0.234

II. M ≥ 2

Exponential potential Type-II 73 < g, g̃ < 82.3 3.18y0 < XS < 6.27y0
3.18y0√

M
< XA <

6.27y0√
M

1/2 < q < 2 EFT For y0 < 0.160 EFT For I. y0 < 0.160

6 < p =
√

g
2 < 6.4 II. M ≥ 2

Inverse power-law potential 600 < g, g̃ < 700 7.2y0 < XS < 7.9y0
7.2y0√

M
< XA <

7.9y0√
M

1 < q < 3/2 EFT For y0 < 0.127 EFT For I. y0 < 0.127

II. M ≥ 2

tude of the scalar power spectra we fix the parameter
360 < g̃ < 400.

Model IV: exponential potential-type II

For q = 1/2, q = 1, q = 3/2 and q = 2 we fix N�/g ∼
0.85, which further implies that for 50 < N� < 70, the
prescribed window for g from �ζ + nζ constraints is
given by 59 < g̃ < 82.3. If we additionally impose the
constraint from the upper bound on the tensor-to-scalar
ratio then also the allowed parameter range is lying within
the window, i.e., 73 < g̃ < 82.3.

Model V: inverse power-law potential

For the q = 1/2, q = 1, q = 3/2 and q = 2 cases
g̃ is not explicitly appearing in the various inflationary
observables except the amplitude of scalar power spec-
trum in this case. To produce the correct value of the
amplitude of the scalar power spectra we fix the param-
eter 600 < g̃ < 700.

In Table 1 we have shown the comparison between the field
excursion obtained from all the tachyonic potentials from sin-
gle field and assisted inflationary framework. Here we define
y0 = T0/Mp, where Mp = 2.43 × 1018 GeV. The numerics
clearly implies that the assisted tachyonic inflationary frame-
work pushes the field excursion value to a sub-Planckian

value for large M with large amount, compared to the value
obtained from the single inflationary set-up. Technically this
implies that effective field theory (EFT) with assisted frame-
work is safer compared to the single field case, as it involves
an additional parameter M .

Additionally it is important to mention here that the other
conclusions and the rest of the constraints are exactly the
same as analyzed in the single field case. Similarly the CMB
TT, TE, EE spectra for the scalar modes are exactly the same
as obtained in the context of single tachyonic inflation and
compatible with the observed Planck 2015 data.

5.3 Computation for the multi-field inflation

In case of multi-tachyonic inflation all the tachyons are not
identical. In more technical language for the most generalized
prescription one can state that

T1 �= T2 �= · · · �= TM . (5.433)

In the next subsections we will explore the detailed features of
multi-tachyonic inflation by computing the curvature, isocur-
vature and tensor perturbations and then we discuss the obser-
vational constraints and cosmological consequences from the
set-up. We will give all the analytical results for M non-
identical tachyonic fields and for completeness also give the
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results for M number of non-identical inverse cosh separable
potential.

5.3.1 Condition for inflation

For assisted tachyonic inflation, the prime condition for infla-
tion is given by

Ḣ + H2 =
(
ä

a

)
= −

M∑
i=1

(ρi + 3pi )

6M2
p

> 0 (5.434)

which can be re-expressed in terms of the following con-
straint condition in the context of assisted tachyonic infla-
tion:

M∑
i=1

V (Ti )

3M2
p

√
1 − α′Ṫ 2

i

(
1 − 3

2
α′Ṫ 2

i

)
> 0. (5.435)

Here Eq. (5.316) implies that to satisfy inflationary con-
straints in the slow-roll regime the following constraint
always holds good:

Ṫi <

√
2

3α′ ∀ i = 1, 2, . . . , M, (5.436)

T̈i < 3HṪi <

√
6

α′ H ∀ i = 1, 2, . . . , M. (5.437)

Consequently the field equations are approximated by

3Hα′Ṫi +
⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠

−1
∂

∂Ti

⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠ ≈ 0,

(5.438)

Similarly, in the most generalized case,

M∑
i=1

V (Ti )

3M2
p

(
1 − α′Ṫ 2

i

)1−q

(
1 − (1 + q)α′Ṫ 2

i

)
> 0. (5.439)

Here Eq. (5.439) implies that to satisfy inflationary con-
straints in the slow-roll regime the following constraint
always holds good:

Ṫi <

√
1

α′(1 + q)
∀ i = 1, 2, . . . , M, (5.440)

T̈i < 3HṪi <

√
9

α′(1 + q)
H ∀ i = 1, 2, . . . , M. (5.441)

Consequently the field equations are approximated by

6qα′HṪi +
⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠

−1
∂

∂Ti

⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠ ≈ 0

(5.442)

Also for both cases in the slow-roll regime the Friedmann
equation is modified as

H2 ≈
M∑
i=1

V (Ti )

3M2
p

. (5.443)

Further substituting Eq. (5.443) in Eqs. (5.438) and (5.442)
we get

√√√√ M∑
j=1

V (Tj )

√
3α′

Mp
Ṫi +

⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠

−1
∂

∂Ti

⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠ ≈ 0

∀i = 1, 2, . . . , M, (5.444)

6q√
3Mp

√√√√ M∑
j=1

V (Tj )α
′Ṫi +

⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠

−1
∂

∂Ti

⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠≈0

∀i = 1, 2, . . . , M. (5.445)

Finally the general solution for both cases can be expressed
in terms of the single field tachyonic potential V (T ) as

t − tin,i ≈ −
√

3α′

Mp

∫ Ti

Tin,i

dTi

√√√√ M∑
j=1

V (Tj )

⎡
⎢⎣
⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠

−1
∂

∂Ti

⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠
⎤
⎥⎦

−1

,

(5.446)

t − tin,i ≈ − 6qα′
√

3Mp

∫ Ti

Tin,i

dTi

√√√√ M∑
j=1

V (Tj )

⎡
⎢⎣
⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠

−1
∂

∂Ti

⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠
⎤
⎥⎦

−1

.

(5.447)

Further using Eqs. (5.446), (5.447) and (5.443) we get the
following solution for the scale factor in terms of the tachy-
onic field for the usual q = 1/2 and for a generalized value
of q:
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a = ain,i ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

⎡
⎢⎣−α′M

M2
p

∫ Ti

Tin
dTi

M∑
j=1

V (Tj )

⎡
⎢⎣
⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠

−1
∂

∂Ti

⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠
⎤
⎥⎦

−1⎤
⎥⎦ , for q = 1/2,

exp

⎡
⎢⎣−2qα′M

M2
p

∫ Ti

Tin
dTi

M∑
j=1

V (Tj )

⎡
⎢⎣
⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠

−1
∂

∂Ti

⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠
⎤
⎥⎦

−1⎤
⎥⎦ . for any q.

(5.448)

Sometimes it is convenient to identify the inflaton field
direction as the direction in field space corresponding to the
evolution of the background spatially homogeneous tachy-
onic fields during inflation. To serve this purpose one can
write

σ =
∫ M∑

i=1

σ̂i Ṫi dt, (5.449)

where the inflaton direction is defined as

σ̂i ≡ Ṫ ×
⎡
⎣ M∑

j=1

Ṫ 2
j

⎤
⎦

−1/2

. (5.450)

The M evolution equations for the homogeneous scalar fields
can be written as the evolution of single scalar field in the
slow-roll regime as

3H σ̇ +
⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠

−1
∂

∂σ

⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠

= 3H σ̇ +
M∑
i=1

σ̂i

⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠

−1
∂

∂Ti

⎛
⎝ M∑

j=1

V (Tj )

⎞
⎠ = 0.

(5.451)

5.3.2 Analysis using slow-roll formalism

Here our prime objective is to define slow-roll parameters for
tachyon inflation in terms of the Hubble parameter and the
multi-tachyonic inflationary potential, where the M tachyon
fields are not identical. Using the slow-roll approximation
one can expand various cosmological observables in terms
of small dynamical quantities derived from the appropriate
derivatives of the Hubble parameter and of the inflationary
potential. To start with, in the present context the potential
dependent slow-roll parameters are defined as

εV ;Tj Tj (Ti ) = M2
p

2

(
∂Tj V (Ti )

V (Ti )

)2

, (5.452)

ηV ;Tj Tj (Ti ) = M2
p

(
∂Tj ∂Tj V (Ti )

V (Ti )

)
, (5.453)

�V ;Tj Tk (Ti ) = M2
p

(
∂Tj ∂Tk V (Ti )

V (Ti )

)
, (5.454)

�V ;Tj Tk (Ti ) = M2
p

2

(
∂Tj V (Ti )∂Tk V (Ti )

V 2(Ti )

)
, (5.455)

ξ2
V ;Tj Tj Tj Tj

(Ti ) = M4
p

(
∂Tj V (Ti )∂Tj ∂Tj ∂Tj V (Ti )

V 2(Ti )

)
,

(5.456)

ϑ2
V ;Tj Tj TkTk

(Ti ) = M4
p

(
∂Tj V (Ti )∂Tj ∂Tk∂Tk V (Ti )

V 2(Ti )

)
,

(5.457)

ϑ2
V ;TkTj TkTk

(Ti ) = M4
p

(
∂Tk V (Ti )∂Tj ∂Tk∂Tk V (Ti )

V 2(Ti )

)
,

(5.458)

ϑ2
V ;Tj TkTkTk

(Ti ) = M4
p

(
∂Tj V (Ti )∂Tk∂Tk∂Tk V (Ti )

V 2(Ti )

)
,

(5.459)

σ 3
V ;Tj Tj Tj Tj Tj Tj

(Ti )

= M6
p

(
∂Tj V (Ti )∂Tj V (Ti )∂Tj ∂Tj ∂Tj ∂Tj V (Ti )

V 3(Ti )

)
, (5.460)

ϒ3
V ;Tj Tj TkTkTkTk

(Ti )

= M6
p

(
∂Tj V (Ti )∂Tj V (Ti )∂Tk ∂Tk ∂Tk ∂Tk V (Ti )

V 3(Ti )

)
, (5.461)

ϒ3
V ;Tj TkTkTkTkTk

(Ti )

= M6
p

(
∂Tj V (Ti )∂Tk V (Ti )∂Tk ∂Tk ∂Tk ∂Tk V (Ti )

V 3(Ti )

)
, (5.462)

ϒ3
V ;Tj Tj Tj TkTj Tk

(Ti )

= M6
p

(
∂Tj V (Ti )∂Tj V (Ti )∂Tj ∂Tk ∂Tk ∂Tk V (Ti )

V 3(Ti )

)
, (5.463)

ϒ3
V ;Tj Tj Tj Tj TkTk

(Ti )

= M6
p

(
∂Tj V (Ti )∂Tj V (Ti )∂Tj ∂Tj ∂Tk ∂Tk V (Ti )

V 3(Ti )

)
, (5.464)

ϒ3
V ;Tj Tj Tj Tj Tj Tk

(Ti )

= M6
p

(
∂Tj V (Ti )∂Tj V (Ti )∂Tj ∂Tj ∂Tj ∂Tk V (Ti )

V 3(Ti )

)
, (5.465)

ϒ3
V ;Tj TkTj Tj Tj Tj

(Ti )

= M6
p

(
∂Tj V (Ti )∂Tk V (Ti )∂Tj ∂Tj ∂Tj ∂Tj V (Ti )

V 3(Ti )

)
, (5.466)
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ϒ3
V ;Tj TkTj Tj Tj Tk

(Ti )

= M6
p

(
∂Tj V (Ti )∂Tk V (Ti )∂Tj ∂Tj ∂Tj ∂Tk V (Ti )

V 3(Ti )

)
, (5.467)

ϒ3
V ;Tj TkTj Tj TkTk

(Ti )

= M6
p

(
∂Tj V (Ti )∂Tk V (Ti )∂Tj ∂Tj ∂Tk ∂Tk V (Ti )

V 3(Ti )

)
, (5.468)

ϒ3
V ;Tj TkTj TkTkTk

(Ti )

= M6
p

(
∂Tj V (Ti )∂Tk V (Ti )∂Tj ∂Tk ∂Tk ∂Tk V (Ti )

V 3(Ti )

)
. (5.469)

However, for the sake of clarity here we introduce new
sets of potential dependent slow-roll parameters for multi-
tachyonic inflation by rescaling with the appropriate powers

of α′
(∑M

k=1 V (Tk)
)

:

ε̄V ;Tj Tj (Ti ) = εV ;Tj Tj (Ti )

α′
(∑M

k=1 V (Tk)
) ,

�̄V ;Tj Tk (Ti ) = �V ;Tj Tk (Ti )

α′
(∑M

j=1 V (Tj )
) ,

η̄V ;Tj Tj (Ti ) = ηV ;Tj Tj (Ti )

α′
(∑M

j=1 V (Tj )
) ,

�̄V ;Tj Tk (Ti ) = �V ;Tj Tk (Ti )

α′
(∑M

j=1 V (Tj )
) ,

ξ̄2
V ;Tj Tj Tj Tj

(Ti ) =
ξ2
V ;Tj Tj Tj Tj

(Ti )

α
′2
(∑M

j=1 V (Tj )
)2 ,

ϑ̄2
V ;Tj Tj TkTk

(Ti ) =
ϑ2
V ;Tj Tj TkTk

(Ti )

α
′2
(∑M

j=1 V (Tj )
)2 ,

ϑ̄2
V ;TkTj TkTk

(Ti ) =
ϑ2
V ;TkTj TkTk

(Ti )

α
′2
(∑M

j=1 V (Tj )
)2 ,

ϑ̄2
V ;Tj TkTkTk

(Ti ) =
ϑ2
V ;TkTkTj Tk

(Ti )

α
′2
(∑M

j=1 V (Tj )
)2 , (5.470)

σ̄ 3
V ;Tj Tj Tj Tj Tj Tj

(Ti ) =
σ 3
V ;Tj Tj Tj Tj Tj Tj

(Ti )

α
′3
(∑M

j=1 V (Tj )
)3 ,

ϒ3
V ;Tj Tj TkTkTkTk

(Ti ) =
ϒ3

V ;Tj Tj TkTkTkTk
(Ti )

α
′3
(∑M

j=1 V (Tj )
)3 , (5.471)

ϒ̄3
V ;Tj TkTkTkTkTk

(Ti ) =
ϒ3

V ;Tj TkTkTkTkTk
(Ti )

α
′3
(∑M

j=1 V (Tj )
)3 ,

ϒ̄3
V ;Tj Tj Tj TkTj Tk

(Ti ) =
ϒ3

V ;Tj Tj Tj TkTj Tk
(Ti )

α
′3
(∑M

j=1 V (Tj )
)3 , (5.472)

ϒ̄3
V ;Tj Tj Tj Tj TkTk

(Ti ) =
ϒ3

V ;Tj Tj Tj Tj TkTk
(Ti )

α
′3
(∑M

j=1 V (Tj )
)3 ,

ϒ̄3
V ;Tj Tj Tj Tj Tj Tk

(Ti ) =
ϒ3

V ;Tj Tj Tj Tj Tj Tk
(Ti )

α
′3
(∑M

j=1 V (Tj )
)3 , (5.473)

ϒ̄3
V ;Tj TkTj Tj Tj Tj

(Ti ) =
ϒ3

V ;Tj TkTj Tj Tj Tj
(Ti )

α
′3
(∑M

j=1 V (Tj )
)3 ,

ϒ̄3
V ;Tj TkTj Tj Tj Tk

(Ti ) =
ϒ3

V ;Tj TkTj Tj Tj Tk
(Ti )

α
′3
(∑M

j=1 V (Tj )
)3 , (5.474)

ϒ̄3
V ;Tj TkTj Tj TkTk

(Ti ) =
ϒ3

V ;Tj TkTj Tj TkTk
(Ti )

α
′3
(∑M

j=1 V (Tj )
)3 ,

ϒ̄3
V ;Tj TkTj TkTkTk

(Ti ) =
ϒ3

V ;Tj TkTj TkTkTk
(Ti )

α
′3
(∑M

j=1 V (Tj )
)3 . (5.475)

where in all cases i, j, k = 1, 2, . . . , M and j �= k. For the
sake of simplicity let us parametrize the flow-functions in the
slow-roll regime via two angular parameters, by making use
of the following transformation equations:

cos αV ;Tj Tj :=
√

ε̄V ;Tj Tj (Ti )

ε̄V
, (5.476)

sin αV ;TkTk :=
√

ε̄V ;TkTk (Ti )
ε̄V

, (5.477)

cos βV ;Tk := Mp ε̄V ;Tk , (5.478)

sin βV ;Tj := Mp ε̄V ;Tk . (5.479)

For the two-field set-up this can be visualized in a better way.
In that case we need to fix j = 1, k = 2 or j = 2, k = 1. and
i is the free index which can take values i = 1, 2 depend-
ing on the field derivative, ∂T1 or ∂T2 acting on it. In the
present context these two sets of angular parameters physi-
cally represent the angle between the adiabatic perturbation,
the tangent of the first slow-roll parameter and the field con-
tents. Here also we define the following reduced parameters
for multi-tachyonic inflation:

ε̄V =
M∑
i=1

M∑
j=1

ε̄V ;Tj Tj (Ti )

+
M∑
i=1

M∑
j=1

M∑
k=1

(
�̄V ;Tj Tk (Ti ) + �̄V ;TkTj (Ti )

)
,

(5.480)
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η̄V =
M∑
i=1

M∑
j=1

η̄V ;Tj Tj (Ti )

+
M∑
i=1

M∑
j=1

M∑
k=1

(
�̄V ;Tj Tk (Ti )+�̄V ;TkTj (Ti )

)
, (5.481)

ξ̄2
V =

M∑
i=1

M∑
j=1

ξ̄2
V ;Tj Tj Tj Tj

(Ti )

+
M∑
i=1

M∑
j=1

M∑
k=1

(
ϑ̄2
V ;Tj Tj TkTk

(Ti ) + ϑ̄2
V ;TkTj TkTk

(Ti )

+ϑ̄2
V ;Tj TkTkTk

(Ti ) + ϑ̄2
V ;Tj TkTj Tk

(Ti )

+ϑ̄2
V ;Tj TkTkTj

(Ti ) + ϑ̄2
V ;TkTkTj Tk

(Ti )

+ϑ̄2
V ;TkTkTkTj

(Ti )
)

, (5.482)

σ̄ 3
V =

M∑
i=1

M∑
j=1

σ̄ 3
V ;Tj Tj Tj Tj Tj Tj

(Ti )

+
M∑
i=1

M∑
j=1

M∑
k=1

(
ϒ3

V ;Tj Tj TkTkTkTk
(Ti )

+ ϒ̄3
V ;Tj TkTkTkTkTk

(Ti ) + ϒ̄3
V ;Tj Tj Tj Tj TkTk

(Ti )

+ϒ̄3
V ;Tj Tj Tj Tj Tj Tk

(Ti ) + ϒ̄3
V ;Tj TkTj Tj Tj Tj

(Ti )

+ϒ̄3
V ;Tj TkTj Tj Tj Tk

(Ti ) + ϒ̄3
V ;Tj TkTj Tj TkTk

(Ti )

+ϒ̄3
V ;Tj TkTj TkTkTk

(Ti ) + ϒ̄3
V ;Tj Tj TkTj TkTk

(Ti )

+ϒ̄3
V ;Tj Tj TkTkTj Tk

(Ti ) + ϒ̄3
V ;Tj Tj TkTkTkTj

(Ti )

+ϒ̄3
V ;Tj Tj Tj TkTj Tk

(Ti ) + ϒ̄3
V ;Tj Tj Tj TkTkTj

(Ti )

+ϒ̄3
V ;Tj Tj TkTj TkTj

(Ti ) + ϒ̄3
V ;Tj Tj TkTj Tj Tk

(Ti )

+ϒ̄3
V ;Tj Tj Tj Tj TkTj

(Ti ) + ϒ̄3
V ;Tj Tj Tj TkTj Tj

(Ti )

+ϒ̄3
V ;Tj Tj TkTj Tj Tj

(Ti ) + ϒ̄3
V ;TkTj Tj Tj Tj Tj

(Ti )

+ϒ̄3
V ;Tj TkTj Tj TkTj

(Ti ) + ϒ̄3
V ;Tj TkTj TkTj Tj

(Ti )

+ϒ̄3
V ;Tj TkTkTj Tj Tj

(Ti ) + ϒ̄3
V ;TkTj Tj Tj Tj Tk

(Ti )

+ϒ̄3
V ;TkTj Tj Tj TkTj

(Ti ) + ϒ̄3
V ;TkTj Tj TkTj Tj

(Ti )

+ϒ̄3
V ;TkTj TkTj Tj Tj

(Ti ) + ϒ̄3
V ;Tj TkTj TkTj Tk

(Ti )

+ϒ̄3
V ;Tj TkTkTj Tj Tk

(Ti ) + ϒ̄3
V ;Tj TkTj TkTkTj

(Ti )

+ϒ̄3
V ;Tj TkTkTj TkTj

(Ti ) + ϒ̄3
V ;TkTj Tj Tj TkTk

(Ti )

+ϒ̄3
V ;TkTj Tj TkTj Tk

(Ti ) + ϒ̄3
V ;TkTj TkTj Tj Tk

(Ti )

+ϒ̄3
V ;TkTj Tj TkTkTj

(Ti ) + ϒ̄3
V ;TkTj TkTj TkTj

(Ti )

+ϒ̄3
V ;Tj TkTkTj TkTk

(Ti ) + ϒ̄3
V ;Tj TkTkTkTj Tk

(Ti )

+ϒ̄3
V ;Tj TkTkTkTkTj

(Ti ) + ϒ̄3
V ;TkTj Tj TkTkTk

(Ti )

+ϒ̄3
V ;TkTj TkTj TkTk

(Ti ) + ϒ̄3
V ;TkTj TkTkTj Tk

(Ti )

+ϒ̄3
V ;TkTj TkTkTkTj

(Ti ) + ϒ̄3
V ;Tj Tj Tj TkTkTk

(Ti )
)

.

(5.483)

Now simplify the results let us mention the symmetries
appearing due to various permutation of the indices:

�̄V ;Tj Tk (Ti ) = �̄V ;TkTj (Ti ), (5.484)

�̄V ;Tj Tk (Ti ) = �̄V ;TkTj (Ti ), (5.485)

ϑ̄2
V ;Tj Tj TkTk

(Ti ) = ϑ̄2
V ;Tj TkTj Tk

(Ti ) = ϑ̄2
V ;Tj TkTkTj

(Ti ),

(5.486)

ϑ̄2
V ;TkTj TkTk

(Ti ) = ϑ̄2
V ;TkTkTj Tk

(Ti ) = ϑ̄2
V ;TkTkTkTj

(Ti ),

(5.487)

ϒ̄3
V ;Tj Tj Tj TkTkTk

(Ti ) = ϒ̄3
V ;Tj Tj TkTj TkTk

(Ti )

= ϒ̄3
V ;Tj Tj TkTkTj Tk

(Ti ) = ϒ̄3
V ;Tj Tj TkTkTkTj

(Ti ),

(5.488)

ϒ̄3
V ;Tj Tj Tj Tj TkTk

(Ti ) = ϒ̄3
V ;Tj Tj Tj TkTj Tk

(Ti )

= ϒ̄3
V ;Tj Tj Tj TkTkTj

(Ti ) = ϒ̄3
V ;Tj Tj TkTj TkTj

(Ti )

= ϒ̄3
V ;Tj Tj TkTj Tj Tk

(Ti ), (5.489)

ϒ̄3
V ;Tj Tj Tj Tj Tj Tk

(Ti ) = ϒ̄3
V ;Tj Tj Tj Tj TkTj

(Ti )

= ϒ̄3
V ;Tj Tj Tj TkTj Tj

(Ti ) = ϒ̄3
V ;Tj Tj TkTj Tj Tj

(Ti ),

(5.490)

ϒ̄3
V ;Tj TkTj Tj Tj Tj

(Ti ) = ϒ̄3
V ;TkTj Tj Tj Tj Tj

(Ti ), (5.491)

ϒ̄3
V ;Tj TkTj Tj Tj Tk

(Ti ) = ϒ̄3
V ;Tj TkTj Tj TkTj

(Ti )

= ϒ̄3
V ;Tj TkTj TkTj Tj

(Ti ) = ϒ̄3
V ;Tj TkTkTj Tj Tj

(Ti ),

(5.492)

ϒ̄3
V ;TkTj Tj Tj Tj Tk

(Ti ) = ϒ̄3
V ;TkTj Tj Tj TkTj

(Ti )

= ϒ̄3
V ;TkTj Tj TkTj Tj

(Ti ) = ϒ̄3
V ;TkTj TkTj Tj Tj

(Ti ),

(5.493)

ϒ̄3
V ;Tj TkTj Tj TkTk

(Ti ) = ϒ̄3
V ;Tj TkTj TkTj Tk

(Ti )

= ϒ̄3
V ;Tj TkTkTj Tj Tk

(Ti ) = ϒ̄3
V ;Tj TkTj TkTkTj

(Ti )

= ϒ̄3
V ;Tj TkTkTj TkTj

(Ti ), (5.494)

ϒ̄3
V ;TkTj Tj Tj TkTk

(Ti ) = ϒ̄3
V ;TkTj Tj TkTj Tk

(Ti )

= ϒ̄3
V ;TkTj TkTj Tj Tk

(Ti ) = ϒ̄3
V ;TkTj Tj TkTkTj

(Ti )

= ϒ̄3
V ;TkTj TkTj TkTj

(Ti ), (5.495)
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ϒ̄3
V ;TkTj Tj TkTkTk

(Ti ) = ϒ̄3
V ;TkTj TkTj TkTk

(Ti )

= ϒ̄3
V ;TkTj TkTkTj Tk

(Ti ) = ϒ̄3
V ;TkTj TkTkTkTj

(Ti ),

(5.496)

ϒ̄3
V ;Tj TkTj TkTkTk

(Ti ) = ϒ̄3
V ;Tj TkTkTj TkTk

(Ti )

= ϒ̄3
V ;Tj TkTkTkTj Tk

(Ti ) = ϒ̄3
V ;Tj TkTkTkTkTj

(Ti ).

(5.497)

Using these results one can finally re-express the reduced
slow-roll parameters as

ε̄V =
M∑
i=1

M∑
j=1

ε̄V ;Tj Tj (Ti ) + 2
M∑
i=1

M∑
j=1

M∑
k=1

�̄V ;Tj Tk (Ti ),

(5.498)

η̄V =
M∑
i=1

M∑
j=1

η̄V ;Tj Tj (Ti ) + 2
M∑
i=1

M∑
j=1

M∑
k=1

�̄V ;Tj Tk (Ti ),

(5.499)

ξ̄2
V =

M∑
i=1

M∑
j=1

ξ̄2
V ;Tj Tj Tj Tj

(Ti )

+
M∑
i=1

M∑
j=1

M∑
k=1

(
3ϑ̄2

V ;Tj Tj TkTk
(Ti )

+ 3ϑ̄2
V ;TkTj TkTk

(Ti ) + ϑ̄2
V ;Tj TkTkTk

(Ti )
)

, (5.500)

σ̄ 3
V =

M∑
i=1

M∑
j=1

σ̄ 3
V ;Tj Tj Tj Tj Tj Tj

(Ti )

+ϒ̄3
V ;Tj TkTkTkTkTk

(Ti ) +
M∑
i=1

M∑
j=1

M∑
k=1

(
ϒ3

V ;Tj Tj TkTkTkTk
(Ti )

+ 5ϒ̄3
V ;Tj Tj Tj Tj TkTk

(Ti ) + 4ϒ̄3
V ;Tj Tj Tj Tj Tj Tk

(Ti )

+2ϒ̄3
V ;Tj TkTj Tj Tj Tj

(Ti ) + 8ϒ̄3
V ;Tj TkTj Tj Tj Tk

(Ti )

+ 10ϒ̄3
V ;Tj TkTj Tj TkTk

(Ti ) + 8ϒ̄3
V ;Tj TkTj TkTkTk

(Ti )

+4ϒ̄3
V ;Tj Tj Tj TkTkTk

(Ti )
)

. (5.501)

Now in our computation we take separable potentials hav-
ing same structural form for all M number of non-identical
tachyons. In such case, for an example if take:

V (T1) = A1 exp(−T1/T01), (5.502)

V (T2) = A2 exp(−T2/T02), (5.503)

· · · · · · · · · · · · · · · · · · · · · · · · · · · (5.504)

V (TM ) = AM exp(−TM/T0M ), (5.505)

which implies the structural form, we get the following sim-
plified expression:

ε̄V =
M∑
i=1

M∑
j=1

ε̄V ;Tj Tj (Ti ), (5.506)

η̄V =
M∑
i=1

M∑
j=1

η̄V ;Tj Tj (Ti ), (5.507)

ξ̄2
V =

M∑
i=1

M∑
j=1

ξ̄2
V ;Tj Tj Tj Tj

(Ti ), (5.508)

σ̄ 3
V =

M∑
i=1

M∑
j=1

σ̄ 3
V ;Tj Tj Tj Tj Tj Tj

(Ti ). (5.509)

The cross terms only appear when the structural form of
the M number of tachyons are different. For example, if we
choose

V (T1) = A1 exp(−T1/T01), (5.510)

V (T2) = B2cosh(T2/T02), (5.511)

· · · · · · · · · · · · · · · · · · · · · · · · · · · (5.512)

then all the cross terms in slow-roll vanish. Also for non-
separable potentials this explanation works.

5.3.3 The δN formalism for Multi tachyons

In this section we have used the δN formalism to compute
the inflationary observables, for the multi-tachyonic field set-
up. Here N signifies the number of e-foldings, which can be
expressed in the multi-tachyonic set-up as

N = ∫ tend
t Hdt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α′

M2
p

M∑
i=1

∫ Ti

Ti,end

V 2(Ti )

V ′(Ti )
dTi , for q = 1/2,

√
2qα′

M2
p

M∑
i=1

∫ Ti

Ti,end

V 2(Ti )

V ′(Ti )
dTi , for any arbitrary q.

(5.513)

In the non-attractor regime, the δN formalism shows vari-
ous non-trivial features which have to be taken into account
during explicit calculations. Once the solution reaches the
attractor behavior, the dominant contribution comes from
only on the perturbations of the scalar-field trajectories with
respect to the tachyon field value at the initial hypersurface,
Ti , as the velocity, Ṫi , is uniquely determined by Ti where
i = 1, 2, . . . , M . However, in the non-attractor regime of
solution, both the information from the field value Ti and
also Ṫi are required to determine the trajectory. This can be
understood by providing two initial conditions on Ti and Ṫi
on the initial hypersurface. During the computation of the
trajectories let us assume here that the universe has already
arrived at the adiabatic limit via attractor phase by this epoch,
or equivalently it can be stated that a typical phase transition
phenomenon appears to an attractor phase at the time t = t∗.
More specifically, in the present context, we have assumed
that the evolution of the universe is unique after the value
of the scalar field arrives at T = T∗ where it is mimicking
the role of a standard clock, irrespective of the value of its
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Fig. 25 Diagrammatic representation of δN formalism. In this
schematic picture �(ti ) and �(t f ) represent the initial and final hyper-
surface where time arrow flows from ti → t f

Fig. 26 Diagrammatic representation of trajectories and perturbation
decompositions in the field space. Here it is explicitly shown that any
perturbation including field perturbations can be decomposed into a
curvature component “curve” and an isocurvature component “iso”

velocity Ṫ∗. Let us mention that only in this case δN is equal
to the final value of the comoving curvature perturbation ζ

which is conserved at t ≥ t∗. In Figs. 25 and 26, we have
shown the schematic picture of the δN formalism and the tra-
jectories and perturbation decompositions in the field space
for the multi-field tachyon inflation.

On sufficiently large scales for given suitable assumptions
as regards the dynamical behavior which permit us to ignore
time derivatives of the perturbations, we expect that each
horizon volume will evolve in such a manner that it behaves
as a self contained universe, and consequently the curvature
perturbation can be written beyond linear order in cosmolog-
ical perturbation theory as [18,139]

ζ = δN

=
M∑
i=1

N,iδT
i + 1

2!
M∑
i=1

M∑
j=1

N,i jδT
iδT j

+ 1

3!
M∑
i=1

M∑
j=1

M∑
k=1

N,i jkδT
iδT jδT k + · · · , (5.514)

where we use the following short hand notations:

N,i = ∂Ti N , (5.515)

N,i j = ∂Ti ∂Tj N , (5.516)

N,i jk = ∂Ti ∂Tj ∂Tk N . (5.517)

More precisely here δTi ∀ i = 1, 2, . . . , M represent the
deviations of the fields from their unperturbed values in some
specified region of the universe.

When the potential is sum-separable, the derivatives of N
can be simplified to the following expressions:

N,i = 1√
2ε̄V (T �

i )

V (T �
i ) + Zc

i(∑M
j=1 V (T �

j )
) , (5.518)

N,i j = δi j

⎡
⎣1 − η̄V (T �

i )

2ε̄V (T �
i )

V (T �
i ) + Zc

i(∑M
j=1 V (T �

j )
)
⎤
⎦

+ 1√
2ε̄V (T �

j )
(∑M

m=1 V (T �
m)
) Zc

j,i , (5.519)

where Zc
i and Zc

i, j is defined as

Zc
i =

(
M∑

m=1

V (T c
m)

)
ε̄V (T c

i )

ε̄cV
− V (T c

i ), (5.520)

Zc
i, j = −

(∑M
m=1 V (T c

m)
)2

∑M
p=1 V (T �

p )

√
2

ε̄V (Tj )

×
[

M∑
k=1

ε̄V (Tk)

(
ε̄V (Ti )

ε̄V
− δik

)(
ε̄V (Tj )

ε̄V
− δ jk

)

×
(

1 − η̄V (Tk)

ε̄V

)]

c

=
√

2

ε̄V (Tj )

(
M∑

m=1

V (T �
m)

)
Ki j , (5.521)

where � indicates the horizon crossing and c denotes the
constant density surface. In this context additionally we get

dN =
M∑
j=1

[(
V (Tj )

∂ j V (Ti )

)
−

M∑
i=1

∂T c
i

∂T �
j

(
V (Ti )

∂i V (Tk)

)]
dT �

j ,

(5.522)
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where

∂T c
i

∂T �
j

= −
∑M

k=1 V (T c
k )∑M

m=1 V (T �
m)

√
ε̄V (T c

i )

ε̄V (T �
j )

(
ε̄V (T c

i )∑M
p=1 ε̄V (Tp)

− δi j

)
.

(5.523)

Further using this, one can write the following differential
operator identity which is very useful to compute various
inflationary observables mentioned in the next section:

d

dN
=

M∑
j=1

[(
V (Tj )

∂ j V (Ti )

)
−

M∑
i=1

∂T c
i

∂T �
j

(
V (Ti )

∂i V (Tk)

)]−1
d

dT �
j
.

(5.524)

In the next section we will write all the inflationary observ-
ables in terms of the components of δN by including all the
effects of non-linearities in cosmological perturbations for
multi-tachyons.

5.3.4 Computation of scalar power spectrum

In this subsection we start with two point function for multi-
tachyonic scalar modes. Implementing the δN procedure we
get:

〈ζkζk′ 〉 =
M∑
i=1

M∑
j=1

〈ζ ikζ
j

k′ 〉 = (2π)3δ3(k + k′)2π2

k3 �ζ (k),

(5.525)

where the primordial power spectrum for the scalar modes
at any arbitrary momentum scale k can be expressed as

�ζ (k) =
M∑
i=1

M∑
j=1

N,i N′ j G
i j k

3Pζ (k)

2π2 . (5.526)

Sometimes it is convenient to express everything in terms
of the normalized adiabatic curvature power spectrum in the
following way:

〈ζ̄kζ̄k′ 〉 = (2π)3δ3(k + k′)2π2

k3 �̄ζ (k), (5.527)

where

ζ̄ = − H

Ṫ0

M∑
i=1

M∑
j=1

�iδTjG
i j , (5.528)

�̄ζ (k) = 1

2ε̄V

M∑
i=1

M∑
j=1

�i� j G
i j k

3Pζ (k)

2π2 . (5.529)

Here �i = Ṫi
Ṫ0

is a basis vector that projects δTi along the
direction of classical background trajectory. The vector �

and a complementary set of (M − 1) mutually orthonor-
mal basis vectors sp form the kinematic basis. Applying the

Gram–Schmidt orthogonalization technique one can deter-
mine sp.

On the other hand for the multi-tachyonic scenario the
isocurvature perturbations Sp is the orthogonal projection
along the sK directions:

Sp = − H

Ṫ0

M∑
j=1

M∑
m=1

spjG
jmδTm . (5.530)

Using this one can write down the expression for the normal-
ized isocurvature perturbation:

〈SkSk′ 〉 =
M−1∑
p=1

M−1∑
q=1

〈SpkSqk′ 〉

= (2π)3δ3(k + k′)2π2

k3 �̄S(k), (5.531)

where

�̄S(k) = 1

2ε̄V

M−1∑
p=1

M−1∑
q=1

M∑
j=1

M∑
m=1

s pj s
q
mG

jm k3Pζ (k)

2π2 ,

(5.532)

where we have explicitly shown all the summations to
indicate that the isocurvature basis vectors are (M − 1)-
dimensional. For the sake of simplicity applying the Gram–
Schmidt orthogonalization technique one can choose a basis
where Gi j is diagonal and given by Gi j = δi j .

Similarly, for completeness one can define the adiabatic-
isocurvature cross spectra in the following fashion:

〈ζ̄kSk′ 〉 =
M−1∑
p=1

〈ζ̄kSpk′ 〉

= (2π)3δ3(k + k′)2π2

k3 �̄ζS(k), (5.533)

where

�̄ζS(k) = 1

2ε̄V

M−1∑
p=1

M∑
j=1

M∑
m=1

� j s
p
m

(
G jm + Gmj

) k3Pζ (k)

2π2 .

(5.534)

Cross correlations are generically expected if the background
trajectory is curved as the modes of interest leave the horizon.

Now we write down the expressions for all the inflationary
observables computed from the multi-tachyonic set-up at a
horizon crossing:

• In the present context the amplitude of scalar power spec-
trum can be computed as
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�ζ,� =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M∑
i=1

M∑
j=1

N,i N, j G
i j
{

[1 − (CE + 1)ε̄V − CE (3ε̄V − η̄V )]2 H2

4π2cS

}
�

, for q = 1/2,

M∑
i=1

M∑
j=1

N,i N, j G
i j

{[
1 − (CE + 1)

ε̄V

2q
− CE√

2q
(3ε̄V − η̄V )

]2 qH2

2π2cS

}

�

, for any q,

(5.535)

where H2 = V/3M2
p = ∑M

k=1 V (Tk)/3M2
p and CE = −2 + ln 2 + γ ≈ −0.72. Using the slow-roll approximations one can

further approximate the expression for the sound speed as

c2
S =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − 2

3
ε̄V + O

(
ε̄2
V

)
+ · · · , for q = 1/2,

1 − (1 − q)

3q2 ε̄V + O
(
ε̄2
V

)
+ · · · , for any q,

(5.536)

where ε̄V and η̄V are the cumulative or total contribution to the slow-roll parameter as defined earlier. Hence using the result
in Eq. (5.535) we get the following simplified expression for the primordial scalar power spectrum:

�ζ,� =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M∑
i=1

M∑
j=1

N,i N, j G
i j

{[
1 −

(
CE + 5

6

)
ε̄V − CE (3ε̄V − η̄V )

]2 H2

4π2

}

�

, for q = 1/2

M∑
i=1

M∑
j=1

N,i N, j G
i j

{[
1 − (CE + 1 − �)

ε̄V

2q
− CE√

2q
(3ε̄V − η̄V )

]2 qH2

2π2

}

�

, for any q.

(5.537)

Similarly, using the normalized adiabatic curvature power spectrum, we get

�̄ζ,� =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M∑
i=1

M∑
j=1

�i� j G
i j

{[
1 −

(
CE + 5

6

)
ε̄V − CE (3ε̄V − η̄V )

]2 H2

8π2ε̄V

}

�

, for q = 1/2,

M∑
i=1

M∑
j=1

�i� j G
i j

{[
1 − (CE + 1 − �)

ε̄V

2q
− CE√

2q
(3ε̄V − η̄V )

]2 qH2

4π2ε̄V

}

�

, for any q.

(5.538)

• In the present context the normalized amplitude of isocurvature power spectrum can be computed as

�̄S,� =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M−1∑
p,q=1

M∑
j,m=1

s pj s
q
mG

jm
{

[1 − (CE + 1)ε̄V − CE (3ε̄V − η̄V )]2 H2

8π2cS ε̄V

}
�

, for q = 1/2,

M−1∑
p,q=1

M∑
j,m=1

s pj s
q
mG

jm

{[
1 − (CE + 1)

ε̄V

2q
− CE√

2q
(3ε̄V − η̄V )

]2 qH2

4π2cS ε̄V

}

�

, for any q,

(5.539)

where H2 = V/3M2
p = ∑M

k=1 V (Tk)/3M2
p and CE = −2+ ln 2+γ ≈ −0.72. Further using an approximated expression

for cS in the slow-roll regime and also using the result in Eq. (5.539) we get the following simplified expression for the
power spectrum:

�̄S,� =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M−1∑
p,q=1

M∑
j,m=1

s pj s
q
mG

jm

{[
1 −

(
CE + 5

6

)
ε̄V − CE (3ε̄V − η̄V )

]2 H2

8π2ε̄V

}

�

, for q = 1
2

M−1∑
p,q=1

M∑
j,m=1

s pj s
q
mG

jm

{[
1 − (CE + 1 − �)

ε̄V

2q
− CE√

2q
(3ε̄V − η̄V )

]2 qH2

4π2ε̄V

}

�

, for any q.

(5.540)
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• Similarly the normalized amplitude of the adiabatic-isocurvature cross power spectrum can be computed as

�̄ζS,� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M−1∑
p=1

M∑
j,m=1

� j s
p
m

(
G jm + Gmj

){
[1 − (CE + 1)ε̄V − CE (3ε̄V − η̄V )]2 H2

8π2cS ε̄V

}
�

, for q = 1/2,

M−1∑
p=1

M∑
j,m=1

� j s
p
m

(
G jm + Gmj

){[
1 − (CE + 1)

ε̄V

2q
− CE√

2q
(3ε̄V − η̄V )

]2 qH2

4π2cS ε̄V

}

�

, for any q,

(5.541)

where H2 = V/3M2
p = ∑M

k=1 V (Tk)/3M2
p and CE = −2+ ln 2+γ ≈ −0.72. Further using an approximated expression

for cS in the slow-roll regime and also using the result in Eq. (5.541) we get the following simplified expression for the
power spectrum:

�̄ζS,� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M−1∑
p=1

M∑
j,m=1

� j s
p
m

(
G jm + Gmj

){[
1 −

(
CE + 5

6

)
ε̄V − CE (3ε̄V − η̄V )

]2 H2

8π2ε̄V

}

�

, for q = 1
2

M−1∑
p=1

M∑
j,m=1

� j s
p
m

(
G jm + Gmj

){[
1 − (CE + 1 − �)

ε̄V

2q
− CE√

2q
(3ε̄V − η̄V )

]2 qH2

4π2ε̄V

}

�

for any q.

(5.542)

• Next one can compute the scalar spectral tilt (nζ , nS , nζS ) of the primordial adiabatic, isocurvature and cross power
spectrum as

nζ,� − 1 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2η̄V − 8ε̄V ) − 2∑M
i=1

∑M
j=1 N,i N, j Gi j

+ 2∑M
m=1 V (Tm)

∑M
n=1

∑M
i=1

∑M
j=1

∑M
l=1

∑M
k=1 V,i j (Tn)N,l N,kGilG jk

∑M
i ′=1

∑M
j ′=1 N,i ′N, j ′Gi ′ j ′

+ · · · , for q = 1/2,

√
2

q
η̄V −

(
1

q
+ 3

√
2

q

)
ε̄V − 1

q
∑M

i=1
∑M

j=1 N,i N, j Gi j

+ 1

q
∑M

m=1 V (Tm)

∑M
n=1

∑M
i=1

∑M
j=1

∑M
l=1

∑M
k=1 V,i j (Tn)N,l N,kGilG jk

∑M
i ′=1

∑M
j ′=1 N,i ′N, j ′Gi ′ j ′

+ · · · , for any q,

(5.543)

and additionally we have

nS,� − 1 ≈ nζ,� − 1 ≈ nζS,� − 1. (5.544)

• One can also compute the expression for the running and running of the running by following the same procedure as
mentioned above.

For completeness let us mention the behavior of the cosmological perturbation at later times for multi Gtachyonic inflation.
To start with it is important to mention here that in a more generalized physical prescription the time dependence of adiabatic
and entropy perturbations in the large cosmological scale limit can always be written in the following simplified form for
multi Gtachyonic inflationary paradigm as

dζ

dt
= ζ̇ = ϒHS, (5.545)

dS
dt

= Ṡ = �HS, (5.546)
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where ϒ and � physically represent the generalized time-
dependent dimensionless functions in cosmological pertur-
bation theory of multi Gtachyonic fields. Now to extract
more informations form Eqs. (5.545) and (5.546), we fur-
ther integrate both equations over the specified cosmological
time scale and finally following this prescription one can
easily compute the expression for the generalized form of
the transfer matrix which relates the curvature and entropic
perturbations generated during the situation where the fluctu-
ating mode is stretched outside the expansion (Hubble) scale
during the epoch of inflation to the curvature and entropic
perturbations at later time via the following simplified form
of the matrix equation:

(
ζ(t)
S(t)

)
=
(

1 T̂ζS
0 T̂SS

)(
ζ(t�)
S(t�)

)
, (5.547)

where the transfer functions are represented by the following
equations in the context of multi-tachyonic inflation from the
effective GTachyon set-up:

T̂ζS(t�, t) =
∫ t

t�
ϒ(t ′′)T̂SS(t�, t

′′)H(t ′′)dt ′′, (5.548)

T̂SS(t�, t) = exp

(∫ t

t�
�(t ′)H(t ′′)dt ′′

)
. (5.549)

It is also important to note that the evolution in the large-
scale limit is independent of the cosmological scale under
consideration in the present context and consequently the
derived generalized form of the transfer functions T̂ζS and
T̂SS are implicit functions of the cosmological scale due to
their dependence upon the cosmic time scale t�(k) as appear-
ing in the argument of the transfer functions. The scale depen-
dence of the transfer functions are governed by the following
sets of evolution equations:

(
H−1

� ∂t� + ��

)
T̂ζS + ϒ� = 0, (5.550)(

H−1
� ∂t� + ��

)
T̂SS = 0. (5.551)

where we introduce the notation ∂t� = ∂/∂t� to define the
partial differentiation in a simplified way. In the present con-
text, the cosmological (momentum) scale dependence of the
generalized transfer functions for the multi-tachyonic infla-
tionary paradigm is explicitly determined by the two fac-
tors, ϒ� and ��, which physically represent the cosmic time
scale evolution of the curvature and entropic fluctuations at
the horizon crossing during the epoch of multi GTachyonic
inflation.

Now one can apply the above mentioned generalized
transfer matrix as stated in Eq. (5.547) to the primordial scalar

power spectra explicitly computed in the previous subsec-
tion. After doing the detailed analysis one can finally com-
pute the resulting curvature and entropic primordial power
spectra at the beginning point of the radiation dominated
epoch:

�̄ζ =
(

1 + T̂ 2
ζS
)

�̄ζ,�, (5.552)

�̄S = T̂ 2
SS�̄ζ,�, (5.553)

�̄ζS = T̂ζS T̂SS�̄ζ,�. (5.554)

For the sake of simplicity let us define a dimensionless cos-
mological measure of the correlation function in terms of a
correlation angle θ in the following simplified way:

cos θ ≡ �̄ζS√
�̄ζ �̄S

= T̂ζS√
1 + T̂ 2

ζS
, (5.555)

sin θ ≡

√√√√√√1 −
⎛
⎝ �̄ζS√

�ζ �̄S

⎞
⎠

2

= 1√
1 + T̂ 2

ζS
, (5.556)

θ = cot−1(T̂ζS), (5.557)

which are surely very useful for further computation in the
present context. Further using Eq. (5.552) in Eq. (5.555),
finally we get the following expression for the scalar metric
perturbation at the horizon crossing which is expressed in
terms of the observed curvature perturbation at later times
in the cosmic time scale and also in terms of the cross-
correlation angle:

�̄ζ,� � �̄ζ sin2 θ. (5.558)

Next using Eqs. (5.552–5.554), the spectral indices of the pri-
mordial power spectrum at later stage of times in cosmolog-
ical time scale can be expressed by the following simplified
expressions:

nζ − 1 = nζ,� − 1 + H−1
�

(
∂t� T̂ζS

)
sin 2θ, (5.559)

nS − 1 = nζ,� − 1 + 2H−1
�

(
∂t� T̂SS

)
, (5.560)

nC − 1 = nζ,� − 1 + H−1
�

{(
∂t� T̂ζS

)
tan θ +

(
∂t� T̂SS

)}
,

(5.561)

which are very useful to study the scale dependent behav-
ior of the primordial power spectra in the present context.
Following the same procedure one can also compute the
expressions for the running and running of the running of
the spectral indices. Additionally, it is important to mention
here that the overall amplitude of the generalized transfer
functions T̂ζS and T̂SS are dependent on the time scale evo-
lution after horizon crossing via the reheating phenomenon

123



278 Page 122 of 130 Eur. Phys. J. C (2016) 76 :278

and into the radiation dominated epoch. But in spite of this
important fact, the spectral tilts of the resulting primordial
perturbation spectra can be finally expressed in terms of the
slow-roll parameters at the horizon crossing during the epoch
of inflation and also in terms of the cross-correlation angle
θ , which we have already introduced earlier in Eq. (5.557).

5.3.5 Computation of tensor power spectrum

In this subsection we will not derive the crucial results for
multi-Gtachyonic inflation. But we will state the results for
BD vacuum where the changes will appear due to the pres-
ence of M number of different tachyon field. One can simi-
larly write down the detailed expressions for AV (including
α vacuum) as well.

〈hkhk′ 〉 =
M∑
i=1

M∑
j=1

〈hikh j
k′ 〉 = (2π)3δ3(k + k′)2π2

k3 �h(k),

(5.562)

where the primordial power spectrum for the scalar modes
at any arbitrary momentum scale k can be expressed as

�h(k) = 8

∑M
m=1

∑M
n=1 N,mN,nGmn

∑M
i=1

∑M
j=1 N,i N′ j Gi j

k3Pζ (k)

2π2 = 4k3Pζ (k)

π2 .

(5.563)

The changes will appear in the expressions for the following
inflationary observables at the horizon crossing:

• In the present context amplitude of tensor power spec-
trum can be computed as

�h,� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
[1 − (CE + 1)ε̄V ]2 2H2

π2M2
p

}

�

, for q = 1/2,

{[
1 − (CE + 1)

ε̄V

2q

]2 2H2

π2M2
p

}

�

, for any q,

(5.564)

where CE = −2 + ln 2 + γ ≈ −0.72.

• Next one can compute the tensor spectral tilt (nh) of the
primordial scalar power spectrum as

nh,� ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2ε̄V [1 + ε̄V + 2 (CE + 1) (3ε̄V − η̄V )] + · · · , for q = 1/2,

− ε̄V

q

[
1 + ε̄V

2q
+
√

2

q
(CE + 1) (3ε̄V − η̄V )

]
+ · · · , for any q.

(5.565)

• Finally the tensor-to-scalar ratio for the multi-tachyonic
set-up can be expressed as

r� ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8∑M
i
∑M

j=1 N,i N, j Gi j
+ · · · , for q = 1/2,

4

q
∑M

i
∑M

j=1 N,i N, j Gi j
+ · · · , for any q.

(5.566)

On the contrary, compared to the scalar (curvature and
entropic) part of the cosmological perturbations, the ten-
sor perturbations remain frozen in on the large cosmolog-
ical scales and finally decoupled from the scalar (curvature
and entropic) part of the cosmological perturbations at the
linear order of the cosmological perturbation theory. Conse-
quently, in the present context, the primordial cosmological
perturbation spectrum for gravitational waves is given by the
following simplified expression:

�h = �h,�, (5.567)

nh = nh,�. (5.568)

Finally, it also important to note that the consistency con-
dition for the tensor-to-scalar amplitudes of the primordial
power spectrum at the Hubble-crossing can be rewritten,
using Eqs. (5.558) and (5.567), as a model independent con-
sistency relation between the tensor-to-scalar amplitudes of
the primordial power spectrum at late times in cosmological
scale for GTachyon as

r = �h

�ζ

� −8nh sin2 θ + · · ·

= −8nh,� sin2 θ + · · · = r� sin2 θ + · · · . (5.569)

In the present context, the scale dependence of the final scalar
(curvature and entropic) power spectra depends on both on
the cosmological scale dependence of the initial spectral
index (nζ,�) and on the explicit form of the generalized trans-
fer functions TζS and TSS . Here we have not explicitly dis-
cussed the cosmological parameter estimation and numerical
estimations from a specific class of multi-tachyonic poten-
tials. But to understand this more clearly, one can carry for-
ward the results obtained in this section to test various models
of the multi-tachyonic potential.
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5.3.6 Analytical study for the multi-field model

Here we compute the expression for the inverse cosh poten-
tial. One can repeat the computation for the other proposed
models of multi-field inflation as well. For the multi-field
case the inverse cosh potential is given by

V (Tj ) = λ j

cosh
(

Tj
T0 j

) ∀ j = 1, 2, . . . , M, (5.570)

and the total effective potential is given by

V =
M∑
j=1

V (Tj ) =
M∑
j=1

λ j

cosh
(

Tj
T0 j

) , (5.571)

whereλ j characterize the scale of inflation in each branch and
T0 j are j number of different parameter of the model. Next
using specified form of the potential the potential dependent
slow-roll parameters for i th species are computed as

ε̄V (Ti ) = 1∑M
m=1 λmsech

(
Tm
T0m

)
⎡
⎣ λi

2gi

sinh2
(

Ti
T0i

)

cosh
(

Ti
T0i

)
⎤
⎦ ,

(5.572)

η̄V (Ti ) = 1∑M
m=1 λmsech

(
Tm
T0m

)

×
{

λi

gi

[
tanh2

(
Ti
T0i

)
− sech2

(
Ti
T0i

)]}
.

(5.573)

Also the total contribution in the slow-roll is expressed
through the reduced slow-roll parameters:

ε̄V = 1∑M
m=1 λmsech

(
Tm
T0m

)
⎡
⎣ M∑

i=1

λi

2gi

sinh2
(

Ti
T0i

)

cosh
(

Ti
T0i

)
⎤
⎦ ,

(5.574)

η̄V = 1∑M
m=1 λmsech

(
Tm
T0m

)

×
{

M∑
i=1

λi

gi

[
tanh2

(
Ti
T0i

)
− sech2

(
Ti
T0i

)]}
.

(5.575)

Additionally here we introduce a new factor g j for each non-
identical j number of multi-tachyonic fields, defined as

g j = α′λ j T 2
0 j

M2
p

= M4
s j

(2π)3gs j

α′T 2
0 j

M2
p

. (5.576)

Next we compute the number of e-foldings from this
model:

N =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M∑
j=1

g j ln

⎡
⎣ tanh

(
Tend, j
2T0 j

)

tanh
(

Tj
2T0 j

)
⎤
⎦ , for q = 1/2,

M∑
j=1

√
2q g j ln

⎡
⎣ tanh

(
Tend, j
2T0 j

)

tanh
(

Tj
2T0 j

)
⎤
⎦ , for any arbitrary q.

(5.577)

Further using the condition to end inflation:

ε̄V (Tend,i ) = 1, (5.578)

|η̄V (Tend,i )| = 1, (5.579)

we get the following field value at the end of inflation:

Tend,i = T0i sech−1(gi ). (5.580)

Next using Ni = Ncmb,i = N�,i and Ti = Tcmb,i = T �
i at

the horizon crossing we get

T �
i ≈ 2T0,i ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tanh−1
[

exp

(
− N�,i

gi

)]
, for q = 1/2,

tanh−1
[

exp

(
− N�,i√

2qgi

)]
. for any arbitrary q.

(5.581)

Using these results one can compute

N,i = 1√
2ε̄V (T �

i )

V (T �
i ) − V (T c

i ) +
(∑M

m=1 V (T c
m)
)

ε̄V (T c
i )

ε̄cV(∑M
j=1 V (T �

j )
)

=
λi sech

(
T �
i

T0i

)
− λi sech

(
T c
i

T0i

)
+
(∑M

m=1 λmsech
(

T c
m

T0m

))
ε̄V (T c

i )

ε̄cV√√√√
[

λi
gi

sinh2
(

Ti
T0i

)

cosh
(

Ti
T0i

)
](∑M

j=1 λ j sech

(
T �
j

T0 j

))

(5.582)

which is very useful to further compute the inflationary
observables from the multi-tachyonic set-up. Here � indi-
cates the horizon crossing and c denotes the constant density
surface.

Using these results finally we compute the following infla-
tionary observables:
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For the inverse cosh potential we get the following con-
sistency relations:

nζ,� − 1 + r�
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(5.588)

6 Conclusion

In this paper, we have explored various cosmological conse-
quences from the GTachyonic field. We start with the basic
introduction of tachyons in the context of non-BPS string
theory, where we also introduce the GTachyon field, in the
presence of which the tachyon action is modified, and one
can quantify the amount of the modification via a super-
script q instead of 1/2. This modification exactly mimics
the role of effective field theory operators and, studying the
various cosmological features from this theory, one of the
final objectives is to constrain the index q and a specific
combination (∝ α′M4

s /gs) of the Regge slope parameter α′,
the string coupling constant gs and the mass scale of tachyon
Ms , from the recent Planck 2015 and Planck+BICEP2/Keck
Array joint data. To serve this purpose, we introduce various
types of tachyonic potentials: the inverse cosh, logarithmic,
exponential and inverse polynomials, using which we con-
strain the index q. To explore this issue in detail, we start with
the detailed characteristic features of each of the potentials.
Next we discuss the dynamics of GTachyon as well as usual
tachyon for single, assisted and multi-field scenario. We also
derive the dynamical solutions for various phases of the uni-
verse, including two situations, T << T0 and T >> T0,
where T0 is interpreted as the minimum or the mass scale
of the tachyon. Next we have explicitly studied the infla-
tionary paradigm from single field, assisted field and multi-
field tachyon set-ups. Specifically for the single field and

assisted field cases we have derived the results in the quasi-de
Sitter background in which we have utilized the details of:

(1) cosmological perturbations and quantum fluctuations for
scalar and tensor modes, (2) slow-roll prescription up to all
orders. In this context we have derived the expressions for
all inflationary observables using any arbitrary vacuum and
also for the Bunch–Davies vacuum by exactly solving the
Mukhanov–Sasaki equation as obtained from the fluctuation
of scalar and tensor modes. For the single field and assisted
field cases in the presence of a GTachyon we have derived
the inflationary Hubble flow and potential dependent flow
equations, new sets of consistency relations, which are valid
in the slow-roll regime and also derived the expression for
the field excursion formula for the tachyon in terms of infla-
tionary observables from both of the solutions obtained from
arbitrary and the Bunch–Davies initial conditions for infla-
tion. Particularly the derived formula for the field excursion
for the GTachyon can be treated as one of the probes through
which one can: (1) test the validity and the applicability of
the effective field theory prescription within the present set-
up, (2) distinguish between various classes of models from
an effective field theory point of view. Also we have shown
that in the case of assisted tachyon inflation the validity of the
effective field theory prescription is much better compared to
the single field case. This is because of the fact that the field
excursion for assisted inflation is expressed in terms of the
field excursion for the single field, provided the multiplicative
scaling factor is 1/

√
M , where M is the number of identical

tachyons participating in assisted inflation. This derived for-
mula also suggests that if M is a very large number then it
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is very easy to validate effective theory techniques, as in that
case |�T |Assisted << Mp. Next using the explicit form of
the tachyonic potentials we have studied the inflationary con-
straints and quantified the allowed range of the generalized
index q for each of the potentials. Hence using each of the
specific forms of the tachyonic potentials in the context of the
single field scenario, we have studied the features of CMB
angular power spectrum from TT, TE and EE correlations
from scalar fluctuations within the allowed range of q for
each of the potentials. We also put in the constraints from the
Planck temperature anisotropy and polarization data, which
shows that our analysis matches well with the data. We have
additionally studied the features of the tensor contribution in
the CMB angular power spectrum from TT, BB, TE and EE
correlations, which will give more interesting information
in the near future once one can detect the signature of pri-
mordial B-modes. Further, using the δN formalism we have
derived the expressions for the inflationary observables in the
context of multi-field tachyons. We have also demonstrated
the results for the two-field tachyonic case to understand the
cosmological implications of the results in a better way.

The future prospects of our work are appended below:

• Throughout this analysis one finds each an every detail,
but one can further study the features of primordial non-
Gaussianity from the single field, assisted field and multi-
field cases [96,97,140–144]. Due to the presence of a
generalized index q one would expect that the consis-
tency relations, which connect non-Gaussian parameters
with the inflationary observables, are getting modified
in the slow-roll regime of inflation and consequently one
can generate large amount of primordial non-Gaussianity
from the GTachyonic set-up. Also our aim is general-
ize the results as well as the consistency relations in all
order of cosmological perturbations by incorporating the
effect of sound speed cS and the generalized parameter
q. Using this set-up one can also compute the cosmo-
logical Ward identities for inflation [143–145], through
which one can write down the recursion relation between
correlation functions. This will help to derive the mod-
ified consistency relations in the present context. Addi-
tionally, one can also explore the possibility of devising
cosmological observables which violate Bell’s inequali-
ties recently pointed out in Ref. [146]. Such observables
could be used to argue that cosmic scale features were
produced by quantum mechanical effects in the very early
universe, specifically in the context of inflation. We are
planning to report on these issues explicitly very soon.

• One would also like to ask what happened when we
add additional higher derivatives in the gravity sector
within tachyonic set-up, which are important around the
string scale Ms . How the higher derivative gravity sec-
tor will change the cosmological dynamics and details of

the primordial non-Gaussianity in the presence of a non-
canonical GTachyonic sector is completely unknown. We
have also plans to extend this project in that direction.

• The generation of the seed (primordial) magnetic field
from the inflationary sector [129,147] is a long stand-
ing issue in primordial cosmology. To address this well-
known issue one can also study the cosmological con-
sequences from the effective field theory of inflationary
magnetogenesis from the GTachyon within the frame-
work of Type-IIA/IIB string theory.

• Also, our present analysis has been performed for five dif-
ferent potentials motivated from tachyonic string theory,
specifically in the context of single field and assisted field
inflation. For the multi-field we have quoted the results
only for a specific kind of separable potential. It would be
really very interesting to check whether we can study the
behavior of non-separable potentials in the present con-
text [148,149]. Also it is interesting to reconstruct any
general form of a tachyonic inflationary potential, using
which one can study the applicability of the effective field
theory framework within this present set-up.

• One can also carry forward our analysis in the context
of non-minimal set-up where the usual Einstein–Hilbert
term in the gravity sector is coupled with the GTachy-
onic field. By applying the conformal transformation in
the metric one can construct an equivalent representa-
tion of the gravity sector11 in which the gravity sector is
decoupled from the tachyonic sector and the usual tachy-
onic matter sector modified in the presence of an extra
conformal factor. This clearly implies that the tachyonic
potentials that we have studied in this paper all get mod-
ified via the additional conformal factor. Consequently
it is expected that the cosmological dynamics will be
modified in this context. Also one can check the appli-
cability of the slow-roll prescription, which helps further
to understand the exact behavior of cosmological pertur-
bations in the presence of conformally rescaled modified
tachyonic potentials.

• The detailed study of the generation of the dark matter
using effective field theory framework,12 other crucial
particle physics issues i.e., the reheating phenomenon,
leptogenesis and baryogenesis from the GTachyonic set-
up is also an unexplored issue till date.

11 In the cosmological literature this frame is known as the Einstein
frame.
12 For completeness, it is important to note that, very recently in
Ref. [150], we have explicitly studied the effective field theory frame-
work from membrane inflationary paradigm with Randall Sundrum sin-
gle brane set-up. We also suggest the reader to study Refs. [151,152],
in which the effective theory of dark matter has already been studied
very well.
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