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Abstract We investigate the thermodynamic behavior of
maximally symmetric charged, asymptotically AdS black
hole solutions of Lovelock gravity. We explore the thermo-
dynamic stability of such solutions by the ordinary method
of calculating the specific heat of the black holes and investi-
gating its divergences which signal second-order phase tran-
sitions between black hole states. We then utilize the meth-
ods of thermodynamic geometry of black hole spacetimes in
order to explain the origin of these points of divergence. We
calculate the curvature scalar corresponding to a Legendre-
invariant thermodynamic metric of these spacetimes and find
that the divergences in the black hole specific heat correspond
to singularities in the thermodynamic phase space. We also
calculate the area spectrum for large black holes in the model
by applying the Bohr–Sommerfeld quantization to the adia-
batic invariant calculated for the spacetime.

1 Introduction

The subject of black hole thermodynamics had its origin in
the observation [1–8] of a mathematical connection between
various quantities that are relevant to black hole dynamics—
horizon area, mass, surface gravity etc. and thermodynamic
variables—entropy, temperature etc. that describe the ther-
modynamic behavior of systems. Consequences of this math-
ematical connection drive the current intense activity in this
field, more than four decades after its initial discovery. We
now suspect that this connection actually goes much deeper
than a simple one-to-one correspondence between various
parameters. It is known that many aspects of quantum field
theories of various systems have their dual in gravitational
systems. This connection enables us to analyze the behavior
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of such systems by studying their dual gravitational theo-
ries, which is often a much easier task. Recently discovered
gauge–gravity dualities like the AdS/CFT correspondence
[9], according to which asymptotically AdS gravitational the-
ories in d dimensions are dual to quantum field theories in a
d − 1 dimensional sub-manifold, have fueled intense inter-
est in asymptotically AdS spacetimes, which started after it
was pointed out that thermal radiation / large AdS black hole
phase transitions can take place [10].

The occurrence of phase transitions between various black
hole states is a very important aspect of thermodynamic stud-
ies of gravitational systems, since it would enable us to study
the behavior of their dual systems near their critical points.
These phase transitions can be studied in various ways—
studying the heat capacity of black hole spacetimes is one
approach [11,12], in which the positivity of the specific heat
would point to a stable phase of the black hole while a neg-
ative value signals an unstable phase. Transitions between
thermal AdS space and black hole configurations were dis-
covered by Hawking [10] in what is considered as the pio-
neering study of the subject. According to it, pure thermal
radiation in AdS space becomes unstable above a certain tem-
perature and collapses to form black holes. This is the well-
known Hawking–Page phase transition, which describes the
phase transition between the Schwarzschild AdS black hole
and the thermal AdS space. This is dual [13] to the confine-
ment/deconfinement phase transition of gauge fields accord-
ing to the AdS/CFT correspondence [9]. Since then, phase
transitions of black holes have been investigated from dif-
ferent perspectives. Some recent work may be found in [14–
34].

Another approach to analyze the black hole thermody-
namic stability is to apply the methods of differential geom-
etry by considering the thermodynamic phase space of a
black hole system as a Riemannian manifold and study-
ing its curvature, which would then represent a thermo-
dynamic interaction [35–47]. This curvature is determined
by assigning a metric to the thermodynamic phase space.
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The components of the metric are defined in terms of sec-
ond derivatives of suitable thermodynamic potentials with
respect to a set of extensive variables Na of the thermo-
dynamic system. The usual choices for the thermodynamic
potentials are the mass M , internal energy U , entropy S,
etc. of the black hole spacetime. Depending on the choice
of the metric, different versions of the geometric approach
exist. The thermodynamic geometry method was first intro-
duced by Weinhold [41,42] and Ruppeiner [43]. Weinhold
proposed a metric structure in the energy representation as
gWi j = ∂i∂ j M(U, Na), while Ruppeiner defined the met-

ric structure as gR
i j = −∂i∂ j S(U, Na). Components of

these metrics are those of the Hessian matrix of the inter-
nal energy M and the entropy S, respectively, with respect
to the extensive thermodynamic variables Na . Weinhold’s
metric was found to be conformally connected to Rup-

peiner’s through the relation ds2
R = ds2

W
T [48], T being

the horizon temperature. Ruppeiner’s metric has extensively
been used in the geometric analysis of various black hole
spacetimes [49]. Recently, Quevedo et al. [45] presented
a new formalism called geometrothermodynamics, which
allows us to derive Legendre-invariant metrics for the phase
space. Geometrothermodynamics presents a unified geom-
etry where the metric structure describes various types of
black hole thermodynamics [44–47,50–55].

Theoretical interest in the black hole horizon area stems
from arguments [56,57] that the origin of the horizon entropy
is related to the quantum structure of spacetime. Statistical
mechanics tells us that entropy is a measure of the number of
occupied microstates of a system that have equal probability
of being occupied. The direct counting of these microstates
in the case of black hole spacetimes is still an unresolved
problem. On one hand, entropy must obey the second law
of thermodynamics, according to which it can do nothing
but increase. On the other hand, we also know from the no-
hair theorem that the state of the black hole systems must
be specified by a mere handful of parameters, namely the
mass M , the charge Q, and the angular momentum L of
the black hole. In other words, a large portion of informa-
tion regarding the fields that collapse to form black holes
get lost to the observable universe, so that the nature of the
microstates becomes obscure. This leads to a violation of
unitarity since, according to quantum mechanics, pure states
can only evolve into pure states, whereas the state inside the
black hole becomes mixed after its formation. There have
been suggestions [58] that gravitational collapse could lead
to the formation of topologically disconnected regions where
the information could be stored. Thus, black hole horizon
area is considered to be intimately related to the very pro-
cess of black hole formation and could offer vital glimpses
into the quantum nature of spacetime itself, and thus be of
incredible help in the formulation of a quantum theory of

gravity. Following the initial proposal of Bekenstein [59–61]
of the discrete nature of the black hole spectrum, various
approaches have been developed for the computation of the
same [62–72].

In the present work, we test the thermodynamic stabil-
ity of black holes in charged, asymptotically AdS, spher-
ically symmetric spacetimes in Lovelock model. Ordinary
thermodynamic analysis reveals the existence of two points
in charged spacetimes, where the specific heat as a func-
tion of the horizon radius diverges, compared to just one in
the uncharged case. Then we compute the scalar curvature
of the thermodynamic phase space for the spacetime using
a Legendre-invariant metric proposed by Quevedo [44] and
find that there exist divergences in the scalar curvature near
the points of divergence of the specific heat, thus explain-
ing the thermodynamic phase transitions. We then calculate
the area spectrum of black hole horizons in the model by
directly calculating the adiabatic invariant for the spacetime
and applying the Bohr–Sommerfeld quantization condition
to it. A brief outline of the paper is as follows: in Sect. 2, we
explain the maximally symmetric Lovelock model and the
resulting metric for the charged AdS black hole spacetime
[73]. We also calculate the relevant thermodynamic quan-
tities like the horizon temperature, entropy and the specific
heat in the same section. Details of the geometrothermody-
namic method of analyzing the phase transitions are given in
Sect. 3. Calculation of the adiabatic invariant for the space-
time and the deduction of the area spectrum of large black
hole are performed in Sect. 4. The results are summarized in
Sect. 5.

2 Thermodynamic stability of charged AdS black holes
in Lovelock model

The Lovelock model of gravity [74,75] is developed based
on a Lagrangian in the form of a polynomial in the Rie-
mann curvature. The degree of the polynomial determines
the order of the resulting theory. It is known [76–78] that
the stability of the solutions to these theories against met-
ric perturbations is not always guaranteed. The black hole
spacetimes, whose thermodynamic stability is studied in the
present work, are solutions to a subset of the general Love-
lock theories, restricted by the additional constraint that all
the solutions must possess a unique AdS vacuum state with a
fixed cosmological constant [73]. In such theories, the order
k of the corresponding Lagrangian labels the different theo-
ries and it is seen that the type of the theory depends on the
values of k and dimension d of the spacetime. For d > 3,
the metric representing the spherically symmetric, charged,
asymptotically AdS solutions to such theories, is given by
[73]
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Fig. 1 Mass of the charged black hole as a function of r+. The curves
are drawn for d = 10 and Q = 0.235, with k = 2 (solid), k = 3
(dashed) and k = 4 (dotted)

ds2 = f (r)dt2 + dr2

f (r)
+ r2d�2

d−2 , (1)

where f (r) is given by

f (r) = 1 + r2

R2 − g(r), (2)

where g(r) = [ 2GkM
rd−2k−1 −

(
εGk
d−3

)
Q2

r2(d−k−2) ]
1
k . Here, r is a

Schwarzschild-like coordinate and R is the unique AdS
radius, related to the cosmological constant � by the relation

� = (d − 1)(d − 2)

2R2 . The value of R is taken to be equal to

1 for all the numerical calculations in this paper. Gk refers
to the gravitational constant for the theory of order k. The
constant ε is proportional to the permeability of the vacuum
in d dimensions. The constants M and Q refer to the mass
and the electric charge of the black hole respectively. It is
also known [73] that there exist lower limits for the mass of
the black hole M and the size re of the charged object, as
long as we wish to avoid time-like singularities.

The event horizon r+ of the black hole is taken as the
largest positive root of the equation f (r) = 0. For arbitrary
values of the parameters d and k, it is obviously not possible
to express r+ as a function of the parameters M, Q, R,

etc. However, it is possible to express the mass M of the
black hole as a function of r+, which is plotted in Fig. 1. The
function M is expressed in terms of r+ as,

M(r+) = rd−2k−1+
2Gk

⎡
⎣

(
1 + r2+

R2

)k

+
(

εGk

d − 3

)
Q2

r2(d−k−2)
+

⎤
⎦ .

(3)

The horizon temperature T is obtained by requiring the

Euclidean time to be periodic with period τ =4π(
d f
dr

∣∣∣
r=r+

)−1

and equating it to 1
κBT

, κB being the Boltzmann constant. We

Fig. 2 Temperature of the charged black hole as a function of r+, for
d = 7, k = 2. The curves are drawn for Q = 0.2 (solid), Q = 0.3
(dashed) and Q = 0.4 (dotted)

can easily see that, for the charged black holes, the horizon
temperature is given by

T (r+) = 1

4πκB

d f

dr

∣∣∣∣
r=r+

= 2r+
R2 − 1

k

[
g(r+)

]1

k
−1

×g′(r+).

(4)

Equation (4) represents a non-monotonic function having
a couple of turning points when expressed as a function of r+.
Once again, it is not possible to obtain closed-form expres-
sions for these points in terms of the black hole parameters,
as long as the dimension d and order k are not fixed. How-
ever, one can analyze the behavior of T (r+) as a function
of r+ graphically. Figure 2 represents a plot between T (r+)

and r+. From the plot, it is obvious that one of the turning
points represents a maximum while the other is a minimum.
The existence of a minimum of T (r+) is known already in
the case of uncharged black holes [73], while the existence
of the maximum appears to be unique to the charged case.

The function S(r+), representing the entropy of the black
hole event horizon as a function of the horizon radius r+ is
obtained in the general case of a Lovelock theory of order k at
spacetime dimension d, is found by evaluating the Euclidean
action for the back hole spacetime and equating it to β times
the free energy of the system, where β is defined by the

expression
d f

dr

∣∣∣∣
r+

= 4πβ−1. After some calculation, it is

seen that the entropy S(r+) is given by

S(r+) = rd−2k+
d − 2k

2F1

×
(

1

2
(d − 2k), 1 − k; 1

2
(d − 2k + 2);− r2+

R2

)
(5)

where 2F1 represents the hypergeometric function. Graph-
ically, it is seen from Fig. 3 that S(r+) is a monotonically
increasing function of r+. For k = 1, it can readily be seen
that S(r+) ∝ rd−2+ , which is nothing but the usual area
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Fig. 3 Entropy of the charged black hole as a function of r+. The
curves are drawn for d = 10 and Q = 0.235, with k = 2 (solid), k = 3
(dashed) and k = 4 (dotted)

law, namely S ∝ A, A being the horizon area. Also, S(r+)

becomes proportional to the area for k �= 1 theories when
r+ � R, i.e. for very large black holes.

In order to investigate the thermodynamic stability of the
black hole spacetime, we compute the specific heatCp for the

spacetime, defined as Cp = ∂M

∂T
. Since both M and T can

conveniently be expressed as functions of r+, we compute
Cp also as a function of r+ using the expression Cp(r+) =
∂r+M

∂r+T
. The explicit form of the function turns out to be too

long to include here, so that we resort to graphical analysis.
In all dimensions d and for all orders k, we find that

there exists a range of values for the parameter Q, for which
the function T (r+) has a couple of turning points. Since

Cp(r+) = ∂r+M

∂r+T
, we expect to find two points of divergence

when we plot Cp against r+, indicating points at which Cp

changes sign discontinuously, signaling transitions between
stable (+ve value for Cp) and unstable (−ve values for Cp)
phases. This indeed turns out to be the case. We name the
two turning points of T (r+) rc1 (the maximum) and rc2 (the
minimum). Samples of the typical variation of Cp with r+
in the vicinity of rc1 and rc2, for one particular set of values
for the parameters d and Q with different values for k, are
plotted in Figs. 4 and 5, respectively. From the analysis of
the plots of Cp against r+ for various combinations of d, k,
and Q, we observe that, when r+ decreases, the transition
at rc2 is always from a stable phase to an unstable phase,
whereas the nature of the transition at rc1 changes from case
to case, depending on the values of d, k, and Q. For exam-
ple, it is clear from Fig. 4 that the second-order theory (solid
curve) in ten dimensions predicts an stable-to-unstable tran-
sition, while the third-order theory (dashed curve) predicts
a unstable-to-stable transition at rc1 when r+ decreases. In
those cases where the transition at rc1 is from a stable phase to
an unstable phase, such as the one depicted by the solid curve
in Fig. 4, there obviously occurs a continuous sign change in
Cp(r+), as clearly seen in the figure.

Fig. 4 Cp − r+ variation in the vicinity of rc1. The curves are drawn
with d = 10, k = 2 (solid) and d = 10, k = 3 (dashed). In both cases,
Q = 0.235

Fig. 5 Cp − r+ variation in the vicinity of rc2. The curves are drawn
with d = 10, k = 2 (solid) and d = 10, k = 3 (dashed). In both cases,
Q = 0.235

Fig. 6 Divergence ofCp(r+) at rc1, with d = 7, k = 2, and Q = 0.235

We now take another case and analyze the thermodynamic
behavior in some more detail. We select a black hole space-
time with d = 7, k = 2, and Q = 0.235. Plots of Cp against
r+ in the neighborhood of rc1 and rc2 are given in Figs. 6 and
7. From the figures, it is obvious that, for this particular case,
as r+ decreases, the transition at rc2 is from a stable phase
to an unstable phase, whereas the transition at rc1 is from an
unstable phase to a stable one.

Let us try to analyze the thermodynamic stability of the
spacetime using Figs. 6, 7, and 8. We will see that the thermo-
dynamic stability depends on both the size of the black hole
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Fig. 7 Divergence ofCp(r+) at rc2, with d = 7, k = 2, and Q = 0.235

Fig. 8 Variation of T with r+ for d = 7, k = 2, and Q = 0.235

and the temperature of the background AdS spacetime. The
thermodynamic behavior of the black holes depends crucially
on whether the temperature (T0) of the background spacetime
(also called thermal bath) is (i) larger than the local maximum
value (Tmax) of T (r+), (ii) between Tmax and the local mini-
mum value (Tmin) of T (r+), or (iii) lower than Tmin. Another
important factor that determines the thermodynamic behav-
ior in all these three cases is the size r+ of the black hole
itself—whether it is greater than rc2, in between rc2 and rc1

or less than rc1. We analyze some of the possible scenarios
here.

Case (i) T0 > Tmax:

In this case, we see that, similar to the case of
Schwarzschild–AdS black holes, very large black holes in
the model can always attain equilibrium with an external
thermal bath at a finite temperature, since the specific heat
is positive in this region. There is one difference though—
when r+ is large and the temperature T0 of the bath is higher
than the maximum value of T (r+), a straight line parallel
to the horizontal axis meets the T (r+)–r+ curve at only
one point, which means that there exists only one final,
stable, equilibrium configuration for such a black hole at
that background temperature, with a horizon radius which

is larger than rc2. This is not the case for uncharged black
holes—the uncharged spacetime always has two equilib-
rium configurations—one being unstable and the other being
stable—as long as the temperature of the bath is higher than
the minimum of T (r+) [73]. Thus, for the charged case, a
black hole with r+ > rc2 will get drawn toward the equilib-
rium state at temperature T0, since the specific heat is positive
for r+ > rc2.

Case (ii) T0 < Tmin:

Charged AdS Lovelock black holes can attain equilibrium
with a thermal bath of any positive temperature, whereas the
uncharged ones are known [73] to be unable to attain equi-
librium with a bath of temperature lower than the minimum
of T (r+). Case (ii) is an example of such a scenario. Here
again, there exists only one thermodynamically stable equi-
librium configuration that the small black holes can get drawn
toward, since the straight line parallel to the horizontal axis
still cuts the T (r+) − r+ curve at only one point. In this case,
the horizon radius for the equilibrium state will be smaller
than rc1. The specific heat is positive in the region r+ < rc1,
so that a black hole with r+ < rc1 tends to make a transition
toward this equilibrium state rather than away from it.

Case (iii) Tmin < T0 < Tmax:

It is clear from Fig. 8 that, in this range, each value of T0

corresponds to three equilibrium states of different radii—
say, rs1 ( less than rc1, corresponding to a locally stable
state), ru( in between rc1 and rc2, corresponding to an unsta-
ble state) and rs2 ( larger than rc2, corresponding to a locally
stable state). The points rs1 and rs2 exist in regions with
positive specific heat, so that initial black hole states with
r+ < rc1 and r+ > rc2 are drawn toward these equilibrium
points, respectively. On the other hand, the point ru exists in
a region with negative specific heat, so that initial black hole
states with rc1 < r+ < rc2 are drawn away from this equi-
librium point. Thus, if the temperature of the thermal bath
falls in the range Tmin < T0 < Tmax, the resultant thermo-
dynamic behavior of the black hole will depend on its initial
size. Essentially, initial black hole states with r+ > ru will
evolve toward an equilibrium configuration with r+ = rs2

and those with r+ < ru will tend to evolve toward a config-
uration with r+ = rs1. This is in contrast with the uncharged
case, where a black hole with an initial size r+ < ru can
never reach equilibrium [73].

The occurrence of a phase transition in this sample case
is also indicated by a plot between the Gibbs free energy
F(r+) = M(r+)−T (r+)S(r+) and the horizon temperature
T , given in Fig. 9. The presence of a cusp in the plot indicates
that there occurs a second-order phase transition in the black
hole spacetime.
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Fig. 9 Free energy of the charged black hole as a function of r+ for
d = 7, k = 2, and Q = 0.235

3 Geometrothermodynamic (GTD) analysis

We employ the Legendre-invariant method of Quevedo [44–
47,79,80] in order to study the phase transition in the geo-
metric formalism. We choose the entropy representation, in
which the Ricci scalar RR , which represents the thermody-
namic interaction of the system, is derived from a thermody-
namic metric which is defined in terms of the second deriva-
tives of the entropy S of the system, considered as a function
of the relevant extensive parameters. For our spacetime rep-
resenting the charged, AdS Lovelock black holes, we take M
and Q as the extensive parameters. Since M can conveniently
be expressed as a function of the horizon radius r+, we take
M = M(r+), Q = Q(r+), S = S(r+) and compute the
Ricci scalar RR as a function of r+. Identifying M, Q as the
set of extensive thermodynamic variables and S(M, Q) as
the thermodynamic potential 
 of the system, the Legendre-
invariant thermodynamic metric gQ is computed using the
relation

gQ =
(
g11 0
0 g22

)
, (6)

where g11 and g22 are given by

g11 = −
(
M

∂r S

∂r M
+ Q

∂r S

∂r Q

) (
∂r M ∂rr S − ∂r S ∂rr M

(∂r M)3

)
, and,

(7)

g22 =
(
M

∂r S

∂r M
+ Q

∂r S

∂r Q

) (
∂r Q ∂rr S − ∂r S ∂rr Q

(∂r Q)3

)
. (8)

Note that the symbol r replaces r+ in (7) and (8). Although
the analytic calculation is straightforward, the resultant
expressions for the metric components and that of the Ricci
scalar RR are too long to be explicitly included here. There-
fore, we resort to numerical analysis and study the behavior
of RR graphically as a function of r+. In Figs. 10, 11, 12 and
13, we plot RR(M, Q) against r+ for specific values of the
black hole parameters and compare it with the correspond-
ing plots of the heat capacity Cp, also plotted against r+ in

Fig. 10 Divergence of Cp(r+) at rc1. Here, d = 7, k = 2, and Q =
0.235

Fig. 11 Divergence of Cp(r+) at rc2. Here, d = 7, k = 2, and Q =
0.235

Fig. 12 Divergence of RR near rc1. Here, d = 7, k = 2, and Q =
0.235

exactly the same range. From the plots, it is clear that the
divergences in RR occur at points which are very close to
those at which the heat capacity diverges. Hence, we con-
clude that the usual thermodynamic approach and the GTD
method are in agreement in predicting the thermodynamic
behavior of the black hole spacetime.
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Fig. 13 Divergence of RR near rc2. Here, d = 7, k = 2, and Q =
0.235

4 Area spectrum of large charged AdS black holes
in Lovelock model

In this section, we compute the horizon area spectrum of large
(r+ � R) charged, AdS black holes in Lovelock model. The
fact that the horizon area of black holes is quantized was
proposed for the first time by Bekenstein [59–61]. He found
that the horizon area of a non-extremal black hole is a clas-
sical adiabatic invariant. It is well known from field theory
(Ehrenfest principle) that the presence of a periodicity in the
classical theory of a system points to the existence of an adia-
batic invariant with a discrete spectrum in the corresponding
quantum theory. We follow the recent proposal by Majhi and
Vagenas [81] that the quantity I = ∑ ∫

pidqi can be taken
as the classical adiabatic quantity in the case of black hole
spacetimes, where qi and pi are conjugate variables describ-
ing the dynamics of the system.

For a spacetime whose metric is given by

ds2 = f (r)dτ 2 + 1

f (r)
dr2 + r2d�2

d−2 , (9)

where τ = i t is the Euclidean time coordinate, we take q0 =
τ and q1 = rh as the dynamical variables of the system
and consider the Hamiltonian H as a function of qi and pi .
Then, taking into account one of the Hamiltonian equations

of motion of the system, namely, pi = ∂H

∂q̇i
, it is possible

to show that the adiabatic invariant I for the spacetime takes
the form

I = −2i
∫ ∫ H

0

dH ′

f (r)
dr. (10)

Near the horizon rh , we can approximate f (r) ≈ κ(r −
rh), where κ = d f

dr |r=rh . Also, the temperature T of the

horizon is given by T = 1

4π
κ . Substituting all these into

(10), we get

I = 1

2

∫ H

0

dH ′

T
. (11)

Considering the black hole spacetime as a thermodynamic
system with extensive variables S and Q, we equate the
Hamiltonian H ′ to the mass M of the black hole, so that
the first law of thermodynamics reads

dH ′ = dM = T dS + 
dQ, (12)


 = ∂M

∂Q
being the electric potential. Thus, (11) gives

I = 1

2

(
S +

∫ Q

0




T
dQ′

)
. (13)

The temperature T of the horizon is given by T =
1

4π

d f

dr

∣∣∣∣
r=rh

, and 
 = ∂M

∂Q′ , where we have M(Q′) by

replacing Q with Q′ in (3). We get


 = εr3−d
h

d − 3
Q′. (14)

We compute the second term on the RHS of (13) after
substituting the values of 
 and T . Its value turns out to be

∫ Q

0




T
dQ′ = a

2c
ln(b − c Q2), where (15)

a = εr3−d
h

d − 3
,

b = 1

4π

[
2rh
R2 + 2GkM(d − 2k − 1)

krd−2k
h

(
1 + r2

h

R2

)1−k]
, and

c = 1

4π

[
2εGk(d − k − 2)

k(d − 3)r2(d−k)−3
h

(
1 + r2

h

R2

)1−k]
.

Thus, (13) gives

S = 2I − a

2c
ln(b − c Q2).

According to Bohr–Sommerfeld quantization condition,
I = nh̄, so that we can write

S = 2nh̄ − a

2c
ln(b − c Q2) (16)

Now, it is to be noted that the usual area law, namely
S ∝ A, is unique to first-order theories of gravity like the
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General Theory of Relativity, for which the order parameter
k = 1. In general, the area law is not followed by black
hole spacetimes in theories where k �= 1. However, the area
law can approximately be recovered in these theories if we
restrict our attention to very large black holes, i.e. those with
r+ � R. For such black holes, the general expression for the
entropy for S(r+), given by (5), reduces to

S(r+) ≈ k

(
2πκB

(d − 2)Gk R2(k−1)

)
rd−2+ , (17)

which can be written in terms of the area A of the event
horizon as

S(r+) ≈ k

(
2πκB

(d − 2)Gk R2(k−1)

) (
A

�d−2

)
. (18)

Using (18) in (16), we can write an expression for the
quantized area of large, charged black holes in the asymptot-
ically AdS Lovelock model as,

A = γ
(
nh̄ − a

4c
ln (b − c Q2)

)
, (19)

where the constant γ is given by

γ = (d − 2)�d−2Gk R2(k−1)

πκB
.

Thus the horizon area of large, charged, black holes in the
model turns out to be quantized, with a logarithmic correction
term added to it. The dependence of the area-quantum on the
order of the theory k and the AdS radius R is evident from
the expression for γ . It is to be noted that the dependence on
R becomes evident only when one considers theories with
k �= 1. It is interesting to note that the logarithmic correction
term itself does not turn out to be quantized.

5 Conclusions

In this paper, we considered the thermodynamic behavior
of charged, asymptotically AdS and spherically symmetric
black hole solutions of the Lovelock model of gravity, where
the higher-order coupling constants are chosen so as to make
the AdS radius R equal for all orders. The main objective has
been to investigate the thermodynamic stability of such black
holes and to look for possible phase transitions between var-
ious black hole states. Two approaches were adopted toward
that end: (1) the usual thermodynamic approach in which
one computes the specific heat of the spacetime and looks
for divergences which signal the occurrence of second-order
phase transitions between various states, and (2) the method

of geometrothermodynamics, in which one studies the ther-
modynamic interaction of the black hole by applying meth-
ods of differential geometry to the thermodynamic phase
space of the system.

Using the usual methods of black hole thermodynamics,
we calculated different thermodynamic parameters of the
system such as the horizon temperature, entropy and the spe-
cific heat. We found that the horizon temperature T , when
written as a function of the horizon radius r+, has a couple of
turning points, compared to just one in the uncharged case.
The entropy S happens to be a monotonic function of r+,
while the specific heat Cp exhibits divergence at two points
corresponding to the turning points of T (r+). From the plots
of T (r+) and Cp(r+) against r+, we were able to deduce the
thermodynamic behavior of the black holes.

We found that large black holes are always able to attain
thermodynamic equilibrium with the background AdS space-
time (the thermal bath) as long as the bath has a temperature
greater than the local maximum value of T (r+). In this case,
there exists only one stable equilibrium configuration for a
black hole at any bath temperature T0. A similar conclusion
can be arrived at in the case of small black holes placed
inside a bath at a temperature T0 that is less than the local
minimum value of T (r+). There exists a stable equilibrium
configuration in this case as well, in contrast with the case
of uncharged black holes. In this case, as in the previous
case, initial black hole states get drawn toward the respective
equilibrium configurations, since the specific heat is posi-
tive in both cases. When the temperature of the bath is in
between the local maximum and local minimum values of
T (r+), each bath temperature T0 corresponds to three equi-
librium black hole configurations—two stable states and one
unstable state. In such a case, we concluded that initial black
hole configurations would be drawn toward one of the stable
points, depending on their initial size.

In order to perform the geometric analysis of the thermo-
dynamic evolution, we followed the method of geometrother-
modynamics of Quevedo [44,45]. We chose what is known
as the entropy representation of the thermodynamic phase
space and computed the scalar curvature RR derived from a
Legendre-invariant thermodynamic metric, the components
of which are calculated using the second derivatives of the
entropy of the system. We chose the mass and the charge of
the black hole as the extensive parameters. Since the expres-
sions for the metric components and the scalar curvature were
too long to treat analytically, we resorted to the graphical
method, plotting the scalar curvature as a function of the
horizon radius r+. From the plot, we found that the scalar
curvature diverges at points that are very close to the points
of divergence of the specific heat of the black hole, indi-
cating that the thermodynamic phase transitions of the black
hole correspond to the singularities in the corresponding ther-
modynamic phase space. Thus, the results of geometrother-
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modynamics were found to be in agreement with those of
ordinary black hole thermodynamics.

Next, we computed the horizon area spectrum of large,
charged AdS black holes in the model, motivated mainly by
the AdS/CFT correspondence. We computed the adiabatic
invariant

∑ ∫
pidqi for the black hole spacetime taking the

Euclidean time τ = i t and the horizon radius rh as the
dynamical variables. The first law of thermodynamics was
made use of during the computation. We applied the Bohr–
Sommerfeld quantization rule to the invariant and found that
the entropy is a quantized entity with a logarithmic correction
term added to it. In the limit of large black holes, the entropy
becomes proportional to the horizon area for higher-order
Lovelock theories and we were able to show that the area of
such black holes also can be written as a quantized number
with a logarithmic correction term added to it. The spacing γ

between the various quanta was found to be dependent on the
order k of the theory (and by extension the dimension d of
the spacetime) and the value of the AdS radius R, although
this dependence become evident only in higher dimensions
and higher-order theories.
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