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Abstract The heterotic-string models in the free fermionic
formulation gave rise to some of the most realistic-string
models to date, which possess N = 1 spacetime supersym-
metry. Lack of evidence for supersymmetry at the LHC insti-
gated recent interest in non-supersymmetric heterotic-string
vacua. We explore what may be learned in this context from
the quasi-realistic free fermionic models. We show that con-
structions with a low number of families give rise to pro-
liferation of a priori tachyon producing sectors, compared to
the non-realistic examples, which typically may contain only
one such sector. The reason being that in the realistic cases
the internal six dimensional space is fragmented into smaller
units. We present one example of a quasi-realistic, non-
supersymmetric, non-tachyonic, heterotic-string vacuum and
compare the structure of its massless spectrum to the cor-
responding supersymmetric vacuum. While in some sec-
tors supersymmetry is broken explicitly, i.e. the bosonic and
fermionic sectors produce massless and massive states, other
sectors, and in particular those leading to the chiral families,
continue to exhibit Fermi–Bose degeneracy. In these sectors
the massless spectrum, as compared to the supersymmetric
cases, will only differ in some local or global U (1) charges.
We discuss the conditions for obtaining nb = n f at the mass-
less level in these models. Our example model contains an
anomalous U (1) symmetry, which generates a tadpole dia-
gram at one-loop order in string perturbation theory. We spec-
ulate that this tadpole diagram may cancel the correspond-
ing diagram generated by the one-loop non-vanishing vac-
uum energy and that in this respect the supersymmetric and
non-supersymmetric vacua should be regarded on an equal
footing. Finally we discuss vacua that contain two supersym-
metry generating sectors.
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1 Introduction

The discovery of the agent of electroweak symmetry break-
ing at the LHC [1,2] is a pivotal moment in particle physics.
While confirmation of this agent as the Standard Model
electroweak doublet representation will require experimental
scrutiny in the decades to come, the data to date seems to vin-
dicate this possibility. Substantiation of this interpretation of
the data will reinforce the view that the electroweak symme-
try breaking mechanism is intrinsically perturbative, and that
the SM provides a viable perturbative parameterisation up to
the Planck scale. Moreover, the large scale unification sce-
nario is further motivated by the embedding of the SM matter
states in the chiral SO(10) representation; by the logarith-
mic evolution of the SM parameters; by proton longevity; and
by the suppression of left-handed neutrino masses. Gaining
further insight into the fundamental origins of the SM param-
eters can then only be obtained by incorporating gravity into
the picture.

String theory provides the most developed contemporary
approach to study how the Standard Model parameters may
arise from a unified theory of the gauge and gravitational
interactions. For this purpose several models that repro-
duce the spectrum of the Minimal Supersymmetric Standard
Model have been produced [3–8]. Amongst them the free
fermionic models [3–5,9–23] are the most studied exam-
ples. The heterotic string in particular provides a compelling
framework to study the gauge–gravity synthesis in the large
scale unification scenario, as it reproduces the embedding of
the SM chiral spectrum in spinorial SO(10) representations.

The majority of semi-realistic heterotic-string models
constructed to date possess N = 1 spacetime supersym-
metry, while non-supersymmetric vacua were investigated
sporadically [24–31]. In the absence of evidence of super-
symmetry at the LHC recent interest in non-supersymmetric
heterotic-string vacua has emerged [32–38]. It is therefore
prudent to examine what may be learned in that context from
the quasi-realistic free fermionic models. In this paper this
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question is considered. We discuss the different avenues that
may be used to break supersymmetry directly at the string
scale and how they compare with the recent analysis [34].

Our paper is organised as follows: in Sect. 2, we review the
structure of the phenomenological free fermionic heterotic-
string models. In Sect. 3, we discuss the phases that break
supersymmetry in the string models and the different patterns
that they induce. Further discussion of the existence of sec-
tors producing tachyons in these models and the relation of
the abundance of these sectors with the number of families is
given. Moreover, in Sect. 4 a non-supersymmetric tachyon-
free model is presented and its relation to the supersymmetric
counterpart is inferred. In Sect. 5 we discuss the construction
of string vacua with split supersymmetry, in which super-
symmetry is produced by two sectors. Section 6 contains our
conclusions.

2 Phenomenological free fermionic models

In this section, we review the structure of the phenomenologi-
cal free fermionic models. It should be stressed that these free
fermionic models correspond to Z2 × Z2 toroidal orbifolds
and their phenomenological characteristics are deeply rooted
in the structure of the Z2 × Z2 orbifolds. In this respect, the
free fermionic formalism merely provides an accessible set of
tools to extract the spectra of the string vacua and their prop-
erties. Furthermore, the free fermionic machinery extends to
the massive string spectrum via the analysis of the relevant
partition function. This provides important insight into the
symmetries that underly the string landscape and eventually
may prove instrumental in understanding how the string vac-
uum is selected. However, one should not tie the cart before
the horse. The fermionic and bosonic representations only
provide complementary tools that are formally identical in
two dimensions. The physically relevant properties of these
free fermionic models are due to their underlying Z2 × Z2

orbifold structure.
In the free fermionic formulation of the heterotic string in

four dimensions, all the extra degrees of freedom needed
to cancel the conformal anomaly are represented as free
fermions propagating on the string worldsheet. It is important
to note that the two dimensional fermions are free only at a
special point in the moduli space [39]. However, the models
can be deformed away from that point by incorporating the
moduli as worldsheet Thirring interactions [40–42]. Since
the twisted matter spectrum of the Z2 × Z2 orbifolds, which
gives rise to the Standard Model matter states, is independent
of the moduli, working at the free fermionic point is just a
convenient choice. In the light-cone gauge the supersymmet-
ric left-moving sector includes the two transverse spacetime
fermionic coordinates ψμ and 18 internal worldsheet real
fermions χ I , whereas the right-moving bosonic sector con-

tains 44 real worldsheet fermions φa . The worldsheet super-
symmetry is realised non-linearly in the left-moving sector
and the worldsheet supercurrent is given by

TF = ψμ∂Xμ + f I J Kχ Iχ JχK , (2.1)

where f I J K are the structure constants of the 18 dimen-
sional semi-simple Lie group. The 18 left-moving world-
sheet fermions χ I transform in the adjoint representation of
the Lie group, which in the case of the fermionic Z2 × Z2

orbifolds with N = 1 SUSY is SU (2)6. Such models pro-
vide our starting point and we will discuss in later sections
how supersymmetry is broken. The χ I therefore transform in
the adjoint representation of SU (2)6, and they are denoted
by χ I , y I , ωI with I = 1, . . . , 6. Under parallel transport
around a non-contractible loop of the one-loop vacuum to
vacuum amplitude the worldsheet fermions pick up a phase

f → − eiπα( f ) f , (2.2)

with α( f ) ∈ (−1,+1]. The phases for all worldsheet ferm-
ions constitute the spin structure of the models and are given
in the form of 64 dimensional boundary condition basis vec-
tors. The partition function,

Z(τ ) =
∑

α,β∈�

c

(
α

β

)
Tr

(
α

β

)
, (2.3)

is a sum over all spin structures, where c
(
α
β

)
are Gener-

alised GSO (GGSO) projection coefficients and Tr
(
α
β

) ≡
Tr(eiπβFα eiπτHα ) with Hα being the hamiltonian, is the trace
over the mode excitations of the worldsheet fields in the sec-
tor α, subject to the GSO projections induced by the sec-
tor β. Requiring invariance under modular transformations
results in a set of constraints on the allowed spin struc-
tures and the GGSO projection coefficients. The Hilbert
space of a given sector α in the finite abelian additive group
α ∈ � = ∑

kni bi , where ni = 0, . . . , gzi − 1, is obtained
by acting on the vacuum of the sector α with bosonic, as
well as fermionic oscillators with frequencies ν f , ν f ∗ , and
subsequently imposing the GGSO projections
{
eiπ(bi Fα) − δαc

∗
(

α

bi

)}
|s〉α = 0 (2.4)

with

(bi Fα) ≡

⎧
⎪⎪⎨

⎪⎪⎩

∑

real+complex
left

−
∑

real+complex
right

⎫
⎪⎪⎬

⎪⎪⎭
(bi ( f )Fα( f )), (2.5)

where δα is the spacetime spin statistics index and Fα( f ) is
a fermion number operator, counting each mode of f once
(and if f is complex, f ∗ minus once). For Ramond fermions
with α( f ) = 1 the vacuum is a doubly degenerate spinor |±〉,
annihilated by the zero modes f0 and f ∗

0 , and with fermion
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numbers F( f ) = 0, − 1. The physical states in the string
spectrum satisfy the level matching condition

M2
L = −1

2
+ αL · αL

8
+ NL = −1 + αR · αR

8
+ NR = M2

R

(2.6)

where α = (αL ;αR) ∈ � is a sector in the additive group,
and

NL =
∑

f

(νL); NR =
∑

f

(νR); (2.7)

ν f = 1 + α( f )

2
; ν f ∗ = 1 − α( f )

2
. (2.8)

The U (1) charges with respect to the Cartan generators of
the gauge group in four dimensions are given by

Q( f ) = 1

2
α( f ) + F( f ), (2.9)

for each complex right-moving fermion f . In the usual nota-
tion the 64 worldsheet fermions in the light-cone gauge
are denoted as ψμ, χ1,...,6, y1,...,6, ω1,...,6 and y1,...,6, ω1,...,6,

ψ
1,...,5

, η1,2,3, φ
1,...,8

. Further details on the formalism and
notation used in the free fermionic construction can be found
in the literature [9–19,43–50].

2.1 Construction of phenomenological models

Phenomenological free fermionic heterotic-string models
were constructed following two main routes. The first are the
so-called NAHE-based models. This set of models utilise a
set of eight or nine boundary condition basis vectors. The
first five consist of the so-called NAHE set [51] and are com-
mon in all these models. The basis vectors underlying the
NAHE-based models therefore differ by the additional three
or four basis vectors that extend the NAHE set.

The second route follows from the classification method-
ology that was developed in [52] for the classification of type
II free fermionic superstrings and adopted in [18–21,23,46–
48] for the classification of free fermionic heterotic-string
vacua with SO(10) GUT symmetry and its Pati–Salam
[20,21] and flipped SU (5) [23] subgroups. The main dif-
ference between the two classes of models is that while the
NAHE-based models allow for asymmetric boundary condi-
tions with respect to the set of internal fermions {y, ω|ȳ, ω̄},
the classification method only utilises symmetric boundary
conditions. This distinction affects the moduli spaces of the
models [53], which can be entirely fixed in the former case
[54] but not in the later. On the other hand the classifica-
tion method enables the systematic scan of spaces of the
order of 1012 vacua, and led to the discovery of spinor–vector
duality [46–48,55–59] and exophobic heterotic-string vacua
[20,21]. In this paper, for reasons that will be clarified below,
our discussion is focussed on the NAHE-based models.

2.1.1 The NAHE set

The NAHE set [51] is a set of five boundary condition
basis vectors {1, S, b1, b2, b3}. With ‘1’ indicating Ramond
boundary conditions and ‘0’ indicating Neveu–Schwarz
boundary conditions. The NAHE-set basis vectors are given
by

ψμ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

1 1 1 1 1 1, . . . , 1 1 1 1 1, . . . , 1
S 1 1 1 1 0, . . . , 0 0 0 0 0, . . . , 0
b1 1 1 0 0 1, . . . , 1 1 0 0 0, . . . , 0
b2 1 0 1 0 1, . . . , 1 0 1 0 0, . . . , 0
b3 1 0 0 1 1, . . . , 1 0 0 1 0, . . . , 0

y3,...,6 ȳ3,...,6 y1,2, ω5,6 ȳ1,2, ω̄5,6 ω1,...,4 ω̄1,...,4

1 1, . . . , 1 1, . . . , 1 1, . . . , 1 1, . . . , 1 1, . . . , 1 1, . . . , 1
S 0, . . . , 0 0, . . . , 0 0, . . . , 0 0, . . . , 0 0, . . . , 0 0, . . . , 0
b1 1, . . . , 1 1, . . . , 1 0, . . . , 0 0, . . . , 0 0, . . . , 0 0, . . . , 0
b2 0, . . . , 0 0, . . . , 0 1, . . . , 1 1, . . . , 1 0, . . . , 0 0, . . . , 0
b3 0, . . . , 0 0, . . . , 0 0, . . . , 0 0, . . . , 0 1, . . . , 1 1, . . . , 1

(2.10)

A suitable choice of GGSO phases that preserves spacetime
supersymmetry is given by

c

(
bi
b j

)
= c

(
bi
S

)
= c

(
1
1

)
= − 1, (2.11)

where all other GGSO projection coefficients are determined
by modular invariance. The basis vector S is the generator
of spacetime supersymmetry. It merely corresponds to the
Ramond vacuum of the worldsheet fermionic superpartners
of the ten dimensional heterotic-string, and acts as a spectral
flow operator that mixes between the spacetime fermionic
and bosonic states.

The subset of basis vectors {1, S} produces a string vac-
uum with N = 4 spacetime supersymmetry and SO(44)

gauge group. Adding the basis vectors b1 and b2 reduces the
N = 4 spacetime supersymmetry to N = 1, where each of
these vectors on its own reduces N = 4 to N = 2, and their
combined action reduces N = 4 to N = 1. The characteristic
of these two vectors is that their overlap with the basis vector
S yields S · b1,2 = 2. Thus, any additional vector that satis-
fies this overlap with the basis vector S reduces the number
of supersymmetries from N = 4 to N = 2. An example at
hand is the basis vector b3 of the NAHE set. However, the
additional breaking induced by any additional basis vector
with this property either preserves N = 1 supersymmetry or
reduces it further to N = 0.

This type of breaking therefore produces a type of non
supersymmetric string vacua that follow the chain N = 4 →
N = 2 → N = 1 → N = 0. One characteristic of this type
of spacetime supersymmetry breaking is that the breaking
will a priori not be family universal. The reason is that the
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chiral families arise in the free fermionic models from the
three sectors b1, b2 and b3, and this type of breaking neces-
sarily violates the cyclic permutation symmetry among the
three sectors b1, b2 and b3.

An example, where this cyclic permutation symmetry is
instrumental in producing a family universal structure, is the
supersymmetry breaking with a family universal anomalous
U (1) of [60,61]. The basis vectors b1, b2 and b3 reduce the
SO(44) gauge symmetry to SO(10) × SO(6)3 × E8. The
gauge bosons that produce this gauge symmetry are obtained
from the Neveu–Schwarz (NS) sector and the sector Z =
1+b1 +b2 +b3, where the NS produces the vector bosons of
SO(10)× SO(6)3 × SO(16) and the sector Z complements
the SO(16) group factor to E8.

The NAHE set basis vectors b1, b2 and b3 correspond to
the three twisted sectors of the Z2×Z2 toroidal orbifold. Each
of these twisted sectors produces 16 multiplets in the spino-
rial 16 representation of SO(10) to give a total of 48 chiral
generations. The correspondence of the quasi-realistic free
fermionic models with Z2 × Z2 orbifold has been amply dis-
cussed in the literature [62–69]. While the dictionary between
specific models in the two approaches may be elusive, it is
anticipated that for every model in one formalism there exists
a representation in the alternative formalism and this should
hold, at least for the Z2 × Z2 orbifolds, and higher order
orbifolds may have a fermionic representation as well [70].

2.1.2 Beyond the NAHE set

The construction of the semi-realistic free fermionic models
proceeds by adding three or four additional basis vectors to
the NAHE set. The function of the additional basis vectors
is to reduce the 48 spinorial 16 multiplets to three chiral
generations, and at the same time to reduce the SO(10) GUT
symmetry to one of its subgroups:

(i) SU (5) ×U (1) (FSU5) [9];
(ii) SU (3) × SU (2) ×U (1)2 (SLM) [10,11];

(iii) SO(6) × SO(4) (PS) [12–14];
(iv) SU (3) ×U (1) × SU (2)2 (LRS) [15,16];
(v) SU (4) × SU (2) ×U (1) (SU421) [17].

The first four cases produced viable three generation mod-
els, whereas in the last case it was shown that phenomeno-
logically viable models cannot be constructed [17,72,73].
The additional basis vectors may each preserve or break the
SO(10) symmetry. Basis vectors that preserve the SO(10)

symmetry are typically denoted by bi with (i = 4, 5, . . . ),
whereas those that break the SO(10) symmetry are denoted
by {α, β, γ }. The overlap of the additional basis vectors with
the supersymmetry generator basis vector S determine the
type of possible supersymmetry breaking. Thus, in the cases
with S · bi = 2 the pattern of supersymmetry breaking is

similar to the spacetime supersymmetry breaking discussed
above, namely it follows the chain N = 4 → N = 2 →
N = 1 → N = 0.

An alternative is to use a basis vector with S · ai = 0,
where ai may, or may not, break the SO(10) GUT symme-
try. This type of supersymmetry breaking differs, however,
from the one discussed above in that it induces the break-
ing pattern N = 4 → N = 0. A general rule to construct
vacua that preserve N = 1 spacetime supersymmetry is to
impose c

( S
vi

) = −δvi , where vi is any basis vector [71]. Thus,
relaxing this constraint would generically result in broken
spacetime supersymmetry. Breaking spacetime supersym-
metry with the additional basis vectors ai would generically
also not affect the spectrum arising from the sectors bi that
produce the chiral generations, but it may affect their super-
partners as those are obtained from the sectors S+bi . As we
will show with an explicit example model in Sect. 4, in this
case the effect of the projection is to select different compo-
nents of the underlying N = 4 multiplets.

2.1.3 The classification set

In this paper our focus will be on non-supersymmetric
NAHE-based free fermionic models. For completeness we
discuss the construction of such models by using the clas-
sification methods of [18–21,23,46–48]. In this approach
the set of basis vectors is fixed and a large number of
string models, of the order of 1012 vacua, is spanned by
enumerating the independent GGSO projection coefficients.
In this manner large spaces of string models with SO(10)

[18,19], SO(6) × SO(4) [20,21], SU (5) × U (1) [23], and
SU (4)×SU (2)×U (1) [72,73], have been explored. A subset
of basis vectors that respect the SO(10) symmetry is given
by the set of 12 basis vectors V = {v1, v2, . . . , v12}, where

v1 = 1 = {ψμ, χ1,...,6, y1,...,6, ω1,...,6|
ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄1,...,8},

v2 = S = {ψμ, χ1,...,6},
v2+i = ei = {yi , ωi |ȳi , ω̄i }, i = 1, . . . , 6,

v9 = b1 = {χ34, χ56, y34, y56|ȳ34, ȳ56, η̄1, ψ̄1,...,5},
v10 = b2 = {χ12, χ56, y12, y56|ȳ12, ȳ56, η̄2, ψ̄1,...,5},
v11 = z1 = {φ̄1,...,4},
v12 = z2 = {φ̄5,...,8}. (2.12)

Additional vectors are added to the set given in (2.12) to con-
struct vacua with SO(10) subgroups [20,21,23]. In the nota-
tion of Eq. (2.12) the worldsheet fermions appearing in the
curly brackets have periodic boundary conditions, whereas
all other worldsheet fermions are anti-periodic. The entries
in the matrix of GGSO phases c

(
vi
v j

)
with i > j then span

the space of string vacua. Additional constraints that are
imposed on the string vacua, like the existence of spacetime
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supersymmetry leave 40 independent phases of the original
66. One can then resort to a complete [46–48] or statistical
sampling1 of the total space [18,19], and classify the mod-
els by their twisted matter spectrum. The classification is
facilitated by expressing the GGSO projections in algebraic
form [18,19,46–48]. The analysis of the entire spectrum of
the string models is computerised and vacua with specific
phenomenological characteristics can be fished our from the
larger space of models.

In terms of spacetime supersymmetry breaking, as with
the NAHE-set-based models the spacetime supersymmetry
generator is the basis vector S. The subset {1, S} gives rise to
N = 4 spacetime supersymmetry, which is broken by b1 and
b2 to N = 2 spacetime supersymmetry and their combined
action breaks N = 4 → N = 1. As with the NAHE-based
models imposing c

( S
vi

) = −δvi ensures the preservation of
N = 1 supersymmetry. Projecting the remaining supersym-
metry in this model is obtained by relaxing this condition.
Furthermore, the basis vectors {ei , z1, z2} satisfy S · ei = 0
and S · zi = 0. These basis vectors therefore act as projectors
on the S sector. These basis vectors can be used to project all
the states from the S sector and hence induce the breaking
N = 4 → N = 0 spacetime supersymmetry.

3 Tachyons in the free fermionic semi-realistic models

String models, in general, and heterotic-string models in par-
ticular, generically give rise to tachyonic states in their spec-
tra. This can be seen from Eq. (2.6). Any sector that satisfies

M2
L < − 1

2
and M2

R < − 1 (3.1)

may produce tachyonic physical states. Tachyonic states can
be obtained by acting on the vacuum with fermionic oscil-
lators. They satisfy the level matching condition and survive
all the GGSO projections. Their presence in the physical
spectrum indicates the instability of the string vacuum. The
existence of spacetime supersymmetry guarantees that all
tachyonic states are projected out. The situation is altered if
supersymmetry is broken to N = 0 spacetime supersymme-
try by projecting all the states from the S sector. One then
has to check in each model whether tachyonic states exist.

The existence of non-supersymmetric non-tachyonic string
vacua has been known since the mid-1980s [24]. The gauge
symmetry of this model is SO(16) × SO(16), and its
non-perturbative extension was considered in [31]. In the
free fermionic formalism the model is constructed by the
set of boundary condition basis vectors {1, S, X, I } where
X = {ψ̄1,...,5, η̄1,2,3} and I = {φ̄1,...,8}. In ten dimensions

1 We note that analysis of large sets of string vacua has also been carried
out by other groups See e.g.: [27,74–85].

the choice of the GGSO phase c
(X
I

) = ±1 yields either
the supersymmetric E8 × E8, or the non-supersymmetric
SO(16) × SO(16), heterotic-string. This is necessarily the
case in ten dimensions because the supersymmetry genera-
tor is given by S = 1 + X + I and therefore the projec-
tions on the three sectors are correlated. In the four dimen-
sional models the same phase can be used to reduce the
gauge symmetry from E8 × E8 to SO(16) × SO(16) with-
out breaking supersymmetry. The same vacua can be con-
structed in the orbifold representation and can be connected
by interpolations [25,26]. Hence, the supersymmetric and
non-supersymmetric vacua exist on the boundary of the same
moduli space.

Our interest in this paper is in the tachyonic states arising
in the semi-realistic models. It is instructive to examine the
case of the non-supersymmetric SO(16) × SO(16) model
first. In the four dimensional model supersymmetry may be
broken from N = 4 → N = 0 by the I or X projections.
The only sector that may produce tachyons in this model
is the NS sector. The tachyonic states arising in this model
are obtained by acting on the non-degenerate vacuum with a
right-moving oscillator, and satisfy the level matching con-
dition with M2

L = M2
R = −1/2. These tachyonic states are,

however, projected out by the S projection, which is given by

eiπ S·FNS |t〉NS = δS|t〉NS . (3.2)

As there are no oscillators acting on the left-moving vacuum
in the tachyonic untwisted state, and the basis vector S is
blind to the right-moving oscillators, the left-hand side of
Eq. (3.2) is positive. On the other hand δS = −1 because
the spacetime fermions ψμ are periodic in S. The mismatch
between the two sides of Eq. (3.2) entails that the untwisted
NS tachyons are projected out. This argument extends to any
free fermionic model that contains the basis vector S. We
conclude that in any non-supersymmetric free fermionic that
includes the S sector the untwisted tachyons are always pro-
jected out, irrespective of the choice of the SUSY projecting
phases.

The four dimensional SO(16) × SO(16) non-supersym-
metric heterotic-string is therefore tachyon free. However,
in this string vacuum the only sector that may give rise to
tachyonic states is the untwisted sector. This is not the case
in the semi-realistic free fermionic models. The three gen-
eration free fermionic models generically give rise to an
abundance of sectors that may a priori give rise to tachy-
onic states. The reason is that the additional basis vectors
that are required to reduce the number of families, break
down the internal degrees of freedom into small units. This
is exemplified by the set of vectors in Eq. (2.12), which is
used as the basis for the classification of symmetric fermionic
Z2 × Z2 orbifolds. The basis vectors ei as well as their
ei + e j i �= j and ei + e j + ek i �= j �= k combina-
tions may produce physical tachyonic states by acting on the
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non-degenerate vacuum with a right-moving NS fermionic
oscillator; similarly the sectors z�, z�+ei , z�+ei +e j , i �= j
z� + ei + e j + ek, i �= j �= k may produce tachyonic states.
In total there are therefore 123 sectors, in addition to the NS
sector, that may produce tachyons in these models.

This renders futile a systematic classification of non-
supersymmetric non-tachyonic semi-realistic vacua along
the lines of [20,21,23]. The situation in NAHE-based mod-
els is similar. Typical models contain an abundance of sec-
tors that may a priori produce tachyons. Furthermore, mod-
els that utilise fractional boundary conditions may contain
additional tachyon producing sectors in which a fermionic
oscillator with rational boundary conditions may act on the
non-degenerate vacuum. A detailed sector by sector analysis
is therefore required. A systematic procedure to extract the
tachyon-free vacua is provided by performing a q-expansion
of the partition function [35]. However, this method loses
the detailed information on the structure of the string spec-
trum. The construction of non-supersymmetric vacua with
quasi-realistic features therefore requires a detailed model
by model analysis. One may then envision the existence of
models in which the number of tachyonic producing sectors
is restricted.

The best case scenario would be a model in which the
only tachyon producing sector is the NS sector. In this case
we are guaranteed that tachyons do not exist in the physi-
cal spectrum. However, a model with this property has not
been found to date. The next best case scenario is a model
that gives rise only to one type of tachyon producing sectors.
Existence of a model with this characteristic may depend on
further detailed phenomenological properties of the string
vacua. For example, we were not able to find such a model in
the class of NAHE-based free fermionic models with reduced
Higgs spectrum [54], whereas the class of left–right sym-
metric models [15,16] did produce a model with the desired
property. The set of boundary condition basis vectors, beyond
the NAHE set, generating the string vacuum is given by

ψμ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
β 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
γ 0 0 0 0 1

2
1
2

1
2 0 0 1

2
1
2

1
2 0 1

2
1
2

1
2

1
2

1
2

1
2 0

y3y6y4 ȳ4y5 ȳ5 ȳ3 ȳ6 y1ω5y2 ȳ2ω6ω̄6 ȳ1ω̄5 ω2ω4ω1ω̄1ω3ω̄3ω̄2ω̄4

α 1 1 1 0 1 1 1 0 1 1 1 0
β 0 1 0 1 0 1 0 1 1 0 0 0
γ 0 0 1 1 1 0 0 0 0 1 0 1

(3.3)

This model gives rise only to one type of tachyon producing
sectors with

α2
L = 2 & α2

R = 6 ⇒ NR = 0. (3.4)

The supersymmetric version of this model was presented in
[15,16] with the set of GGSO phases given by

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 S b1 b2 b3 α β γ

1 1 1 −1 −1 −1 1 1 i

S 1 1 1 1 1 −1 −1 −1

b1 −1 −1 −1 −1 −1 −1 −1 i

b2 −1 −1 −1 −1 −1 −1 −1 i

b3 −1 −1 −1 −1 −1 −1 1 i

α 1 −1 1 1 1 1 1 1

β 1 −1 −1 −1 1 −1 −1 −1

γ 1 −1 1 −1 1 −1 −1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.5)

The full mass spectrum of this model together with the cubic
level superpotential was presented in [15,16]. The modifica-
tion

c

(
S

α

)
= −1 → +1 and c

(
S

β

)
= −1 → +1 (3.6)

projects the remaining gravitino and induces N = 1 → N =
0. It can be checked that all the tachyonic states are projected
out in this model. Furthermore, it can be verified that making
the modification

c

(
S

α

)
= −1 → +1 and c

(
S

β

)
= −1 → −1 (3.7)

i.e. modifying only c
(S
α

)
but not c

(S
β

)
results in a model that

contains tachyonic states. The reason is that in this model all
the sectors that may produce tachyons appear with the com-
bination m(α + β), where m = 0, 1. Hence, with the modi-
fication given by Eq. (3.6) the S-projection on the tachyonic
sectors is the same as in the corresponding supersymmetry
preserving choice given in Eq. (3.5), whereas with the mod-
ification given by (3.7) the S-projection in some sectors is
modified in comparison to the supersymmetric model and
some tachyonic states are not projected out. We note that the
construction of tachyonic-free semi-realistic vacua is highly
nontrivial. In the next section we discuss the tachyon-free
model in some detail.

4 An explicit tachyon-free model

We consider the model defined by the set of basis vectors

1 = {ψμ, χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, η̄1,2,3,

ψ̄1,...,5, φ̄1,...,8},
S = {ψμ, χ1,...,6},
b1 = {ψμ, χ1,2, y3,...,6|y3,...,6, ψ

1,...,5
, η1},
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b2 = {ψμ, χ3,4, y1,2, ω5,6|y1,2, ω5,6, ψ
1,...,5

, η2},
b3 = {ψμ, χ5,6, ω1,...,4|ω1,...,4, ψ

1,...,5
, η3},

b4 = α

= {y1,...,6, ω1,...,6|ω1, y2, ω3, y4,5, ω6, ψ
1,2,3

, φ
1,...,4},

b5 = β

= {y2, ω2, y4, ω4|y1,...,4, ω5, y6, ψ
1,2,3

, φ
1,...,4},

b6 = γ

= {y1, ω1, y5, ω5|ω1,2, y3, ω4, y5,6, ψ
1,2,3 = 1

2
, η1,2,3

= 1

2
, φ

2,...,7 = 1

2
},

with the set of GGSO phases given by

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 S b1 b2 b3 α β γ

1 1 1 −1 −1 −1 1 1 i

S 1 1 1 1 1 1 1 −1

b1 −1 −1 −1 −1 −1 −1 −1 i

b2 −1 −1 −1 −1 −1 −1 −1 i

b3 −1 −1 −1 −1 −1 −1 1 i

α 1 1 1 1 1 1 1 1

β 1 1 −1 −1 −1 −1 −1 −1

γ 1 −1 1 −1 1 −1 −1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This is a three generation model, with one generation appear-
ing in each of the twisted sectors b1, b2 and b3. The full
spectrum can be found in the tables of the appendix, with the
exception of the gauge bosons which have been omitted in
the interest of space. It is sufficient to state that the gauge
group is

SU (3)C ×U (1)C × SU (2)L × SU (2)R ×
6∏

i=1

Ui

︸ ︷︷ ︸
observable sector

× SU (3)H1 × SU (3)H2 ×
10∏

j=7

Uj

︸ ︷︷ ︸
hidden sector

.

The notation for the table is the following: The first col-
umn describes if the states correspond to spacetime bosons
or spacetime fermions and specifically for bi the type of
particle. The second column is the name of the sector. The
third column gives the dimensionality of the states under
SU (3)C × SU (2)L × SU (2)R and the fourth the charges of
the observable U (1)s. Columns 5 and 6 describe the hidden
sector. The only charges appearing in the table that do not
have a self-evident name are:

QC = Q
ψ

1 + Q
ψ

2 + Q
ψ

3 ,

Q8 = Q
φ

2 + Q
φ

3 + Q
φ

4 ,

Q9 = Q
φ

5 + Q
φ

6 + Q
φ

7 . (4.1)

To avoid writing fractional numbers all the charges in the
table have been multiplied by 4. Finally, for every state the
CPT conjugate is also understood to be in the spectrum and
has not been written explicitly. Lastly, we comment that the
states contain discrete charges corresponding to the action of
real fermions that are not shown in the table. For example, the
first three states from the Neveu–Schwarz sector are obtained
by acting on the vacuum with two right-moving real fermions
and are neutral under the gauge symmetry of the model. The
weak hypercharge in the model is given by

U (1)Y = 1

3
U (1)C + T3R ,

where T3R is the diagonal generator of SU (2)R . The sym-
metry breaking to the Standard Model gauge group may be
induced by a VEV for one of the Standard Model singlet
scalar fields in the (1, 1, 2) representation from the sectors
S+b j . This model exhibits many interesting features regard-
ing supersymmetry. First of all, we observe that the model is
manifestly non-supersymmetric. The gravitino and the gaug-
ini are projected out and there is a clear mismatch between
the number of states in the 0 and S sectors. Furthermore,
there are eight sectors with only scalars and the sectors that
contain the would-be superpartners are massive. These are

β + γ, β + 3γ,

α + γ, α + 3γ,

1 + b1 + b2 + b3 + β + γ, 1 + b1 + b2 + b3 + β + 3γ,

1 + b1 + b2 + b3 + α + γ, 1 + b1 + b2 + b3 + α + 3γ.

(4.2)

Such sectors would not remain in the spectrum in the
supersymmetric choice of phases. The reason is that the
spacetime supersymmetry generator in the supersymmetric
model is the basis vector S, i.e. for a given sector ρ ∈ �, the
supersymmetric superpartners are obtained from the sector
S + ρ. All the sectors in Eq. (4.2) have (ρ)2

L = 4, whereas
(S + ρ)2

L = 8, i.e. in these sectors the would-be superpart-
ners are massive. In the supersymmetric vacua the states from
the sectors in Eq. (4.2) are necessarily projected out, as they
break supersymmetry explicitly. However, once supersym-
metry is broken they may appear in the spectrum, as is seen
in our model. It is a highly non-trivial task to find a model with
three generations in which sectors of these type, which only
appear when supersymmetry is broken, contain no tachyons,
but this model provides exactly such an example. We collec-
tively refer to all the sectors mentioned in this paragraph as
sectors in which supersymmetry is “badly broken”.

On the other hand, there are (pairs of) sectors that are
completely supersymmetric. This is due to the modification
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(3.6) not affecting the GGSO projections in any sectors where
none of the vectors S, α or β appear. Therefore such sectors
will be identical to the corresponding sectors of the super-
symmetric model. Nonetheless, for some of these sectors to
remain supersymmetric as claimed above, the superpartners
should be unchanged as well, or at least the effect must be (at
most) a change in the R-charges of the superpartners. Sectors
bi and 1 + bi + b j + 2γ are of this type.

Finally, there are sectors that do not fit any of the above cat-
egories. In these sectors the number of bosons and fermions is
the same, but on the other hand some of the gauge charges of
these states are different which in principle prevents us from
grouping them together into supermultiplets. Most of the sec-
tors are of this type. We use the term sectors in which super-
symmetry is “nicely broken” when referring to this case.

Thus, while supersymmetry is broken, some segments of
the string vacuum still respect the underlying supersymmet-
ric degeneracy. This is in accordance with the findings in [34],
which showed that the partition function of string vacua with
spontaneously broken supersymmetry can be divided into
several orbits, some of which preserve the original super-
symmetry.

Furthermore, we would like to comment in our model
the fermionic states from the sectors b1, b2 and b3, as
well as the bosonic states from the NS sector, are not
affected by the GGSO phases that project the gravitino
and gaugini from the S sector, and therefore break space-
time supersymmetry. Therefore, the untwisted scalar states
of our non-supersymmetric model as well as the fermionic
states from the sectors b1, b2 and b3 are identical to those
in the corresponding supersymmetric model. Consequently,
the leading twisted–twisted–untwisted couplings in the non-
supersymmetric model, which are obtained by using the
methods developed in [86–88], are identical to those of
the supersymmetric model. The model generated by Eqs.
(3.3,3.5) contains electroweak doublet scalar representations
from the twisted sectors that may be used as Higgs doublets.
However, in this model the untwisted Higgs bi-doublets,
which couple at leading order to the twisted sector states,
are projected out and consequently the leading mass term
which is identified with the top mass is absent. Other LRS
[15,16] models, as well as the FSU5 [9], PS [12–14] and
SLM [3–5,10,11] models, do contain the untwisted Higgs
doublets and in those cases a leading top mass term is
obtained.

It is also worth noting that even for non-supersymmetric
models the cosmological constant can be exponentially sup-
pressed. As discussed in [35], this can be achieved if the mass-
less spectrum has an equal number of bosons and fermions
(irrespectively of their charges). Even though our model is
not of this type and will therefore have an unsuppressed vac-
uum energy, our construction hints at how one might go about
achieving such a goal. It is clear, for example, that we do not

have to worry about sectors that either respect supersymme-
try or in which supersymmetry is nicely broken.

On the other hand, sectors that badly break supersymmetry
will have to be carefully engineered. There are a few ways one
might go about such a task. For example, one might entertain
the idea that the addition of further basis vectors could project
such sectors out of the spectrum. The biggest problem with
this approach is that the removal of the gaugini from the
S sector, even if some fermions transforming in a different
from the adjoint representation are preserved, will create a
mismatch of states in the S and NS sectors turning them into
sectors that break supersymmetry badly; and it is impossible
to project out the NS sector no matter what basis vectors are
added. It is a priori possible that further basis vectors will
remove exactly the correct number of bosons from the NS
sector to match the remaining fermionic states in the S sector,
but this method seems unnecessarily restricting.

An approach providing more freedom is to aim for an
equality in the number of bosons and fermions not in each
sector, but among different sectors. To cancel the surplus of
bosons from the NS sector this would imply the existence
of surviving fermionic states in different sectors, the bosonic
counterpart of which has been projected out. The model pre-
sented in this section has an overall mismatch of bosonic and
fermionic degrees of freedom and therefore does not satisfy
this condition. Finding a semi-realistic model of suppressed
cosmological constant appears to be very challenging, but
it is of great interest as well and we hope to report on such
constructions in a future publication.

5 Split SUSY models

In this section we briefly discuss string models with a split
supersymmetry structure. The basic idea is to use two basis
vectors to generate spacetime supersymmetry. We recall from
Sect. 2 that in the semi-realistic free fermionic models the
supersymmetry generators arise from the basis vector S. The
aim in split supersymmetry string models is to construct
two basis vectors that produce supersymmetry generators.
A particular aim is then to construct models in which gaug-
ini are obtained from one generator, whereas those of the
second generator are projected out, as well as the scalar
superpartners of the twisted matter fermionic states. Our
construction proceeds by keeping our previous basis vector
S = {ψ1,2, χ1,...,6} ≡ S1. A second supersymmetry genera-
tor is given by

S2 = {ψ1,2, χ1,2, ω3,4, ω5,6}. (5.1)

The basis vectors b1 and b2 of the NAHE-set equation (2.10)
are added as well as the basis vectors 1 and X , which is
used to project the supersymmetric generators from S1, as
discussed in Sect. 3. Shift basis vectors similar to the ei basis
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vectors of Eq. 2.12 can be added, and variations that include
the basis vector I of Sect. 2. We consider the set of six basis
vectors given by

v1 = 1 = {ψμ, χ1,...,6, y1,...,6, ω1,...,6|
ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄1,...,8},

v2 = S1 = {ψμ, χ1,...,6},
v3 = S2 = {ψμ, χ1,2, ω3,...,6}, (5.2)

v4 = b1 = {χ34, χ56, y34, y56|ȳ34, ȳ56, η̄1, ψ̄1,...,5},
v5 = X = {η̄1,2,3, ψ̄1,...,5},
v6 = I = {φ̄1,...,8}.

with the set of GGSO phases given by

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 S1 S2 b1 X I

1 −1 −1 −1 −1 −1 −1

S1 −1 −1 −1 1 1 1

S2 −1 1 −1 1 −1 −1

b1 −1 −1 −1 −1 1 −1

X −1 1 −1 −1 1 −1

I −1 1 −1 −1 −1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.3)

In this model the NS sector is the only sector that produces
spacetime vector bosons. Hence the gauge symmetry in four
dimensions is SO(8)×SO(4)×SO(4)×SO(12)×SO(16).
The sector b1 gives rise to spacetime fermions in the spinor
and anti-spinor representations of SO(12). The supersym-
metry generators of S1 are projected out, whereas the gaugini
from S2 are retained. The model retains the scalar superpart-
ners from the sector S2 + b1, and projects those from the
sector S1 + b1. Our general aim in the construction of mod-
els with split supersymmetry is to construct models that retain
the gaugini and spacetime fermions from S2 and b1, while
projecting the gaugini (and hence the gravitini) from S1, as
well as the superpartners from the sectors S1+b1 and S2+b1.
However, variations of the model in Eqs. (5.2, 5.3), including
adding the ei projectors of Eq. (2.12) did not yield the desired
result. The models in which supersymmetry is entirely bro-
ken, i.e. those in which the supersymmetry generators from
S1 as well as S2 are projected out, typically contain tachyons.
We then face similar situation to the one discussed in Sect.
2.1.3.

6 Conclusions

The observation of a scalar resonance compatible with the
electroweak Higgs doublet reinforces the hypothesis that the
Standard Model provides a viable parameterisation of all
sub-atomic data up to the Planck scale. Synthesis of grav-
ity with the sub-atomic interactions necessitates a depar-
ture from the local point particle idealisation of quantum

field theories, which underly the Standard Model. The most
developed framework to explore the gauge–gravity augmen-
tation is offered by string theory. Detailed phenomenological
models that incorporate the salient feature of the Standard
Model have been constructed. These detailed phenomeno-
logical constructions contain a new symmetry, i.e. N = 1
spacetime supersymmetry, which has not been observed to
date in experiments.

A vital question is therefore to explore the consequences
of breaking spacetime supersymmetry directly at the string
scale. A generic feature of non-supersymmetric string vacua
is the existence of tachyonic states in the physical spectrum.
Non-supersymmetric string vacua, such as the SO(16) ×
SO(16) heterotic-string in ten dimensions, do not contain
tachyonic states, but are typically connected in the moduli
space to supersymmetric vacua, and tend to have large moduli
states and group factors. More realistic constructions on the
other hand, typically have reduced moduli spaces and contain
more sectors that may a priori give rise to tachyons.

It is therefore important to examine the structure of non-
supersymmetric string vacua in more realistic setting. In this
paper we undertook this task. We have shown that while
generically the quasi-realistic non-supersymmetric vacua do
contain tachyons, there also exist examples in which all
the tachyonic states are projected out by the GGSO pro-
jections. Furthermore, given that the moduli spaces of the
quasi-realistic constructions may be much reduced [53,54],
one may entertain the possibility that the tachyon-free non-
supersymmetric quasi-realistic vacua may not be connected
to supersymmetric solutions.

We have shown with a concrete example that the non-
supersymmetric quasi-realistic vacuum may retain some of
the structure of the corresponding supersymmetric solution.
This demonstrates that even though supersymmetry may be
broken directly at the string level, the effective spectrum of
the string vacuum, as well as its low energy effective field the-
ory, may still exhibit properties that are similar to those of the
corresponding supersymmetric solutions, e.g. the existence
of scalar replications of the chiral generations.

Another interesting point to note is the existence of an
anomalous U (1) symmetry in the model. The anomalous
U (1) is cancelled by the Green–Schwarz–Dine–Seiberg–
Witten mechanism [89,90], but gives rise to a tadpole dia-
gram at one-loop order in string perturbation theory [91],
which reflects the instability of the string vacuum. The mis-
match between the fermionic and bosonic states at different
mass levels gives rise to a non-vanishing vacuum energy,
which similarly gives rise to a tadpole diagram, indicating
the instability of the string vacuum. We may contemplate the
possibility of employing one against the other so that they
conspire to cancel. The anomalous U (1) contribution is pro-
portional to the trace over the massless fermionic states and
the sign can be altered by the GGSO projections [91,92]. It
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is proportional to the gauge coupling and consequently only
depends on the dilaton moduli. On the other hand, the vac-
uum amplitude contribution depends on other moduli [35],
and it may be tuned to obtain cancellation of the two contri-
butions. In general, other background fields will be affected
by the shift of the vacuum, and to demonstrate the existence
of a stable vacuum one would need to solve the set of equa-
tions affecting those fields in the shifted vacuum. However,
in this regard the same constraints would apply in the case of
the supersymmetric vacua, where the Fayet–Iliopoulos term
[90,93], which is generated from the anomalousU (1) tadpole
diagram [90,91], is cancelled by assigning VEVs to some
massless scalar fields, along flat supersymmetric directions.
It would appear therefore that this shift of the vacuum is
either legitimate, or illegitimate, in both cases. We therefore
propose that the non-supersymmetric non-tachyonic string
vacua should be considered on equal footing to the super-
symmetric examples.
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A The spectrum of the model in Sect. 4

See Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9.

Table 1 The untwisted Neveu–Schwarz sector matter states and charges

F SEC (C; L; R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (3)H1,2 Q�̄1 Q8 Q9 Q�̄8

b NS (1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0

(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0

(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0

(1, 1, 1) 0 −4 4 0 0 0 0 (1, 1) 0 0 0 0

(1, 1, 1) 0 4 −4 0 0 0 0 (1, 1) 0 0 0 0

(1, 1, 1) 0 0 −4 4 0 0 0 (1, 1) 0 0 0 0

(1, 1, 1) 0 0 4 −4 0 0 0 (1, 1) 0 0 0 0

(1, 1, 1) 0 −4 0 4 0 0 0 (1, 1) 0 0 0 0

(1, 1, 1) 0 4 0 −4 0 0 0 (1, 1) 0 0 0 0

Table 2 The untwisted S sector matter states and charges

F SEC (C; L; R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (3)H1,2 Q�̄1 Q8 Q9 Q�̄8

f S (1, 1, 1) 0 0 0 0 0 0 0 (3, 3) 0 −4 4 0

(1, 1, 1) 0 0 0 0 0 0 0 (3, 3) 0 4 −4 0

(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 4 0 0 4

(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 4 0 0 −4

(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) −4 0 0 4

(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) −4 0 0 −4

(3, 1, 1) −4 4 0 0 0 0 0 (1, 1) 0 0 0 0

(3̄, 1, 1) 4 −4 0 0 0 0 0 (1, 1) 0 0 0 0

(3, 1, 1) −4 0 4 0 0 0 0 (1, 1) 0 0 0 0

(3̄, 1, 1) 4 0 −4 0 0 0 0 (1, 1) 0 0 0 0

(3, 1, 1) −4 0 0 4 0 0 0 (1, 1) 0 0 0 0
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Table 2 continued

F SEC (C; L; R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (3)H1,2 Q�̄1 Q8 Q9 Q�̄8

(3̄, 1, 1) 4 0 0 −4 0 0 0 (1, 1) 0 0 0 0

(1, 2, 2) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0

(1, 2, 2) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0

(1, 1, 1) 0 0 0 0 4 0 0 (1, 1) 0 0 0 0

(1, 1, 1) 0 0 0 0 −4 0 0 (1, 1) 0 0 0 0

(1, 1, 1) 0 0 0 0 0 4 0 (1, 1) 0 0 0 0

(1, 1, 1) 0 0 0 0 0 −4 0 (1, 1) 0 0 0 0

(1, 1, 1) 0 0 0 0 4 0 0 (1, 1) 0 0 0 0

(1, 1, 1) 0 0 0 0 −4 0 0 (1, 1) 0 0 0 0

(1, 1, 1) 0 0 0 0 0 4 0 (1, 1) 0 0 0 0

(1, 1, 1) 0 0 0 0 0 −4 0 (1, 1) 0 0 0 0

Table 3 The observable matter sectors. All sectors, fermionic and bosonic, have CPT conjugates which are not displayed

F SEC (C; L; R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (3)H1,2 Q�̄1 Q8 Q9 Q�̄8

QL1 b1 (3, 2, 1) 2 2 0 0 −2 0 0 (1, 1) 0 0 0 0

QR1 (3, 1, 2) −2 −2 0 0 −2 0 0 (1, 1) 0 0 0 0

LL1 (1, 2, 1) −6 2 0 0 −2 0 0 (1, 1) 0 0 0 0

LR1 (1, 1, 2) 6 −2 0 0 −2 0 0 (1, 1) 0 0 0 0

b S + b1 (3, 1, 2) 2 2 0 0 −2 0 0 (1, 1) 0 0 0 0

(3, 2, 1) −2 −2 0 0 −2 0 0 (1, 1) 0 0 0 0

(1, 2, 1) 6 −2 0 0 −2 0 0 (1, 1) 0 0 0 0

(1, 1, 2) −6 2 0 0 −2 0 0 (1, 1) 0 0 0 0

QL2 b2 (3, 2, 1) 2 0 2 0 0 −2 0 (1, 1) 0 0 0 0

QR2 (3, 1, 2) −2 0 −2 0 0 −2 0 (1, 1) 0 0 0 0

LL2 (1, 2, 1) −6 0 2 0 0 −2 0 (1, 1) 0 0 0 0

LR2 (1, 1, 2) 6 0 −2 0 0 −2 0 (1, 1) 0 0 0 0

b S + b2 (3, 1, 2) 2 0 2 0 0 −2 0 (1, 1) 0 0 0 0

(3, 2, 1) −2 0 −2 0 0 −2 0 (1, 1) 0 0 0 0

(1, 2, 1) 6 0 −2 0 0 −2 0 (1, 1) 0 0 0 0

(1, 1, 2) −6 0 2 0 0 −2 0 (1, 1) 0 0 0 0

QL3 b3 (3, 2, 1) 2 0 0 2 0 0 −2 (1, 1) 0 0 0 0

QR3 (3, 1, 2) −2 0 0 −2 0 0 −2 (1, 1) 0 0 0 0

LL3 (1, 2, 1) −6 0 0 2 0 0 −2 (1, 1) 0 0 0 0

LR3 (1, 1, 2) 6 0 0 −2 0 0 −2 (1, 1) 0 0 0 0

b S + b3 (3, 1, 2) 2 0 0 2 0 0 −2 (1, 1) 0 0 0 0

(3, 2, 1) −2 0 0 −2 0 0 −2 (1, 1) 0 0 0 0

(1, 2, 1) 6 0 0 −2 0 0 −2 (1, 1) 0 0 0 0

(1, 1, 2) −6 0 0 2 0 0 −2 (1, 1) 0 0 0 0

123
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Table 4 Vector-like SO(10) singlet states. All sectors, fermionic and bosonic, have CPT conjugates which are not displayed

F SEC (C; L; R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (3)H1,2 Q�̄1 Q8 Q9 Q�̄8

f S+ (1, 1, 1) 0 2 −2 0 0 0 0 (1, 1) 0 0 0 4

b1 + b2 (1, 1, 1) 0 2 −2 0 0 0 0 (1, 1) 0 0 0 −4

+α + β (1, 1, 1) 0 −2 2 0 0 0 0 (1, 1) 0 0 0 4

(1, 1, 1) 0 −2 2 0 0 0 0 (1, 1) 0 0 0 −4

(1, 1, 1) 0 2 2 0 0 0 0 (3, 1) 0 4 0 0

(1, 1, 1) 0 −2 −2 0 0 0 0 (3, 1) 0 4 0 0

(1, 1, 1) 0 2 2 0 0 0 0 (3, 1) 0 −4 0 0

(1, 1, 1) 0 −2 −2 0 0 0 0 (3, 1) 0 −4 0 0

b b1 + b2 (1, 1, 1) 0 2 −2 0 0 0 0 (1, 1) 4 0 0 0

+α + β (1, 1, 1) 0 2 −2 0 0 0 0 (1, 1) −4 0 0 0

(1, 1, 1) 0 −2 2 0 0 0 0 (1, 1) 4 0 0 0

(1, 1, 1) 0 −2 2 0 0 0 0 (1, 1) −4 0 0 0

(1, 1, 1) 0 2 2 0 0 0 0 (1, 3) 0 0 4 0

(1, 1, 1) 0 −2 −2 0 0 0 0 (1, 3) 0 0 4 0

(1, 1, 1) 0 2 2 0 0 0 0 (1, 3) 0 0 −4 0

(1, 1, 1) 0 −2 −2 0 0 0 0 (1, 3) 0 0 −4 0

Table 5 Vector-like SO(10) singlet states. All sectors, fermionic and bosonic, have CPT conjugates which are not displayed

F SEC (C; L; R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (3)H1,2 Q�̄1 Q8 Q9 Q�̄8

f S+ (1, 1, 1) 0 −2 0 0 0 −2 −2 (1, 1) 0 6 0 2

1 + b1 (1, 1, 1) 0 2 0 0 0 −2 −2 (1, 1) 0 −6 0 −2

+α + 2γ (1, 1, 1) 0 2 0 0 0 −2 −2 (3, 1) 0 2 0 −2

(1, 1, 1) 0 −2 0 0 0 −2 −2 (3, 1) 0 −2 0 2

b 1 + b1 (1, 1, 1) 0 −2 0 0 0 2 −2 (1, 1) 0 6 0 2

+α + 2γ (1, 1, 1) 0 2 0 0 0 2 −2 (1, 1) 0 −6 0 −2

(1, 1, 1) 0 2 0 0 0 2 −2 (3, 1) 0 2 0 −2

(1, 1, 1) 0 −2 0 0 0 2 −2 (3, 1) 0 −2 0 2

f S+ (1, 1, 1) 0 0 −2 0 −2 0 −2 (1, 1) 0 6 0 2

1 + b2 (1, 1, 1) 0 0 2 0 −2 0 −2 (1, 1) 0 −6 0 −2

+α + 2γ (1, 1, 1) 0 0 2 0 −2 0 −2 (3, 1) 0 2 0 −2

(1, 1, 1) 0 0 −2 0 −2 0 −2 (3, 1) 0 −2 0 2

b 1 + b2 (1, 1, 1) 0 0 −2 0 2 0 −2 (1, 1) 0 6 0 2

+α + 2γ (1, 1, 1) 0 0 2 0 2 0 −2 (1, 1) 0 −6 0 −2

(1, 1, 1) 0 0 2 0 2 0 −2 (3, 1) 0 2 0 −2

(1, 1, 1) 0 0 −2 0 2 0 −2 (3, 1) 0 −2 0 2

f S+ (1, 1, 1) 0 0 −2 0 −2 0 −2 (1, 1) −2 0 6 0

b1 + b3 (1, 1, 1) 0 0 2 0 −2 0 −2 (1, 1) 2 0 −6 0

+α + 2γ (1, 1, 1) 0 0 2 0 −2 0 −2 (1, 3) 2 0 2 0

(1, 1, 1) 0 0 −2 0 −2 0 −2 (1, 3) −2 0 −2 0

b b1 + b3 (1, 1, 1) 0 0 −2 0 2 0 −2 (1, 1) −2 0 6 0

+α + 2γ (1, 1, 1) 0 0 2 0 2 0 −2 (1, 1) 2 0 −6 0

(1, 1, 1) 0 0 2 0 2 0 −2 (1, 3) 2 0 2 0

(1, 1, 1) 0 0 −2 0 2 0 −2 (1, 3) −2 0 −2 0

f S+ (1, 1, 1) 0 0 0 −2 −2 −2 0 (1, 1) −2 0 6 0

123
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Table 5 continued

F SEC (C; L; R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (3)H1,2 Q�̄1 Q8 Q9 Q�̄8

b1 + b2 (1, 1, 1) 0 0 0 2 −2 −2 0 (1, 1) 2 0 −6 0

+α + 2γ (1, 1, 1) 0 0 0 2 −2 −2 0 (1, 3) 2 0 2 0

(1, 1, 1) 0 0 0 −2 −2 −2 0 (1, 3) −2 0 −2 0

b b1 + b2 (1, 1, 1) 0 0 0 −2 2 −2 0 (1, 1) −2 0 6 0

+α + 2γ (1, 1, 1) 0 0 0 2 2 −2 0 (1, 1) 2 0 −6 0

(1, 1, 1) 0 0 0 2 2 −2 0 (1, 3) 2 0 2 0

(1, 1, 1) 0 0 0 −2 2 −2 0 (1, 3) −2 0 −2 0

f S+ (1, 1, 1) 0 −2 0 0 0 −2 −2 (1, 1) −2 0 6 0

b2 + b3 (1, 1, 1) 0 2 0 0 0 −2 −2 (1, 1) 2 0 −6 0

+α + 2γ (1, 1, 1) 0 2 0 0 0 −2 −2 (1, 3) 2 0 2 0

(1, 1, 1) 0 −2 0 0 0 −2 −2 (1, 3) −2 0 −2 0

b b2 + b3 (1, 1, 1) 0 −2 0 0 0 2 −2 (1, 1) −2 0 6 0

+α + 2γ (1, 1, 1) 0 2 0 0 0 2 −2 (1, 1) 2 0 −6 0

(1, 1, 1) 0 2 0 0 0 2 −2 (1, 3) 2 0 2 0

(1, 1, 1) 0 −2 0 0 0 2 −2 (1, 3) −2 0 −2 0

f S+ (1, 1, 1) 0 0 0 −2 −2 −2 0 (1, 1) 0 6 0 2

1 + b3 (1, 1, 1) 0 0 0 2 −2 −2 0 (1, 1) 0 −6 0 −2

+α + 2γ (1, 1, 1) 0 0 0 2 −2 −2 0 (3, 1) 0 2 0 −2

(1, 1, 1) 0 0 0 −2 −2 −2 0 (3, 1) 0 −2 0 2

b 1 + b3 (1, 1, 1) 0 0 0 −2 2 −2 0 (1, 1) 0 6 0 2

+α + 2γ (1, 1, 1) 0 0 0 2 2 −2 0 (1, 1) 0 −6 0 −2

(1, 1, 1) 0 0 0 2 2 −2 0 (3, 1) 0 2 0 −2

(1, 1, 1) 0 0 0 −2 2 −2 0 (3, 1) 0 −2 0 2

Table 6 The table displays all the massless sectors for which the
“would-be superpartners” are massive and do not form part of the mass-
less spectrum. The “would-be superpartners” arise from the sectors that

are obtained by adding the basis vector S to a given sector and are the
fermionic counterparts

F SEC (C; L; R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (3)H1,2 Q�̄1 Q8 Q9 Q�̄8

b α ± γ (1, 1, 1) −3 1 1 1 −2 0 −2 (1, 1) 2 −3 3 0

(1, 1, 1) −3 1 1 1 2 0 2 (1, 1) 2 −3 3 0

(1, 1, 1) −3 1 1 1 2 0 2 (1, 1) 2 −3 3 0

(1, 1, 1) −3 1 1 1 −2 0 −2 (1, 1) 2 −3 3 0

(1, 1, 1) 3 −1 −1 −1 −2 0 −2 (1, 1) −2 3 −3 0

(1, 1, 1) 3 −1 −1 −1 2 0 2 (1, 1) −2 3 −3 0

(1, 1, 1) 3 −1 −1 −1 2 0 2 (1, 1) −2 3 −3 0

(1, 1, 1) 3 −1 −1 −1 −2 0 −2 (1, 1) −2 3 −3 0

b β ± γ (1, 1, 1) −3 1 1 1 0 2 2 (1, 1) −2 −3 3 0

(1, 1, 1) −3 1 1 1 0 −2 −2 (1, 1) −2 −3 3 0

(1, 1, 1) −3 1 1 1 0 −2 −2 (1, 1) −2 −3 3 0

(1, 1, 1) −3 1 1 1 0 2 2 (1, 1) −2 −3 3 0

(1, 1, 1) 3 −1 −1 −1 0 2 2 (1, 1) 2 3 −3 0

(1, 1, 1) 3 −1 −1 −1 0 −2 −2 (1, 1) 2 3 −3 0

(1, 1, 1) 3 −1 −1 −1 0 −2 −2 (1, 1) 2 3 −3 0

(1, 1, 1) 3 −1 −1 −1 0 2 2 (1, 1) 2 3 −3 0

123
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Table 6 continued

F SEC (C; L; R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (3)H1,2 Q�̄1 Q8 Q9 Q�̄8

b 1 + b1 (1, 1, 1) −3 1 1 1 0 2 2 (1, 1) 0 3 −3 2

+b2 + b3 (1, 1, 1) −3 1 1 1 0 −2 −2 (1, 1) 0 3 −3 2

+β ± γ (1, 1, 1) −3 1 1 1 0 −2 −2 (1, 1) 0 3 −3 2

(1, 1, 1) −3 1 1 1 0 2 2 (1, 1) 0 3 −3 2

(1, 1, 1) 3 −1 −1 −1 0 2 2 (1, 1) 0 −3 3 −2

(1, 1, 1) 3 −1 −1 −1 0 −2 −2 (1, 1) 0 −3 3 −2

(1, 1, 1) 3 −1 −1 −1 0 −2 −2 (1, 1) 0 −3 3 −2

(1, 1, 1) 3 −1 −1 −1 0 2 2 (1, 1) 0 −3 3 −2

b 1 + b1 (1, 1, 1) −3 1 1 1 2 0 −2 (1, 1) 0 3 −3 −2

+b2 + b3 (1, 1, 1) −3 1 1 1 −2 0 2 (1, 1) 0 3 −3 −2

+α ± γ (1, 1, 1) −3 1 1 1 2 0 −2 (1, 1) 0 3 −3 −2

(1, 1, 1) −3 1 1 1 −2 0 2 (1, 1) 0 3 −3 −2

(1, 1, 1) 3 −1 −1 −1 2 0 −2 (1, 1) 0 −3 3 2

(1, 1, 1) 3 −1 −1 −1 −2 0 2 (1, 1) 0 −3 3 2

(1, 1, 1) 3 −1 −1 −1 2 0 −2 (1, 1) 0 −3 3 2

(1, 1, 1) 3 −1 −1 −1 −2 0 2 (1, 1) 0 −3 3 2

Table 7 Vector-like exotic states. All sectors, fermionic and bosonic, have CPT conjugates which are not displayed

F SEC (C; L; R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (3)H1,2 Q�̄1 Q8 Q9 Q�̄8

f S+ (1, 1, 1) −3 −3 −1 −1 0 0 0 (1, 1) −2 −3 3 0

b2 + b3 (1, 1, 1) −3 1 3 −1 0 0 0 (1, 1) −2 −3 3 0

+β ± γ (1, 1, 1) −3 1 −1 3 0 0 0 (1, 1) −2 −3 3 0

(1, 1, 1) 3 −1 1 1 0 0 0 (1, 3) −2 3 1 0

(1, 1, 1) 3 3 1 1 0 0 0 (1, 1) 2 3 −3 0

(1, 1, 1) 3 −1 −3 1 0 0 0 (1, 1) 2 3 −3 0

(1, 1, 1) 3 −1 1 −3 0 0 0 (1, 1) 2 3 −3 0

(1, 1, 1) −3 1 −1 −1 0 0 0 (1, 3) 2 −3 −1 0

b b2 + b3 (3, 1, 1) 1 1 −1 −1 0 0 0 (1, 1) −2 −3 3 0

+β ± γ (1, 1, 1) −3 1 −1 −1 0 0 0 (3, 1) 2 1 3 0

(3, 1, 1) −1 −1 1 1 0 0 0 (1, 1) 2 3 −3 0

(1, 1, 1) 3 −1 1 1 0 0 0 (3, 1) −2 −1 −3 0

f S+ (1, 1, 1) −3 3 1 −1 0 0 0 (1, 1) 2 −3 3 0

b1 + b3 (1, 1, 1) −3 −1 −3 −1 0 0 0 (1, 1) 2 −3 3 0

+α ± γ (1, 1, 1) −3 −1 1 3 0 0 0 (1, 1) 2 −3 3 0

(1, 1, 1) 3 1 −1 1 0 0 0 (1, 3) 2 3 1 0

(1, 1, 1) 3 −3 −1 1 0 0 0 (1, 1) −2 3 −3 0

(1, 1, 1) 3 1 3 1 0 0 0 (1, 1) −2 3 −3 0

(1, 1, 1) 3 1 −1 −3 0 0 0 (1, 1) −2 3 −3 0

(1, 1, 1) −3 −1 1 −1 0 0 0 (1, 3) −2 −3 −1 0

b b1 + b3 (3, 1, 1) 1 −1 1 −1 0 0 0 (1, 1) 2 −3 3 0

+α ± γ (1, 1, 1) −3 −1 1 −1 0 0 0 (3, 1) −2 1 3 0

(3, 1, 1) −1 1 −1 1 0 0 0 (1, 1) −2 3 −3 0

(1, 1, 1) 3 1 −1 1 0 0 0 (3, 1) 2 −1 −3 0

123
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Table 8 Vector-like exotic states. All sectors, fermionic and bosonic, have CPT conjugates which are not displayed

F SEC (C; L; R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (3)H1,2 Q�̄1 Q8 Q9 Q�̄8

f S+ (3, 1, 1) −3 −1 1 −1 0 0 0 (1, 1) 0 3 −3 −2

1 + b2 (1, 1, 1) 3 −1 1 −1 0 0 0 (1, 3) 0 3 3 2

+α ± γ (3, 1, 1) 3 1 −1 1 0 0 0 (1, 1) 0 −3 3 2

(1, 1, 1) −3 1 −1 1 0 0 0 (1, 3) 0 −3 −3 −2

b 1 + b2 (1, 1, 1) −3 3 1 −1 0 0 0 (1, 1) 0 3 −3 −2

+α ± γ (1, 1, 1) −3 −1 −3 −1 0 0 0 (1, 1) 0 3 −3 −2

(1, 1, 1) −3 −1 1 3 0 0 0 (1, 1) 0 3 −3 −2

(1, 1, 1) −3 −1 1 −1 0 0 0 (3, 1) 0 −3 −3 2

(1, 1, 1) 3 −3 −1 1 0 0 0 (1, 1) 0 −3 3 2

(1, 1, 1) 3 1 3 1 0 0 0 (1, 1) 0 −3 3 2

(1, 1, 1) 3 1 −1 −3 0 0 0 (1, 1) 0 −3 3 2

(1, 1, 1) 3 1 −1 1 0 0 0 (3, 1) 0 3 3 −2

f S+ (1, 1, 1) −3 −3 −1 −1 0 0 0 (1, 1) 0 3 −3 2

1 + b1 (1, 1, 1) −3 1 3 −1 0 0 0 (1, 1) 0 3 −3 2

+β ± γ (1, 1, 1) −3 1 −1 3 0 0 0 (1, 1) 0 3 −3 2

(1, 1, 1) −3 1 −1 −1 0 0 0 (3, 1) 0 −3 −3 −2

(1, 1, 1) 3 3 1 1 0 0 0 (1, 1) 0 −3 3 −2

(1, 1, 1) 3 −1 −3 1 0 0 0 (1, 1) 0 −3 3 −2

(1, 1, 1) 3 −1 1 −3 0 0 0 (1, 1) 0 −3 3 −2

(1, 1, 1) 3 −1 1 1 0 0 0 (3, 1) 0 3 3 2

b 1 + b1 (3, 1, 1) 3 1 −1 −1 0 0 0 (1, 1) 0 3 −3 2

+β ± γ (1, 1, 1) −3 1 −1 −1 0 0 0 (1, 3) 0 3 3 −2

(3, 1, 1) −3 −1 1 1 0 0 0 (1, 1) 0 −3 3 −2

(1, 1, 1) 3 −1 1 1 0 0 0 (1, 3) 0 −3 −3 2

Table 9 Vector-like exotic states. All sectors, fermionic and bosonic, have CPT conjugates which are not displayed

F SEC (C; L; R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (3)H1,2 Q�̄1 Q8 Q9 Q�̄8

f 1 + b2 (1, 2, 1) 0 0 −2 −2 2 0 0 (1, 1) −2 0 0 2

+b3 + 2γ (1, 2, 1) 0 0 −2 −2 −2 0 0 (1, 1) 2 0 0 −2

(1, 1, 2) 0 0 2 2 2 0 0 (1, 1) 2 0 0 −2

(1, 1, 2) 0 0 2 2 −2 0 0 (1, 1) −2 0 0 2

b S+ (1, 2, 1) 0 0 2 2 −2 0 0 (1, 1) −2 0 0 2

1 + b2 (1, 2, 1) 0 0 2 2 2 0 0 (1, 1) 2 0 0 −2

+b3 + 2γ (1, 1, 2) 0 0 −2 −2 −2 0 0 (1, 1) 2 0 0 −2

(1, 1, 2) 0 0 −2 −2 2 0 0 (1, 1) −2 0 0 2

f 1 + b1 (1, 2, 1) 0 −2 0 −2 0 2 0 (1, 1) −2 0 0 2

+b3 + 2γ (1, 2, 1) 0 −2 0 −2 0 −2 0 (1, 1) 2 0 0 −2

(1, 1, 2) 0 2 0 2 0 2 0 (1, 1) 2 0 0 −2

(1, 1, 2) 0 2 0 2 0 −2 0 (1, 1) −2 0 0 2

b S+ (1, 2, 1) 0 2 0 2 0 −2 0 (1, 1) −2 0 0 2

1 + b1 (1, 2, 1) 0 2 0 2 0 2 0 (1, 1) 2 0 0 −2

+b3 + 2γ (1, 1, 2) 0 −2 0 −2 0 −2 0 (1, 1) 2 0 0 −2

(1, 1, 2) 0 −2 0 −2 0 2 0 (1, 1) −2 0 0 2

123
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Table 9 continued

F SEC (C; L; R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (3)H1,2 Q�̄1 Q8 Q9 Q�̄8

f 1 + b1 (1, 2, 1) 0 −2 −2 0 0 0 2 (1, 1) −2 0 0 2

+b2 + 2γ (1, 2, 1) 0 −2 −2 0 0 0 −2 (1, 1) 2 0 0 −2

(1, 1, 2) 0 2 2 0 0 0 2 (1, 1) 2 0 0 −2

(1, 1, 2) 0 2 2 0 0 0 −2 (1, 1) −2 0 0 2

b S+ (1, 2, 1) 0 2 2 0 0 0 −2 (1, 1) −2 0 0 2

1 + b1 (1, 2, 1) 0 2 2 0 0 0 2 (1, 1) 2 0 0 −2

+b2 + 2γ (1, 1, 2) 0 −2 −2 0 0 0 −2 (1, 1) 2 0 0 −2

(1, 1, 2) 0 −2 −2 0 0 0 2 (1, 1) −2 0 0 2

f S+ (1, 1, 1) −6 0 0 −2 0 0 0 (1, 1) 2 0 0 2

1 + b3 (3, 1, 1) −2 0 0 2 0 0 0 (1, 1) −2 0 0 −2

+α + β (1, 1, 1) 6 0 0 2 0 0 0 (1, 1) −2 0 0 −2

+2γ (3, 1, 1) 2 0 0 −2 0 0 0 (1, 1) 2 0 0 2

b 1 + b3 (1, 1, 1) 6 0 0 2 0 0 0 (1, 1) −2 0 0 −2

+α + β (1, 1, 1) −6 0 0 −2 0 0 0 (1, 1) 2 0 0 2

+2γ (3, 1, 1) 2 0 0 −2 0 0 0 (1, 1) 2 0 0 2

(3, 1, 1) −2 0 0 2 0 0 0 (1, 1) −2 0 0 −2
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