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Abstract We argue that the secondaries produced in high-
energy hadron collisions are emitted by small-size sources
distributed over a much larger area in impact parameter
space occupied by the interaction amplitude. That is, Bose–
Einstein correlation of two emitted identical particles should
be described by a ‘two-radii’ parametrisation ansatz. We dis-
cuss the expected energy, charged multiplicity and transverse
momentum of the pair (that is,

√
s, Nch, kt ) behaviour of both

the small and the large size components.

1 Introduction

An effective tool to study the space-time structure of the pro-
duction amplitude is to measure the Bose–Einstein correla-
tions (BEC) between two identical particles produced in the
inclusive hadron interaction; see, for example, [1–7]. Con-
sider the situation where we have one pion with momentum
p1 emitted at point r1 and another identical pion with p2 and
r2. The inclusive cross section for the two identical particles
takes the form

E1E2d2σ

d3 p1d3 p2
= 1

2! |M |2〈2 + 2eir Q〉 = |M |2 〈1 + eir Q〉,
(1)

where M is the production amplitude, and where we have
the 4-vectors Q = p2 − p1 and r = r1 − r2. The 〈...〉
denote the averaging over r1 and r2, The eir Q term is due
to the permutation of the identical pions; that is, it allows
for the pion with p2 to be emitted from the point r1 and
simultaneously for p1 from r2. As a rule the Q dependence
of the amplitude M is relatively flat in comparison with the Q
dependence of eir Q . Thus we are able to evaluate the size of
the pion production domain by studying the Q dependence
of the whole cross section d2σ .
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To extract the effect we compare the measured Q spectrum
with a similar one but without BEC. To be precise we form
the ratio

R(Q) = dN/dQ − dNref/dQ

dNref/dQ
(2)

where dN/dQ is the two pion distribution integrated over
all the variables except Q, and dNref/dQ is the distribution
expected in a world without BEC. There are different ways to
choose dNref/dQ. We may measure the π+π− distribution
for non-identical pions; or we may change the sign of the
three momentum of the second pion �p2 → − �p2; and so on.
None of these approaches compensates for the Q dependence
of M completely; but for the conventional ‘one-radius’ fit

R(Q) = λe−r̄ Q (3)

the different values of the mean radius,1 r̄ , extracted from the
data are close to each other. Such analyses of high-energy
proton–proton interactions at the LHC have been performed
by ATLAS [8], CMS [9] and ALICE [10]. For an analysis of
lower energy data see, for example, the review in Ref. [7]

The problem is that the value of λ turns out to be less than
1. In particular, CMS claim λ = 0.62 ± 0.01 [9]. On the
other hand from (2) we expect R(Q = 0) = 1. Moreover,
it is clear from Fig. 1 of [9], and the analogous plots of the
other groups, that the fit does not describe the very low Q data
points. This indicates that there should be another component
of R(Q) with a larger radius populating the region of small
Q.

In the present paper we argue that the expected structure
of the pion emission domain is highly inhomogeneous. We
should consider small size pion sources distributed in the
much larger area of the proton–proton interaction. That is,
we are led to parametrise R(Q) by two different mean radii.
We explain the physical origin of this situation below.

1 The ‘mean’ radius, r̄ , is such that e−r̄ Q approximates the value of
eir Q averaged over r1 and r2.
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Fig. 1 a The ladder diagram for one-pomeron exchange, b cutting
one-pomeron exchange leads to the multiperipheral chain of final state
particles, c a multipomeron exchange diagram

2 Mechanisms for multiparticle production

It was shown long ago that to describe a high energy (say,
proton–proton) interaction it is convenient to first select the
subset of diagrams which provides the interaction across a
large rapidity gap, and whose contribution does not decrease
when the rapidity separation increases [11]. The resulting
ladder-like set of diagrams forms Reggeon exchange. In
terms of the hadronic degrees of freedom the corresponding
subset of diagrams—called multiperipheral ladder diagrams
(Fig. 1a)—was studied first by Amati et al. [12]. In terms
of QCD2 they form the BFKL pomeron [15]. In a general
purpose Monte Carlo these are the diagrams for the DGLAP
evolution amplitude. To be precise, in a Monte Carlo we
do not simulate the elastic scattering amplitude, but rather
the cross section of multiparticle production which can be
viewed as the ‘cut’ of the amplitude shown in Fig. 1b. Besides
one-ladder (one-pomeron) exchange there are more compli-
cated multipomeron diagrams generated by unitarity [11],
like those in Fig. 1c. In terms of the amplitude these diagrams
describe the screening corrections to the one-pomeron con-
tribution. If we simultaneously cut a few ladders (pomerons),
say nP , in such diagrams, then we obtain a cross section in
which the density of the secondaries is nP times larger than
that produced by cutting a single ladder [16]. In a Monte
Carlo this is called the Multiple Interaction (MI) option.3

Already at this stage we observe two quite different scales.
The slope, Bel, of elastic proton–proton scattering is usually
parametrised in the form

Bel(s) = B0 + 2α′
P ln(s/s0), (4)

where the constant B0 is driven by the size of an incoming
proton. On the other hand, the value of α′

P reflects the internal
transverse size of the ladder. Based on the pre-LHC data,

2 For simple discussions of the transfer from hadronic to QCD ladders
see the appendix of [13], and [14].
3 For simplicity, we do not consider here the possibility of pomeron–
pomeron interactions or the splitting of one ladder into two ladders
(and/or the fusion of two ladders into one ladder). This does not change
our qualitative conclusion, particularly as the corresponding couplings
are rather small.

typical numbers are B0 ∼ 10 GeV−2 and α′
P ∼ 0.25 GeV−2

[17,18].
Strictly speaking, (4) corresponds to one-ladder exchange

and not to the experimentally observed slope of the elastic
cross section. The absorptive corrections described by the
multi-ladder diagrams Fig. 1c speed up the shrinkage of the
diffractive cone. Indeed, the screening is stronger in the cen-
tre of the disk (that is, at small impact parameters where
the one-ladder contribution is larger) than at the periphery.
Therefore the mean radius of the full amplitude becomes
larger than that caused by one-pomeron exchange. Since the
probability of interaction increases with energy at high ener-
gies this effect becomes more important and more visible.

Asymptotically, we reach the black disc limit, where the
total cross section grows as ln2s and the slope Bel(s) also
increases as ln2s. It was shown [19] that indeed the high-
energy LHC data indicate the presence of a ln2s component
in the elastic slope which is consistent with the growth of the
total cross section. Thus the radius of the whole amplitude
slowly increases with energy. However, this is not true for the
radius of an individual ladder. Within the old multiperipheral
model(s), where the value of mean transverse momentum was
limited, this radius (that is, the value of α′

P ) does not depend
on energy. On the other hand, QCD is a logarithmic theory
and here the value of α′

P slowly decreases with energy due
to the larger available kt space. Indeed, it is well known that
α′
P → 0 in the BFKL case.

Another example is the Monte Carlo description of multi-
particle production. In order to tune the generator to describe
the high-energy data one has to introduce an infrared cutoff,
kmin
t whose value grows as s0.12 [20]—that is, the transverse

size of the ladder decreases. Recall that actually kmin
t acts as

the cutoff in the ‘hard’ matrix element and not in the whole
ladder. However, since the DGLAP ladder describes the evo-
lution starting from some relatively large hadron size up to
the scale (i.e. the inverse size) of the hard matrix element,
the mean transverse momenta of secondaries produced by
such a ladder also increases with the growth of the ‘hard’
scale driven by kmin

t (s). Thus the mean transverse size of the
ladder decreases.

The resulting picture therefore looks as follows. The inter-
action of high-energy protons is described by diagrams like
Fig. 1c in which the size of each individual ladder is rather
small (as seen from the small value of α′

P ). Yet the separation
between the ladders is of the order of the radius of the inter-
action amplitude, which should be correlated with the total
value of Bel(s). With increasing energy we expect the trans-
verse size of an individual ladder (measured in the central
rapidity interval) will decrease (as indicated by the behaviour
of kmin

t (s)). On the other hand the separation between the lad-
ders is expected to increase, as indicated by the behaviour of
Bel(s).

123



Eur. Phys. J. C (2016) 76 :193 Page 3 of 5 193

3 Two components in Bose–Einstein correlations

Having the above picture in mind, we expect in BEC to
observe a new object—a small-size pion source. In other
words, BEC should be described by two different radii.4 One
radius corresponds to the case when both pions are emitted
from the same ladder—this will measure the size of an indi-
vidual ‘pomeron’. Since the pion is not a point-like object the
radius will be smeared out by fluctuations in the process of
the formation of the pions. The second radius will correspond
to the pions being emitted from two different ladders—it is
a measure of the separation between the ladders. Therefore
we propose to fit the observed correlation R(Q) by a formula
with two different mean radii5

R(Q) = λ e−r̄1Q + (1 − λ) e−r̄2Q, (5)

which better reflects the complicated structure of the pion
emission domain. In the ideal case we expect the low mul-
tiplicity events to be produced via a diagram with only one
‘cut’ pomeron exchange (Fig. 1b). In general there may be
more pomerons in the whole amplitude, but only one lad-
der radiates the secondaries. As the multiplicity becomes
larger the secondaries are mainly emitted from a few dif-
ferent ladders, and the probability to find the two identical
pions originating from the same pomeron decreases. That is,
we expect the relative contribution λ of the large component
(described by, say, r̄1) to increase with Nch, while on the
other hand, the strength of the small-size component (1 −λ)

decreases. Unfortunately we cannot predict that λ → 0 as
Nch → 0, and that λ → 1 for very large Nch. The situation is
complicated by the strong fluctuations of the number of sec-

4 The fact that high-energy hadron interactions should be described by
a few different radii is not new. In particular, in [21] it was shown that
the component where two pions are radiated from two different ladders
should be described by another radius than that for the case with two
pions from the same ladder. Moreover, pions coming from the decay of
a narrow resonance with small width, �tot , will be produced at larger
distances ∼1/�tot and thus correspond to a larger radius. The role of
multipomeron diagrams in long-range rapidity correlations was con-
sidered, for example, in [22] for high multiplicity events at CERN-ISR
energies, while in [23,24] nuclear–nuclear collisions were discussed.
It was shown that the transverse radius is driven by the radius of the
smaller nucleus. On the other hand, the longitudinal radius is deter-
mined by the hadronic longitudinal size. The presence of two different
radii and the fact that the size of the source of secondary gluons is much
smaller than the proton radius was considered also in [25] for the case
of pA collisions. However, until now no analysis of BEC with two dif-
ferent transverse radii was performed for high-energy proton–proton
collisions. We hope that the very high statistics available at the LHC
will allow a study BEC in relatively small bins of �Nch ∼ 10–20 with
pion mean transverse momenta of �kt ∼ 200 MeV (see Sect. 4) so that
we can observe the predicted effect.
5 Instead of the linear exponents, as in (5), other parametric forms may
be considered for each term. For example, the second term may be a
Gaussian, e−(r̄2Q)2

. The choice should be based on statistical criteria or
on the relative strength of the two terms.

ondaries in each ladder (or pomeron). Recall that actually we
do not measure the total charged multiplicity of an event, but
rather the number of secondaries in a limited central rapidity
interval (like |η| < 2.5 in the case of ATLAS and CMS).
Then the multiplicity corresponding to one pomeron is rel-
atively small (Nch ∼ 4) and the fluctuations strongly wash
out the relation between the measured values and the number
of cut pomerons. Moreover, for very low Nch we may sam-
ple contributions from diffractive dissociation which have
a qualitatively different structure. Nevertheless at large Nch

the multipomeron contribution dominates; that is BEC are
driven mainly by the component with the largest radius, r̄1.
Indeed it is seen in Fig. 3b of [8] that, in the one radius fit, (3),
the radius increases with multiplicity reaching saturation of
r̄ 	 2 fm for Nch

>∼ 50.
Such saturation was predicted in [26], where it was

explained that the radius measured in a one-radius fit, is
driven, not by the initial energy, but mainly by the number of
cut pomerons, nP ∝ Nch.6 Indeed, the radius of the individ-
ual pomeron depends weakly on energy (α′

P 	 const.), while
the number of cut pomerons observed in the event (that is the
separated pion sources) is proportional to Nch. So the proba-
bility to have two identical pions from two different sources
increases with Nch. When n p = 1 (at low Nch) we observe
one pomeron and measure its radius. On the other hand, for
large Nch we study the separation between the pomerons
and the value of r̄ is saturated at the radius of the inter-
action amplitude r̄ ∝ √

Bel(s). It was shown in [26] that
Bel ∼ 20 GeV−2 [29] corresponds in a ‘one-radius’ fit to
r̄ = 2.2 fm, which is in good agreement with Fig. 3b of the
ATLAS fit [8].

We emphasise that the separation between the pomerons
(the pion sources) is not equal to the incoming hadron (pro-
ton) radius. First note, the radius corresponding to the inter-
action amplitude is larger. It increases with energy. Recall
that in each successive step of the ladder in Fig. 1 the impact
parameter changes by �bt . This leads to a diffusion in bt ,
which results in the second (or α′

p) term in the equation for
the elastic slope, (4). Next, the pion is not a point-like particle
and its formation also occupies some volume. Finally, there
may be an interaction between the final state secondaries.

Strictly speaking the picture that we describe above cor-
responds to the initial stage of the interaction, and does not
allow for possible final state rescattering. If there are final
state interactions (either in terms of a hadron gas or a quark–

6 This behaviour was first observed by the UA1 group. It was shown
in Fig. 4 of [27,28] that the radius and the ‘incoherence parameter’ λ

(as measured by BEC in a one-scale Gaussian fit) did not depend on
energy in the

√
s = 200–900 GeV interval within the error bars. Rather

they depend strongly on the particle density, that is on the number of cut
pomerons. Note also that the value of λ observed in this experiment was
rather low, λ = 0.15–0.4, indicating the presence of a second component
with another radius.
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gluon plasma) then BEC will measure the radius given by
the point of the last interaction—that is, the domain occu-
pied by secondaries is extended up to the stage where the
particle density becomes so low that further interaction is
very unlikely, and the size of the domain at which the last
interaction occurs will be seen in BEC. The probability of
final state rescattering increases with particle density Nch. If
this contribution were to dominate, then it is natural to expect
r̄ ∝ (Nch)

1/3. However, the data of Fig. 3b of [8] do not show
any evidence of such a behaviour for large Nch.

So what are the expectations of the ‘two-radii’ fit? The
contribution of a small radius dominates at low Nch and
decreases with increasing Nch [26]. The value of the small
radius, r̄2, is almost independent of energy—there is a small
tendency to decrease due to a larger kt in the ladder (see,
for example [30]). On the other hand, the strength of the r̄1

component increases with Nch—the value of the radius, r̄1,
correlated with Bel (that is, the radius of interaction of the
incoming protons) slowly increases with energy. At asymp-
totic energies we expect Bel ∝ ln2s. A tendency already seen
in LHC data [19]. Therefore for s → ∞ we expect r̄1 ∝ c lns.
However, the coefficient c is numerically quite small.

For very large Nch the value or r̄1 may additionally
increase due to the final state rescattering, as was discussed
above. However, it is not seen in the 7 TeV pp collision data.

4 The kt dependence of BEC

Here we discuss the dependence of the radii, r̄1, r̄2, on
the transverse momentum of the identical pair, kt = (p1 +
p2)t/2, First, we make a trivial remark—for larger kt we have
better space resolution in implementing the BEC method. At
low kt it may be hard to distinguish between r̄1 and r̄2 com-
ponents, since the radii r̄1 and r̄2 will be larger than that
measured at large kt due to uncertainty principle smearing,
and thus will be closer to each other.

Recall that the probability to produce two large kt pions
from different ladders (pomerons) decreases with increas-
ing kt as the single particle inclusive cross section decreases
steeply with kt . That is, two identical pions, each with large
kt , should be produced from the same large kt jet. So with
increasing kt of the pair we expect a large contribution from
the r̄2 component with the value of r̄2 decreasing, reaching
saturation corresponding to the jet size. To be more precise,
we mean the size of pion formation due to the hadronisation
of large kt jets. This tendency of r̄ to decrease with increas-
ing kt was indeed observed in a ‘one-radii’ fit of LHC data;
see Figs. 5 and 6 of [8]. However, the value of kt was not
sufficiently large to see saturation in these plots.

Another effect at very large kt , which may give an impor-
tant contribution to large Nch events, concerns the multiplic-
ity of jets which increase as exp(−c

√
lnET ); see, for exam-

ple, [31,32]. However, the high ET jet cross section is too
small to identify this effect in the present data.

5 Conclusions

We emphasise that the dynamics of high-energy hadron inter-
actions is based on subamplitudes of small transverse size
which are distributed over the whole domain occupied by the
full interaction amplitude. Thus, in BEC we have to observe a
small-size object corresponding to the emission of both pions
(or both kaons etc.) from a single subamplitude and a larger
radius caused by events where the pions are produced from
different subamplitudes. At large Nch the relative contribu-
tion of the large radius component increases. Enlarging the
kt of the identical pion pair we improve the space resolution
of the BEC analyser. This allows for a better separation of
the contributions from the small and large radii components.
When kt becomes too large (say, kt >∼ 1 GeV) the probability
to produce such large kt pions from two different subampli-
tudes becomes small. In this case BEC measures the radius
of the ‘jet’ which emits this high kt pair of identical pions.
That is, we expect the radius to decrease with increasing kt ,
reaching saturation for kt >∼ 1 GeV.
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