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Abstract In this paper, we investigate various f (R)-brane
models and compare their gravitational resonance structures
with the corresponding general relativity (GR)-branes. Start-
ing from some known GR-brane solutions, we derive thick
f (R)-brane solutions such that the metric, scalar field, and
scalar potential coincide with those of the corresponding GR-
branes.We find that for the branes generated by a single or
several canonical scalar fields, there is no obvious distinction
between the GR-branes and the corresponding f (R)-branes
in terms of gravitational resonance structure. Then we discuss
the branes generated by a K-field. In this case, there could
exist huge differences between GR-branes and f (R)-branes.

1 Introduction

Since general relativity (GR) was established by Einstein in
1915, a wide range of new theories of gravity have been pro-
posed in the past 100 years. The simplest way to modify GR
is to enlarge the dimensions of the space-time. The Kaluza–
Klein (KK) theory as one of the pioneering five-dimensional
space-time theories was proposed to unify electromagnetism
with GR in the 1920s by Kaluza and Klein [1,2]. In order to
generate effective four-dimensional theories, the extra spa-
tial dimensions in the KK types of theories are assumed to be
compacted to the Planck scale. About 60 years later, physi-
cists found that if our world is some kind of four-dimensional
domain wall in a higher-dimensional space-time, then the
matter fields can be dynamically trapped on the wall. As a
consequence, our world is effectively four-dimensional, even
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for infinite extra dimensions [3–7]. String theory also predicts
the existence of TeV scale extra dimensions [8].

But what really triggered the modern revolution of extra
dimension theories is the work done by Arkani-Hamed,
Dimopoulos, and Dvali (ADD) [9], which provides an alter-
native solution to the gauge hierarchy problem. The idea of
ADD model is that all the matter fields are confined on a four-
dimensional brane embedded in a higher-dimensional space-
time, while gravity can propagate in the bulk. In ADD model,
the fundamental scale is assumed to be the electroweak scale
M∗ = mEW ∼ 1 TeV, and the large hierarchy between the
Planck scale MPl and the fundamental scale is ascribed to the
large volume of the extra dimensions. Due to the compactifi-
cation of the extra dimensions, the four-dimensional Newton
law appears at a distance much larger than the radius of the
extra dimensions.

Soon after the ADD model, Randall and Sundrum (RS)
found that by using a nonfactorizable warped geometry,
one can also solve the hierarchy problem [10]. More inter-
estingly, they have shown that it is possible to generate
the four-dimensional Newtonian law at large distances in
a warped space-time even when the extra dimension is
infinitely large [11]. Now, these two models are known as RS-
I and RS-II models, respectively. In the RS-II model, the four-
dimensional Newtonian law is generated by a gravitational
zero mode localized near the brane. Later, Gregory, Rubakov,
and Sibiryakov (the GRS model) [12] have shown that four-
dimensional gravity can also be reproduced at an intermedi-
ate scale even without a localizable gravitational zero mode.
In fact, the four-dimensional Newtonian gravity is generated
by a quasilocalized graviton (or gravitational resonance) in
the GRS model [13,14]. The GRS model also shed light on
solving the cosmological constant problem [14,15]. But on
the other hand, it suffers from problems such as violating the
positivity of energy and containing ghost modes [14–19].

Another interesting and widely studied model which
reproduces four-dimensional Newton’s law at intermediate
scale is the DGP model proposed by Dvali, Gabadadze, and

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-4039-3&domain=pdf
mailto:yuh13@lzu.edu.cn
mailto:zhongy2009@lzu.edu.cn
mailto:gubm09@lzu.edu.cn
mailto:liuyx@lzu.edu.cn


195 Page 2 of 13 Eur. Phys. J. C (2016) 76 :195

Porrati [20]. The DGP model offers us a new way to under-
stand the acceleration of the universe [21]. It is interesting
to note that in higher-dimensional realization of the DGP
model, the four-dimensional Newtonian gravity is repro-
duced by massive graviton resonances [22–24]. In addition
to the GRS and DGP models where the bulk is asymp-
totically flat, some works have considered graviton reso-
nances in asymptotical AdS5 space [25–28]. Gravitational
resonance also appears in other topics of gravity research.
For instance, in black hole perturbation theory it is possible
to find gravitational resonances which are known as quasinor-
mal modes [29]. No doubt, gravitational resonances deserve
further consideration.

In this paper we focus on the appearance of gravitational
resonances in thick RS-II type brane models, where the
branes can be generated by, for example, a single canoni-
cal scalar field in an AdS5 space [30–33] (more complicated
thick brane models can be found in [34]). The possibility of
the existence of gravitational resonances in thick brane mod-
els was first pointed out in Ref. [31]. But unfortunately, the
solution therein does not support any gravitational resonance.
In thick brane models constructed in general relativity, gravi-
tational resonances can be found in cases with either a single
canonical background scalar field [35,36], or two canoni-
cal scalar fields (the Bloch brane [37]) [38,39], or a single
noncanonical scalar field (also known as K-field [40–42];
see [43–48] for thick branes generated by K-fields) [49].

However, the spectrum of graviton is determined by the
equation of the gravitational mode (the spin-2 transverse
and traceless tensor modes of the metric perturbations [11]).
In general relativity, the equation of the gravitational mode
is independent from the background scalar fields and only
depends on the warp factor. But this is not always true in
modified gravity theories. Thus, in order to find gravitational
resonances, it is interesting to go beyond general relativity.
For example, it is possible to find gravitational resonances in
thick brane models in scalar-tensor gravity [50].

Another simply modified gravity is f (R) gravity, where
the Lagrangian of gravity is an arbitrary function of the
scalar curvature. f (R) gravity was first introduced in cos-
mology in 1970 [51], and nowadays it has been applied in
a wide range of cosmology studies [52–59] (see [60–62] for
reviews, and [48,63–76] for f (R) braneworld). The gravi-
ton equations for a class of thick f (R)-brane models were
derived in Ref. [77]. It is shown that the graviton equations
are determined by both the background solution and the func-
tion f (R). Using the results of Ref. [77], some of us found
a series of gravitational resonances in Ref. [78], where the
gravity Lagrangian density is f (R) = R + αR2, and the
brane is generated by a single canonical scalar field. How-
ever, there exist some singularities in the model of [78].

The aim of this paper is to construct thick f (R)-brane
models which support gravitational resonances but are free

of singularities. By starting with some well-studied GR-brane
solutions, we construct new f (R)-brane solutions (either
analytically or numerically) such that the metric and the
scalar configuration remain the same. Then we compare the
gravitational resonance spectra between our f (R)-branes
and the corresponding GR-branes. Since gravitons satisfy
different equations in different gravity theories, there might
be some differences in the resonance spectra.

Note that in addition to the tensor modes, there are also
spin-1 vector modes and spin-0 scalar modes. These modes
evolve independently, no matter the thick brane is constructed
in general relativity [79–83], or in f (R) gravity [65,84]. The
gravitational resonances only relate to the tensor sector. Usu-
ally, the vector modes only contain a nonnormalizable zero
mode and therefore can be neglected when one only consid-
ers static sources [79,80,83,84]. The scalar sector will also
contribute to the four-dimensional Newtonian gravity [82].
However, for f (R)-brane generated by a background scalar
field, the scalar sector of the linear perturbations has two
degrees of freedom after fixing the gauge. In general, these
two scalar modes are governed by two coupled second-order
differential equations, which are too complicated to be con-
sidered here and deserve an independent work elsewhere.

In our first f (R)-brane model, we briefly discuss the sim-
ilar model considered in Ref. [78] and add the condition
fR = d f (R)/dR > 0, which guarantees that the gravi-
ton is not a ghost and the normalization of the zero mode.
In this model, we find that there is nothing special about
gravitational resonances in f (R)-brane model in contrast to
GR-brane model. In order to get a different behavior, natu-
rally, one can generalize this model to the case with multiple
scalar fields. Based on this motivation, we study the brane
generated by two scalar fields in second model and we obtain
similar results as the case with a single scalar field. Our results
show that for the brane generated by a canonical scalar field
(there is no gravitational resonance) or two canonical scalar
fields (there are gravitational resonances), there is no strik-
ing difference between f (R)-brane and GR-brane in terms
of gravitational resonance. Under the circumstances, non-
canonical scalar fields may be a breakthrough. In our third
f (R)-brane model, indeed, we find that even for the case
with only one single noncanonical scalar field, gravitational
resonances on f (R)-brane can be significantly different from
the GR-brane.

Therefore our work is organized as follows. In Sect. 2,
we review the tensor perturbations of f (R)-brane and the
condition of normalizable zero mode. In Sect. 3, we con-
struct some thick f (R)-brane models in cases with, first, a
single canonical scalar, and then two canonical scalars, and
finally a single noncanonical scalar field or K-field. These
f (R)-brane models are all based on the corresponding GR-
models which have been extensively studied in the literature.
Then we compare, via both analytical and numerical meth-
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ods, gravitational resonances between our f (R)-branes and
the corresponding GR-branes. In Sect. 4, we analyze how the
f (R)-brane models impact gravitational resonances. Finally,
in Sect. 5, we come to the conclusions and discussions.

2 Tensor perturbations of f (R)-brane

Now we consider the five-dimensional f (R)-brane model.
Our action is taken in the general form

S =
∫

d4xdy
√−g

(
1

2κ2
5

f (R) + L(φi , Xi )

)
, (1)

where f (R) is an arbitrary function of the scalar curvature R
and κ2

5 = 8πG5 with G5 the five-dimensional Newton con-
stant. For convenience, we take κ2

5 = 2. Capital Latin indices
M, N , . . . = 0, 1, 2, 3, 4 denote the bulk coordinates, and
Greek indices μ, ν, . . . = 0, 1, 2, 3 denote the brane coordi-
nates. The coordinate y = x4 stands for the extra dimension.
φi is the i th scalar field, and its kinetic term Xi is given by

Xi = −1

2
∂Mφi∂Mφi . (2)

We consider a static flat brane, for which the line element
can be written as

ds2 = a2(y)ημνdxμdxν + dy2, (3)

where a2(y) = e2A(y) is the warp factor, and ημν is the
induced metric on the brane. For this background space-time,
the scalar fields only depend on the extra dimension, i.e.,
φi = φi (y). The scalar curvature is given by

R(y) = −4(5A′2 + 2A′′). (4)

In this paper the prime denotes the derivative with respect
to y. The Einstein equations and the equations of motion for
the scalar fields are

f + 2 fR
(

4A′2 + A′′)− 6 f ′
R A

′ − 2 f ′′
R + 4L = 0, (5a)

f + 8 fR
(
A′′ + A′2)− 8 f ′

R A
′

+4
∑
i

L Xi φ
′2
i + 4L = 0, (5b)

and

φ′′
i (LXi +2Xi LXi Xi )+Lφi =2Xi LXiφi −4LXi φ

′
i A

′, (6)

respectively, where LXi ≡ ∂L/∂Xi , Lφi ≡ ∂L/∂φi , and
fR ≡ d f (R)/dR.

In this paper, we only consider the minimal coupling
between φi and Xi . Therefore, the Lagrangian density
L(φi , Xi ) is given by

L(φi , Xi ) =
∑
i

[
F(Xi ) − V (φi )

]
, (7)

where F(Xi ) is an arbitrary function of Xi , and V (φi ) is the
scalar potential of the scalar field φi .

Next, we consider the tensor perturbations of the back-
ground metric (3):

ds2 = e2A(y)(ημν + hμν)dx
μdxν + dy2, (8)

where hμν satisfies the transverse and traceless (TT) condi-
tions ημνhμν = 0 = ∂μh

μ
ν . With the coordinate transfor-

mation dz = a−1dy, the perturbed Einstein equations read
[77][

∂2
z +

(
3
∂za

a
+ ∂z fR

fR

)
∂z + �(4)

]
hμν = 0, (9)

where �(4) = ημν∂μ∂ν . Note that although in Ref. [77] only
one scalar field with canonical dynamics was considered,
Eq. (9) remains valid for our case because the TT tensor
modes are decoupled from other modes of the perturbations.
Then, with the KK decomposition [77]

hμν(x
ρ, z) = εμν(x

ρ)a−3/2 f −1/2
R ψ(z), (10)

where εμν(xρ) satisfies the TT conditions ημνεμν = 0 =
∂με

μ
ν , Eq. (9) can be simplified as a Schrödinger-like equation

for ψ(z) [77]:[
−∂2

z + W (z)
]
ψ(z) = m2ψ(z). (11)

Here the effective potential W (z) is given by [77]

W (z) = 3

4

(∂za)2

a2 + 3

2

∂2
z a

a
+ 3

2

∂za∂z fR
a fR

−1

4

(∂z fR
fR

)2 + 1

2

∂2
z fR
fR

. (12)

In the next section we will discuss the effective potential
W (z(y)) in the coordinate y. Using the relation ∂z = a ∂y ,
Eq. (12) can be rewritten in the coordinate y:

W (z(y)) = 3

4
a′2 + 3

2
(a′2 + aa′′) + 3aa′

2

f ′
R

fR

−1

4

(a f ′
R

fR

)2 + 1

2

aa′ f ′
R + a2 f ′′

R

fR
. (13)

From the Schrödinger-like equation (11), it is easy to give
the solution of the gravitational zero mode

ψ(0)(z) = N0a
3/2(z) f 1/2

R (z), (14)

where N0 is the normalization constant. To get four-
dimensional Newtonian gravity on the brane, the zero mode
should satisfy the following normalization condition:∫ ∞

−∞
|ψ(0)(z)|2dz < ∞. (15)

Apparently, in order to ensure the normalization of the zero
mode, fR should satisfy fR > 0 in the whole space, which
also guarantees that the graviton is not a ghost [61].
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3 Gravity resonances in various f (R)-brane models

In this section we study braneworld solutions and gravita-
tional resonances in three types of thick f (R)-brane models.
In our first model, the brane is generated by a single canoni-
cal scalar field, which is one of the most widely studied thick
brane models. Next, we consider the brane generated by two
canonical scalar fields (known as the Bloch brane) in the sec-
ond model. The main property of the Bloch brane is that the
brane is split into two sub-branes. Finally, we study the brane
generated by a K-field, whose most important feature is that
its kinetic term is noncanonical, which will produce some
different results compared to the previous two cases.

3.1 f (R)-brane model with L = X − V (φ)

First of all, we study the f (R)-brane generated by a sin-
gle canonical scalar field, whose Lagrangian density reads
L = X − V (φ) = − 1

2∂Mφ∂Mφ − V (φ). This kind of
f (R)-brane model is one of the simplest and the most widely
studied models. Therefore, one reason why we study it is to
review and illustrate the research processes of gravitational
resonances on f (R)-brane. The second and also more impor-
tant reason is to give a direct comparison with our third model
generated by a single noncanonical scalar field. The dynam-
ical equations (5) and (6) become

f + 2 fR
(

4A′2 + A′′)− 6 f ′
R A

′−2 f ′′
R = 2(φ′2 + 2V ),

(16a)

−8 fR
(
A′′ + A′2)+ 8 f ′

R A
′ − f = 2(φ′2 − 2V ), (16b)

φ′′ + 4A′φ′ = Vφ. (16c)

For the case of f (R) = R, we consider the solution given
in [31]:

φ(y) = √
6b arctan

[
tanh

(
ky

2

)]
, (17a)

A(y) = −b ln [cosh(ky)] , (17b)

V (φ) = 3bk2

8

[
(1 − 4b) + (1 + 4b) cos

(√
8

3b
φ

)]
,

(17c)

where b and k are positive parameters. For convenience, we
set ŷ = ky in the next content, which is a dimensionless
parameter.

Now we construct the f (R)-brane model that shares the
same background solution (17a) of the GR-brane. Keeping
the above background solution of the GR-brane unchanged,
and incorporating Eqs. (16a) and (16b), the function fR
should satisfy

− f̈ R + ḟ R Ȧ − 3 fR Ä = 2φ̇2 ≥ 0, (18)

where Ȧ = −b tanh(ŷ), Ä = −b sech2(ŷ), φ̇2 =
3
2b sech2(ŷ), and the dot denotes the derivative with respect
to ŷ.

It is interesting to give the explicit expressions for fR
and f (R). The procedures are described as follows. First,
we solve Eq. (18) to give the analytic solution for fR as a
function of ŷ:

fR =1+αsech
b
2 (ŷ)

[
P

b
2
K−
(

tanh(ŷ)
)−βQ

b
2
K−
(

tanh(ŷ)
)]

,

(19)

where α is an arbitrary constant, P and Q are, respectively,
associated Legendre functions of the first and second kinds,
β = Pb/2

K+ (0)/Qb/2
K+ (0) is given by the condition ḟ R |ŷ=0 =

0, and K± = 1
2

√
(b − 14)b + 1 ± 1/2. Second, we define

R̂ ≡ R
k2 = 4b

[
(5b + 2)sech2(ŷ) − 5b

]
, which is obtained

from Eqs. (4) and (17b), to give the expression of ŷ in terms
of the curvature scalar R̂:

ŷ = arccosh

(
2
√

2b + 5b2√
20b2 + R̂

)
. (20)

Thirdly, defining f̂ ≡ f/k2, which results in f̂ R̂ = fR , and

substituting ŷ(R̂) into (19) yield the expression of f̂ R̂ as

a function of R̂. Finally, integrating f̂ R̂ with respect to R̂

gives the expression of f̂ (R̂). In the following, we will first
consider some special values of the parameter b, which will
result in some simple solutions of f̂ (R̂), and then general b.

3.1.1 b = 1

For the case of b = 1, we obtain the following solution:

f̂ R̂ = 1 + α1 cos
(
H(R̂)

)
, (21)

where H(R̂) is given by

H(R̂) = √
3 ln

(√
R̂ − 8 +

√
R̂ + 20

2
√

7

)
. (22)

Note that f̂ R̂ satisfies f̂ R̂ |ŷ=0 = 1 + α1. Then the function

f̂ (R̂) can be integrated from Eq. (21) as

f̂ (R̂) = R̂ + 2α1

7

[
2(R̂ + 6) cos

(
H(R̂)

)

+
√

3(R̂ − 8)(R̂ + 20) sin
(
H(R̂)

) ]
, (23)

where the integration constant is absorbed into the scalar
potential V (φ).
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Table 1 The values of the parameters ci in Eq. (24)

ci Value

c1
240936850868416
149442323051763

c2 − 38202658243
16604702561307

c3
2065663433

4605037510335808

c4 − 18231247
3831391208599392256

c5 − 351657
3187717485554694356992

c6 − 6507
2652180947981505705017344

c7 − 459
15446301841044289226021011456

3.1.2 b = 52
3

For the special case of b = 52
3 , we have

f̂ (R̂) = R̂ + α2

7∑
n=1

cn R̂
n, (24)

where the values of the coefficients ci are given in Table 1.
The advantage of taking those values is that we can guarantee
f̂ R̂ |ŷ=0 = 1 + α2, which is similar to the case b = 1.

3.1.3 The general b

For general b, Eqs. (19) and (20) give the solution of f̂ R̂ ,
which is a complex expression. In this case, we can give the
analytic f̂ (R̂) from Eqs. (19), (20), and (16a) or (16b), which
is given by

f̂ (R̂) = R̂ + α

{
24b2+2R̂+2bR̂

2+5b

[
Pb/2
K− () − βQb/2

K− ()
]

− 4(b2−2bK+)
[
Pb/2
K+ () − Pb/2

K− ()

+β
(
Qb/2

K− () − Qb/2
K+ ()

) ]}
�b/2, (25)

where the parameters α, β, and K± are those appearing in
(19) and � and  are given by

 =
√

1 − �2, (26)

� =
√

20b2 + R̂

2
√

2b + 5b2
. (27)

To investigate the resonant modes of gravity we recall the
definition of the relative probability [85]:

P(m2) =
∫ zb
−zb

|ψ(z)|2dz∫ zmax
−zmax

|ψ(z)|2dz
, (28)

where ψ(z) is the solution of Eq. (11), 2zb is approximately
the width of the brane, and zmax = 10zb. Here |ψ(z)|2 can
be explained as the probability density [85,86]. A resonant
mode with mass mn exists, if the relative probability P(m2)

has a peak around m = mn and this peak has a full width
at half maximum (FWHM). So, the number of the peaks
that have FWHM corresponds to the number of the resonant
modes. For the sake of simplicity, we impose the following
conditions on ψ(z):

ψeven(0) = 1, ∂zψeven(0) = 0; (29a)

ψodd(0) = 0, ∂zψodd(0) = 1, (29b)

where ψeven and ψodd correspond to the even and odd par-
ity modes of ψ(z), respectively. Since there is no essential
difference between the above conditions for the relative prob-
ability P(m2), we will only display our results with one of
the conditions (29) in the following examples. For the sake of
brevity, we discuss gravitational resonance in the coordinate
ŷ, but set y = ŷ, R = R̂ and f = f̂ , which is equivalent to
setting k = 1 in the coordinate y.

Note that in this f (R)-brane model there are two primary
parameters b and α. The parameter b determines the brane
solution and α affects the range of values of the function
f (R). Therefore, they may characterize the gravitational res-
onances that will be discussed in the following. It can be
seen that the expression of f (R) in (25) for general b is
very complex while it becomes simple for two special val-
ues: b = 1 and b = 52/3. We find that the shapes of f (R(y))
as the functions of y for the two special and general values
of b are similar. Therefore, in the following calculations,
we only need consider the two special values, for which the
expressions of f (R) and the effective potential W (y) are
simple. As for the parameter α, it characterizes the devia-
tion of the f (R)-brane from the GR-brane. This can be seen
from (19).

For the case of b = 1, we substitute (23) into (13) to
solve Schrödinger-like Eq. (11) with three typical values of
α1: α1 = 0 (GR-brane), α1 = 100 ( f (R)-brane with fR >

1), and α1 = −0.13 ( f (R)-brane with 0 < fR < 1) (see
Fig. 1a, b). Note that the functions fR(y) for α1 = 100
and α1 = −0.13 (both guarantee fR(y) > 0 in the whole
space) have already deviated from fR(y) = 1 for α1 = 0
(the GR-brane) as far as possible. For α > 100, the potential
W (z(y)) can hardly change more compared with α1 = 100.
For α1 < −0.13, fR may be negative at some locations.
The effective potentials W (z(y)) are shown in Fig. 1c. Our
calculation shows that for all the values of α1 (see Fig. 1d),
there is no gravitational resonance.

For the case of b = 52
3 , the corresponding solution of

f (R) is given by Eq. (24). Compared with the case of b = 1,
although the maximum of the potential W (z(y)) is enlarged,
no resonant KK mode is found. The corresponding results are
shown in Fig. 2. For other values of b, the results are similar:
the f (R)-brane can hardly deviate from the corresponding
GR-brane in terms of gravitational resonance and we do not
find any gravitational resonance.
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Fig. 1 Plots of the function fR , effective potential W (z(y)), and rel-
ative probability P(m2) of the odd KK modes for the single scalar
brane with standard kinetic term with b = 1. In the figures, the GR-
brane (α1 = 0) is denoted by the red solid lines, the f (R)-branes with
α1 = 100 and α1 = −0.13 are donated by the black dotted lines and
blue dot-dashed lines, respectively (from now on, red solid lines always
correspond to the GR-brane, black dotted lines correspond to fR > 1,
blue dot-dashed lines correspond to fR < 1, and the rest of figures are
denoted by black solid lines in all our plots)
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Fig. 2 Plots of the function fR(y), effective potential W (z(y)), and
relative probability P(m2) of the odd KK modes for the canonical single
scalar brane with b = 52/3 and α2 = 0, 100,−0.012, respectively

3.2 f (R)-brane model with L = X1 + X2 − V (φ1, φ2)

Next let us discuss the Bloch brane, which is a kind of impor-
tant brane with inner structure generated by two scalar fields.
It was first obtained in Ref. [37] and then developed and dis-
cussed in Refs. [39,87–92]. In this subsection, we explore
gravitational resonances on the Bloch brane in the f (R) grav-
ity for several reasons. First, there exist gravitational reso-
nances on the Bloch brane [39]. Therefore, we can compare

the difference between the GR-brane and f (R)-brane in the
presence of gravitational resonances, which is expected to
be a complement to the former f (R)-brane model. Second,
the Bloch brane is generated by two canonical scalar fields.
Investigation of the Bloch brane in this subsection could pave
the way for Sect. 4, where we will generalize the conclusion
of the first two models to the cases with multiple canonical
scalar fields.

The Lagrangian density (7) for the Bloch brane is given
by L = − 1

2∂Mφ∂Mφ − 1
2∂Mχ∂Mχ −V (φ, χ), where φ and

χ are two interacted real scalar fields.
The dynamical equations (5) and (6) are modified to

f + 2 fR
(

4A′2 + A′′)− 6 f ′
R A

′ − 2 f ′′
R = 2(φ′2 + χ ′2 + 2V ),

(30a)

− f − 8 fR
(
A′′ + A′2)+ 8 f ′

R A
′ = 2(φ′2 + χ ′2 − 2V ),

(30b)

φ′′ + 4A′φ′ = Vφ, (30c)

χ ′′ + 4A′χ ′ = Vχ . (30d)

For f (R) = R, there are many symmetric and asymmetric
solutions [37,87,87]. We consider one of the solutions given
in Refs. [37,87], where the scalar potential V (φ) takes the
following form:

V (φ) = 1

2

[(
b̃v2 − b̃φ2 − dχ2

)2 + 4d2φ2χ2
]

−4

3

(
b̃φv2 − 1

3
b̃φ3 − dφχ2

)2

. (31)

For the case of b̃ > 2d > 0, the general symmetric Bloch-
brane solution reads [37,87]

φ(y) = v tanh(2dvy), (32a)

χ(y) = v

√
b̃−2d

d
sech(2dvy), (32b)

A(y) = v2

9d

[
(b̃−3d) tanh2(2dvy)−2b̃ ln cosh(2dvy)

]
.

(32c)

Analogously, selecting certain values of the parameters v

and b̃, we can calculate the explicit expression of f (R). For
v = √

3/2 and b̃ = 3d, we have

fR = 1 + γ cos (Y(R)) , (33)

where γ is a constant, R = 24d2
[
7 sech2

(√
6dy

)
− 5

]
,

and Y(R) reads

Y(R) = √
3 ln

(√
R − 48d2 + √

120d2 + R

2
√

42d

)
. (34)
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Fig. 3 Plots of the function
fR(y), effective potential
W (z(y)), and relative
probability P(m2) of odd
resonance KK modes on the
Bloch brane with
d = 1, v = 1, c0 = −2–
7.0 × 10−16, and
fR |y=0 = 1, 50, 0.92,
respectively
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Therefore, integrating the function fR over R we get

f (R) = R + 2γ

7

[√
3(R − 48d2)(120d2 + R) sinY(R)

+ 2
(

36d2 + R
)

cosY(R)
]
. (35)

Note that when d =
√

1
6 , this solution is identical with

Eq. (23).
For the case of b̃ = d, the authors in Ref. [87] obtained

the degenerate Bloch-brane solution:

φ(y) = v

√
c2

0 − 4 sinh(2dvy)√
c2

0 − 4 cosh(2dvy) − c0

, (36a)

χ(y) = 2v√
c2

0 − 4 cosh(2dvy) − c0

, (36b)

e2A(y) =
⎛
⎝

√
c2

0 − 4 − c0√
c2

0 − 4 cosh(2dvy) − c0

⎞
⎠

4v2/9

× exp

⎡
⎢⎢⎢⎣−

4v2
(
c2

0 − 4 − c0

√
c2

0 − 4

)

9

(√
c2

0 − 4 − c0

)2

⎤
⎥⎥⎥⎦

× exp

⎡
⎢⎢⎢⎣

4v2
(
c2

0−4−c0

√
c2

0−4 cosh(2dvy)

)

9

(√
c2

0−4 cosh(2dvy)−c0

)2

⎤
⎥⎥⎥⎦ , (36c)

where c0 < −2.
Next, we take the above Bloch-brane solution (36) as our

background solution of f (R)-brane. Using the similar pro-
cesses used in the previous section, the function fR should
satisfy

− f ′′
R + f ′

R A
′ − 3 fR A

′′ = 2(φ′2+ χ ′2) ≥ 0. (37)

Since it is difficult to give the analytical solution of fR , we can
obtain fR (also f (R)) and the potential W (z(y)) by means of
numerical methods. Because f (R(y)) (and hence fR) is an
even function of the extra dimension y, we have f ′

R |y=0 = 0.
To construct a numerical fR satisfying Eq. (37), we need
one more initial condition, i.e., the value of fR |y=0. With the
adjustable parameter fR |y=0, we can construct a different
numerical fR .

Here, we consider the following typical set of parameters
reducing a double-brane: a = d = 1, v = 2, and c0 = −2–
7.0 × 10−16, which was used in Ref. [39] for the GR-brane
model. It is convenient to compare the results of the f (R)-
brane and the GR-brane.

The effective potential W (z(y)) and the relative probabil-
ity P(m2) of the gravitational KK modes are shown, respec-
tively, in Fig. 3c, d. We find that there are five resonance peaks
in Fig. 3d for the GR-brane. For the f (R)-brane model, the
potential W (z(y)) (see Fig. 3c) almost reaches the maxi-
mum deviation from the GR-brane when fR |y=0 = 50 and
0.92 (the numerical solutions of fR are shown in Fig. 3a,
b). The corresponding resonance mass spectra are shown in
Fig. 3d, from which we can see that there exist four peaks for
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fR |y=0 = 50 and five peaks for fR |y=0 = 0.92, respectively.
Therefore, there is no obvious difference between these spec-
tra. For other values of the parameters we also have the same
conclusion.

3.3 f (R)-brane model with L = X − λX2 − V (φ)

In the previous two subsections, the f (R)-branes are all gen-
erated by one or two canonical scalar fields. For comparison,
we try to investigate f (R)-brane generated by noncanonical
scalar fields (K-fields) in this subsection.

K-fields were introduced to study inflation for the first
time [40–42] and then were extended to many fields. In brane
world models, the branes generated by K-fields are generally
known as K-branes, which might present some new prop-
erties (such as the localization of bulk fermions and gravi-
tons [47]) compared with the corresponding standard branes.
Therefore, we expect there are some new results of gravita-
tional resonances on K-branes.

We consider the simple case of one K-field with the
Lagrangian density L = X − λX2 − V (φ) (λ 	= 0). The
dynamical equations (5) and (6) are reduced to

f +2 fR
(
4A′2+A′′)−6 f ′

R A
′−2 f ′′

R = 2

(
φ′2+ 1

2
λφ′4+2V

)
,

− f − 8 fR
(
A′′+A′2)+ 8 f ′

R A
′ = 2

(
φ′2+ 3

2
λφ′4−2V

)
,

φ′′+4A′φ′+λ(3φ′′+4A′φ′)φ′2 = Vφ. (38)

For f (R) = R, the authors in Ref. [47] obtained one
analytic solution. For general f (R), in the vast majority of
cases, the dynamical equations remain hard to solve except in
some specific cases (for example, if f (R) is a polynomial).
As an example, we consider the following scalar field and
warp factor:

φ(y)=ω arctan
[
tanh

( y
2

)]
, (39)

A(y)=− ln [cosh(y)] . (40)

For the case of ω = 1, we get the solution

f (R) = R + λ

3136
R2 + (29λ − 980)

1176
R, (41)

where R = 28 sech2(y) − 20 and λ > − 10976
1955 to guarantee

fR > 0.
If we require the coefficient of R to be 1, then we obtain

φ(y) =
√

±14
√

174λ+49−98

29λ
arctan

[
tanh

( y
2

)]
, (42)

A(y) = − ln [cosh(y)] , (43)

f (R) = R +
(
87λ ∓ 7

√
174λ + 49 + 49

)
6728λ

R2. (44)

For + in Eq. (42), we require − 49
174 < λ < 5

2 and − corre-
sponds to − 49

174 < λ < − 4
25 . This solution was also obtained

in Ref. [76] recently with another method.
Here, to study the solution of φ with more abundant struc-

ture, we reconstruct one analytic solution of φ given as

φ = b arcsin [tanh(y)] + d tanh(y)sech(y), (45)

where b and d are free parameters. Therefore, the warp factor
is determined by

2λφ′4 + 3A′′ + 2φ′2 = 0, (46)

with the boundary conditions A(0) = 0 and A′(0) = 0.
Meanwhile, fR should satisfy

2λφ′4 + 3 fR A
′′ + f ′′

R − f ′
R A

′ + 2φ′2 = 0. (47)

The value of fR |y=0 can be arbitrary so long as the corre-
sponding fR satisfies Eq. (47) and guarantees fR > 0 in the
whole space.

If the parameter λ is positive, the solution of the wrap
factor will be lumplike and the constraint condition (47) will
be the same as Eqs. (18) and (37). Our results show that it has
no breakthrough comparing with the former cases discussed
in the previous two subsections.

For λ > 0, we consider three types of solutions of the
scalar field (see Fig. 4). Because when 0 < fR |y=0 < 1
the range for fR |y=0 is so narrow, we only consider the case
fR |y=0 ≥ 1 in this f (R)-brane model. We find that when
the scalar field φ is taken as the form of single kink or non-
monotonic kink, the results are the same as the brane gener-
ated by a canonical scalar field (see Figs. 5, 6). For the case
of double kink, the result is similar to the Bloch brane (see
Fig. 7).

Fig. 4 Plots of the scalar field
φ given by Eq. (45). The figures
are, from left to right, kink-like
solution, non-monotonic kink
solution, and double kink-like
solution 4 2 2 4
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Fig. 5 Plots of the effective potential W (z(y)) and relative probability
P(m2) of the odd resonance KK modes on the brane generated by a
K-field with b = 2, d = 2, λ = 0.6, and fR |y=0 = 1, 100
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Fig. 6 Plots of the effective potential W (z(y)) and relative probability
P(m2) of odd resonance KK modes on the brane generated by a K-field
with b = 1, d = −2, λ = 0.6, and fR |y=0 = 1, 100
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Fig. 7 Plots of the effective potential W (z(y)) and relative probability
P(m2) of the odd resonance KK modes on the brane generated by a
K-field with b = 6, d = −6, λ = 0.6, and fR |y=0 = 1, 100

For λ < 0, we also set three similar groups of parameters
(see Fig. 8) and all of them have lumplike solutions for warp
factor. Here we also only consider the values of parameters
which result in fR |y=0 ≥ 1 in f (R)-brane model. Obviously,
the consequences (see Figs. 9, 10, 11) are analogous to the
case λ > 0.
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Fig. 9 Plots of the effective potential W (z(y)) and relative probability
P(m2) of the odd resonance KK modes on the brane generated by a
K-field with b = 1, d = 0.3, λ = −0.01, and fR |y=0 = 1, 50
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Fig. 10 Plots of the effective potentialW (z(y)) and relative probability
P(m2) of the odd resonance KK modes on the brane generated by a K-
field with b = 1, d = −2, λ = −0.01, and fR |y=0 = 1, 50
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Fig. 11 Plots of the effective potentialW (z(y)) and relative probability
P(m2) of the odd resonance KK modes on the brane generated by a K-
field with b = 8, d = −8, λ = −0.01, and fR |y=0 = 1, 50

It seems that we can draw the conclusion that the dif-
ference of the gravitational resonances is small between the
f (R)-brane and GR-brane when the warp factor is mono-
tonic in the area y ∈ [0,+∞).

Therefore, we consider another interesting scenario, i.e.,
the warp factor is a non-monotonic function of y in the area
y ∈ [0,+∞). The parameters are taken as b = 2, d =

Fig. 8 Plots of the scalar field
φ given by Eq. (45). The figures
are, from left to right, a
kink-like solution, a
non-monotonic kink solution,
and a double kink-like solution
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Fig. 12 Plot of the warp factor A(y) given by Eq. (46) with b = 2, d =
−2, and λ = −0.6. The parameters correspond to a double kink-like
solution of the scalar field
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Fig. 13 Plots of the effective potentialW (z(y)) and relative probability
P(m2) of the odd resonance KK modes on the brane generated by a K-
field with b = 2, d = −2, λ = −0.6, and fR |y=0 = 1, 0.11

−2, and λ = −0.6 (see Fig. 12). The effective potential
W (z(y)) and relative probability P(m2) of the GR-brane are
shown in Fig. 13a, c. Apparently, there is no gravitational
resonance on the GR-brane. Setting the same parameters for
the f (R)-brane model, it can be seen that when fR |y=0 =
0.11, in comparison to the GR-brane the effective potential
and relative probability change greatly (see Fig. 13b, c).

For the set of parameters b = 2, d = −2, λ = −0.6 , and
fR |y=0 = 0.106, we can see that fR almost vanishes at y =
±1 (see Fig. 14a). We display the effective potential W (z(y))
in Fig. 14b and relative probability P(m2) in Fig. 14c to
prepare for the next section.

4 The impact of f (R)-brane

Now, we analyze how f (R)-brane model impacts gravita-
tional resonances. Focusing on Eq. (13), the different parts
of the potential W (z(y)) between the GR-brane and f (R)-
brane are denoted by �W :

�W = 3aa′

2

f ′
R

fR
− 1

4

(a f ′
R

fR

)2 + 1

2

aa′ f ′
R + a2 f ′′

R

fR
. (48)

First of all, we analyze the model with only one canonical
scalar field. In this case, we have for the GR-brane
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Fig. 14 Plots of the function fR(y), effective potential W (z(y)), and
relative probability P(m2) of the even resonance KK modes on the
brane generated by a K-field with b = 2, d = −2, λ = −0.6, and
fR |y=0 = 0.106

− 3

2
A′′ = φ′2 ≥ 0, (49)

which results in a lumplike solution of the wrap factor.
For the f (R)-brane, we have Eq. (18). Fixing the solution

of the warp factor, if we expect some huge differences of the
potentials W (z(y)) between f (R)-brane and GR-brane, the

value of
f ′
R
fR

or
f ′′
R
fR

must be large enough at some locations
to form deep wells or high barriers. Considering that f (R)

should be continuous and satisfy fR > 0, the most promising
approach may be that fR approaches zero at some locations.

Because both f (R) and fR are even functions of the
extra dimension y and, generally, f (R) should be a con-
stant at infinity, we need only consider the situation that fR
approaches a very small value at one or two locations (more
locations make no difference).

From Eq. (48) we know that �W is also an even function.
We assume �W has two infinitely deep potential wells (the
same analysis is appropriate for barriers) symmetrically sit-
uated at y = ±y0. For simplicity, we consider the case that
these locations are minima of fR(y). So, we have f ′

R = 0
and f ′′

R ≥ 0 at these locations. We plug f ′
R = 0 into Eq. (18)

at y = ±y0, then we have −3A′′ fR ≥ f ′′
R .

Obviously, the first two terms of �W in Eq. (48) vanish
at y = ±y0. Since −3A′′ fR ≥ f ′′

R , the ranges of �W at

y = ±y0 are both 0 < �W = 1
2
a2 f ′′

R
fR

< −3a2A′′
2 = a2φ′2,

which is finite. So, it is hard for the potential W (z(y)) to
have deep potential wells or barriers around y = ±y0 even
if fR |y=±y0 approach zero. The same analysis also applies
to the situation that W (z(y)) is supposed to have one infinite
potential well at y = 0.
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As for the Bloch brane, although the solutions of the warp
factor and scalar fields are not the same as the previous model,
the restrictions on the warp factor and f (R) are similar (see
Eq. (37)). So, we also have the same conclusion.

Finally, we discuss why the third f (R)-brane model has a
strong influence on the potential W (z(y)). Taking f (R) = R
in Eq. (47), we find that although λ is a small parameter, it can
lead to a non-monotonic warp factor from y = 0 to y = +∞.
Therefore, the shape of the potential W (z(y)) of the f (R)-
brane becomes complicated. Furthermore, obviously when
λ < 0, it is possible that the function fR(y) approaches zero
at some locations. In Fig. 14a, we see that when fR(y) gets
close to zero, there are two high barriers at the corresponding
locations (Fig. 14b) but the GR-brane never has such a kind
of feature.

5 Conclusion and discussion

In this work we discussed gravitational resonances in various
f (R)-brane models. For the branes generated by one or two
canonical scalar fields, we found that the f (R)-brane and
GR-brane are similar from the view point of gravitational
resonance. Then we investigated the brane generated by a
single K-field. For a positive λ (or a negative λ with the warp
factor varying monotonically), the structure of gravitational
resonance of f (R)-brane does not deviate much from the
GR-brane. This result is similar to the case with the standard
kinetic term. When the parameter λ is negative and the wrap
factor is non-monotonic, the structure of the gravitational
resonance of the f (R)-brane can seriously deviate from the
GR-brane. The degree of deviation relies mostly on the value
of the parameter fR |y=0.

Finally, we analyzed why the f (R)-brane and GR-brane
have similar gravitational resonance structures when the
background scalar field is canonical. Our conclusion is that
the similarity is due to the limitations fR > 0 and Eq. (18),
which constrain strictly the potential W (z(y)) of the f (R)-
brane on the whole space. For the cases with more scalar
fields (such as the Bloch brane), one may draw the same
conclusion, as long as all kinetic terms of the scalar fields
are canonical. However, for the brane generated by a K-field,
the function fR(y) could approach zero at some locations.
Therefore, the effective potential W (z(y)) in the f (R)-brane
model may have plentiful structures and result in a series of
gravitational resonances, which is very different from the
GR-brane model.
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