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Abstract The radial motion of massive particles in the
equatorial plane of a Kerr black hole is considered. Screening
of the Hawking radiation and shielding of the Penrose pro-
cess are examined (both inside and outside the ergosphere)
and their effect on the evaporation of the black hole is stud-
ied. In particular, the locus and width of a classically for-
bidden region and their dependence on the particle’s angular
momentum and energy is analysed. Tunneling of particles
between the boundaries of this region is considered and the
transmission coefficient determined.

1 Introduction

Dimopoulos and Landsberg [1], and Giddings and Thomas
[2] suggested that, as a consequence of TeV-scale quantum
gravity, the production of microscopic black holes at the LHC
might be possible. These black holes would decay rapidly
into charged leptons and photons with a clean signature and
low background. Microscopic black holes offer the possibil-
ity of gaining insights into quantum gravity and contribute
to efforts to reconcile general relativity and quantum theory.
Once the energy threshold is crossed (Planck mass ~1 TeV),
the production of black holes is possible. However, at this
scale unknown quantum effects play an important role and
the black holes become stringy”” and complex. In the present
analysis quantum gravity effects are ignored in favour of clas-
sical arguments. Black holes decay in four distinct phases: the
balding phase, the spin down phase, the Schwarzschild phase
and the Planck phase. In this work, the spin-down phase is
only considered — this is the phase in which case the Kerr
black hole evolves into a Schwarzschild black hole by losing
mass through Hawking radiation [3,4] and angular momen-
tum through the Penrose process [5]. Radial motion is char-
acterised by a distinct region with negative kinetic energy for
particles with certain angular momentum and energy. Clas-
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sically, a particle cannot be in such a region, thus, the bound-
aries of this forbidden region are turning points. This paper
studies the effects of the negative kinetic energy region on
the spin-down phase of a Kerr black hole.

Decay processes in macroscopic black holes were first
studied by Hawking and led to the prediction of Hawking
radiation. Parikh and Wilczek [6] developed this idea as a
quantum tunneling process, across a classically forbidden
region at the horizon. Prodanov [7] has recently examined
the screening of such evaporation in the Schwarschild and
Reissner-Nordstrom cases.

The reduction of the mass of a black hole is, in part, due
to Hawking radiation. Emitted particles with certain ranges
of energies and angular momenta may be reflected back into
the black hole by a turning point outside the event horizon,
thus screening of the evaporation takes place. The screening,
however, is offset by a competing process: quantum tunnel-
ing across the forbidden region. This tunneling reduces the
screening effect on the evaporation. The overall effect is the
damping of a range of Hawking radiation spectral modes. For
particles with lower angular momentum, the screening effect
is less pronounced and tunneling is more likely. Therefore,
the Hawking radiation spectrum is dominated by low angular
momentum modes and high energy modes.

The Penrose process is responsible for the loss of angular
momentum of a rotating black hole. Particles entering the
ergosphere may be scattered and ejected with greater energy.
This process is shielded by the negative kinetic energy region
for particles with certain ranges of their energies and angu-
lar momenta. For particles with large angular momentum
and low energy this region extends beyond the static limit
and ’swallows” the ergosphere. The black hole is completely
shielded from such particles and the Penrose process is elim-
inated. If the negative energy region does not extend to the
static limit only partial shielding takes place. In both cases
particles can tunnel across the forbidden region in the ergo-
sphere and may or may not contribute to energy extraction.
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If particle splitting occurs between the event horizon and
the lower boundary of the forbidden region,which is never
between the horizons, energy extraction can only take place
if the particle tunnels back across the potential barrier. For
higher angular momentum modes the potential barrier moves
ever closer to the event horizon making this effect more and
more unlikely.

Since Penrose proposed his process for energy extraction
from a Kerr black hole many authors have suggested alter-
native mechanisms. The efficiency of the original process
was estimated by Wald to be in the region of 120 % [8].
Banados, Silk and West (BSW) [9] have demonstrated that
colliding particles near the event horizon of an extremal black
hole can result in higher energy extraction efficiency due to
the high centre-of-mass energy of the collision. However,
several authors subsequently have shown that the efficiency
of this process is limited to 130 %. More recently, a new
limit of energy extraction efficiency has been demonstrated
by Schnittman. For Compton scattering between a photon
and a massive particle, the efficiency can reach 1400 % [10].
High centre-of-mass collisions can produce very energetic
particles making Kerr black holes act as natural particles
accelerators.

The current work concerns trajectories of particles inside
and outside the ergosphere of a rotating black hole. This
involves a detailed study of radial motion of particles in the
Kerr metric, in particular, the effect of the angular momentum
and energy of the particles on the shielding process is studied.
Tunneling of such particles between the boundaries of the
classically forbidden region is examined and an analytical
expression for the transmission coefficient across the barrier
is determined.

2 The Kerr Metric and the equations of motion

The Kerr metric in Boyer-Lindquist coordinates is given by

[11]:

A — a?sin? 6 AMar sin? 0

ds? = —di* + ——didg
p P
p* 2 2 102
— 2 ar?— p2ds
AP
2Ma?%r sin 6
[T P+ a))]sin? 0 g, 1)
P
where ,o2 =r2+4a%cos20, A =r?2—2Mr + a2, witha

— the specific angular momentum of the black hole and M —
the mass of the black hole.

The Lagrangian for a particle of mass m and charge ¢ in
the presence of a gravitational and electromagnetic field A is
given by [11]:
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where A is the proper time T per unit mass m: A = v/m and
A — the electromagnetic potential given by:

Or

Ajdx! = g(dt — asin® 6 d¢).

In Boyer—Lindquist coordinates the Lagranian becomes:
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The motion of the particle is completely determined by the
geodesic equation [11]:

d%x! - dx/ dx* q . dx/

— 4TI, ——— = =F!{—, 4
dr? *dr dr  m Jdt “®
where F' = d A is Maxwell’s electromagnetic tensor and 1"; &
are the Christoffel symbols. This results in four equations of
motion for the test particle [12]:

) dr 24 .2 r? +a
pa:—a Esin“6 +aJ + [E(r +d?) — Jal, (5)
d
p2£ = VIEG? +a?) — JaP? — Alm*r + (J —aE)* + K], (6)
do 1
2
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P gy Ly LB ad) - Tal, ®)
dx sin29 A

where K is a conserved quantity (called Carter’s constant)
given by:

K = p? + cos*0[a*(m* — 2

g ©)
In the above equation, £ = (1/m)dL/di is the conserved
energy of the particle, J = (1/m)dL/d¢ is the conserved
projection of the particle’s angular momentum on the axis of
rotation, and pg = (1/m)dL /36 is the #-component of the
particle’s four-momentum.

For the present analysis, only radial motion in the equa-
torial plane is considered. Therefore § = 7/2 and 6 = 0.
Hence K = 0. Equation (6) gives the kinetic energy per unit
mass of the particle:

r2 1 1., , 5
?——(e -+ M—|—22[ (e —1—j7]

1
+—5M(ae — j)?, (10)
.

where € = E/m is the specific energy the particle and
j = J/m is its specific angular momentum. Equation (10)
is that of a one dimensional effective motion with specific
energy of the one dimensional motion given by (e2 — 1)/2
and effective potential:
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To determine the boundaries of the classically forbidden
region, which is characterised by negative kinetic energy, one
needs to locate the roots of the equation R(r) = rr2 = 0.1t
isinstructive to consider this equation from different perspec-
tives. Firstly consider Carter’s equation (6) in the equatorial
plane:

R(r) = [e(r* +a*) — jal* — Alr* + (j —ae)’l.  (12)

In the Kerr black hole, the time-like Killing vector (o,)"
becomes null at the static limit:

2Mr
— 81t = 1 - 2 (13)
1%

with boundary given by:

ry = M+~ M? — a%cos?6. (14)

The region between the event horizon 7 and the static limit
ry is called the ergosphere. In this region all particles must
rotate with the black hole due to frame dragging. In this
region, negative energy states are possible aswell, because at
the static limit d/d¢ becomes space-like and can be positive
or negative. Hence, the conserved energy E = (1/m)dL/0i
can be positive or negative.

In the equatorial plane, the static limit r; is 2M. The loca-
tion of the Cauchy horizon r_ and the event horizon r are:
r+ = M 4/ M? — a? respectively. From (12), it is evident
that there can be no region of negative energy between the
horizons: the term A = r?> —2Mr + a? is always negative
between the horizons and hence R(r) is strictly positive. A
forbidden region, therefore, cannot exist between the hori-
zons — forbidden regions, if they exist, lie to the right of r.
or to the left of r_.

If € < 1, the particle cannot escape and the trajectory is
bound. If € = 1 the particle is marginally bound i.e. falling
towards the hole from a state of rest at infinity and if € > 1,
the particle is unbound. In this work, unbound particles € > 1
are considered only. Such particles with certain values of j
and € undergo scattering by the negative kinetic energy region
outside of the black hole (or tunnel across it).

Consider R(r) as a cubic in r, i.e.:

2
R = AP+ Mr2+ (azA— %)r + M(ae— )% (15)
where A = (2 —1)/2 > 0.

Firstly, if a’A > j 2 /2, the coefficient of the r term
in Eq. (15) is positive. All other terms in the equation are
positive as well (+, +, +, +) and so, there are no sign
changes. By Descartes’ rule of signs, there can only be
two situations, either one negative root and two complex

roots, or three negative roots. Vieta’s relations result in:
ri+ra4r3 =—M/A, rir4rnr+riry = (azA—j2/2)/A,
rirry = —M(j - ae)z/A. In this scenario, the centre is a
boundary of a forbidden region if j = ae.

Secondly, when a’A < j 2 /2, the coefficient of the lin-
ear term in Eq. (15) is negative with all others positive and
one of the terms in the equation being negative (4, +, —, +)
leads to two sign changes. There can be three situations: one
negative root and two positive roots; one negative root and
two complex roots; or three negative roots. The last situation
cannot arise due to Vieta’s restriction: riry + rpr3 + rir3 =
(azA —j2/ 2) /A — for three negative roots the left hand side
is positive while the right hand side is negative.

Consider next the kinetic energy Eq. (12) as a quadratic in
€ and j separately, both above the static limit (» > 2M) and
then below it (r <r < 2M). Any r,exceptr— <r < ry,
can lie in a forbidden region depending on the energy and
angular momentum of the particle.

Firstly, for r > 2M, as a quadratic in j, the kinetic energy
equation:

R(j) = (2M —r)j*—4eMaj — Ar + €*(r + a’r + 24> M),
(16)

leads to a negative kinetic energy region for values of j
between the roots:

. 2aeM
Y VR
- (€2r3 — Ar 4+ a%e>(r +2M))2M —r)
x 4a2e2M? '

7)

The location of these roots is determined by considering
the sign changes in (16). The quadratic term is always neg-
ative, the linear term can be positive or negative, depending
on the sign of aj (¢ > 0 always) and the constant term can
also be positive or negative depending on r. If aj is positive
(co-rotating probe and centre) then the signs are —, —, —,
or —, —, +, and there is either one positive and one negative
root, or two complex roots. If aj is negative (counter-rotating
probe and centre) then all possibilities may arise.

Furthermore, for real roots to exist, the kinetic energy of
the particle must be above the threshold energy:

r—2M

€ > € = . (18)
r

Only then the discriminant of (16) is positive (Fig. 1a). For
particles with energy greater than e7 and angular momentum
in the range (j_, j), there is no forbidden region. For parti-
cles with € > er and angular momentum outside the interval
(j—, j4+) or with € < er and any j, only circular motion is
possible, since the forbidden region extends for all » > 2M.
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Fig. 1 a Kinetic energy v j (r > 2M). b Kinetic energy v j (r < 2M)

Next, consider the kinetic energy equation (12) as a
quadratic in € for r > 2M:
R(e) = (P + a°r +2a’M)e* — 4ajMe

—[Ar + (r —2M)j?]. (19)

A negative kinetic energy region exists for energies
between the roots:
_ 2ajM
3+ a2 +2M)

— — 2 3 2
X[li 1_( Ar — j (r+2M?)[r +a (r+2M)]}
4a2j2M

€+

(20)

In this equation, the quadratic term is always positive as
is the constant term (r > 2M). The linear term is positive or
negative depending on the sign of aj. The signs of the terms
are therefore either 4+, 4+, —, or 4+, —, —, so there is only one
sign change in each case. As the discriminant is positive for
all values of j, the only possible roots are one positive and
one negative (Fig. 2a).

Particles with kinetic energy in the range (0, ;)" and
any angular momentum experience a negative kinetic energy
region [R(¢) < 0] and their radial motion is restricted. For
€ > €4 and any j, then R(¢) > 0, and there is no forbidden
region.

Secondly, below the static limit (r < 2M), consider the
sign changes of the kinetic energy equation (16). In this case
the quadratic term is always positive, while the signs of the
other terms can be positive or negative. For aj > 0, the

1 Equation (19) is generic: valid for all € > 0 (not for unbound particles
only).
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possible signs of the terms are +, —, +, and +, —, —. There

are three possibilities: two positive roots, one positive root
and one negative root, or two negative roots. When aj < 0
the possible signs of the terms are 4, 4+, 4+, and +, +, —. In
this case there is either one positive root and one negative
root or two negative roots. The expression for the roots is
the same as the case where r > 2M (17). The discriminant
is positive for all € in this case. So, in the ergosphere, for
any € and for angular momentum outside the range (j_, j+),
R(j) > 0 and a forbidden region does not exists (Fig. 1b)

Now consider again the kinetic equation as a quadratic in
€ (19). The signs of the coefficients of the quadratic and lin-
ear terms are the same as in the previous case (r > 2M).
However the constant term can now be positive or nega-
tive depending on r. For positive values of aj the signs are
+, —, +, and +, —, —. For negative values of aj the signs
are +, +, +, and +, +, —. The possibilities are two posi-
tive roots or one positive and one negative root (j > 0) or
one positive and one negative or two negative root (no com-
plex roots are possible in this case since the discriminant is
positive) (aj < 0). Therefore, in the ergosphere a negative
kinetic region R(e) < 0 exists for particles with energies in
the range (e_, €4) and any angular momentum (Fig. 2b).

Particles with kinetic energy and angular momentum
within the ranges outlined above experience a negative
kinetic energy region and their radial motion is restricted.
Outside these ranges of energies angular momentum Hawk-
ing radiation particles will escape to infinity and incoming
particles will fall into the black hole (Fig. 3).

To summarise, for values of j and €, a forbidden region
exists to the right of the event horizon r4. For a forbidden
region to exist above the event horizon (r;) and within the
ergosphere (below the static limit 2M) the particle’s kinetic
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Fig. 2 a Kinetic energy v energy (r > 2M). b Kinetic energy v energy (r < 2M)

Fig. 3 a Kinetic energy v € and j(r > 2M). b Kinetic energy v € and j(r < 2M)

energy should be in the range (e_, €4) for any angular
momentum or its angular momentum should be in the range
(j—, jy+) for any energy. For a particular value of energy and
angular momentum a double root appears just above 7. As
Jj increases further two real roots r, and r3 appear, forming
the boundaries of the forbidden region.

The first of these, above the event horizon r, occurs for
particular values of j and € at r, = r4 + 8. From equation
(12), the condition under which the root approaches the event
horizon (64 — 0) can be determined by requiring:

er* +d*) — ja— 0, (1)

or, j — 2Mer, /a, as a root approaches the horizon from
above and j — 2Mer_/a, as a root approaches the Cauchy
horizon from below (§— — 0).

The other boundary of the forbidden region is given by the
root r3. As the angular momentum of the particle increases
or, as the energy decreases, this boundary extends above the
static limit » > 2M. Here, a forbidden region exists for a
particle with angular momentum in the interval (—oo, j_]U
[j+, 00) and for kinetic energies above a threshold energy
(e7). For particles with energy less that e7 and any angular
momentum no radial motion is possible since any r < oo
could be in a forbidden region for certain values of € and ;.

@ Springer
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The root r3 can be determined in terms of r, by eliminating

r1 using Vieta’s relations: ry +r2+r3 = =M /A, rira+rar3
+rirs = (a2A — j2/2) /A, rirars = —M(j — a€)’/A:
(M) = M (1 —ae) o 22)
s+l —+rn)—-—|(J—ac) =0.

3TE A ) T A

Only the positive root r3 of this equation is of interest. The
lower boundary of the forbidden region above the event hori-
zon is at rp = r4+ + 8. Thus the upper boundary is at:

1/2M + (ry 4+ 81)(€2 — 1)
r3 = 5 2
e~ —1

[ 8M(j —ae)2(e2 —1) ]
x| =14 |1+ 7 |-
(ry +80)2M + (ry +84)(€2 = 1))
(23)
Similarly, below the Cauchy horizon the upper boundary

of the forbidden region extends to 7, = r— — 6_. and the
lower boundary is at r3:

3 1<2M+(r, —5_)(e2 — 1))
) 21

s 202
x[—l+ 1+ SM(j —ae)7(e” = 1) 2].
(r——8_)2M + (r— —86-)(e2 — 1))
(24)

By expanding the kinetic energy equation (10) in a power
series near the Cauchy and near the event horizon, the values
of 5+ can be approximated by:

re[(eMrs — ajz)2 + ezMri]
((e2 - l)ri - J'Qr:t)(mr — M) + (eMri +aj)(2€Mri +4aj)'
(25)

54+ =

Two forbidden regions may exist depending on the values
of j and €. The region outside the event horizon screens the
Hawking radiation and shields the Penrose process. Classi-
cally this is a barrier to particles escaping the black hole or
entering the ergosphere and contributing to the decay of the
black hole. However, particles may tunnel across quantum
mechanically and offset these effect.

3 Hawking radiation: screening reduction

Particle pairs are produced due to vacuum fluctuations inside
the event horizon at r = 2M — § (where § is small). One of
them, the ingoing particle, moves towards the centre of the
black hole. The other, the outgoing particle, tunnels across
the horizon and materialises outside at r = 2(M — w) + §

[6].

@ Springer

The imaginary part of the action for an outgoing positive
energy particle is:

Tout
ImS = Im/ prdr, (26)
Fin

where rip and rqy are given by:

o= M40 — 2, @7
routzM_w+V(M_w)2_a2, (28)

and w is the energy of the emitted particle.

For the Kerr black hole:
2 2
a(ri +a
ImS = ¥a), (29)
r+ — M

and the Hawking tunnelling rate is:
[ = 2mS, (30)

The average energy of the particles emitted from the surface
of the black hole is:

3
E = —kT. 31
7 €29)
The temperature given by:
K
= —, 32
P (32)
where « is the surface gravity of the black hole [13]:
uw
=47 =, 33
ko= dn (33)
Here A is the horizon area of the Kerr black hole [14]:
A =472M(M + p)], (34)

and

2
= m2—L (35)
V M2

The average energy of the particles emitted via Hawking

radiation from the Kerr black hole is therefore:
2

3 M? — i

E=_—
ST MM+ M2 — &)

Depending on the spin and the mass of the black hole,
the angular momentum and energy of the emitted particles,
screening of such particles may take place.

A negative kinetic energy region exists outside the horizon
for particles with energies in the range (e_, €;) (20) and
angular momentain therange (j_, j+)(17). Emitted particles
with such energies and angular momenta are reflected back
into the black hole at the lower boundary r, of the forbidden
region and screening takes place. This is evident for black
holes with spin (@ =0.5). Particles with energy E =0.055 and
angular momentum less than j = 0.4 will escape the event

(36)
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Fig. 4 a Energy v r (a = 0.5). b Energy v r (a = 0.95). Here the For higher spin (a = 0.95) the energy of the Hawking particles is E =
effect of the angular momentum on Hawking screening is demonstrated. 0.02 and screening of all but (j = 0) angular momentum modes takes

Hawking particles withenergy £ = 0.55and j > 0.4 are screened while place (b)
lower angular modes at this energy will escape the event horizon (a).

Fig. 5 aEnergy vr and j J f‘
(a =0.5). b Energy vrand j
(a = 0.95). The screening of
Hawking particles with energy
(E = 0.055) from a Kerr black
hole ( spin a = 0.5) takes place
in the green region between the
two surfaces (a). The effect is
greatly enhanced for higher spin
value (a = 0.95) and lower
energy E =0.02 (b)

(b)

horizon, while particles with greater angular momentum will ~ region. As the angular momentum grows or as the energy
be reflected back into the horizon (Figs. 4, 5). The energy for ~ decreases, this region widens. The effect alters the spec-

various angular momenta are given in the Table 1. trum of the Hawking radiation and dampens higher angular
Some particles, however, may tunnel across this potential ~ momentum spectral modes and low energy modes. Hawking
barrier and escape the black hole. This reduction in screen-  radiation is therefore dominated by low angular momentum

ing depends on the width w = r3 — rp of the forbidden = modes.
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Table 1 Hawking radiation screening in the Kerr black hole

Angular momentum j=0 j=02 j=04

Radius €4 €_ €4 €_ €4 €_

1.87 0.0414 —0.0414 0.0683 —0.0150 0.0955 0.1810
1.88 0.0776 —0.0776 0.1042 —0.0517 0.1316 —0.0266
1.9 0.1206 —0.1206 0.1467 —0.0956 0.1740 —0.0718
1.92 0.1515 —0.1515 0.1771 —0.1274 0.2040 —0.1047
1.94 0.1768 —0.1768 0.2018 —0.1535 0.2284 —0.1318
1.96 0.1896 —0.1986 0.2230 —0.1761 0.2492 —0.1553
1.98 0.2181 —0.2181 0.2149 —0.1962 0.2676 —0.1763
2.0 0.2357 —0.2357 0.2589 —0.2145 0.2843 —0.1954

Screening of Hawking radiation for the Kerr black hole with spin (¢ = 0.5), event horizon at 1.866 and E = 0.055 (Hawking energy). All but the

very lowest angular momentum modes are screened

4 Penrose process: shielding

According to Penrose [5], it is possible to extract from a
rotating black hole. Consider a particle falling from infin-
ity into a Kerr black hole and splitting into two fragments.
The Penrose process occurs when a particle with negative
energy is absorbed by the black hole. As a result the hole’s
mass and angular momentum decrease. If the process con-
tinues, eventually the Kerr black hole would turn into a
Schwarzschild black hole. The process depends on negative
energy geodesics in the ergosphere. Consider a particle Py
with energy E( entering the ergosphere and splitting into two
with the first particle P having energy E; and the second
particle P, having energy E». The two particles will fly off in
opposite directions, P; going in the direction of rotation of
the black hole and P> going in the opposing direction. P; goes
into a negative energy orbit and falls into the black hole and
P, emerges form the ergosphere with increased energy E».

Effectively, P» gains energy from the ergosphere: E> >
E( —atransfer of energy from the hole to P,. Chandrasekhar
determined the efficiency of the process (the ratio of the max-
imum energy out to the energy in) to be 20.7. [15]. Increased
energy extraction efficiency has been demonstrated in recent
years by considering modifications to the process. Bana-
dos, Silk and West (BSW) [9] considered colliding particles
near the event horizon of an extremal black hole resulting in
higher energy extraction efficiency due to the high centre-
of-mass energy of the collision. They proposed that Kerr
black holes can act as natural particle accelerators. More
recently, Schnittman [10] has demonstrated a new limit of
energy extraction efficiency for Compton scattering between
a photon and a massive particle. In this mechanism the effi-
ciency can reach 1400 %.

The effectiveness of the Penrose process is reduced for
particles with energies (e- < € < er) (20) and angular
momenta within the range (j_, j;+) (17) for r < 2M. For
particles with energies (¢ > €r) and angular momenta out-
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side the range (j_, j+) the entire ergosphere is in the forbid-
den region (r > 2M) and there is no Penrose process. Three
scenarios are relevant.

Firstly, for particles with energies (e- < € < €r) (20)
and for angular momenta within the range (j_, j+) (17), the
boundary of the forbidden region is below the static limit
r3 < ry and partial shielding occurs. Particles may enter the
ergosphere and energy extraction or particle acceleration can
take place. As the angular momentum increases or the energy
decreases, the boundary r3 approaches the static limit r; and
the area available for energy extraction decreases.

Secondly however, tunneling can take place across the
potential barrier and the narrower the forbidden region, the
more likely the tunnelling. Some of the particles tunnel-
ing across continue on through the event horizon r; and
will not take part in the process. Other particles, how-
ever, may still undergo the Penrose process between the
event horizon r; and the forbidden region r < r <
r3. The negative energy particle falls into the event hori-
zon and slows down the black hole. The particle gain-
ing energy from the ergosphere may tunnel back across
the potential barrier, exit the black hole and contribute to
the spin-down process. The exiting particle may not tunnel
across the potential barrier but may be reflected back at the
boundary r, into the event horizon and thus spin the hole
up.

Finally, for particles with (¢ < er) or for particles with
j outside (j_, j4+) when (e~ er) the negative kinetic energy
region extends beyond the static limit (3 > ry) and the black
hole is completely shielded. It becomes “invisible” to these
particles and the Penrose process cannot take place. However,
particles can still tunnel across the potential barrier and enter
the region above the event horizon and below the forbidden
region: ¥4 < r < rp. In a repeat of the above scenario a
greatly reduced Penrose process takes place.

The shielding effect of a maximal rotating kerr black hole
on a freely falling particle at the staic limit is demonstrated
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Fig. 6 a Energy vr (a = 1.0). b Energy v r (a = 1.0). In a particles
with energies and angular momenta in the the yellow region are shielded
at the static limit for a Kerr Black hole with maximal spin a =1. Beyond

in Fig. 6a. The shielding effect beyond the static limit is
illustrated in terms of the impact parameter (Fig. 6b) and in
terms of negative kinetic energy regions for various values
of angular momentum and energy (Table 2).

5 Tunneling

Now consider the one-dimensional Schrodinger equation for
a particle with energy E and moving in potential V [16]:
¢y P

arz k2

v(r), (37

where p2(r) = 2m[E — V(r)] is the square of the clas-
sical momentum p(r) of the particle. For particles with
E < V(r), quantum mechanical-tunneling can take place
across the classically forbidden region bounded by the turn-
ing radii 7o, r3. The wave function, determined by the WKB
approximation method, is[16]:

Dt (38)
[p(r)]
where D is a constant. The amplitude of the incident wave
is attenuated on transmission across the potential barrier —
decreased by the factor €2V where:

V() =

1 [
y=—f|mmm. (39)
rn

h
The tunneling probability is proportional to the Gamow fac-
tor e~ %7

In the presented setup, the forbidden region corresponds
to the area of negative specific kinetic energy, where:

Impact parameter v r

T ey ——

(FTLI 1 I

e Y

ro
T

=jle

S

\
"

I

Impact parameter b
o

)
co
[ Sy g u . mp )

radius

(b)

the static limit particles in the yellow region will be shielded from the
black hole for values of j outside the interval(j_, ji)

2 62—1 %)
PR = 20Ver (1) = —5—1 = =7, (40)
Thus:
_ v
v=
1 1 1 21
X\/[_M(ae—j)zﬁ_(02(52_1)_j2)2ﬂ_Mr_ : 5 Idr.

In order to evaluate this integral the cubic expression under
the square root can be approximated by a quadratic in the
region of interest only. That is, a parabolic function W (r)
whose roots R and local maximum coincide with with those
of the cubic polynomial, Hence:

2 -1 1 1\/1 1
Vet (r) — : :W(r)=T<;_E>(;_R_+)

T
~ r’R_Ry

(r—R)(r —Ry).
(41)

The approximating parabola will then go through the point
(s, R(s)), where:

r3—rnr

= 42
s 3 (42)
This condition is satisfied when T is given by:
2
V o (s) — e—1
T =s?R_R, ) =3 43)

(s — RO)(s — Ry)’

where r» = R_ and r3 = Ry. Here R_ and R, are the
roots of the approximating parabola and also upper and lower
bounds of the forbidden region.
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Table 2 Penrose process shielding in the Kerr black hole

Energy e=1.0 e=12 e=14 |
Radius J+ J- J+ J- J+ Jj-

2.5 —10.5689 2.7891 —12.9818 3.5783 —15.3499 4.3739
3.0 —6.8437 2.9147 —8.6325 3.9285 —10.3585 4.8705
3.5 —5.7022 3.0889 —7.4159 4.2799 —9.0252 5.3665
4.0 —5.2133 3.2533 —6.9804 4.6284 —8.6058 5.8618
4.5 —4.9772 3.4092 —6.8560 49744 —8.5516 6.3564
5.0 —4.864 3.5578 —6.8865 3.3185 —8.6796 6.8503
5.5 —4.8200 3.7000 —7.0050 5.6610 —8.9116 7.3436
6.0 —4.8167 3.8367 —7.1782 6.0022 —9.2086 7.8366
6.5 —4.8394 3.9683 —7.3876 6.3423 —9.5487 8.3216
7.0 —4.8792 4.0955 —7.6223 6.6813 —9.9190 8.8214
7.5 —4.9313 4.2186 —7.8752 7.0199 —10.3112 9.3134
8.0 —4.9914 4.3381 —8.1417 7.3577 —10.7199 9.8051

Regions of negative kinetic energy (j4 > j > j_) outside the ergosphere of the Kerr black hole (a = 0.98) shield particles with various energies

and angular momenta

Within this approximation, the y factor becomes:

m[z

2
Vegt (s) — <51 ]%

(s —r2)(s — V3)

f [(r =) (r —13) rz)(r - V3)

Y = —F/—|8S 1nrm

mm? Verr (s) — 3 2
= [ 4n2 28 (s — 3r) ] Wrs =)
. [mn2 r2(r2+w)]% w?
"l w2l Umre+yR2
x[ — 8M(ac — j)2$ —Qa¥ - 1) - jz)%
1 e—173

where w is the width of the potential barrier.

The Gamow factor e~ is directly related to the width w
of the potential barrier and also the angular momentum and
energy of the tunnelling particle. y increases with the square
of the barrier width. In the limit w — oo, the tunnelling
probability (which is proportional to e ~2") diminishes expo-
nentially. As the width of the potential barrier decreases:
w — 0, y — 0 and the likelihood of tunnelling is increased.

6 Conclusions

Restrictions to the Hawking and Penrose decay processes in
the Kerr black hole occur due to screening of particles with
arange of energies and a range angular momenta. The effect
takes place at the boundaries of a negative kinetic energy
region which may exist outside the event horizon and affects

@ Springer

both the Hawking radiation and the Penrose process. The
locations of these boundaries are determined and found to
depend on the angular momentum and energy of the particles.
Tunneling across this region or potential barrier may take
place, however, resulting in reducing these effects.

The screening of Hawking radiation particles results in
the attenuation of parts of the energy spectrum and of the
angular momentum spectrum. In a competing process, tun-
nelling offsets the screening and allows a fraction of these
particles to be transmitted through the potential barrier. This
tunneling is reduced when the angular momentum of the par-
ticles increases or the energy decreases and the width of the
forbidden region widens. As a result, the Hawking radiation
signature is predominantly made up of low angular momen-
tum modes or high energy modes.

The Penrose process is reduced for particles with low
energies and high angular momenta due to the shielding
effect of the forbidden region and hence the reduction of
energy extraction. As the angular momentum of the particles
increases, or their energy decreases, the black hole becomes
completely shielded. Some particles can still tunnel across
the barrier offsetting the shielding process.

Itis intended also to extend the study to the Kerr-Newman
and Kerr-de Sitter cases. Future work will involve a more
quantitative approach to these decay processes with a com-
parative study of black holes from the microscopic to the
astronomical.
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