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Abstract On gravity’s rainbow, the energy of test particles
deforms the geometry of a black hole in such a way that the
corresponding Hawking temperature is expected to be mod-
ified. It means that the fiducial and free-fall temperatures on
the black hole background should also be modified accord-
ing to deformation of the geometry. In this work, the probing
energy of test particles is assumed as the average energy of the
Hawking particle in order to study the particle back reaction
of the geometry by using the advantage of gravity’s rainbow.
We shall obtain the modified fiducial and free-fall tempera-
tures, respectively. The behaviors of these two temperatures
on the horizon tell us that black hole complementarity is still
well defined on gravity’s rainbow.

1 Introduction

There has been given much attention to modified dispersion
relations in the regime of gravity’s rainbow from the semi-
classical point of view of loop quantum gravity [1–5]. Such
modifications could be found in threshold anomalies in ultra-
high cosmic rays and Tev photons [6–13]; however, they are
still not established. Moreover, threshold anomalies are not
a generic feature of the modified dispersion relation but they
are only predicted by modified dispersion relation scenarios
with a preferred reference frame [14]. In fact, the modified
dispersion relations were based on the doubly special rel-
ativity [15–20], which is an extended version of Einstein’s
special relativity in the sense that both the Planck length and
the speed of light should be required to be invariant in any
inertial frames. In connection with this issue, it was claimed
that a nonlinear Lorentz transformation in the momentum
space is needed to keep the double invariant constants. Subse-
quently, Magueijo and Smolin [21] proposed that the space-
time background felt by a test particle depends on its energy

a e-mail: yongwan89@sogang.ac.kr
b e-mail: wtkim@sogang.ac.kr

such that the energy of the test particle deforms the back-
ground geometry and eventually gives modified dispersion
relations. In particular, according to the modified dispersion
relations with the generalized uncertainty principle, it was
shown that the generalized second law of black hole thermo-
dynamics is valid by modifying a relation between the mass
and temperature of the black hole [22]. Moreover, it was
proposed that the brick wall could be eliminated by choos-
ing appropriate rainbow functions [23], and also claimed that
a remnant is formed for all black objects in this theory [24].
The gravity’s rainbow has been extensively studied in order
to explore various aspects for black holes and cosmology
[25–38].

One of the most important ingredients in thermodynamic
analysis of black hole system is to define temperatures con-
sistently [39]. The Hawking temperature could be defined by
the surface gravity κ(E) from the metric of black holes on
gravity’s rainbow [40], and thus the metric would naturally
depend on the energy E of the test particle in terms of the
rainbow functions to modify the dispersion relation. In the
spirit of gravity’s rainbow, any probing energy affects the
geometry, so it seems plausible to assert that Hawking radi-
ation deforms the original background geometry. Hence, if
the temperature were regarded as the average energy of test
particles on the background of black hole, then the Hawking
temperature should be characterized by the deformed geom-
etry. Its form would be different from the standard Hawking
temperature due to the rainbow effect. Apart from the Hawk-
ing temperature defined at infinity, one can also consider
additional two different temperatures; the so-called fiducial
temperature and free-fall temperature. The former is defined
in fixed coordinates of an accelerated frame, while the latter
is defined in a free-falling frame. We expect these two tem-
peratures would be modified like the Hawking temperature
according to the rainbow effect, and thus it would be inter-
esting to study how to obtain the fiducial temperature and
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free-fall temperature on the background of a black hole in
the theory of gravity’s rainbow.

In Sect. 2, we shall elaborate the Hawking temperature
on gravity’s rainbow. At first sight, the temperature obtained
from the surface gravity in the energy-independent coordi-
nates seems different from that from the energy-dependent
coordinates. To resolve this conflict, we will find a useful
relation between these two temperatures. Additionally, we
shall identify the relation between the energy of test particles
and the Hawking temperature. Then a proportional constant
between the energy and the temperature will be fixed by using
the modified dispersion relation and the uncertainty relation.
In Sect. 3, our strategy for the calculation of the fiducial tem-
perature is to use the conventional definition, but written in
terms of the energy-dependent coordinates [21]. For a cer-
tain class of rainbow functions, we obtain an explicit fidu-
cial temperature which becomes the Hawking temperature
at infinity. On the other hand, the free-fall temperature may
be derived by employing the Stefan–Boltzmann relation to
relate the energy density with the temperature in a free-falling
frame. Unfortunately, this is not the case, since the conven-
tional Stefan–Boltzmann relation in the proper frame [41,42]
is not appropriate to apply it directly to quantum black holes,
because it was obtained by assuming traceless condition of
the energy-momentum tensor. So the free-fall temperature
gives a pathological behavior at the horizon as discussed in
detail in Ref. [43]. In Sect. 4, we present the generalized
Stefan–Boltzmann relation for a non-vanishing trace in the
presence of Hawking radiation. In fact, Hawking radiation is
related to the trace anomaly of the energy-momentum ten-
sors [44]. Then the free-fall energy density and the free-all
temperature will be calculated on gravity’s rainbow. In Sect.
5, conclusion and discussion will be given.

2 Hawking temperature

Let us start with the modified dispersion relation [21]

E2 f (E/Ep)
2 − p2g(E/Ep)

2 = m2, (1)

where E , p, m are the energy, momentum, mass of a
test particle, and the Planck energy is denoted by Ep. We
use the natural units as h̄ = c = kB = 1. The rain-
bow functions f (E/Ep), g(E/Ep) satisfy the limits of
limE/Ep→0 f (E/Ep) = 1 and limE/Ep→0 g(E/Ep) = 1.
Note that the above modified dispersion relation can be
rewritten in the form of the original dispersion relation such
as Ẽ2 − p̃2 = m2 by using the transformation,

Ẽ = f (E)E, p̃ = g(E)p. (2)

From now on, we are going to use a two-dimensional metric
in order for exact solubility without losing the essential prop-
erties of temperatures. So let us consider the Schwarzschild

black hole on gravity’s rainbow,

ds2 = −F1(r, E)dt2 + F2(r, E)dr2, (3)

where the metric functions are F1(r, E) = f −2(E)(1 −
2GM/r) and F2(r, E) = g−2(E)(1 − 2GM/r)−1. Then
the Hawking temperature can be obtained from the surface
gravity as [40]

TH = κH

2π
(4)

= 1

2π

√
−1

2
∇μξν∇μξν |r=rH (5)

= g(E/Ep)

f (E/Ep)

1

8πGM
, (6)

where ξμ is the time-like Killing vector and rH is the event
horizon.

On the other hand, the metric (3) can also be written in
terms of the energy-dependent coordinates as [21]

ds2 = −
(

1 − 2G̃M

r̃

)
dt̃2 + 1

1 − 2G̃M
r̃

dr̃2, (7)

which the transformation is implemented by t̃(E) = t/ f (E),
r̃(E) = r/g(E), and G̃(E) = G/g(E), where the tilde vari-
ables are energy-dependent. From the metric (7), the Hawk-
ing temperature can be derived from the definition of the
surface gravity as

T̃H = 1

8π G̃M
. (8)

Note that it can be shown that the temperature (8) is the same
as Eq. (6) if the temperature transformation is assumed as

T̃H = f (E)TH, (9)

which yields a result compatible with Eq. (6) after rewriting
it in terms of the non-tilde variables,

TH = g(E/Ep)

f (E/Ep)

1

8πGM
. (10)

From the transformation (9) and the first equation in Eq.
(2), one can see that the temperature TH behaves in the same
manner as the energy E on gravity’s rainbow. According
to this fact, it is reasonable to relate the temperature to the
energy. If the Hawking radiation were regarded as the energy
of test particles, then the framework of gravity’s rainbow
would provide the particle back reaction of the geometry
effectively and, consequently, modify the standard Hawking
temperature. However, the test particles with different ener-
gies would give different geometries. So let us choose a single
representative energy, that is, the average energy of particles.
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Thus it will be proportional to the Hawking temperature of
thermal bath based on Wien’s law [40],

E = αTH, (11)

where α is a proportional constant. On general grounds, it
seems non-trivial to determine the constant. Nevertheless,
we shall fix the constant for a specific modified dispersion
relation such as [45,46]

m2 = E2 − p2 + ηp2
(

E

Ep

)n

, (12)

where η is a positive rainbow parameter and n is a positive
integer. Then the rainbow functions can be read off from Eq.
(12) [34],

f (E/Ep) = 1, g(E/Ep) =
√

1 − η

(
E

Ep

)n

, (13)

where n = 2 for simplicity.
Following the argument in Ref. [22], the Heisenberg

uncertainty relation can be used to obtain the momentum
of the particle as p = �p ∼ 1/(2GM), where the position
uncertainty of the particle is �x ∼ 2GM . So the energy can
be expressed as E = √

(1 + 4m2G2M2)(ηG + 4G2M2)−1

with G = 1/E2
p. From Eq. (11), the temperature can be iden-

tified as

TH = 1

2αGM

√
4GM2 + 16m2G3M4

4GM2 + η
. (14)

Next, using the rainbow functions (13) and the energy–
temperature relation (11), the temperature defined by the sur-
face gravity (10) can be fixed as

TH = 1

8πGM

√
64π2GM2

64π2GM2 + α2η
. (15)

Note that the Hawking temperature (15) defined at infinity
by using the surface gravity method was originally obtained
by assuming a massless scalar field [39]. For the massive
case (14), we are actually interested in the case for the well-
defined semiclassical approximations for which mM � 1.
In fact, the massive modes will propagate near infinity but
it will decay exponentially there. Furthermore, the constant
α should depend on the mass of particle m and the mass of
black hole M , such that it cannot be an universal constant any
more. In these respects, it is reasonable to take the massless
limit for simplicity in order to compare Eqs. (14)–(15). Then
the proportional constant α is uniquely fixed as α = 4π .

After all, the temperature (10) can be expressed as

TH = 1

8πGM

√
4GM2

4GM2 + η
, (16)

which respects the well-known Hawking temperature for
η → 0. Note that the above result is different from Eq. (10) in

general; however, they are the same if the energy of probing
particles is the average energy of Hawking particles.

In contrast to the standard Hawking temperature, the
Hawking temperature (16) on gravity’s rainbow is finite when
the mass of black hole vanishes thanks to the rainbow param-
eter η, which plays the role of a cutoff. In the subsequent
sections, we will investigate the fiducial temperature and the
free-fall temperature by using the energy–temperature rela-
tion (11) and Hawking temperature on gravity’s rainbow (16).

3 Fiducial temperature

The fiducial temperature for the fixed observer in an accel-
erated frame on a black hole can be expressed in the form of
blue-shifted Hawking temperature by using the time dilation
of frequency at different places [47]. So, from the metric (7),
the fiducial temperature can be written as

T̃FID = T̃H√−g̃t t
. (17)

Note that at r̃ → ∞, T̃FID = T̃H, which means that the
fiducial temperature is also the same transformation rule as

T̃FID = f (E)TFID (18)

like Eq. (9). Along with G̃ = G/g(E) and r̃ = r/g(E), one
can easily obtain the fiducial temperature as

TFID = g(E)

f (E)

1

8πGM
√

1 − 2GM
r

, (19)

and the specific choice of rainbow functions (13) gives

TFID =
√

1 − η

(
E

Ep

)2 1

8πGM
√

1 − 2GM
r

. (20)

In the previous section, we identified the energy of particle
as the Hawking temperature. So, plugging E = 4πTH into
the fiducial temperature (20), one can explicitly write it as

TFID =
√

1 − η

(
4πTH

Ep

)2 1

8πGM
√

1 − 2GM
r

(21)

= 1

8πGM
√

1 − 2GM
r

√
4GM2

4GM2 + η
, (22)

where we also used Eq. (16). Thus we can show that
the fiducial temperature on gravity’s rainbow is simply
given as the blue-shifted Hawking temperature i.e., TFID =
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M1 M2
M0

T0

T1

TFID

M0

M0

T1

T2

(a) TFID(M) with fixed r

rH
r

TFID

(b) TFID(r) with fixed M

Fig. 1 We set G = 1, r = 20, M2 = 10 in (a), and M = 1 in (b).
The solid curves are for the fiducial temperatures on gravity’s rainbow
(η = 1) and the dashed curves are for the conventional fiducial temper-
atures (η = 0). From the small box in a, one can see that the fiducial

temperature has a finite maximum T2 at M0 and is terminated when
M → 0. In b, the value of the fiducial temperature is smaller than the
conventional one, and it is still divergent at the horizon

TH/
√

1 − 2GM/r . In Fig. 1a, b, the overall behaviors of
the fiducial temperature on gravity’s rainbow are plotted in
contrast to the conventional ones.

4 Free-fall temperature

In this section, we will derive the free-fall temperature
defined by a free-falling observer dropped from rest. First
of all, it is worth to note that the energy density in the
free-falling frame should be rephrased by the temperature
through the Stefan–Boltzmann relation which relates the
energy density in the proper frame to the free-fall temper-
ature. In fact, by using the Stefan–Boltzmann relation, the
free-fall temperature called the Tolman temperature [41,42]
was obtained assuming the traceless condition of the energy-
momentum tensor. Thus the conventional Stefan–Boltzmann
relation should be generalized in such a way to incorporate
the trace anomaly of energy-momentum tensor [48], since
Hawking radiation is associated with the trace anomaly [44].

For this purpose, we repeat the calculation along the line
of the original work by Tolman [41,42] except the traceless
condition of energy-momentum tensor. From the first law of
thermodynamics given as dU = T dS − pdV , where U , T ,
S, p, and V are the thermodynamic internal energy, tem-
perature, entropy, pressure, and volume in the proper frame,
respectively, and U = ∫

ρdV , one can get

∂U

∂V

∣∣∣∣
T

= T
∂S

∂V

∣∣∣∣
T

− p. (23)

By employing the Maxwell relation such as ∂S/∂V |T =
∂p/∂T |V , Eq. (23) is rewritten as

ρ = T
∂p

∂T

∣∣∣∣
V

− p. (24)

Next the trace of energy-momentum tensor is expressed as

− ρ + p = Tμ
μ . (25)

Plugging Eqs. (25) into (24) along with the property of the
temperature independence of the trace anomaly [49], one can
get

2ρ = T
∂ρ

∂T

∣∣∣∣
V

− Tμ
μ , (26)

which yields the following solutions:

ρ = γ T 2 − 1

2
Tμ

μ , p = γ T 2 + 1

2
Tμ

μ , (27)

where the Stefan–Boltzmann constant is chosen as γ = π/6
for a two-dimensional massless scalar field [44]. This is the
generalized Stefan–Boltzmann relation to incorporate the
effect of the trace anomaly. As it should be, it reproduces the
conventional Stefan–Boltzmann relation when the energy-
momentum tensor is traceless.

On the other hand, we are now in a position to derive the
free-fall energy density and the pressure. In a static system,
the Hawking radiation can be treated as a perfect fluid [41],

Tμν = (ρ + p)uμuν + pgμν, (28)

and from the metric (3) the velocity for the free-falling
observer is solved as

uμ = dxμ

dτ
=

(
1√

F1(r, E)
, 0

)
. (29)

Note that we assumed the Hawking radiation as a perfect fluid
on the static background of black hole. Of course, the back-
ground satisfies the equation of motion from gravity’s rain-
bow without source, whereas the excitations such as Hawking
particles are treated as quantized particles. Actually, we are
interested in the semiclassical limit, such that the background
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0 M1
M

T0

TFF

(a) TFF(M) with fixed r

rH
r

TFF

(b) TFF(r) with fixed M

Fig. 2 We set G = 1, r = 20, M1 = 10 in (a), and M = 1 in (b). The solid curves are for the temperature on gravity’s rainbow, which are plotted
by setting η = 1 for convenience, and the dashed curves are for the conventional temperature without the rainbow effect, simply setting η = 0

is indeed classically vacuum solution whereas the test par-
ticles or radiation are quantized by means of the quantum
energy-momentum tensor on this classical background.

Now, the free-fall energy density and the pressure can be
related to the quantities defined in the fixed coordinates in
terms of the relations; ρ = Tμνuμuν , p = Tμνnμnν , where
nμ is the spacelike unit normal vector satisfying nμnμ = 1
and nμuμ = 0. Then the covariant conservation law of the
energy-momentum tensor can be written in the form of

2F1∂r p = −(ρ + p)∂r F1. (30)

By using the trace equation (25), the solution to the differen-
tial equation (30) is solved as

ρ = 1

F1

(
C0 − F1T

μ
μ + 1

2

∫
Tμ

μ dF1

)
,

p = 1

F1

(
C0 + 1

2

∫
Tμ

μ dF1

)
, (31)

where C0 is an integration constant. Plugging the energy
density and pressure (31) into Eq. (27), we can obtain the
generalized Tolman temperature as

TFF = 1√
γ F1

√
C0 − F1

2
Tμ

μ + 1

2

∫
Tμ

μ dF1. (32)

For the traceless case, the temperature is reduced to the stan-
dard Tolman temperature, TFF = √

C0/(γ F1).
Let us calculate the free-fall temperature for the two-

dimensional Schwarzschild black hole described by the met-
ric (3). By using the trace anomaly for a massless scalar field
as Tμ

μ = R/(24π) [44,50], the trace anomaly for the metric
(3) is obtained:

Tμ
μ = g(E)2 GM

6πr3 . (33)

From Eqs. (32) and (33), the free-fall temperature can be
obtained with the boundary condition ofC0 = γ T 2

H, in which

the standard Hawking temperature is restored at infinity,

TFF = 1

8πGM

√
4GM2

4GM2 + η

×
√

1 + 2GM

r
+

(
2GM

r

)2

− 3

(
2GM

r

)3

. (34)

The behaviors of the free-fall temperature are plotted in Fig.
2a, b. First of all, without the rainbow effect taking η → 0,
the temperature is divergent for the massless limit of the
black hole due to the rapid evaporation of black hole but
the rainbow parameter cuts off the divergence as seen from
Fig. 2(a). On the other hand, from Fig. 2(b), one can see that
the temperature becomes the Hawking temperature on grav-
ity’s rainbow at infinity, while it vanishes at the horizon. The
radial dependence of the free-fall temperature shows that the
rainbow effect lowers the value of the free-fall temperature.

5 Conclusion and discussion

The energy of probing particles affects the geometry in the
formalism of gravity’s rainbow, which is comparable to take
into account the test particle back reaction of the geometry.
It means that the energy of particle modifies the geometry of
black hole, so that the Hawking temperature, which is sensi-
tive to the geometry of black hole, can also be modified. In
this context, we studied the Hawking, fiducial, and free-fall
temperatures, respectively, in order to obtain their character-
istics in the framework on gravity’s rainbow.

For the Hawking temperature, we presented two repre-
sentations in the fashion of the energy-independent and -
dependent coordinates, and found that the relation to con-
nect these representations follows T̃ = f T like the energy
transformation. Moreover, the Hawking radiation was iden-
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tified with using the energy of test particles in order to inves-
tigate the impact on the geometry in the presence of radi-
ation. We found that the energy–temperature relation was
specified as E = αTH, where α = 4π in our choice of
rainbow functions. It is interesting to note that the propor-
tional constant was given by the irrational number, which is
contrast to the common case given as multiple degrees of
half-integer. It means that the particle energy should be non-
trivially related to the thermal temperature. Next, the fidu-
cial temperature was defined by using the energy-dependent
coordinates, and then it was rewritten in terms of the energy-
independent coordinates. Using the energy–temperature rela-
tion, we found that the fiducial temperature (21) takes the
blue-shifted Hawking temperature that is still divergent at
the horizon, while it reproduces the Hawking temperature at
infinity. For the free-fall temperature, we extended the con-
ventional Stefan–Boltzmann relation to the case of the non-
vanishing trace of energy-momentum tensor in order to take
into account the trace anomaly related to Hawking radiation.
Consequently, the free-fall temperature is finite everywhere
without the blueshift, especially vanishing at the horizon.

In connection with the last statement, one might want to
find a different reason why the free-fall temperature (34)
vanishes at the horizon, whereas the fiducial temperature
(21) is divergent there. This fact can also be seen from the
Unruh effect [51] for the large black hole. Very near the
horizon, the metric (7) can be written as the Rindler met-
ric, so that the acceleration of the fixed observer is pro-
portional to the temperature as T̃U = ã/2π . By recov-
ering it in the energy-independent coordinates, the Unruh
temperature on gravity’s rainbow can be written as TU =
(g/ f )GM/(2πr2√1 − 2GM/r). From the choice of rain-
bow functions such as Eq. (13) with Eq. (11), we can see that
it should be divergent at the horizon, which is coincident with
the present result for the fiducial observer. As a corollary in
the local inertial frame, there does not exist any acceleration
at the horizon for the large black hole, so that the Unruh
temperature vanishes. It means that our free-fall temperature
should be zero at the horizon. Thus the fixed observer and
free-fall observer see extremely different degrees of freedom
at the horizon, which means that black hole complementarity
[52–54] still holds for gravity’s rainbow.

The final comment is in order. At first sight, the free-
fall temperature generically seems to vanish in freely falling
frames at any distance far from the horizon including at the
horizon because of the equivalence principle. However, this
is not the case, since there exists an energy density which
amounts to the curvature scale of 1/M2 even in those frames
in which the gravitational acceleration is locally zero. Thus,
the scale of the corresponding temperature is the order of
1/M as seen from Eq. (27) rather than zero. Therefore, the
common wisdom is that the equivalence principle is weakly
broken when the Hawking radiation is involved quantum-

mechanically. However, the surprise is that, as shown in
Ref. [55], the equivalence principle is restored just at the
horizon. For large black holes, this fact is compatible with
the Unruh effect which was actually defined at the horizon
for those black holes in the Rindler approximation. In the
present calculations, this vanishing result of the free-fall tem-
perature at the horizon was found from the modification of
the Stefan–Boltzmann law by taking into account the trace
anomaly.
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