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Abstract We estimate the value of the survival probability
for central exclusive production in a model which is based
on the CGC/saturation approach. Hard and soft processes
are described in the same framework. At LHC energies, we
obtain a small value for the survival probability. The source
of the small value is the impact parameter dependence of the
hard amplitude. Our model has successfully described a large
body of soft data: elastic, inelastic and diffractive cross sec-
tions, inclusive production and rapidity correlations, as well
as the t-dependence of deep inelastic diffractive production
of vector mesons.
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1 Introduction

The large body of experimental data [1–14] on high energy
soft interactions from the LHC, calls for an approach based
on QCD that allows us to comprehend this data. However,
due to the embryonic stage of our understanding of the con-
finement of quarks and gluons, we are doomed to have to
introduce phenomenological model assumptions beyond that
of QCD. In our recent articles [15–18] we have proposed
an approach, based on the CGC/saturation effective theory
of high energy interactions in QCD (see Refs. [19–38] for
a review) and the Good–Walker [39] approximation for the
structure of hadrons. In the next section we give a brief review
of our model, however, we would like to mention here that the
main ingredient of this model, is the BFKL Pomeron [40–
43], which describes both hard and soft processes at high
energies. In other words, in our approach, we do not sepa-
rate the interactions into hard and soft, both are described in
the framework of the same scheme. The second important
remark concerns the description of the experimental data:
we obtain a good description of the cross sections of elastic
and diffractive cross sections, of inclusive productions and
the rapidity correlations at high energies. Consequently, we
feel that we are ready to test our model on a complicated
phenomenon, the survival probability of central diffractive
production.1

The physical meaning of “survival probability” has been
clarified in the first papers on this subject (see Refs. [44–

1 In this paper we only consider the central diffractive production (CEP)
induced by the QCD processes, leaving CEP via two-photon induced
and photoproduction mechanisms for further investigation.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-4014-z&domain=pdf
mailto:gotsman@post.tau.ac.il
mailto:leving@post.tau.ac.il
mailto:{}eugeny.levin@usm.cl
mailto:maor@post.tau.ac.il


177 Page 2 of 13 Eur. Phys. J. C (2016) 76 :177

(b) (c)

g (b)i

=

(a)

QT

p1T

p2T

Fig. 1 a Scattering amplitude of the hard process. b Description of
the set of the eikonal diagrams in the BFKL Pomeron calculus, which
suppress the di-jet quark production, due to the contamination of the

LRG (large raridity gap) by gluons, which can be produced by different
parton showers, as shown in c

46]), and is illustrated by Fig. 1, using the example of the
central production of a di-jet with large transverse momenta.
At first sight we have to calculate the diagram of Fig. 1a
in perturbative QCD, in which only two protons and the di-
jet are produced, without any other hadrons. However, this
is not sufficient, since simultaneously a number of parton
showers can be produced, and gluons (quarks) from these
showers will produce additional hadrons. To calculate central
diffractive production, we have to exclude these processes.
In other words, we multiply the cross section given by the
diagram of Fig. 1a by the suppression factor, which reflects
the probability of not having any additional parton showers.
This factor is the “survival probability”.

Even this brief description indicates that we have a com-
plex problem, since some of the produced parton showers
can have perturbative QCD structures, while others can stem
from the long distances, and can be non-perturbative by
nature. Therefore, to attack this problem we need a model
that describes both long and short distances.

As we have mentioned above, our model fulfills these
requirements, and so we will proceed to discuss survival
probability in this model, expecting reliable results.

The next section is a brief review of our approach. We
include it in the paper, for the completeness of presentation,
and to emphasise that both short and long distance phenom-
ena are described in the same framework. Section 3 is devoted
to a derivation of the formulae for the survival probability
using the BFKL Pomeron calculus. The numerical estimates
are given in Sect. 4, while in Sect. 5, we summarise our
results.

2 Our model: generalities and the elastic amplitude

In this section we briefly review our model which suc-
cessfully describes diffractive [15,16] and inclusive cross
sections [17]. The main ingredient of our model is the
BFKL Pomeron Green function, which we obtained using a
CGC/saturation approach [15,51]. We determined this func-

tion from the solution of the non-linear Balitsky–Kovchegov
(BK) equation [25–27], using the MPSI approximation [52–
56] to sum enhanced diagrams, shown in Fig. 2a. It has the
following form:

Gdressed(T ) = a2(1 − exp(−T ))

+ 2a(1 − a)
T

1 + T
+ (1 − a)2G(T ),

with G(T ) = 1 − 1

T
exp(

1

T
)�0(

1

T
). (2.1)

T (s, b) = φ0S(b,m)e0.63λ ln(s/s0),

with S(b,m) = m2

2π
e−mb. (2.2)

In the above formulae a = 0.65; this value was chosen so as
to attain the analytical form of the solution of the BK equa-
tion. Parameters λ and φ0 can be estimated in the leading
order of QCD, but due to the large next-to-leading order cor-
rections, we consider them as objects to be determined from a
fit to the relevant experimental data. m is a non-perturbative
parameter, which characterises the large impact parameter
behavior of the saturation momentum, as well, as the typical
size of dipoles that take part in the interaction. The value of
m = 5.25 GeV in our model, supports our main assump-
tion that the BFKL Pomeron calculus, based on a perturba-
tive QCD approach, is able to describe soft physics, since
m � μsoft, where μsoft is the natural scale for soft processes
(μsoft ∼ �QCD and/or pion mass).

Unfortunately, in the situation where the confinement
problem is still far from being solved, we need to rely on
a phenomenological approach for the structure of the col-
liding hadrons. We use a two-channel model, which allows
us also to calculate the diffractive production in the region
of small masses. In this model, we replace the rich structure
of the diffractively produced states, by the single state with
the wave function ψD . The observed physical hadronic and
diffractive states are written in the form

ψh = α ψ1 + β ψ2; ψD = −β ψ1 + α ψ2;
where α2 + β2 = 1. (2.3)
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Fig. 2 a Set of the diagrams in the BFKL Pomeron calculus that pro-
duce the resulting (dressed) Green function of the Pomeron in the frame-
work of high energy QCD. b The net diagrams which include the inter-

action of the BFKL Pomerons with colliding hadrons are shown. After
integration over positions of G3IP in rapidity, the sum of the diagrams
reduces to c

Table 1 Fitted parameters of the model. The values of the old set are taken from Ref. [16]. Values of the new set are determined by fitting to data
with the additional constraint m2 ≤ 1.5 GeV. See Sect. 4.2

2 Ch. model λ φ0 (GeV−2) g1 (GeV−1) g2 (GeV−1) m (GeV) m1 (GeV) m2 (GeV) β

Old set 0.38 0.0019 110.2 11.2 5.25 0.92 1.9 0.58

New set 0.325 0.0021 118 14.7 5.45 1.04 0.47 0.52

The functionsψ1 andψ2 form a complete set of orthogonal
functions {ψi } which diagonalise the interaction matrix T,

Ai ′k′
i,k = 〈ψi ψk |T|ψi ′ ψk′ 〉 = Ai,k δi,i ′ δk,k′ . (2.4)

The unitarity constraints take the form

2 Im Ai,k(s, b) = |Ai,k(s, b)|2 + Gin
i,k(s, b), (2.5)

where Gin
i,k denotes the contribution of all non-diffractive

inelastic processes, i.e. it is the summed probability for these
final states to be produced in the scattering of a state i off a
state k. In Eq. (2.5)

√
s = W is the energy of the colliding

hadrons, and b denotes the impact parameter. A simple solu-
tion to Eq. (2.5) at high energies, has the eikonal form with
an arbitrary opacity �ik , where the real part of the amplitude
is much smaller than the imaginary part.

Ai,k(s, b) = i(1 − exp(−�i,k(s, b))), (2.6)

Gin
i,k(s, b) = 1 − exp(−2 �i,k(s, b)). (2.7)

Equation (2.7) implies that PS
i,k = exp(−2 �i,k(s, b)) is the

probability that the initial projectiles (i, k) will reach the final
state interaction unchanged, regardless of the initial state re-
scatterings.

Note that there is no factor 1/2. Its absence stems from
our definition of the dressed Pomeron.

In the eikonal approximation we replace �i,k(s, b) by

�i,k(s, b) =
∫

d2b′ d2b′′ gi (	b′)Gdressed(T (s, 	b′′))

× gk(	b − 	b′ − 	b′′). (2.8)

where

gi (b) = gi Sp(b;mi )

with Sp(b,mi ) = 1

4π
m3

i b K1(mib), (2.9)

Sp(b,mi ) is the Fourier image of the dipole form factor
1/(1 + Q2

T /m2
i )

2, where QT is the momentum transferred
by the Pomeron. It is a pure phenomenological input, and
this choice satisfies two theoretical limits: (1) at large QT

the dipole form factor behaves as 1/Q4
T , as follows from

perturbative QCD estimates [47,48]; and (2) it provides the
correct (∝ exp(−mib) ) behaviour at large impact parame-
ters [49,50].

We propose a more general approach, which takes into
account new small parameters that result from the fit to the
experimental data (see Table 1; Fig. 2):

G3IP/gi (b = 0) � 1; m � m1 and m2. (2.10)

The second equation in Eq. (2.10) means that b′′ in
Eq. (2.8) is much smaller that b and b′, therefore, Eq. (2.8)
can be re-written in a simpler form

�i,k(s, b) =
(∫

d2b′′Gdressed(T (s, 	b′′))
)

×
∫

d2b′gi (	b′) gk(	b − 	b′)

= G̃dressed(T̄ )

∫
d2b′gi (	b′) gk(	b − 	b′). (2.11)

Note that G̃dressed(T̄ ) does not depend on b, and is a func-
tion of T̄ = T (s, b = 0) = m2

2π
φ0 e0.63 λY .

Selecting the diagrams using the first equation in Eq. (2.10),
one can see that the main contribution stems from the net dia-
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Fig. 3 A typical example of ‘fan’ diagrams that are summed in
Eq. (2.14)

grams shown in Fig. 2b. The sum of these diagrams [16] leads
to the following expression for �i,k(s, b):

�i,k(Y ; b)
=

∫
d2b′ gi (	b′) gk(	b − 	b′)G̃dressed(T̄ )

1 + G3IP G̃dressed(T̄ )[gi (	b′) + gk(	b − 	b′)] ;
(2.12)

where

G̃dressed(T̄ ) =
∫

d2b Gdressed(T (s, b)), (2.13)

and T (s, b) is given by Eq. (2.2).
In the above formulae the value of the triple BFKL

Pomeron vertex is known: G3IP = 1.29 GeV−1.
For further discussion we introduce

N BK (Gi
IP (Y, b)) = a (1 − exp(−Gi

IP (Y, b)))

+ (1 − a)
Gi

IP (Y, b)

1 + Gi
IP (Y, b)

, (2.14)

with a = 0.65. Equation (2.14) is the analytical approxi-
mation for the numerical solution to the BK equation [51].
GIP (Y ; b) = gi (b) G̃dressed(T̄ ). We recall that the BK equa-
tion sums the ‘fan’ diagrams shown in Fig. 3.

3 The main formulae for the survival probability

3.1 Hard amplitude in the two-channel model

The expression for the hard amplitude is known, and it has
been discussed in great detail (see Ref. [57–63]). It has the
following general form (see Fig. 1a):

Ahard = π2
∫

d2QT
M̄

Q2
T ( 	QT − 	p1T )2 ( 	QT + 	p2T )2

×φG(x1, x
′
1, Q

2
T , t1) φG(x2, x

′
2, Q

2
T , t2). (3.1)

where QT is the transverse momentum in the gluon loop,
M̄ is the color averaged amplitude for the process GG →
X , where X denotes the final state (quark–antiquark jets in
Fig. 1a) with mass MX .

M̄ = 2

M2
X

1

N 2
c − 1

∑
a,b

δab( 	Qμ
T − 	pμ

1T )( 	Qν
T + 	pν

2T ) �ab
μν.

(3.2)

�ab
μν is a vertex for GG → X .
φG(xi , x ′

i , Q
2
T , ti ) denotes the skewed unintegrated gluon

densities. These functions have been discussed and we refer
the reader to Ref. [57]. The ti dependence, is of great
importance for the calculation of the survival probability
[46,64,65]. We show below that the essential ti turns out
to be small in our estimates, and therefore, we have to rely
on some input from non-perturbative QCD. Our assumption
is that at small ti we can factorise the unintegrated gluon
density as

φG(xi , x
′
i , Q

2
T , ti ) = φ̃G(xi , x

′
i , Q

2
T ) �(ti )

impact parameter image−−−−−−−−−−−−−→ φ̃G(xi , x
′
i , Q

2
T ) Sh(b). (3.3)

We make the assumption that the hard amplitude at fixed
impact parameter b has the form

Ahard = Ahard(s; p1, p2)

∫
d2b′ Sh(b′) Sh(	b − 	b′), (3.4)

where p1 and p2 denote the four momenta of the outgoing
protons.

The advantage of our technique is that it is based on
the CGC/saturation approach, and the unintegrated structure
functions, φG(xi , x ′

i , Q
2
T , ti ), can be calculated in this frame-

work. In the two-channel model we have two unintegrated
structure functions (see Fig. 4):

φ1→proton ∝ α g1(b) ≡ Sh1 (b);
φ2→proton ∝ β g2(b) ≡ Sh2 (b).

QT

p1T

p2T

i

k

i

k

N

N

N

N

e ik

g  (b)k

Fig. 4 Survival probability in two-channel model
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Fig. 5 Compilation of experimental data on the slope of the diffrac-
tively produced vector mesons at HERA. The figure is taken from Ref.
[67,68]

We extract the b dependence of hard amplitudes i, from
the experimental data for diffractive production of vector
mesons in deep inelastic scattering (DIS). Presenting the t-
dependence of the measure differential cross section in the
form

dσ(γ ∗ + p → V + p)

dt

/
dσ(γ ∗ + p → V + p)

dt

∣∣∣∣
t=0

= e−Bh |t |. (3.5)

In QCD

dσ(γ ∗ + p → V + p)

dt
∝ φ2

G(xBj , x
′
Bj , Q

2, t)

∝
(∫

ei
	QT ·	b(α2g1Sp(b,m1) + β2 g2 Sp(b,m2))

)2

,

(3.6)

where t = −Q2
T .

The value of the slope Bh can be calculated and it is equal
to

Bh = 1

2

∫
b2 d2b(α2g1Sp(b,m1) + β2 g2 Sp(b,m2))∫

d2b(α2g1Sp(b,m1) + β2 g2 Sp(b,m2))
.

(3.7)

Using the parameters of Table 1, we find Bh ≈ 4.5 GeV−2.
From Fig. 5 one can see that Bh → 4 ÷ 5 GeV−2. Therefore,
the b dependence obtained from our approach, is in accord
with the HERA experimental data.

Generally speaking, both Bh’s depend on energy. Indeed,
in Regge theory [66], the scattering amplitude Ahard ∝
sαIP (t) with αIP (t) = αIP (0) + α′

IP ln(s/s0) t = 1 + � +
α′
IP ln(s/s0) t . For hard processes we do not expect Pomeron

trajectories with α′
IP �= 0. However, the effective α′

IP is due to
shadowing corrections. The hard amplitude has the following
generic form:

Ahard ∝ s� e− b2

2Bh . (3.8)

At largeb this amplitude is small. At some value ofb = b0(s),
Ahard(s, b) ∼ 1. This equation leads to

s� e− b2
0

2Bh = f ≤ 1; b2
0(s) = 2 Bh � ln(s/s0). (3.9)

Due to unitarity (see Eq. (2.5)) the amplitude cannot
exceed unity. Therefore, at b ≤ b0(s), Ahard(s, b) ∝
�(b0(s) − b) where �(z) is a step function. Using this step
function we see that 〈b2〉 = 1

2b
2
0(s).

On the other hand, the t slope of the amplitude is equal to
B = 〈b2〉/4 = b2

0(s)/8. Note that the slope of the amplitude
is equal to 1

2 B
h of Eq. (3.7)). Finally, the t-slope for the

scattering amplitude is proportional to ln(s/s0), viz. B =
1
4 Bh � ln(s/s0) or

α
′ eff
IP = 1

4
� Bh

el,0, (3.10)

where Bh
0 is the slope for the cross section at s = s0. Choosing

s0 = 1 GeV2 and � = 0.22 we obtain Bh
0 ≈ 3.2 GeV−2 and

α
′ eff
IP = 0.154 GeV−2. While the HERA experiment gives

[67–70] Bh
el = 4.63 ± 0.06 + 4 (0.164 ± 0.41) ln(W/W0).

We believe that our approach provides a reasonable esti-
mate of, and an appropriate method to understand the energy
behavior of the hard amplitude. Note that Bh

0 ≈ 3.2 GeV−2

comes from the experimental formulae changing W0 =
90 GeV to W0 = 1 GeV. The above discussion, illustrates
that our approach leads to the experimental shrinkage of the
effective slope, this occurs naturally in our procedure, with-
out any additional parameters or modification of our formu-
lae, we discuss this in Sects. 4.1 and 4.2. In Sect. 3.4 we
discuss the hard amplitude which appears in our model that
describes on the same footing both soft and hard interactions.
In other words, we discuss there our expressions for φG and
Sh(b) appearing in Eq. (3.3).

Bearing in mind this estimate, we find the following hier-
archy of transverse distances, in our approach for high energy
scattering (see Table 1):

4

m2
1

> Bhard � 1

m2 , (3.11)

where 4/m2
i is the typical slope for gi (b).

2 Such values of � come both from experiment [67–70] and from
theoretical estimates.
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Fig. 6 a Set of the diagrams for the BFKL Pomeron calculus that lead
to the resulting Pomeron Green function, after integrating over rapidi-
ties of the triple Pomeron vertices, can be re-written in the form of b.

c Illustration that to calculate the survival probability, we need to replace
one of BFKL Pomerons by the hard amplitude

3.2 Survival probability: eikonal approach

Central exclusive production (CEP) has the typical form

p + p → p(q1,T ) + [LRG] + X (MX ) + [LRG] + p(q2,T ),

(3.12)

where LRG denotes the large rapidity gap in which no
hadrons are produced. We cannot restrict ourselves to the
hard amplitude (see Fig. 1a) to describe this reaction. Indeed,
Eq. (3.1) gives the amplitude of CEP, but only for a parton
shower. However, the production of many parton showers,
shown in Fig. 1c, will contaminate the LRG’s, and these have
to be eliminated, in order to obtain the correct cross section
for the reaction of Eq. (3.12). In simple eikonal models, such
a suppression stems from the diagrams shown in Fig. 1b.

For this simple case, we can derive the formula for the
survival probability, using two different approaches. The
first one, relies on the s-channel unitarity constraint (see
Eq. (2.5)). In the eikonal approach the contribution of all
inelastic states is given by Eq. (2.7)

Gin(s, b) = 1 − exp(−2�(s, b)). (3.13)

From Eq. (3.13) we see that multiplying the hard cross section
by the factor exp(−2�(s, b)), we obtain the probability that
the process has no inelastic production in the entire kinematic
rapidity region [44–46]. Therefore, the survival probability
factor 〈S2〉 takes the form

〈S2〉 =
∫

d2b e−2 �(s,b)
∣∣∣Ahard(s; p1, p2)

∫
d2b′ Sh(b′) Sh(	b − 	b′)

∣∣∣2

∫
d2b

∣∣∣ Ahard(s; p1, p2)
∫

d2b′ Sh(b′) Sh(	b − 	b′)
∣∣∣2

=
∫

d2b e−2 �(s,b)
∣∣∣ ∫ d2b′ Sh(b′) Sh(	b − 	b′)

∣∣∣2

∫
d2b

∣∣∣ ∫ d2b′ Sh(b′) Sh(	b − 	b′)
∣∣∣2 . (3.14)

Note that Ahard(s; p1, p2) does not depend on b; see
Eq. (3.4).

The second derivation is based on summing the Pomeron
diagrams of Fig. 1b, introducing � = g(b)2G̃dressed(s) in
Eq. (3.13). The eikonal amplitude can be written as (see
Eq. (2.6))

i(1 − exp(−�(s, b))) = i
∞∑
n=1

(−1)n−1 �n(s, b)

n! . (3.15)

In each term with the exchange of n Pomerons, we need to
replace one of these Pomerons by the hard amplitude. Such
a replacement leads to the following sum:

i
∞∑
n=1

(−1)n−1 n �n(s, b)

n! Ahard = i e−�(s,b)Ahard. (3.16)

Multiplying this amplitude by its complex conjugate, and
integrating over b we obtain Eq. (3.14).

3.3 Survival probability: enhanced diagrams

At first sight Eq. (3.14), provides the answer for the case
of eikonal rescattering. However, this is not correct, since
the dressed BFKL Pomeron Green function is the sum of
enhanced diagrams of Figs. 2a and 6a. To find the survival
probability, we need to replace one of the Pomeron lines in
Fig. 6a by the hard amplitude. As was noticed in Ref. [71]
the enhanced diagrams can be reduced to a sum of diagrams
which have a general form

Gdressed(T ) =
∞∑
n=1

(−1)n−1 �2(P → nP) T n, (3.17)

after integration over positions in rapidity, of the triple
Pomeron vertices. The vertices �(P → nP) can easily be
found from Eq. (2.1). To obtain the survival probability, we
need to replace T in Eq. (3.17) by the hard amplitude: viz
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Ghard(Y, b) ≡ Ahard
IP

∞∑
n=1

(−1)n n �2(P → nP) T n−1

→ Ahard
IP

{
a2 e−T − (1 − a)

(
1 − a

T 2 − 2a

(1 + T )2

)

+ (1 − a)2 1 + T

T 3 e
1
T �0

(
1

T

)}
. (3.18)

It should be noted that Ahard
IP is not the same as in

Eq. (3.14), and its b distribution has a typical value of
b ∝ 1/m. In other words Ahard

IP ∝ S(b). This expression fol-
lows from the key feature of our model that describes both
the hard and the soft amplitude in the same framework. The
b dependence of our hard amplitude is the same as the “soft”
one and characterised by S(b).

Equation (3.18) leads to the following contribution:

�hard
ik =

∫
d2b′ d2b′′ gi (b′)Ghard(Y, b′′) gk(	b − 	b′ − 	b′′)

→
∫

d2b′ gi (b′) gk(	b − 	b′)G̃hard(Y ), (3.19)

G̃hard(Y ) =
∫

d2b′′ S(b′′)

×
{
a2 e−T − (1 − a)

(
1 − a

T 2 − 2a

(1 + T )2

)

+ (1 − a)2 1 + T

T 3 e
1
T �0

(
1

T

)}
. (3.20)

Inspecting Eq. (3.19) we note that at T → 0, Eq. (3.19)
leads to �hard

ik → ∫
d2b′ d2b′′ gi (b′ ) gk(	b− 	b′), which coin-

cides with our hard amplitude introduced in Eq. (3.5). Using
the notation in this equation, the expression for �hard

ik takes
the final form:

�hard
ik =

∫
d2b′ Shi (b′) Shk (	b − 	b′)G̃hard(Y ). (3.21)

3.4 Survival probability: general formulae

3.4.1 Survival probability: eikonal formula for two-channel
model

The structure of the formula for the survival probability is
shown in Fig. 4. The amplitude for the reaction of Eq. (3.12)
can be written in the form

Afull(s, q1,T , q2,T , p1, p1)

=
∫

d2b′d2b ei 	q1,T ·	b′
ei 	q2,T ·(	b−	b′) G̃hard(Y )

×
{
α2e−�11(,s,b)Sh1 (b′) Sh1 (	b − 	b′)

+β2e−�22(,s,b)Sh2 (b′) Sh2 (	b − 	b′)
+α β(e−�12(,s,b)Sh1 (b′) Sh2 (	b − 	b′)

+ e−�21(,s,b)Sh2 (b′) Sh1 (	b − 	b′))
}

. (3.22)

The survival probability for the cross section d2σ/(dt1 dt2)
is equal

〈S2〉 = |Afull(s, q1,T , q2,T , p1, p1)|2/
×|Ahard(s, q1,T , q2,T , p1, p1)|2, (3.23)

where

Ahard(s, q1,T , q2,T , p1, p1)

=
∫

d2b′d2b ei 	q1,T ·	b′
ei 	q2,T ·(	b−	b′)

×
{
α2Sh1 (b′) Sh1 (	b − 	b′) + β2Sh2 (b′) Sh2 (	b − 	b′)

+α β(Sh1 (b′) Sh2 (	b − 	b′) + Sh2 (b′) Sh1 (	b − 	b′))
}

.

(3.24)

However, if we are interested in cross sections that are
integrated over d2q1,T and d2q2,T , the expression for 〈S2〉
can be simplified, and it has the form

〈S2〉 = N (s, Mx , p1, p2)/D(S, Mx , p1, p2), (3.25)

with

N (s, Mx , p1, p2) =
∫

d2b (G̃hard(Y ))2

×
{∫

d2b′ (α2e−�11(,s,b)Sh1 (b′) Sh1 (	b − 	b′)

+β2e−�22(,s,b)Sh2 (b′) Sh2 (	b − 	b′)
+α β(e−�12(,s,b)Sh1 (b′) Sh2 (	b − 	b′)

+ e−�21(,s,b)Sh2 (b′) Sh1 (	b − 	b′)))
}2

, (3.26)

and

D(s, Mx , p1, p2)

=
∫

d2b

{∫
d2b′ (α2Sh1 (b′) Sh1 (	b − 	b′)

+β2Sh2 (b′) Sh2 (	b − 	b′) + α β(Sh1 (b′) Sh2 (	b − 	b′)

+ Sh2 (b′) Sh1 (	b − 	b′)))
}2

. (3.27)

3.4.2 General case: �hard

The first problem that we need to solve is to find a more gen-
eral expression for �hard, than we have obtained in Eq. (3.21).
Equation (2.12) sums net diagrams, and they can be re-
written in the same form as the enhanced ones [71]. Equa-
tion (3.17) is replaced by

�ik =
∞∑
n=1

(−1)n−1�(i → nIP) �(k → nIP)(G̃dressed)n .

(3.28)
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Fig. 7 a Set of the net diagrams
in the BFKL Pomeron calculus
that lead to the resulting survival
probability in the framework of
high energy QCD. After
integration over positions of
G3IP in rapidity, the sum of the
diagrams reduces to b g (b)i

G3P

(b)(a)

From Eq. (3.28) we obtain

�hard
ik = Ahard

∞∑
n=0

�(i → (n + 1)IP)

×�(k → (n + 1)IP)(G̃dressed)n . (3.29)

Using Eqs. (2.12) and (3.29) we obtain

�hard
ik (Y ; b)

=
∫

d2b′ Shi (	b′) Shk (	b − 	b′)
(1 + G3IP G̃dressed(T̄ )[gi (	b′) + gk(	b − 	b′)])2

.

(3.30)

Taking into account the enhanced diagrams for G̃dressed

(see Eq. (3.19)) we obtain the final form for �hard
ik (Fig. 7):

�hard
ik (Y ; b) =

∫
d2b′ G̃hard(Y )

× Shi (	b′) Shk (	b − 	b′)
(1 + G3IP G̃dressed(T̄ )[gi (	b′) + gk(	b − 	b′)])2

= G̃hard(Y ) �̄hard
ik . (3.31)

3.4.3 Final formula

Finally, to obtain the general formula for the survival proba-
bility we need in Eq. (3.26), we replace

∫
d2b′ Sih(	b′) Skh(	b−

	b′)by �̄hard
ik (Y, b). Therefore, the survival probability is equal

to

〈S2〉 = N (s, Mx , p1, p2)/D(s, Mx , p1, p2), (3.32)

with

N (s, Mx , p1, p2) =
∫

d2b(G̃hard(Y ))2

×
{
α2e−�11(s,b)�̄hard

11 (Y, b) + β2e−�22(s,b)�̄hard
22 (Y, b)

+α β(e−�12(s,b)�̄hard
12 (Y, b) + e−�21(s,b)�̄hard

21 (Y, b))
}2

.

(3.33)

while D(s, Mx , p1, p2) remains the same as in Eq. (3.27).
From Eqs. (3.32) and (3.33) we note that 〈S2〉 ∝

(G̃hard(Y ))2. This factor takes into account the contribution
from the enhanced diagrams. Figure 8 shows that, on its own,
it leads to a smaller survival probability.

5 10 15 20 25
Y0.0

0.2

0.4

0.6

0.8

1.0
Ghard Y 2

Fig. 8 The suppression factor (G̃hard(Y ))2, which includes the contri-
bution of the enhanced diagrams

0.5 1.0 5.0 10.0 50.0
W TeV

1

2

3

4

5

6
S2

W 1.8 TeV

W 7 TeV

W 13 TeV

Fig. 9 〈S2〉 of Eq. (3.32) versus W

4 Numerical estimates

4.1 Survival probability in our model

Our estimates for the survival probability are shown in Fig. 9.
We predict rather small values for the survival probabil-

ity. Such small values have been discussed previously (see
Ref. [64]), however, in the present model we have a different
source for this small number. In Ref. [64] 〈S2〉 turns out to
be small, due to contribution of the enhanced diagram, while
in the present model the enhanced diagrams give a suppres-
sion factor which is moderate (see Fig. 8). The main cause
for the small value of 〈S2〉 is the b dependence of the hard
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(a)

(b)

Fig. 10 dσ/dt/dσ/dt |t=0 versus |t |: a for Eq. (3.5) (blue, ‘one expo-
nent’ curve), Eq. (3.4) for hard amplitude in our model, and black curve
which is the fit to the experimental data taken from Ref. [72]; and b the
blue curve corresponds to the old set of the parameters in our model,
while the red line describes the prediction of our model with the new
set of the parameters. The typical experimental errors are ±0.025

amplitude. As we have mentioned our b dependence stems
from the description of the soft high energy data, based on
CGC/saturation approach, in which we do not introduce a
special soft amplitude. In our approach we are only dealing
with hard (semi-hard) amplitudes, which provide a smooth
matching of the ‘soft’ interaction with the ‘hard’ one.

4.2 Importance of b-dependence of the hard amplitude

We can illustrate the importance of the b-dependence of the
hard amplitude by introducing

Sh1 = α
1

2πBh
e− b2

2Bh ;

Sh2 = β
1

2πBh
e− b2

2Bh ; (4.1)

with Bh = 4 ÷ 5 GeV−2, which follows from the experimen-
tal data, as discussed previously. At first sight Eq. (4.1) fol-
lows from the experimental observation of the vector meson
production in deep inelastic scattering. As we have discussed,
our hard amplitude of Eq. (3.5) leads to the slope of the differ-
ential cross section which is the same as in Eq. (4.1). Indeed,
as shown in Fig. 10, the t-dependence of the differential cross

Fig. 11 Comparison of hard amplitudes defined in Eqs. (3.5) and (4.1)

sections in the region of small t (t < 0.5 GeV2) are similar
in both parametrisations of the hard amplitude. However, at
large t there is a difference, which increases with increasing
t . In Fig. 10 we compare the t-behaviour of the differential
cross section for diffractive J/� production at the LHC, as
given in Ref. [72] and shown by the black curve in Fig. 10.
In place of the experimental point, we use the fit given in this
paper, which has a χ2/d.o.f. = 115/96.

The difference between the amplitudes is more pro-
nounced when plotted as a function of the impact parameter
b (see Fig. 11).

The characteristic behaviour of the hard amplitude fol-
lows directly from our model’s b dependence of gi (b). If we
replace the exponential type behaviour for gi (b) by a Gaus-
sian, as assumed in Eq. (2.9), our hard amplitude will lead
to larger values of the survival probability. However, as we
have already mentioned above, a Gaussian behaviour con-
tradicts both the large QT behaviour of the form factors, as
has been derived in perturbative QCD [47,48], and the expo-
nential decrease at large b, which follows from the Froissart
theorem [49,50].

The resulting difference for 〈S2〉 is large, values of the
survival probability for the hard amplitude of Eq. (4.1) are
ten or more times larger than the results of our present model
(with the old set of parameters). For example, for W = 7 TeV
we obtain 〈S2〉 = 10 ÷ 15 %.

Figure 11 shows that Eq. (3.5) of our model (with the old
set of parameters) leads to fast decrease of the amplitude in
b.

We denote our fit which results in these very low values
of 〈S2〉 as the “old set of parameters”. Results of this fit and
figures comparing it with experimental data are given in Ref.
[16]. The experimental data used were published measure-
ments covering the energy range 0.576 ≤ W ≤ 7 TeV i.e.
σtot (5 points), σel (6 points), Bel (6 points), σsd (7 points)
and σdd (7 points). The overall χ2/d.o.f. of the fit was 2.66.
Excluding the σdd data the χ2/d.o.f. of the fit is 1.26.

As one can see from Table 1, the steepest decrease is due
to the A22(b) amplitude, which is the smallest. This ampli-
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Fig. 12 〈S2〉 versus W . 〈S2〉 is calculated using Eqs. (3.32) and (3.33)
with Y replaced by Y − �cor NG3IP with �cor = 2 (blue curve), while
the red curve is the same as in Fig. 9. The black curve is the estimates
for the survival probability with new set of parameters (see Table 1)

tude also has the smallest suppression, due to the factors
exp(−2�ik), since �22 has the smallest value. In the numer-
ator of Eq. (3.32), only the (22) term provides the essen-
tial contribution. This term turns out to be rather large for
the amplitude of Eq. (4.1), as one can see from Fig. 11.
On the other hand, the same hard amplitude in Eq. (3.5)
shows the steep decrease in b, resulting in a small contribu-
tion to the numerator of Eq. (3.32), as well as for the resulting
〈S2〉.

Based on the our diagnosis of the problem above, we
attempted to find an alternate set of parameters for our
model, which provides a reasonable description of the soft
data and at the same time predicts larger values of the sur-
vival probability, than obtained with the “old set” of param-
eters.

Consequently, we made a second fit to the same exper-
imental data, with the additional constraint that m2 ≤
1.5 GeV. We refer to this fit as “new set of parameters”.
The values of the parameters for both “old” and “new” sets
are given in Table 1. The comparison of the results for
σtot, σel , Bel , σsd (low and high mass) and σdd (low and high
mass) for both set of parameters are shown in Table 4. We
note that the values of σtot, σel and Bel obtained in both fits
are rather close, while the diffractive cross sections, both σsd
and σdd , are smaller in the “new” fit.

The value of χ2/d.o.f. for the “new fit” is 3.79. Excluding
the σdd data the χ2/d.o.f. of the “new” fit is 2.1. The increase
in the value of χ2/d.o.f. in the “new fit” is due to the lower
values predicted for σsd and for σdd at LHC energies. These
are smaller than the published experimental measurements,
resulting in the “old fit” (with higher values for σsd and for
σdd ) giving a better overall description of the data.

The results for 〈S2〉 with the “new set of parameters” is
shown in Fig. 12, we find 〈S2〉 ≈ 3 % in the LHC energy
range.

Table 2 Values of 〈S2〉 at different energies from the three different
groups [73–75]. The results are given as percentages

W (GeV) KKMR (CD) [74] Pythia [75] GLM [73]

540 6. n/a 6.6

1800 4.5 4.0 5.5

14000 2. 2.6 3.6

4.3 Kinematic corrections

In our approach we consider G3IP as a point-like vertex. This
assumption is a considerable simplification. As we have dis-
cussed in [18], we expect short range correlations in rapidity,
with the correlation length in rapidity �cor ≈ 2. Bearing in
mind that the triple Pomeron vertex has a size in rapidity, we
can take into consideration that in Eqs. (3.17) and (3.28), the
Pomerons do not enter at rapidity Y but at Y − δcorNG3IP ,
where NG3IP is the average number of triple Pomeron ver-
tices. It is easy to see that

NG3IP =
∫

d2bT (Y, b)
dGdressed(T (Y, b))

T (Y, b)
/

∫
d2b Gdressed

×(T (Y, b)). (4.2)

In Fig. 12 we plot 〈S2〉, which is given by Eqs. (3.32) and
(3.33) but Y → Y − �cor NG3IP with NG3IP estimated using
Eq. (4.2). One can see that the effect is sizeable, and leads to
larger values of the survival probability.

4.4 Comparison with other estimates

Nearly 10 years ago we summarised the situation regarding
the evaluation of the 〈S2〉 by different models [73]. Unfor-
tunately, as the results of this paper illustrate, the values
obtained for 〈S2〉 are highly dependent on the characteristics
of the models used to parametrise the soft and hard ampli-
tudes. For details of the parametrisations used by the three
groups quoted in Table 2, we refer the reader to [73–75].
Their values for the 〈S2〉 are given in Table 2.

In the summary of our previous approach for construct-
ing a model based on N = 4 SYM for strong coupling, and
matching with the perturbative QCD approach [76], we dis-
cuss the results for 〈S2〉 obtained from this approach. We
compared our results with those obtained by the Durham
group [77]. The Durham model is a two-channel eikonal
model where the Pomeron coupling to the diffractive eigen-
states are energy dependent. They presented four different
versions, in Table 3, we quote their results for model 4, their
“favoured version”.

As can be seen from Table 3, our results for 〈S2〉 obtained
from the N = 4 SYM approach are slightly larger than those
given by the KMR approach, and larger than the results of
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Table 3 Values of 〈S2〉 at different energies from the different groups
[76,77] and from this model: I the hard amplitude is given by Eq. (3.5)
with B = 4.5 GeV−2 (see Figs. 10, 11), II the hard amplitude is given

by Eq. (3.4) with old set of parameters; IIn is the same as II but with
the new set of parameters; and III is the same as II but the kinematic
corrections are included. The 〈S2〉 results are in percentages

W (GeV) This model(I) This model(II) This model(IIn) This model(III) KMR [77] GLM [76]

1800 7.6 0.86 3.34 1.68 2.8 7.02

7000 3.63 0.3 3.1 0.63 1.5 2.98

14000 2.3 0.25 3.05 0.44 1. 1.75

Table 4 The values of cross sections versus energy. σLM
sd and σLM

dd
denote the cross sections for diffraction dissociation in the low mass
region, for single and double diffraction, which stem from the Good–

Walker mechanism. While σHM
sd and σHM

dd are used for diffraction in
high mass, coming from the dressed Pomeron contributions

W (TeV) σtot (mb) σel (mb) Bel (GeV−2) Single σLM
sd (mb) Diffraction σHM

sd (mb) Double σLM
dd (mb) Diffraction σ HM

dd (mb)

0.576 61.4 (62.3) 13 (12.9) 15.2 (15.2) 4.1 (5.64) 1.42 (1.85) 0.3 (0.7) 0.22 (0.46)

0.9 68.2 (69.2) 15.1 (15) 16 (16) 4.45 (6.25) 1.89 (2.39) 0.3 (0.77) 0.32 (0.67)

1.8 78.2 (79.2) 18.3 (18.2) 17.1 (17.1) 4.87 (7.1) 2.79 (3.35) 0.28 (0.89) 0.55 (1.17)

2.74 82.3 (85.5) 19.7 (20.2) 17.63 (17.8) 5 (7.6) 3.49 (4.07) 0.27 (0.97) 0.74 (1.62)

7 99.9 (99.8) 25.6 (25) 19.6 (19.5) 5.38 (8.7) 5.66 (6.2) 0.2 (1.15) 1.46 (3.27)

8 102.1 (101.8) 26.4 (25.7) 19.8 (19.7) 5.41 (8.82) 6.03 (6.55) 0.2 (1.17) 1.68 (3.63)

13 110.6 (109.3) 29.5 (28.3) 20.8 (20.6) 5.47 (9.36) 7.67 (8.08) 0.17 (1.27) 2.28 (5.11)

14 111.9 (110.5) 29.9 (28.7) 20.9 (20.7) 5.47 (9.44) 7.87 (8.34) 0.17 (1.27) 2.32 (5.4)

57 137.8 (131.7) 39.7 (36.2) 23.6 (23.1) 5.37 (10.85) 14.99 (15.02) 0.11 (1.56) 5.86 (13.7)

our present model. The reasons for this have been discussed
in Sect. 4.2.

Comparing the results of different calculations given in
Tables 2 and 3 with our present calculation, we see that the
estimates using the same b-dependence of the hard amplitude
Ahard ∝ exp(−b2/4B) (see Table 3 ‘this model(I)’), leads to
results that are similar to the estimates obtained by the other
groups. The b-dependence of the hard amplitude that follows
from our present approach produces small values for the sur-
vival probabilities with the old set of parameters, and reason-
able values with the new set of parameters. Theb-dependence
of our present model, has two advantages: it leads to the cor-
rect Froissart limit at large b, Ahard ∝ exp(−mi b); and at
large momentum transfer (QT ) it decreases as a power of
QT , as one expects in perturbative QCD.

We wish to emphasis that we made a second (new) fit to
the experimental data, and obtained a new set of parame-
ters, which leads to an increase in the values of the survival
probabilities as shown in Table 3.

5 Conclusions

In this paper we calculated the survival probability for the
simplest central diffractive production e.g. gluon + gluon →
dijets, and we found at LHC energies that its value is small.
The small value obtained does not stem from the sum of

enhanced diagrams, as in our previous models [78], but is due
to the impact parameter dependence of the hard amplitude.
We have not included any discussion regarding the influence
that final state interactions have on the value of the survival
probability. In general these will lead to a decrease in the
value of 〈S2〉.

The distinguishing feature of our model based on
CGC/saturation approach is that we use a framework where
soft and hard processes are treated on the same footing. Our
procedure, as we have demonstrated, is able to discuss both
long and short distance physics. The hard amplitude, appears
as our general amplitude at short distances. To deal with final
state production which includes spin/parity effects, we will
have to introduce additional hard amplitudes separately to
describe the production process, as discussed in Sect. 3.1.
The main source for our small values of 〈S2〉 is the impact
parameter dependence of the hard amplitude, for which we
do not have any theoretical estimate. This is usually assumed
to have a Gaussian form Ahard ∝ exp(−b2/(2B)). The value
of B is taken from the experimental data on the deep inelastic
diffractive production of vector mesons. We demonstrated in
this paper that in spite of the fact that our hard amplitude leads
to experimental values of B, at small t , it yields a different
behaviour than the Gaussian input, leading to small values
of 〈S2〉 at high energies. We note that the impact parameter
dependence of our hard amplitude satisfies two theoretical
features that are violated in the Gaussian b-dependence: at
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large b, Ahard ∝ exp(−μb), as follows from the Froissart
theorem [49,50], and at large QT it decreases as a power of
QT , as required by perturbative QCD [47,48].

We stress that the values obtained for the survival probabil-
ity depend mostly on theb-dependence of the hard amplitude.
The most interesting result is that we can describe both the
soft and the hard amplitude on the same footing. At first sight,
the small values of 〈S2〉 contradict this the most basic idea
of our approach. To show that this is not an inherent problem
of our approach, we made a new fit to all available soft data
to show that we can obtain substantially larger values of the
survival probability. It demonstrates that experimental mea-
surements of this observable are a sensitive tool to determine
the values of the phenomenological parameters of our model.

We present in this paper the result of the first consistent
approach to obtain both the soft and the hard amplitude from
the same model. We hope that the data from the LHC on
survival probability will be instrumental in determining the
impact parameter dependence of the scattering amplitude.
We wish to emphasis that we have made a second (new) fit
to the experimental data (see Table 4).
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