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Abstract Fermionic T-duality transformation is studied for
supersymmetric solutions of massive type IIA supergravity
with the metric AdS10−k × Mk for k = 3 and 5. We derive
the Killing spinors of these backgrounds and use them as
input for the fermionic T-duality transformation. The result-
ing dual solutions form a large family of supersymmetric
deformations of the original solutions by complex valued RR
fluxes. We observe that the Romans mass parameter does not
change under fermionic T-duaity, and prove its invariance in
the k = 3 case.

1 Introduction

Families of new supersymmetric solutions in type II super-
gravity of the form AdS10−k × Mk were found in [1–3]
for k = 3, 4, 5. For k = 3 and 5 the solutions belong
to the massive type IIA supergravity [4], while for k = 4
they solve type IIB field equations. In the AdS7 × M3 solu-
tions the internal manifold M3 is topologically a sphere. The
requirement of unbroken supersymmetry was demonstrated
to fix M3 to be a fibration of S2 over the interval. The back-
ground fields of these solutions were given by the system
of first order differential equations, which the authors of [1]
were solving numerically. An infinite family of solutions was
obtained, which have embedded D6/D8 brane systems. The
holographic interpretation of these theories was investigated
in [5,6].

Analytic solutions to these equations were found later,
together with a map that relates them to the AdS5 and AdS4

solutions in massive type IIA [3,7]. The AdS5 solutions that
we will be concerned with in the present paper are geomet-
rically AdS5 × �2 × M ′

3, where �2 is a Riemann surface of
genus g ≥ 2, and M ′

3 is a three-manifold related in a certain
way to M3. A recent review of these and related developments
can be found in [8].
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In this article we study the effect of fermionic T-duality
on the AdS10−k × Mk solutions for k = 3 and k =
5. It is a well known fact that the transformation rules
of the background fields under ordinary T-duality (known
also as the Buscher rules [9–11]) can be represented in
a way which manifests the role of the Killing vector as
the T-duality transformation parameter [12]. Fermionic T-
duality is a more recent development [13,14], which gen-
eralizes T-duality to the case of fermionic isometries in
superspace. The role of a Killing vector is played by a
Killing spinor, which parameterizes an unbroken super-
symmetry of the initial background. The fermionic T-
dual background can then be constructed according to the
fermionic Buscher rules, which depend explicitly on the
Killing spinor. The key difference from the ordinary T-
duality rules is that the metric and the NSNS 2-form field
b do not change, whereas the RR fluxes are transformed
in a certain way that depends on the Killing spinors of
the original background. Fermionic T-duality plays a key
role in the self-duality of various solutions of maximal
d = 10 supergravity that are important from the view-
point of the AdS/CFT correspondence. Self-duality under
a set of combined bosonic and fermionic T-dualities has
been observed for AdS5 × S

5 [13], for pp-wave space-
times [15,16], for AdS3 × S

3 × T
4 [17], and most recently

for AdSd × S
d × T

10−2d and AdSd × S
d × S

d × T
10−3d

(d = 2, 3) [18,19].
In order to construct fermionic T-duals of the solutions

of [1,3] we study the unbroken supersymmetries of these
backgrounds and solve the Killing spinor equations in full
generality. Note that concise expressions for the AdS7 × M3

Killing spinors have appeared in [7,20], while the Killing
spinor structure of the AdS6 ×M4 solutions has been studied
in detail in [21]. Fermionic T-duality preserves supersymme-
try and the metric of the solution [13], hence using the Killing
spinors we are able to generate new supersymmetric solutions
with the same metric AdS10−k × Mk , k = 3, 5. These new
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solutions are essentially deformations of the original solu-
tions by complex valued RR fluxes, akin to the deformations
of the D-brane solutions found earlier in [15].

The behavior of massive type IIA supergravity solutions
under fermionic T-duality is an open question since the early
work [22], where a fermionic duality symmetry of type II
supergravity action has been found that includes fermionic
T-duality as a special case. While formally applicable to
both ordinary and massive type IIA supergravity, the analysis
of [22] assumed vanishing mass parameterm before the dual-
ity transformation, and resulted in keeping m zero after the
duality as well. It was later reported [23] that the extension of
the transformation of [22] to a nonzero Romans mass, when
applied to characteristic solutions of massive type IIA, such
as D8-branes and the warped product AdS6 ×S

4 [24], yields
no change in the mass parameter, and that the entire transfor-
mation is trivial in that case. In the current study we will be
using the original fermionic T-duality formalism developed
in [13]. We will give a proof that the Romans mass of the
AdS7 × M3 solutions of [1] never changes under fermionic
T-duality. In the less tractable case of the AdS5 × M5

solutions of [3] evidence will be given that the Romans
mass does not change, although this will not be proved
rigorously.

The rest of this article is organized as follows. We begin
in Sect. 2 by studying the simpler case of the AdS7 × M3

solutions. Then in Sect. 3 the AdS5 × M5 solutions are con-
sidered. In both cases we briefly review the solutions, then
formulate the Killing spinor equations and solve them. Sec-
tion 4 presents the fermionic T-duals after a concise review
of the fermionic Buscher rules. We briefly discuss the results
in the final Sect. 5. Our notation and conventions are sum-
marized in the appendices.

2 AdS7 × M3 solution

The AdS7 × M3 background of [1] is an N = 1 supersym-
metric solution in massive type IIA supergravity. The metric
is given by

ds2 = e2A(r)ds2
AdS7

+ ds2
M3

,

ds2
AdS7

= ρ2
[
−(dx0)2 + (dx1)2 + · · · + (dx5)2

]
+ dρ2

ρ2 ,

ds2
M3

= dr2 + e2A(r)

16
(1 − x(r)2)

(
dβ2 + sin2 β dθ2

)
. (1)

The ten spacetime coordinates xμ are split into the AdS7

coordinates (x0, . . . , x5, ρ) and the three coordinates (r, β,

θ) on the internal manifold. M3 is an S
2 fibration over an

interval that is parameterized by the coordinate r . TheS2 fiber
shrinks at the ends of the interval, so that M3 is topologically

a 3-sphere. The warping function A(r), as well as the dilaton
φ(r), and the parameter x(r) of the internal metric, depend
on r only. The function x(r) is related to the volume of the
S

2 fiber. These three functions are defined by the following
system of differential equations:

φ′(r) = 1

4

e−A

√
1 − x2

(
12x + (2x2 − 5)meA+φ

)
,

x ′(r) = −1

2
e−A

√
1 − x2(4 + xmeA+φ),

A′(r) = 1

4

e−A

√
1 − x2

(4x − meA+φ), (2)

where m is a constant mass parameter of Romans supergrav-
ity. The authors of [1] study numerical solutions to this sys-
tem. Later an analytic solution of these equations has been
found in [3]; it describes backgrounds with D6 or D8 branes.
For our purposes the Eq. (2) will be enough, and we will not
spell out the details of the explicit solutions.

The metric is diagonal, and we can choose the vielbein in
the simple form

e0
0 = · · · = e5

5 = ρeA, e6
ρ = eA

ρ
, e7

r = 1,

e8
β = eA

4

√
1 − x2, e9

θ = eA

4

√
1 − x2 sin β. (3)

We underline the world indices and assume that
dxμ = (dx0, . . . , dx5, dρ, dr, dβ, dθ). Then the vielbein
ea = eaμ dxμ corresponds to the metric (1), ds2 = ηabeaeb.
With this choice of the vielbein the nonvanishing components
of internal spin connection are:

ωβ,78 = eA

4
√

1 − x2

(
xx ′ − A′(1 − x2)

)
,

ωθ,79 = eA sin β

4
√

1 − x2

(
xx ′ − A′(1 − x2)

)
,

ωθ,89 = − cos β. (4)

The other nonvanishing fields of the supergravity back-
ground are the RR 2-form and the NSNS H flux:

F = F89 e8 ∧ e9 = − e−φ

√
1 − x2

(
4e−A − xmeφ

)
e8 ∧ e9,

H = H789 e7∧e8 ∧ e9 = −
(

6e−A + xmeφ
)

e7 ∧ e8 ∧ e9.

(5)

2.1 Killing spinors

Let us solve the Killing spinor equations for this background.
This requires finding a spinor ε such that the supersymmetry
variations of the type IIA fermions vanish, δελ = 0 = δεψμ.
Our supersymmetry and spinor conventions are summarized
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in the “Appendix B”. After decomposing the dilatino super-
symmetry variation (B.3) with respect to the Weyl compo-
nents of the Killing spinor (B.7), we obtain

δλ = ∂7φ

(
(1 ⊗ σ 1)ε2

(1 ⊗ σ 1)ε1

)
+ i

2
H789

(−ε2

ε1

)

+5meφ

4

(
ε1

ε2

)
+ 3ieφ

4
F89

(
(1 ⊗ σ 1)ε1

−(1 ⊗ σ 1)ε2

)
, (6)

where ε1,2 are 16-component Weyl spinors, defined in (B.7).
Note that ∂7φ = ∂rφ (2), since e7

r = 1, and the values of
H789, F89 can be read off from (5).

Using the decomposition of ε1,2 in terms of the AdS7

spinors ζ and M3 spinors χ1,2 (B.7), δλ may be brought to
the form

δλ =
(

ζ ⊗ δ1λ + ζ c ⊗ δ1λ
c

ζ ⊗ δ2λ − ζ c ⊗ δ2λc

)
, (7)

where

δ1λ = ∂7φ (σ 1χ2) − i

2
H789 χ2

+ 5meφ

4
χ1 + 3ieφ

4
F89 (σ 1χ1),

δ2λ = ∂7φ (σ 1χ1) + i

2
H789 χ1

+5meφ

4
χ2 − 3ieφ

4
F89 (σ 1χ2). (8)

Requiring that both δ1λ and δ2λ vanish imposes four lin-
ear equations on the four components of the internal Killing
spinors χ1 = (a′

b′
)
, χ2 = (a

b

)
. The resulting system has rank

two, and can be solved in a straightforward manner. For
example, we can express a′, b′ in terms of a, b:

a′ = + BC + AD

C2 − D2 a − AC + BD

C2 − D2 b,

b′ = − AC + BD

C2 − D2 a + BC + AD

C2 − D2 b, (9)

where we have denoted the coefficients in (8) as:

A = ∂7φ, B = i

2
H789,

C = 5meφ

4
, D = 3ieφ

4
F89. (10)

Using the explicit values of A, B,C , and D from (2) and (5),
we observe that the expressions simplify considerably:

AC + BD

C2 − D2 = −
√

1 − x2,
BC + AD

C2 − D2 = −i x, (11)

where x = x(r) was defined in (2). To summarize, the
dilatino supersymmetry variation vanishes for the following
values of the internal spinors:

χ1 =
(−i xa + √

1 − x2 b

−i xb + √
1 − x2 a

)
, χ2 =

(
a

b

)
. (12)

At this point a and b are two arbitrary functions of the coor-
dinates (r, β, θ) on M3. Their values are fixed by the Killing
spinor equations that follow from δψi+6 = 0 for i = 1, 2, 3
(ψi+6 are the components of the gravitino with their vector
indices belonging to the internal manifold). For the back-
ground of (1), (5) the gravitino variation (B.3) becomes

δψi+6 = Di+6

(
ε1

ε2

)
+ ieφ

8
F89

(−(1 ⊗ σ1σi )ε2

(1 ⊗ σ1σi )ε1

)

+ i

4
H789

(
(1 ⊗ σi )ε1

−(1 ⊗ σi )ε2

)
+ meφ

8

(
(1 ⊗ σi )ε2

(1 ⊗ σi )ε1

)
.

(13)

Under the 7 + 3 split of (B.7) the AdS7 spinor ζ factors out,

δψi+6 =
(

ζ ⊗ δ1ψi+6 + ζ c ⊗ δ1ψ
c
i+6

ζ ⊗ δ2ψi+6 − ζ c ⊗ δ2ψ
c
i+6

)
, (14)

where

δ1ψi+6 = Di+6 χ1 + i

4
H789 (σiχ1)

+meφ

8
(σiχ2) − ieφ

8
F89 (σ1σiχ2),

δ2ψi+6 = Di+6 χ2 − i

4
H789 (σiχ2)

+meφ

8
(σiχ1) + ieφ

8
F89 (σ1σiχ1). (15)

The covariant derivative acting on a spinor is Dμ = ∂μ +
1
2 /ωμ. Note that since all the mixed components ωi+6,mn of the
spin connection vanish (4), the derivative of χ1,2 simplifies
to

Di+6 χ = ∂i+6 χ + 1

4
ωi+6, j+6,k+6σ

jk . (16)

Using the values of H789, F89 from (5) and the internal
spinors χ1,2 found in (12), after some algebra one can repre-
sent the Eq. (15) as

∂r a − A′(r)
2

a − i

2

x ′(r)√
1 − x2

b = 0,

∂r b − A′(r)
2

b − i

2

x ′(r)√
1 − x2

a = 0,

∂β a − i

2
x(r) a + 1

2

√
1 − x2 b = 0, (17)

∂β b + i

2
x(r) b − 1

2

√
1 − x2 a = 0,

∂θ a + i

2
sin β

√
1 − x2 a + 1

2
(x sin β − i cos β) b=0,

∂θ b − i

2
sin β

√
1 − x2 b − 1

2
(x sin β+i cos β) a = 0.
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Despite the presence of arbitrary functions A(r), x(r), this
system can be solved exactly:

a = c1e
A
2 ei

θ
2

(
cos

β

2
eiϕ − sin

β

2
e−iϕ

)

+c2e
A
2 e−i θ

2

(
sin

β

2
eiϕ + cos

β

2
e−iϕ

)
,

b = c1e
A
2 ei

θ
2

(
cos

β

2
eiϕ + sin

β

2
e−iϕ

)

+c2e
A
2 e−i θ

2

(
sin

β

2
eiϕ − cos

β

2
e−iϕ

)
, (18)

where ϕ is a new internal variable related to r by sin 2ϕ =
x(r). The solution is parameterized by the two constants c1,2.
Together with (12), this completely determines the internal
part of the Killing spinor, χ1,2.

Simplifying the AdS7 part of the gravitino Killing spinor
equation δψm = 0, we get the standard expression for the
AdS7 Killing spinor, as briefly reviewed in the “Appendix
C”:

ζ = ρ1/2ζ 0− +
(
ρ−1/2 − ρ1/2xmαm

)
ζ 0+, (19)

for m ∈ {0, . . . , 5}. Here ζ 0 is an arbitrary eight component
complex spinor parameter, and ζ 0 = ζ 0+ + ζ 0− is its decom-
position into eigenvectors of α6, which is the gamma matrix
corresponding to the AdS7 radial direction ρ. The complete
Killing spinors are then given by (B.7):

ε =
(

ζ ⊗ χ1 + ζ c ⊗ χc
1

ζ ⊗ χ2 − ζ c ⊗ χc
2

)
. (20)

It is easy to see that there is a total of 16 Killing spinors εa ,
a = 1, . . . , 16, which means that the solution of [1] preserves
half of the maximal supersymmetry. To check this, note that
we can represent the eigenvectors of α6 (B.9) as

ζ 0+ =
[
−i(ζ 0

9 + iζ 0
10), i(ζ

0
11 + iζ 0

12), i(ζ
0
13 + iζ 0

14),

−i(ζ 0
15 + iζ 0

16), ζ
0
15 + iζ 0

16, ζ
0
13 + iζ 0

14,

ζ 0
11 + iζ 0

12, ζ
0
9 + iζ 0

10

]
,

ζ 0− =
[
i(ζ 0

1 + iζ 0
2 ),−i(ζ 0

3 + iζ 0
4 ),−i(ζ 0

5 + iζ 0
6 ),

i(ζ 0
7 + iζ 0

8 ), ζ 0
7 + iζ 0

8 , ζ 0
5 + iζ 0

6 ,

ζ 0
3 + iζ 0

4 , ζ 0
1 + iζ 0

2

]
, (21)

in terms of 16 real components of ζ 0 = (ζ 0
1 , . . . , ζ 0

16). Taking
c1 = 1, c2 = 0 in (18) and setting ζ 0

a = δab for some
b ∈ {1, . . . , 16} results in the Killing spinor that we will call
εb. Explicit computation then shows that taking other values
of the parameters c1, c2 in (18) results in the same set of
Killing spinors up to relabeling.

Note that the numbering convention of (21) implies that
ε1, . . . , ε8 are the Poincaré Killing spinors that only depend
on the radial AdS7 coordinate ρ, while ε9, . . . , ε16 are the
superconformal Killing spinors that depend on all AdS7 coor-
dinates, cf. (19).

3 AdS5 × M5 solutions

The AdS5 × M5 solution of [3] has the metric given by

ds2 = e2A(r)
(

ds2
AdS5

+ ds2
�g

)
+ ds2

M3
,

ds2
AdS5

= ρ2
[
−(dx0)2+(dx1)2+(dx2)2+(dx3)2

]
+ dρ2

ρ2 ,

ds2
�g

= 1

−k x2
2

(
dx2

1 + dx2
2

)
,

ds2
M3

= dr2 + e2A(r)

9

(
1 − x(r)2

) (
dθ2 + sin2 θ Dψ2

)
.

(22)

�g is a Riemann surface of Gaussian curvature k = −3 and
genus g ≥ 2. Its metric is written in terms of the coordinate
z = x1 + i x2 of the complex upper half-plane. Coordinates
on the Riemann surface x1, x2 are not to be confused with
the AdS5 coordinates x0, . . . , x3, ρ (we will never raise or
lower indices of coordinates).

The M3 subspace of the internal manifold is fibered over
the Riemann surface �g , which is reflected by the long
derivative Dψ = dψ + ρ appearing in the metric ds2

M3
.

Here ρ = ρ1(x1, x2)dx1 + ρ2(x1, x2)dx2 is a 1-form on �g .
This 1-form is subject to the constraint

d2ρ = k vol�g , (23)

which for the above metric takes the form

∂1ρ2 − ∂2ρ1 = −(x2)
−2. (24)

The warping function A(r), as well as the parameter x(r)
of the internal metric, and the dilaton φ(r), only depend on
the coordinate r , which runs over an interval. All of these are
defined by the following system of ODEs:

φ′(r) = 1

4

e−A

√
1 − x2

(
11x − 2x3 + (2x2 − 5)meA+φ

)
,

x ′(r) = −1

2
e−A

√
1 − x2 (4 − x2 + mxeA+φ),

A′(r) = 1

4

e−A

√
1 − x2

(3x − meA+φ), (25)

where m is a constant mass parameter of Romans super-
gravity. Note there are slight differences in the coefficients
as compared to the AdS7 × M3 case (2). As was already
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mentioned there, we will not need the explicit form of the
solutions to this system of equations.

We can choose the following simple vielbein:

e0
0 = · · · = e3

3 = ρ eA, e4
ρ = ρ−1eA,

e5
x1

= e6
x2

= eA(−k)−1/2(x2)
−1,

e7
r = 1, e8

θ = eA

3

√
1 − x2,

e9
ψ = eA

3

√
1 − x2 sin θ,

e9
x1

= eA

3

√
1 − x2 ρ1 sin θ,

e9
x2

= eA

3

√
1 − x2 ρ2 sin θ. (26)

We underline the world indices and assume that
dxμ = (dx0, . . . , dx3, dρ, dx1, dx2, dr, dθ, dψ). Then the
vielbein ea = eaμ dxμ corresponds to the metric (22),

ds2 = ηabeaeb. With this choice of vielbein the nonvan-
ishing components of internal spin connection are:

ωx1,56 = − 1

x2
+ ρ1

6

(
1 − x2

)
sin2 θ, ωx1,57 = A′eA√

3 x2
,

ωx1,69 = − sin θ
√

1 − x2

2
√

3 x2
, ωx1,89 = −ρ1 cos θ,

ωx1,79 = ρ1 e
A sin θ

3
√

1 − x2

(
xx ′ − A′(1 − x2)

)
; ωx2,67 = A′eA√

3 x2

ωx2,56 = ρ2

6

(
1 − x2

)
sin2 θ, ωx2,59 = sin θ

√
1 − x2

2
√

3 x2
,

ωx2,79 = ρ2 eA sin θ

3
√

1 − x2

(
xx ′ − A′(1 − x2)

)
,

ωx2,89 = −ρ2 cos θ;

ωθ,78 = eA

3
√

1 − x2

(
xx ′ − A′(1 − x2)

)
;

ωr ≡ 0, ωψ,56 = 1

6
(1 − x2) sin2 θ,

ωψ,79 = eA sin θ

3
√

1 − x2

(
xx ′ − A′(1 − x2)

)
, ωψ,89 = − cos θ.

(27)

The solution has the following background fluxes:

F(2) = −e−A−φ
√

1 − x2 cos θ e5 ∧ e6

−e−A−φ

(
3 − mxeA+φ

)
√

1 − x2
e8 ∧ e9,

F(4) = −e−A−φ e5 ∧ e6 ∧
(
e7 sin θ + e8x cos θ

)
∧ e9,

H = −e−A e5 ∧ e6 ∧
(

e7 cos θ − e8x sin θ
)

+e−A
(
x2 − 5 − mxeA+φ

)
e7 ∧ e8 ∧ e9. (28)

3.1 Killing spinors

Let us construct the Killing spinors for the above background.
As in Sect. 2, we start with the variation of the dilatino (B.3).
Plugging in the values of the fluxes (28) and using the 5 + 5
decomposition of the 16-component Weyl spinors ε1,2 (B.7),
we find that the dilatino variation can be written:

δλ =
(

ζ ⊗ δ1λ + ζ c ⊗ δ1λ
c

ζ ⊗ δ2λ − ζ c ⊗ δ2λc

)
, (29)

where

δ1λ = A1 β3χ2 + A2 χ1 + A3 β4χ1 − A4 β3χ1

−A5 β4β5χ2 + A6 β3β5χ2 − A7 β1β2χ2

+A8 β1β2χ1 + A9 β4β5χ1,

δ2λ = A1 β3χ1 + A2 χ2 + A3 β4χ2 − A4 β3χ2

+A5 β4β5χ1 − A6 β3β5χ1 + A7 β1β2χ1

−A8 β1β2χ2 − A9 β4β5χ2, (30)

and the coefficients are given by

A1 = ∂rφ, A2 = 5meφ

4
, A3 = eφ

4
F5679,

A4 = eφ

4
F5689, A5 = 1

2
H567, A6 = 1

2
H568,

A7 = 1

2
H789, A8 = 3eφ

4
F56, A9 = 3eφ

4
F89. (31)

Their explicit values can be read off from (25), (28). Note
that we are using a (5 + 5) gamma-matrix decomposition,
different from the previous section; see “Appendix B”.

Requiring that δ1λ, δ2λ in (30) vanish results in a system
of eight linear homogeneous equations for the eight unknown
components of χ1 = ( f1, . . . , f4) and χ2 = ( f5, . . . , f8).
Determinant of this system vanishes due to a rather non-
trivial relationship between the coefficients:

(
A2

1 − A2
2 + A2

3 − A2
4 + A2

5 − A2
6 + A2

7 − A2
8 + A2

9

)2

−4
(
A2

1A
2
9 + A2

2A
2
4 + A2

2A
2
6 − A2

2A
2
9 − A2

3A
2
4 + A2

3A
2
7

−A2
3A

2
8 + A2

3A
2
9 − A2

4A
2
9 − A2

5A
2
6 + A2

5A
2
7 + A2

5A
2
9

+A2
6A

2
8 − A2

6A
2
9 + A2

7A
2
9

)

+8 (A2A3A6A7 − A2A4A5A7 + A2A4A8A9

+A3A4A5A6 + A5A7A8A9)

≡ 0. (32)

The rank of the corresponding matrix is six, which means
that the system may be solved, for instance, for ( f1, . . . , f6)
in terms of ( f7, f8):
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f1 = f8 cos θ − f7
sin θ

,

f2 = f8 − f7 cos θ

sin θ
,

f3 = f7 x cos θ + f8(sin θ − x)

sin θ
√

1 − x2
,

f4 = f7(sin θ + x) − f8 x cos θ

sin θ
√

1 − x2
,

f5 = f8(1 − x sin θ) − f7 cos θ

sin θ
√

1 − x2
,

f6 = f8 cos θ − f7(1 + x sin θ)

sin θ
√

1 − x2
. (33)

At this point f7, f8 are two arbitrary functions of the coor-
dinates (x1, x2, r, θ, ψ) on M5. Their values are fixed by the
Killing spinor equations that follow from δψi+4 = 0 for
i = 1, . . . , 5 (ψi+4 are the components of the gravitino with
the vector index along the internal manifold). Going through
the same steps as in the AdS7 × M3 case, we obtain the
following system of PDEs for the functions f7, f8:

∂x1
f7 +

(
1

x2
+ ρ1(x1, x2)

)
f7 cos θ − f8(1−x sin θ)

2 sin θ
√

1−x2
=0,

∂x1
f8 −

(
1

x2
+ ρ1(x1, x2)

)
f8 cos θ − f7(1+x sin θ)

2 sin θ
√

1−x2
=0,

∂x2
f7 + ρ2(x1, x2)

f7 cos θ − f8(1 − x sin θ)

2 sin θ
√

1 − x2
= 0,

∂x2
f8 − ρ2(x1, x2)

f8 cos θ − f7(1 + x sin θ)

2 sin θ
√

1 − x2
= 0,

∂r f7 − A′

2
f7 + x ′

2(1 − x2)

(
f7 − f8 cos θ

sin θ
+ f7 x

)
= 0,

∂r f8 − A′

2
f8 − x ′

2(1 − x2)

(
f8 − f7 cos θ

sin θ
− f8 x

)
= 0,

∂θ f7 − f7 cos θ − f8
2 sin θ

= 0,

∂θ f8 − f8 cos θ − f7
2 sin θ

= 0,

∂ψ f8 − f8 cos θ − f7(1 + x sin θ)

2 sin θ
√

1 − x2
= 0,

∂ψ f7 + f7 cos θ − f8(1 − x sin θ)

2 sin θ
√

1 − x2
= 0. (34)

Despite explicit dependence on many arbitrary functions, this
system can be solved exactly. The solution is parameterized
by the two numbers c1, c2:

f7 = c1e
A
2 e

i
2 (ψ+χ)

(
cos

θ + ϕ

2
− i sin

θ − ϕ

2

)

+ c2e
A
2 e− i

2 (ψ+χ)

(
cos

θ + ϕ

2
+ i sin

θ − ϕ

2

)
,

f8 = c1e
A
2 e

i
2 (ψ+χ)

(
cos

θ − ϕ

2
+ i sin

θ + ϕ

2

)

+ c2e
A
2 e− i

2 (ψ+χ)

(
cos

θ − ϕ

2
− i sin

θ + ϕ

2

)
, (35)

whereϕ is a new internal variable related to r by x(r) = sin ϕ.
We have also defined

χ(x1, x2) =
∫

ρ2(x1, x2)dx2. (36)

Note the following identity, which can be obtained by inte-
grating the constraint (24) with respect to x1 and x2:

∫
ρ2dx2 −

∫
ρ1dx1 = x1

x2
. (37)

This relationship can be employed in order to represent χ in
different ways.

From the AdS5 part of the gravitino Killing spinor equa-
tion δψm = 0 we get the standard expression for the AdS5

Killing spinor, as briefly reviewed in the “Appendix C”:

ζ = ρ1/2ζ 0− +
(
ρ−1/2 − ρ1/2xmαm

)
ζ 0+, (38)

where m ∈ {0, . . . , 3}. Here ζ 0 is an arbitrary 4 component
complex spinor parameter, and ζ 0 = ζ 0++ζ 0− is its decompo-
sition into the eigenspinors of α4, which is the gamma matrix
corresponding to the AdS5 radial direction ρ. The complete
Killing spinors are then given by (B.7):

ε =
(

ζ ⊗ χ1 + ζ c ⊗ χc
1

ζ ⊗ χ2 − ζ c ⊗ χc
2

)
. (39)

We can represent the eigenvectors of α4 (B.13) as

ζ 0+ =
[
ζ 0

5 + iζ 0
6 , ζ 0

7 + iζ 0
8 , ζ 0

7 + iζ 0
8 ,−(ζ 0

5 + iζ 0
6 )

]
,

ζ 0− =
[
ζ 0

1 + iζ 0
2 , ζ 0

3 + iζ 0
4 ,−(ζ 0

3 + iζ 0
4 ), ζ 0

1 + iζ 0
2

]
, (40)

in terms of eight real components of ζ 0 = (ζ 0
1 , . . . , ζ 0

8 ).
Taking c1 = 1, c2 = 0 in (35) and setting ζ 0

a = δab for some
b ∈ {1, . . . , 8} we get eight basis Killing spinors εb. There
are eight more Killing spinors arising when c1 = 0, c2 = 1.
Explicit computation then shows that taking other values of
the parameters c1, c2 in (18) results in the same set of Killing
spinors, up to relabeling.

Note that as in the AdS7 × M3 case, the 16 basis Killing
spinors can be labeled in such a way that ε1, . . . , ε8 are the
Poincaré Killing spinors, which only depend on the radial
AdS5 coordinate ρ, while ε9, . . . , ε16 are the superconformal
Killing spinors that depend on all AdS7 coordinates.
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4 Fermionic T-duality

The Killing spinors that we have found can be used to study
fermionic T-duals of the supergravity solutions of Sects. 2,
and 3. We will proceed to this after briefly reviewing the rules
that link fermionic T-dual backgrounds (fermionic Buscher
rules). For more detail on the basics of fermionic T-duality
see the reviews [23,25] or the original derivation [13].

Fermionic T-duality only transforms the RR fluxes and
the dilaton φ; there is no change in the metric nor in the anti-
symmetric b field. In type IIA supergravity it is convenient
to unify the RR field strengths Fμν and Fμνρσ together with
the Romans mass parameter m into a bispinor Fα

β (for the
spinor and gamma-matrix conventions, see “Appendix B”):

Fα
β =m δα

β + 1

2! Fμν(γ
μν)αβ + 1

4! Fμνρσ (γ μνρσ )αβ. (41)

Fermionic T-duality transformation rules are:

e2φ′ = e2φ det C,

F ′α
β = (det C)−1/2

(
Fα

β + 16ie−φ C−1
I J εα

I εJβ

)
, (42)

where CI J is the matrix defined by

∂μCI J = i ε I�μ�11εJ . (43)

The transformation parameters εI are the Killing spinors of
the original background. Indices I, J run over the subset
of the Killing spinors that we have chosen to T-dualize. In
particular, one may choose to do fermionic T-duality with
respect to just one Killing spinor, in which case the I, J
indices become redundant and CI J is no longer a matrix but
just some scalar function C . For consistency of the above
transformation, the Killing spinors must obey the so called
abelian constraint,

ε I�μεJ
!= 0, (44)

which comes from the requirement that the correspond-
ing supersymmetries anticommute [13]. Alternatively, the
abelian constraint may be interpreted as an integrability con-
dition for (43) [22].

Note that (44) is a non-trivial constraint even for a single
Killing spinor, i.e. when I = J . One can check by explicit
computation that none of the basis Killing spinors εa found
in Sects. 2.1, and 3.1 satisfy the abelian constraint. In fact,
this constraint can never be satisfied by a Majorana spinor,
which makes it necessary to complexify the Killing spinors.
Following the traditional approach we break the Majorana
condition by considering instead of the basis elements εa their
complex linear combinations of the form ε = εa + iεb. For
some choices of a and b the abelian constraint can be satisfied
by ε. Then the Eqs. (42), and (43) give a fermionic T-dual

background that solves the supergravity field equations and is
guaranteed to preserve the same amount of supersymmetry
as the original solution. However, the dual background in
general is not real as a consequence of the complexification
of the Killing spinors.

In both the AdS7 ×M3 and the AdS5 ×M5 cases there are
16 basis Majorana Killing spinors εa . For a generic complex
linear combination ε = εa + iεb (assuming that a 	= b) the
abelian constraint takes the form

(εa + i εb) �μ(εa + iεb)

= εa�
μεa − εb�

μεb + 2i εa�
μεb

!= 0. (45)

Let us first confine our attention to the Poincaré Killing
spinors ε1, . . . , ε8, which have a simpler algebraic struc-
ture and can be treated generically. Recall that these are the
Killing spinors that result from keeping the ζ 0− part of the
complete AdS Killing spinor (19), (38). For the AdS7 × M3

Killing spinors of Sect. 2.1, explicit computation shows that
the vectors v

μ
a = − 1

16εa�
μεa are lightlike, pointing in the

negative x5 direction for a ∈ {1, 2, 3, 4}, and pointing in the
positive x5 direction for a ∈ {5, 6, 7, 8}:

vμ
a = (1, 0, . . . , 0,−1, 0, . . . , 0), a ∈ {1, 2, 3, 4},

vμ
a = (1, 0, . . . , 0, 1, 0, . . . , 0), a ∈ {5, 6, 7, 8}. (46)

Thus the first two terms in (45) cancel each other if and only if
either both a, b ∈ {1, 2, 3, 4}, or both a, b ∈ {5, 6, 7, 8}. As
to the last term in (45), the vector uμ

ab = εa�
μεb with a 	= b

also vanishes if and only if either both a, b ∈ {1, 2, 3, 4},
or both a, b ∈ {5, 6, 7, 8}. To summarise, a complexified
Killing spinor

ε = εa + iεb, a 	= b (47)

is a valid parameter for a fermionic T-duality transforma-
tion of (42), (43), whenever a, b ∈ {1, 2, 3, 4} or a, b ∈
{5, 6, 7, 8}.

4.1 Fermionic T-duals of AdS7 × M3

As an example of a dual background, consider fermionic T-
duality generated by the Killing spinor ε = ε1 + iε2 of the
AdS7 × M3 background of Sect. 2. The Eq. (43) takes the
form ∂μC = i ε �μ�11ε, which vanishes as can be checked
by direct computation. Thus C in this case is an arbitrary
constant, which can be set to one in order to keep the value
of the dilaton fixed (42). Then the original fluxes (5) and the
mass parameter m also do not change; however, the last term
in the second of the Eq. (42) creates new components of the
RR flux. We find the following 32 components of the RR
4-form:
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Fabc6 = −K cos β,

Fabc7 = i K ,

Fabc8 = K
√

1 − x2 sin β,

Fabc9 = Kx sin β, (48)

where the indices abc can take the values 013, 014, 023, 024,
135, 145, 235, 245. The values of K and abc are related in
the following way:

abc = 013, 135 K = 16 iρ eA−φ−iθ ,

abc = 024, 245 K = −16 iρ eA−φ−iθ ,

abc = 014, 145, 023, 235 K = 16ρ eA−φ−iθ . (49)

There are no new components of the RR 2-form. Up to the
above 32 new components, the solution remains the same as
described in Sect. 2.1.

This is a characteristic form of a fermionic T-dual solution
whenever the complexified Killing spinor is constructed as
explained above. Apart from ε = ε1 + iε2 one may consider,
e.g. ε3 + iε4, ε5 + iε6, and ε7 + iε8. Each of these gives a
fermionic T-dual RR flux same as above, but the values of the
indices abc are slightly different every time. The resulting
fermionic T-dual may be simplified considerably if these four
Killing spinors are dualized at the same time. To achieve
this, take the Killing spinor εI , which appears in (42), (43)
to assume the values just listed,

εI =

⎧⎪⎪⎨
⎪⎪⎩

ε1 + iε2, I = 1,

ε3 + iε4, I = 2,

ε5 + iε6, I = 3,

ε7 + iε8, I = 4.

(50)

The abelian constraint (44) is satisfied for any pair I and
J , and the derivatives of CI J (43) are vanishing as before.
We can take CI J to be a unit matrix, in which case the dila-
ton and the original fluxes keep their values, whereas almost
all the contributions to the RR 4-form coming from differ-
ent εI cancel each other. There are only eight new compo-
nents of the 4-form surviving, which are given by the same
expressions (48) with abc = 023, 145 and an extra factor
of four.

The argument after the Eq. (46) allows for multiple
other complexification patterns. We note here one more
specific case that leads to a simple fermionic T-dual,
and later we will draw certain conclusions valid for any
choice of complexification. Consider the following Killing
spinors:

εI =

⎧
⎪⎪⎨
⎪⎪⎩

ε1 + iε3, I = 1,

ε2 + iε4, I = 2,

ε5 + iε7, I = 3,

ε6 + iε8, I = 4.

(51)

Again we are free to chooseCI J to be a unit matrix, hence the
background is the same as before, up to 12 new RR 4-form
components:

Fabc6 = K sin β,

Fabc8 = K
√

1 − x2 cos β,

Fabc9 = Kx cos β. (52)

The values of K and abc are now given by

abc = 123, K = 64 iρ eA−φ;
abc = 124, K = −64ρ eA−φ;
abc = 356, K = 64ρ eA−φ;
abc = 456, K = 64 iρ eA−φ. (53)

In other words, choosing the complexification scheme (51)
has allowed us to eliminate any θ dependence in the fermionic
T-dual background. However, as in the previous examples,
the dual solution is not real.

4.2 Fermionic T-duals of AdS5 × M5

Turning now to the case of the AdS5 × M5 background of
Sect. 3, we encounter similar patterns of the RR fluxes in the
fermionic T-dual backgrounds. However, the results here are
more cumbersome in comparison to the AdS7 × M3 results,
as are the Killing spinors themselves. When fermionic T-
dualizing one Poincaré supersymmetry in AdS5 ×M5 we get
32 RR flux components, the same amount as in AdS7 × M3.
However, the form of these fluxes is more intricate. Certain
simplification can be observed in the case of a combination
of four Poincaré supersymmetries, similar to (50). In this
case fermionic T-duality creates 16 new RR flux components,
including the 2-form:

F57 = K sin(χ + ψ) sin θ sin ϕ,

F58 = K sin(χ + ψ) cos θ,

F59 = K cos(χ + ψ),

F67 = K cos(χ + ψ) sin θ sin ϕ,

F68 = K cos(χ + ψ) cos θ,

F69 = −K sin(χ + ψ), (54)

where K = −128ρeA−φ . Note that we are able to obtain
a manifestly real RR 2-form flux. However, an imagi-
nary 4-form flux appears, F23ab = i Fab, where ab =
57, 58, 59, 67, 68, 69, and finally four more components of
the 4-form emerge,

F0345 = −F0346 = −i F5789 = −i F6789

= −i K cos(χ + ψ) sin θ cos ϕ. (55)
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Note that up to know we have exclusively used Poincaré
Killing spinors as input for fermionic T-duality. Both in
the AdS7 × M3 and in the AdS5 × M5 case it is possi-
ble to fermionic T-dualize the background with respect to a
superconformal Killing spinor as well. These are the Killing
spinors whose AdS part has dependence on the flat AdS coor-
dinates, which result from keeping the ζ 0+ part of the com-
plete AdS Killing spinor (19), (38). The resulting fermionic
T-dual RR fluxes are rather intricate and we will not give their
explicit form here. These expressions are akin to what was
classed as the ‘complicated’ fermionic T-dual case in [15], or
as a T-dual with respect to the supernumeracy Killing spinors
in [16]. They are similar to the fluxes of (54), additionally
multiplied by a polynomial of degree up to 4 in the AdS
coordinates. No matter what kind of a Killing spinor we use,
the fermionic T-duality parameter C appears always to be a
constant.

4.3 Constant fermionic T-duality parameter

All the fermionic T-dual backgrounds described above have
a property that the duality parameter C is a constant, ∂μC =
0. Vanishing of the corresponding Killing spinor contrac-
tion (43) is by no means obvious and must be checked by
direct computation. However, in the simpler case of the
AdS7 × M3 solution it is possible to prove that ∂μC = 0
for an arbitrary choice of the Killing spinors.

Consider two arbitrary supersymmetries εI = ∑16
a=1 kaεa

and εJ = ∑16
a=1 laεa subject to the condition ε I�

μεJ =
0. Note that we now consider all possible Killing spinors,
Poincaré as well as superconformal. Plugging in the values
of the AdS7 × M3 Killing spinors we arrive at the following
equations for μ = 7, 8, 9:

ka (iσ2 ⊗ γ 0)ab lb = 0,

ka (σ1 ⊗ 1)ab lb = 0,

ka (σ3 ⊗ 1)ab lb = 0. (56)

There is no need to consider remaining values of μ as
the above three equations fully constrain the parameter of
fermionic T-duality. It turns out that ∂μCI J = iε I�μ�11εJ
for any μ ∈ {0 . . . , 9} can be completely expressed in terms
of the polynomials in (56). Hence the abelian condition
ε I�

μεJ = 0 implies the vanishing of ∂μCI J and we are free
to choose constant values of CI J for any pair of supersym-
metries in the theory. The effect of fermionic T-duality (42) is
then to rescale the string coupling eφ and the RR flux Fα

β by
powers of the constant det CI J . What makes the transforma-
tion non-trivial is the additive correction to the fluxes coming
from the last term in (42). This term leads to the new compo-
nents of the RR flux that we have seen in the examples above.

Turning now to the AdS5×M5 case we find that the Killing
spinors are more complicated and do not lend themselves to

an analogous treatment. Nevertheless, all particular abelian
combinations of the Killing spinors that we have tried give
∂μCI J = 0, which suggests that CI J is always a constant for
the AdS5 × M5 backgrounds, similarly to the AdS7 × M3

case.

4.4 Constant Romans mass parameter

The behavior of IIA mass parameter m under fermionic T-
duality is a long standing question [23] which was one of the
motivations for this work. Recall that we have incorporated
m into the bispinor of RR fields (41), which under fermionic
T-duality has the transformation law:

F ′α
β = (det C)−1/2 (

Fα
β + 16ie−φ Aα

β

)
, (57)

where Aα
β = C−1

I J εα
I εJβ . Taking the trace of this relation we

remove the 2-form and the 4-form terms in the gamma-matrix
expansion of F and F ′. This leaves us with the transformation
law of the mass parameter under fermionic T-duality:

m′ = (det C)−1/2 (
m + ie−φ tr A

)
. (58)

Thus,m is shifted by the trace part of the Killing spinor matrix
A. In particular, this shift might in principle generate mass
in some type IIA background that was originally massless.
The rescaling by a factor of (det C)−1/2 in the present case is
trivial asCI J = const, but in generalCI J can be a coordinate
dependent function. Note that the Romans mass parameter
is intrinsically a constant quantity, hence a non-trivial coor-
dinate dependent CI J would require a very special form of
tr A, so as to keep both m and m′ constants.

For the AdS7 × M3 and AdS5 × M5 solutions of Sects. 2,
and 3, however, the Killing vectors result in a matrix A that
is traceless. Similarly to the previous subsection, this can be
proved strictly for the AdS7 × M3 case, and is very likely to
hold in general in AdS5 × M5 as well.

Consider again two arbitrary anticommuting Killing
spinors, i.e. two linear combinations εI = ∑16

a=1 kaεa and
εJ = ∑16

b=1 lbεb with coefficients subject to (56). Assume
that we choose some nonzero constant value for the parame-
terCI J . Explicit computation then shows that the trace of the
matrix Aα

β = C−1
I J εα

I εJβ is expressed in terms of the same
polynomials that appear in the constraints (56). Hence, the
anticommutation constraint for the supersymmetries implies
that the only possible transformation of the mass parameter
in the present case is rescaling by a constant (det C)−1/2.

5 Discussion

In this article the Killing spinors of the AdS7 × M3 and
AdS5 × M5 backgrounds of massive type IIA supergrav-

123



174 Page 10 of 13 Eur. Phys. J. C (2016) 76 :174

ity were derived. We have studied various fermionic T-dual
backgrounds that are parameterized by the Killing spinors. In
general, the dual background can be characterized by a con-
stant rescaling of the Romans mass parameter m, the string
coupling eφ , and the RR fluxes Fα

β . There are some new
components of the RR flux as well. At the same time, the
geometry and the NSNS 2-form field b are fixed to their
original values, which is a generic property of fermionic T-
duality. Essentially we have presented a way of deforming
the original backgrounds by introducing extra RR field com-
ponents while keeping all the supersymmetries.

A typical fermionic T-dual RR flux is given in (48). It
is interesting to note that although adding up the contri-
butions from different commuting Killing spinors reduces
the number of new RR flux components, it is impossible to
eliminate all the new contributions and just keep the original
fluxes. Even the maximal commuting subset of complexified
Killing spinors considered in (50), while canceling almost
all the fluxes that result from individual Killing spinors,
still does not lead to exact self-duality. In fact, all known
self-T-duality setups in the AdSm × Mn spacetimes [13,17–
19] also required performing bosonic T-dualities along the
k − 1 flat directions of AdSk , including a timelike T-duality.
This transformation generates a characteristic contribution of
δBφ = (k − 1) log ρ to the dilaton, where ρ is the AdS
radial coordinate. In the self-dual cases this contribution can
be canceled by fermionic T-duality, which adds to the dila-
ton an extra term δFφ = 1

2 log det C = −δBφ. However,
in Sect. 4.3 we have shown that the parameter C for the
solutions of [1,3] can only assume constant values, hence
the standard self-T-duality scheme does not work here. This
agrees with the classification of self-T-dual backgrounds con-
structed in [26,27].

We have seen in Sect. 4 that the RR 2-form flux rarely
appears in the fermionic T-dual. In fact, for the AdS7 × M3

solutions none of the Killing spinors produce any contribu-
tions to the RR 2-form. On the contrary, in AdS5 × M5 the
2-form flux routinely appears after fermionic T-duality and
we have seen an example of it in (54).

The new components of the RR 4-form that appear after
fermionic T-duality in the AdS7 × M3 background could not
be found in the original study of [1] because the Ansatz of
the AdS7 ×M3 solution that was used there intentionally did
not include any 4-form flux. This restriction was imposed in
order to protect the AdS7 symmetry, because a nonvanishing
4-form necessarily would have at least one leg off the internal
M3 manifold. The fermionic T-dual solutions with the 4-form
flux found here nevertheless keep the same AdS7 geome-
try. This is possible essentially because the fermionic T-dual
fluxes that we have found do not backreact: they have van-
ishing energy-momentum tensor and therefore do not con-
tribute to the gravity field equations. Vanishing stress-energy
of some fermionic T-dual fluxes is a feature already observed

in [15] for the fermionic T-duals of D-branes. Note also
that the D-brane dimension is not modified by fermionic T-
duality [13], thus the fact that there are new RR fluxes does
not imply that there are new D-brane sources. In fact, it is
possible that any fermionic T-dual RR flux is a solution of the
field equations without sources. In that case the new fluxes
are decoupled from the rest of the fields in the solution and
they naturally do not break any symmetries.
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Appendix A: Index summary

Various indices that we use are:

μ, ν ∈ {0, . . . , 9} Lorentz vector index,

α, β ∈ {1, . . . , 16} Weyl spinor index,

a, b ∈ {1, . . . , 16} labels linearly independent
Killing spinors,

I, J ∈ {1, . . . , X} subset of the Killing spinors
to be dualized (X ≤ 16).

The indices used for splitting the 10d vector index μ into 7d
and 3d vectors are

m, n ∈ {0, . . . , 6},
i, j ∈ {1, 2, 3},

or, for the 5 + 5 split:

m, n ∈ {0, . . . , 4},
i, j ∈ {1, . . . , 5}.

Appendix B: Spinor conventions

Both the AdS5 × M5 and the AdS7 × M3 gamma matrices
defined below are of the block form

�μ =
(

0 γ μαβ

γ
μ
αβ 0

)
, μ ∈ {0, . . . , 9}, (B.1)

where α, β ∈ {1, . . . , 16}. The 16 × 16 matrices γ μαβ and
γ

μ
αβ appear in the decomposition of the RR flux bispinor (41).
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This spinor index convention means that 16-component left
and right Weyl spinors have indices εα and εα:

ε =
(

εα

εα

)
. (B.2)

When a spinor ε appears without an index, it means the full 32
component spinor as above. Using the explicit gamma-matrix
realizations below, it is easy to verify that we are dealing with
Weyl representation as the d = 10 chirality operator is in its
conventional form �11 = �0 . . . �9 = 116 ⊗ σ 3.

In order to find the Killing spinors of a supergravity back-
ground we require that the supersymmetry variations of all
fermionic fields in the theory vanish. Variations of the mas-
sive type IIA fermions in the conventions of [28] are given
by

δλ =
(

/∂φ + 1

2
/H �11

)
ε

+eφ

4

(
5m + 3 /F (2)�

11 + /F (4)

)
ε,

δψμ =
(
Dμ + 1

4
�11 /Hμ

)
ε

+eφ

8

(
m�μ + /F (2)�μ�11 + /F (4)�μ

)
ε, (B.3)

where Dμ = ∂μ + 1
2 /ωμ and the 1/n! factors have been

absorbed in the definition of slash, /F (n) = 1
n! Fμ1...μn�

μ1...μn .
For the sake of defining Majorana spinors, we consider the

standard intertwiners B,C, D, which map gamma matrices
to their complex conjugate, transpose, and hermitian conju-
gate, respectively. Majorana condition is equivalent to requir-
ing that Dirac and Majorana conjugations of a spinor ε agree,
ε†D = εTC . Using the definitions of B,C, D below, this
implies

ε = −Bε∗. (B.4)

We use Majorana conjugation to build Lorentz tensors from
spinors, e.g. ε1�

με2 = εT1 C�με2.
Any type IIA fermion ε should be decomposable into two

Majorana–Weyl spinors ε1,2 of opposite chiralities:

ε1,2
!= −Bε∗

1,2, ε1
!= �11ε1, ε2

!= −�11ε2. (B.5)

These Majorana–Weyl spinors may be further decomposed
into the AdS part ζ and the M part χ :

ε1 = (ζ ⊗ χ1 + ζ c ⊗ χc
1 ) ⊗ v+,

ε2 = (ζ ⊗ χ2 − ζ c ⊗ χc
2 ) ⊗ v−. (B.6)

Note that since in both gamma-matrix representations below
�11 = 1 ⊗ σ 3, the chirality constraints immediately imply

that σ 3v± = ±v±, hence v+ = (1
0

)
, v− = (0

1

)
. Charge conju-

gation for the component spinors ζ c, χc is defined according
to the decomposition of the charge conjugation matrix B.

Occasionally it proves more convenient to work with 16-
component spinors ε1,2 defined as

ε = ε1 ⊗ v+ + ε2 ⊗ v− =
(

ε1

ε2

)
=

(
ζ ⊗ χ1 + ζ c ⊗ χc

1

ζ ⊗ χ2 − ζ c ⊗ χc
2

)
.

(B.7)

Appendix B. 1: Gamma matrices for d = 7+ 3
spacetime

In choosing the representation we mostly follow the con-
ventions outlined in [1]. The decomposition appropriate for
this case is in terms of the Lorentzian d = 7 gamma matri-
ces αm and the Euclidean d = 3 gamma matrices σ i (Pauli
matrices):

�m = αm ⊗ 12 ⊗ σ 2, m ∈ {0, . . . , 6},
�i+6 = 18 ⊗ σ i ⊗ σ 1, i ∈ {1, 2, 3}. (B.8)

We can choose the d = 7 matrices to be

α0 = 12 ⊗ iσ 2 ⊗ σ 1,

α1 = 12 ⊗ σ 2 ⊗ σ 3,

α2 = σ 1 ⊗ 12 ⊗ σ 2,

α3 = σ 3 ⊗ 12 ⊗ σ 2,

α4 = σ 2 ⊗ σ 1 ⊗ 12,

α5 = σ 2 ⊗ σ 3 ⊗ 12,

α6 = −σ 2 ⊗ σ 2 ⊗ σ 2. (B.9)

This choice gives rise to the following intertwiners:

B = α0 ⊗ σ 2 ⊗ σ 3,

C = i�8,

D = �0, (B.10)

which satisfy

B�μB−1 = +(�μ)∗,
C�μC−1 = −(�μ)T ,

D�μD−1 = −(�μ)†. (B.11)

From the decomposition of B it follows that charge con-
jugation for component spinors is defined by ζ c = −α0ζ ∗,
χc = σ 2χ∗.
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Appendix B. 2: Gamma matrices for d = 5+ 5
spacetime

Gamma matrices used in Sect. 3 are decomposed into the
AdS5 matrices αm , and the M5 matrices β i :

�m = αm ⊗ 14 ⊗ σ 2, m ∈ {0, . . . , 4},
�i+4 = 14 ⊗ β i ⊗ σ 1, i ∈ {1, . . . , 5}. (B.12)

We choose the d = 5 Lorentzian gamma matrices in the form

α0 = iσ 2 ⊗ σ 1,

α1 = σ 2 ⊗ σ 3,

α2 = σ 1 ⊗ 12,

α3 = σ 3 ⊗ 12,

α4 = σ 2 ⊗ σ 2. (B.13)

The d = 5 Euclidean gamma matrices are β1 = −iα0 and
β2,3,4,5 = α1,2,3,4. We have the following intertwining oper-
ators:

B = α1 ⊗ iβ1β2 ⊗ σ 3,

C = α0α1 ⊗ β1β2 ⊗ σ 1,

D = �0, (B.14)

satisfying

B�μB−1 = −(�μ)∗,
C�μC−1 = +(�μ)T ,

D�μD−1 = −(�μ)†. (B.15)

Note that B∗ = B = B−1. Charge conjugation of the
component spinors in this case is given by ζ c = −α1ζ ∗,
χc = iβ1β2χ∗.

Appendix C: AdS Killing spinors

The AdS part of the Killing spinor ζ , which appears in (B.6)
and (B.7), may be computed straightforwardly from the con-
dition of zero supersymmetry variation of the gravitino with
an AdS index δψm = 0. For example, in the AdS7×M3 case,
using the background fields of Sect. 2 in the variation (B.3),
we get

δψm = Dm

(
ε1

ε2

)
+ imeφ

8

(−(αm ⊗ 1)ε2

(αm ⊗ 1)ε1

)

− eφ

8
F89

(
(αm ⊗ σ 1)ε2

(αm ⊗ σ 1)ε1

)
. (C.16)

Using the result (12) for the internal spinors χ1,2, this may
be simplified to

δψm =
(

δmζ ⊗ χ1 + δmζ c ⊗ χc
1

δmζ ⊗ χ2 − δmζ c ⊗ χc
2

)
, (C.17)

where

δmζ = ∂mζ + ρ αm
1 + α6

2
ζ, when m ∈ {0, . . . , 5},

δρζ = ∂ρζ + 1

2ρ
α6ζ, when m = 6.

(C.18)

δmζ = 0 are the usual AdS Killing spinor equations [29].
These can be solved easily using the fact that any solution
ζ to these equations can be decomposed into the sum of
eigenvectors of AdS radial gamma matrix γ6,

ζ = ζ+ + ζ−, ζ± = 1 ± α6

2
ζ, α6ζ± = ±ζ±. (C.19)

The solution is

ζ = ρ1/2ζ 0− +
(
ρ−1/2 − ρ1/2xmαm

)
ζ 0+, m ∈ {0, . . . , 5},

(C.20)

which is parameterized by an arbitrary constant spinor ζ 0. For
the case of AdS7 this has eight components. In the AdS5×M5

case the above derivation is entirely analogous with the same
result, where now ζ 0 is a four-component spinor.
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