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Abstract Incertain extensions of General Relativity, worm-
holes generated by spherically symmetric electric fields can
resolve black hole singularities without necessarily removing
curvature divergences. This is shown by studying geodesic
completeness, the behavior of time-like congruences going
through the divergent region, and by means of scattering of
waves off the wormhole. This provides an example of the log-
ical independence between curvature divergences and space-
time singularities, concepts very often identified with each
other in the literature.

1 Introduction

The blow up of curvature scalars or of components of the Rie-
mann tensor is typically used in the literature to put forward
the existence of space-time singularities. Indeed, it is com-
mon to use those divergences to argue that when curvature
scalars get close to or surpass Planckian scales it is time to
replace Einstein’s theory by an improved description, open-
ing a door to quantum theories of gravity. This intuitive view
has even shaped numerous approaches in the search of non-
singular space-times by trying to build theories with bounded
curvature scalars [1-6]. However, from a formal perspective,
the most widely accepted criterion to characterize a singu-
lar space-time is through the existence of incomplete paths
(inextendible time-like or null geodesics) [7-9] (see also [10]
and references therein).

Given that geodesics are classical geometrical entities
associated with idealized (structureless) physical observers,
it is unclear what a quantum theory of gravity should say
about them. The focus is thus typically turned back to
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curvature divergences as one of the disturbing elements
an improved theory of gravity should get rid of. A com-
bined approach to better understand the correlation observed
between the incompleteness of geodesics and the appearance
of curvature divergences consists on exploring the impact
of curvature divergences on physical observers represented
by geodesic congruences. This has led to a classification of
the strength of curvature divergences [11-18] according to
whether an object going through them is crushed to zero vol-
ume or ripped apart by infinite tidal forces (strong case), or
if it is not severely affected (weak case). In the end, how-
ever, one must accept that, to the best of our knowledge,
matter and energy have quantum properties and a fundamen-
tal wave-like behavior, which requires a characterization of
curvature divergences and space-time singularities by means
of quantum scattering experiments [19].

In this work we provide an example of a black hole space-
time in which a wormhole gets rid of the central singular-
ity without necessarily avoiding curvature divergences. This
geometry is an exact electrovacuum solution of certain high-
energy extensions of general relativity (GR) formulated in
metric-affine spaces (see [20-24], where this geometry is
derived in detail). The requirement of a metric-affine geom-
etry is essential to avoid ghosts and higher-order derivative
equations. The resulting space-time roughly consists of two
copies of the Reissner—Nordstrom or Schwarzschild black
hole solutions' connected by a wormhole in a small region
near the center. This wormhole is supported by an electric
field and, as such, satisfies all the classical energy conditions.

Incomplete geodesics that in GR end (or start) at the cen-
tral singularity can now go through the wormhole, thus avoid-
ing incompleteness [25]. The wormhole throat, however,
generically exhibits divergent curvature scalars. Nonetheless,

! Depending on the particular parameters, two copies of Minkowski
are also possible.
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we find that physical observers (described as time-like con-
gruences) do not experience any pathological behavior upon
crossing the wormhole [26]. We also find that a scalar field
propagating in this background is everywhere well behaved,
and we compute the transmission coefficients and cross sec-
tion of scalar waves as they interact with the wormhole [27].
The resolution of black hole singularities in this model pro-
vides new insights on how this disturbing aspect of classical
gravitation may be cured at high energies.

2 Background geometry and geodesics

The geometry we are going to study arises when a static,
spherically symmetric electric field is coupled to a cer-
tain extension of GR (see [20-23] for details). In fact,
this solution appears in two different gravity theories,
namely, the quadratic gravity model with Lagrangian R —
$(RwR™ + aR?) and the Born-Infeld gravity model
—lguv + €Ruv] — «/—8). The line element, whose
derivation was worked out in [20-23], takes the form

1
ds? = —A(r)di® + ——dx? + r?(x)dQ2, (1
B(r)

with dQ? = d6? + sin62dg?, B(r) = A(r)o?, and

2 4 4
r2(x) — X + .; + 4rC (2)
1 1+6G
A= L [1 - rTS( I (r))} 3
o_
4
or=1=£ r4(Cx) @)

where x €] — o0, +o0[, but r(x) > r. > 0. The function
G(2), with z = r/r¢, can be written as

G(z) = —81 + % = 1[f342) + f1/42)], (5)
c
where f;(2) = 2F) [%, A, % 1—z4 is ahypergeometric func-
tion, and 8, ~ 0.572069 is a constant. By careful inspec-
tion, one can verify that this line element describes a worm-
hole [28]. To see this, Eq. (2) is particularly useful, as it
shows that the area function A = 47r2(x) has a mini-
mum Ampin = 47t}’3 at x = 0, where the wormhole throat
is located. Here r, = \/qu, l¢ is a length scale charac-
terizing the departures from GR [20-23] (in fact € = —2162),

rg = 2Gq2 is the charge radius, rg the Schwarzschild radius,

and §| = (2}'5)_1./;’3/1E is the charge-to-mass ratio, which
plays an important role in the classification of the solutions.

As already noticed, the geometry described above is an
exact solution of certain extensions of GR such as the Born—
Infeld model [23] and quadratic gravity [20-22] coupled to an
electric field. The reason why such solutions were not known
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previously is that we considered those theories from a metric-
affine perspective, i.e., assuming that the metric and the affine
connection are independent geometric entities, which yields
field equations different from those found in the typical met-
ric approach [29]. This formulation of modified gravity yields
second-order field equations that recover Minkowski (or de
Sitter) space-time in vacuum, yields no extra propagating
degrees of freedom, and is ghost free. The matter source
threading the corresponding space-time is an electrostatic
spherically symmetric Maxwell field, which means that the
classical energy conditions are all satisfied. We also note
that this static geometry can be obtained by considering the
dynamical process of collapse of charged radiation fluids in
a Vaidya-type space-time [30,31].

From the above definitions, one can verify that the GR
geometry is quickly recovered as soon as | x| is slightly greater
than r. (recovering B(r) ~ A(r) ~ 1 —rs/r +r}/(2r?),
and r2 ~ xz) and also in the limit /. — 0. Thus, for scales
larger than the wormhole size r, this space-time looks much
the same as the standard Reissner—Nordstrom solution of the
Einstein-Maxwell field equations. As x — 0, however, the
area function r2(x) ~ rc2 + x2/2 reaches a minimum, and
A(r) dramatically departs from GR, behaving as (from now
on we set I, = Ipjanck for notational convenience)

2
r rg .
1_173+ﬁ if [x] > re
AL - ©6)
—O¢ e c s
NG 13, Viee o ifx =0,
where N, = |q/e| is the number of charges and N, ~

16.55. This behavior turns the Kretschmann scalar from
R%gy», R ~ 141”;1 / 8 in the Reissner—Nordstrom solu-
tion into RY gy RP7* &~ (81 — 802 K2/ (r — re)® + (81 —
Se)K1/(r — 1’0)3/2 + Ky in our case, with the K; constants.

If the charge-to-mass ratio §; takes the particular value
81 = 4., the metric and all curvature scalars are regular
everywhere and, naturally, all time-like and null geodesics
smoothly extend across the wormhole. In this case, if N, >
N, whichimplies lim,_,o A(r) < 0, the wormhole is hidden
in between two event horizons symmetrically located around
x = 0 (r = r.), connecting in this way two Schwarzschild-
like geometries. If N, < N, there are no event horizons, and
the wormhole connects two Minkowski-like spaces. When
81 # ., however, curvature divergences arise at the throat
and the geodesic equation must be studied in detail to deter-
mine if those configurations are geodesically complete or
not.

In terms of an affine parameter A, the geodesics of (1)
satisfy [25] (« = 0, 1 for null and time-like, respectively)

: (dx>2 E? A()( L ) )
— (=) =E*— A |« ,
<1+i)2 da r2(x)

r4(x)
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WH case: A=A(x)

“ GR case: A=x
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Fig. 1 Affine parameter A(x) as a function of the radial coordinate x
for radial null geodesics (outgoing in x > 0). In the GR case (green
dashed curve in the upper right quadrant), A = x is only defined for
x > 0. In this plot £ = 1 and the horizontal axis is measured in units
of re

where E and L are constants which, in the time-like case,
represent the total energy and angular momentum per unit
mass. For null geodesics with L = 0, we get

1 (dx )2 _ e ®)
(1+ :—1)2 @
whose solution is plotted and compared with the GR predic-
tion in Fig. 1. Given that (8) is independent of §;, all con-
figurations (with or without curvature divergences) have an
identical behavior, which confirms the extendibility of null
geodesics across x = 0 in these space-times.

For null and time-like geodesics with L # 0, near the
wormbhole the effective potential

L2
V()C) =A <K + m) (9)

can be approximated by V(x) =~ —a/l|x|, with a =
(K + 5—22) % One readily sees that if §;
(Reissn(er—Nordstrém-like case), an infinite potential barrier
arises which prevents any geodesic from reaching x = O.
This behavior is also observed in GR, where such geodesics
can never reach the singularity [32]. In the Schwarzschild-
like case, §; < 4., the potential becomes infinitely attractive
as x — 0 and turns (7) into

> b

da 1x|2 XX (3
—%:t—‘ —>)»(x)%:t—‘— :
dx 2 3la
where =+ is for outgoing/ingoing geodesics. In the case of

GR, time-like radial geodesics near the singularity behave as

(10)

1
A(r) =~ :l:%r (%)2 Given that r > 0, ingoing/outgoing
geodesics in GR end/start at A(0) = O and, therefore,
are incomplete. In our case, on the contrary, the fact that

x €] — oo, 400l allows one to smoothly extend the affine

parameter A across x = 0 to the whole real axis. It is also
worth noting that the conclusion of the singularity theorems
[33-36] that in GR prevent the Schwarzschild geometry from
being extended does not hold for these wormhole space-
times, because although the electromagnetic stress-energy
tensor fulfills the weak energy condition, 7},,k*k” > 0 for
k" non-space-like, it does no longer imply R, (g)k"k" > 0
in our gravity theories.

3 Congruences

We have just seen that there are no restrictions for null, time-
like or space-like geodesics to be extended across the worm-
hole (when they can reach it). Nonetheless, given that phys-
ical observers can be more accurately described as geodesic
congruences, one should consider the impact of curvature
divergences in the evolution of nearby geodesics. For this
purpose, we consider the line element (1) written in coordi-
nates adapted to an observer in free fall and study if causal
contact between nearby time-like observers is lost at any time
of the transit across the hole. In freely falling coordinates, (1)
turns into [26]

ds? = —dA% + *)?dg? + r2 (., )d?, an

where A is the proper time (affine parameter), £ measures the
radial separation between geodesics, and u” = dy/dA, with
dy = dx/(1 + r? /r*(x)). Focusing on the Schwarzschild-
like case, §1 < &., which is the only configuration in which
time-like geodesics can go through the wormhole, (1) can
be approximated by (u”)? ~ a/|x| ~ (%M— EE|)~3, which
turns (11) into

2 2 3 —3 2
ds? ~ —da2 +  Z|n — Eg| de?. (12)
a

One should note that as the wormhole throat is approached,
A — E&E — 0, the physical spatial distance between any
two infinitesimally nearby geodesics diverges: dlpnhys =

(%lk — E$|)_l/3 d& (see [26] for a more elaborate discus-
sion of this point using Jacobi fields). This could be seen as an
indication that strong tidal forces could rip apart any infalling
body, thus signaling the presence of a strong singularity.
However, for any finite comoving separation A§ = &1 — &,
the physical spatial distance lphys = | |u”|dé is always finite,

a\1/3 1
s~ (5) 5 |- E&PP - —EaP?|. a3

3

which casts doubts on the fate of such bodies and the actual
strength of those curvature divergences.

It is thus necessary to clarify if the constituents making
up an object that reaches the wormhole lose causal contact
because of the divergent spatial stretching that affects its
infinitesimal elements (infinite tidal forces). In such a case,

@ Springer
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Fig. 2 Trajectories of light rays emitted by a freely falling observer
from & = 0 at different times shortly before reaching the wormhole
throat in the Schwarzschild-like configuration. The rays going to the
left/right represent ingoing/outgoing null geodesics. Given that the
observer is inside an event horizon, both ingoing and outgoing light
rays end up hitting the wormhole, which is located at the oblique (solid
black) line A — E€ =0 (intheplot E = 1,a = 3)

the interactions that keep the object cohesive would no longer
be effective, resulting in disruption or disintegration of the
body. However, as shown in Fig. 2, a fiducial observer at
& = 0 never loses causal contact with its neighbors. Indeed,
in [26] we show that the proper time a light ray takes in a
round trip from & = 0 to any nearby geodesic is always
finite as the wormhole is crossed. The divergent stretching of
(infinitesimal) spatial distances is, therefore, not observable.
We can thus conclude that extended objects going through
the wormhole, where curvature scalars generically diverge,
do not undergo destructive deformations and, therefore, can
effectively cross this apparently troublesome region.

4 Scattering experiments

As a third test to verify that curvature divergences do not
affect the well-posedness of physical laws in our space-
time (1), we consider the propagation of scalar waves in this
background. According to the cosmic censorship conjecture,
naked singularities should not exist in Nature. This idea is
traditionally invoked in the literature to interpret naked sin-
gularities as unphysical artifacts of Einstein’s theory. From
this physical perspective, therefore, one can say that naked
divergences are the worst-case scenario. From a technical
viewpoint, this turns out to be the simplest situation because

@ Springer

there exists a time-like Killing vector over the whole space,
which facilitates the choice of coordinates and the separa-
tion of variables. Our approach is also valid for the region
inside the inner horizon, where the wormhole is a time-
like hypersurface. We will thus focus on configurations with
81 > &, (Reissner—Nordstrom-like). Taking the scalar field
equation (O — m?)¢ = 0, we decompose it in modes of the
form @o. im = ="' Yy (60, @) fw1(x)/r(x), where Y1, (6, ¢)
represents spherical harmonics. Using the radial coordinate
y = [dx/AQ + r}/r"), the f,;(x) are governed by a
Schrodinger-like equation of the form

— fyy + Vet f = 0> f, (14)
where

ry I(I+1
Ver = 22 4 ) @M%). (1)

This potential quickly converges to the GR prediction for
r > r. but near r = r, diverges as Veir ~ k/|y|1/2, where

(81 — 86)Ny (Ne[m?r2 +1+1(1+ D] — Ny)
k= . (16)
81(SCNC NC(Srg)l/z

Low frequency modes are almost entirely reflected by the
centrifugal barrier in much the same way as it happens in GR
(see [19] for details). We thus focus on high-energy modes
with sufficient energy to overcome this barrier and interact
with the wormhole. The effective potential is divergent at
the wormhole throat, but as is well known from the example
of the Coulomb potential, this does not mean that the wave
function is singular. Actually, the leading behavior of the
wave function f,; ~ y” is given by the characteristic expo-
nents p = 0, 1, which are perfectly regular. Considering the
m? = 0 case for simplicity, it is easy to see that Veg may tran-
sit from an infinite well to an infinite barrier as / increases if
Ny > Nc. The divergent barrier is reminiscent of the repul-
sive potential seen by geodesics in this same configurations.
Using the mode decomposition, we thus define an incoming
wave packet from past null infinity (in the naked case, or
from the inner horizon in the black hole case) and study its
interaction with the wormhole. As noticed above, the behav-
ior will depend dramatically on the angular momentum of
the incident mode.

With a notational change, the information contained in the
parameters /, Ny, §1 and the frequency w can be condensed
in a (dimensionless) parameter « defined as

/ 2 _2
y =1k[3y = a=lkl 3. (17)

The wave equation in the relevant region then becomes

fyy + <012 + \%) /=0,

(18)
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with the =+ sign set by the sign of k (infinite well or bar-
rier). Now we can compute numerically the transmission
coefficient for a given value of «. The full potential decays
appropriately as the radius increases and the wave func-
tion can be approximated asymptotically by Aj, exp(iw (t —
r)) + Aou exp(iw(t + r)) on one side of the wormhole, and
Binexp(iw(t — 1)) + Boutexp(iw(t + r)) on the other. To
obtain the transmission coefficient, we give initial conditions
f, f' atapoint xoy across the wormhole with the condition
Bin = 0, and we evolve the wave function up to a point xj,
on the side of the wormhole where the wave was sent. From
the values of f(xin), f'(xin), f (Xout), f (Xout) We can extract
the amplitudes Ain, Aouts Bout- The transmission coefficient
is simply T = |Bout/Ain|2. There is a caveat if we use the
approximated effective potential, because it has a long range
and the wave function cannot be approximated with exponen-
tials as before. We can use the WKB approximation far from
the wormhole to obtain the amplitudes Ain, Aouts Bout, but
this would introduce a phase with respect to the amplitudes
calculated using the full potential. However, the transmission
coefficient would not be affected, and this is the method we
have used.

In Fig. 3 the transmission coefficient as a function of « is
plotted (for the approximated V). For k < O (infinite well),
most of the wave is transmitted, with the transmission coef-
ficient tending to 1 as o grows. For k > 0 (infinite barrier), a
sigmoid profile arises like in typical barrier experiments. For
o above ~1.5, the wave is transmitted almost entirely, and
below that threshold it is almost completely reflected.

Consider now a case with constant w. Depending on the
number of charges, k can be either positive or negative for
[ = 0. With growing I, k grows as ~ /2. The transmission for
k negative is very high, and approaches 1 as k — 0. When
k changes sign as [ grows, @ — oo and the transmission
is near 1. For bigger I’s, o begins to decrease, and around

w
0 5 10 15 20 25 30

Fig. 4 Transmission cross section versus frequency for a naked diver-
gence with §; = 1, Ny = 10, calculated numerically (dots) for the exact
1

Vetr. The continuous line shows the approximation o o w™ 2

the threshold & ~ 1.5, characterized by [ = I, the partial
waves change from being almost totally transmitted to being
almost totally reflected. A rough estimate of the cross section
can thus be obtained by considering that the transmission is
1 for partial waves with [ < [k, and O for [ > I,a. The
transmission cross section would thus be

lmax

T b
0 =25 QI+ D= (4 I (19)
=0

The variation of o in terms of w is illustrated in Fig. 4.

3 .
As w — 00, we Elave Imax X w?, which confirms that o
decreases as ~w™ 2.

5 Summary and conclusions

Two fundamental properties typically required from quan-
tum theories of gravity (often seen as one and the same) are
the removal of space-time singularities and the regularization
of classical curvature divergences. We have shown here that
only the former is physically relevant and can be achieved
in classical geometric scenarios with nontrivial topology and
satisfying all the energy conditions. Though our analysis has
focused on a four-dimensional setting, our results are still
valid in arbitrary dimensions, where exact analytical solu-
tions with wormhole structure, which are geodesically com-
plete, have been found [37] (we note that geodesic complete-
ness via wormholes can also be achieved in certain metric-
affine f(R) theories [38,39]). Higher dimensional models
confirm that the resolution of black hole singularities is a
highly non-perturbative phenomenon, the GR solution being
an excellent approximation down to the very throat of the
wormhole, where the geometry quickly changes to account
for this topological structure. We also note that the theories
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that generate the solution (1) also replace the big bang singu-
larity by a cosmic bounce in a very robust manner [40—42].
The generic absence of space-time singularities in these
theories without requiring exotic matter-energy sources puts
forward the existence of an important gap in our understand-
ing of gravitation in metric-affine geometries. Interestingly,
this type of geometries seem to play an important role in the
description of continuum systems with a microstructure [43],
such as Bravais crystals or graphene. This provides further
motivation for their study in gravitational scenarios.
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