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Abstract In MSSM scenarios where the gravitino is the
lightest supersymmetric particle (LSP), and therefore a viable
dark matter candidate, the stop t̃1 could be the next-to-lightest
superpartner (NLSP). For a mass spectrum satisfying m

˜G +
mt > mt̃1 > m

˜G + mb + mW , the stop decay is dominated

by the 3-body mode t̃1 → b W G̃. We calculate the stop
lifetime, including the full contributions from top, sbottom,
and chargino as intermediate states. We also evaluate the stop
lifetime for the case when the gravitino can be approximated
by the goldstino state. Our analytical results are conveniently
expressed using an expansion in terms of the intermediate
state mass, which helps to identify the massless limit. In
the region of low gravitino mass (m

˜G � mt̃1 ) the results
obtained using the gravitino and goldstino cases turns out to
be similar, as expected. However, for higher gravitino masses
m

˜G � mt̃1 the results for the lifetime could show a difference
of O(100) %.

1 Introduction

The properties of supersymmetric theories, both in the ultra-
violet or the infrared domain have had a great impact in
distinct domains of particle physics, including model build-
ing, phenomenology, cosmology, and formal quantum field
theory [1]. In particular, supersymmetric extensions of the
Standard Model can include a discrete symmetry, R parity,
that guarantees the stability of the lightest supersymmetric
particle (LSP) [2,3], which allows the LSP to be a good can-
didate for dark matter (DM). Candidates for the LSP in the
minimal supersymmetric extension of the Standard Model
(MSSM) include sneutrinos, the lightest neutralino χ0

1 and
the gravitino ˜G. Most studies has focused on the neutralino
LSP [4], while scenarios with the sneutrino LSP seem more
constrained [5].
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Scenarios with the gravitino LSP as the DM candidate
have also been considered [6–9]. In such scenarios, the nature
of the next-to-lightest supersymmetric particle (NLSP) deter-
mines its phenomenology [10,11].

Possible candidates for NLSP include the lightest neu-
tralino [12,13], the chargino [14], the lightest charged slep-
ton [15], or the sneutrino [16–19]. The NLSP could have
a long lifetime, due to the weakness of the gravitational
interactions, and this leads to scenarios with a metastable
charged sparticle that could have dramatic signatures at col-
liders [20,21] and it could also affect the Big Bang nucle-
osynthesis (BBN) [22–26].

Squark species could also be the NLSP, and in such a case
natural candidates for NLSP could be the sbottom [27–29]
or the lightest stop t̃1. There are several experimental and
cosmological constraints for the scenarios with a gravitino
LSP and a stop NLSP that were discussed in [30]. It turns out
that the lifetime of the stop t̃1 could be (very) long, in which
case the relevant collider limits are those on (apparently)
stable charged particles. For instance the limits available from
the Tevatron collider imply that mt̃1 > 220 GeV [31].1 Thus,
knowing in a precise way the stop lifetime is one of the most
important issues in this scenario, and this is precisely the goal
of our work. In this paper we present a detailed calculation
of the stop lifetime, for the kinematical region where the 3-
body mode t̃1 → ˜G W b dominates.2 Besides calculating the
amplitude using the full wave function for the gravitino, we
have also calculated the 3-body decay width (and lifetime)
using the gravitino–goldstino equivalence theorem [32]. It
should be mentioned that this scenario is not viable within
the Constrained Minimal Supersymmetric Standard Model
(CMSSM). However, there are regions of parameter space

1 The LHC will probably be sensitive to a metastable t̃1 which is an
order of magnitude heavier.
2 Our calculation of stop lifetime improves the one presented in [30]
where an approximation was used for the chargino-mediated contribu-
tion that neglected a subdominant term in the expression for the vertex
χ+
i

˜G W .
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within the Non-Universal Higgs Masses model (NUHM) that
pass all collider and cosmological constraints (relic density,
nucleosynthesis, CMB mainly) [33].

The organization of our paper is as follows. We begin
Sect. 2 by giving some formulas for the stop mass. In Sect.
2.1 we compute the squared amplitudes for the stop decay
with gravitino in the final state (t̃1 → ˜G W b) including
the chargino, sbotom and top mediated states. After care-
fully analyzing the results for the squared amplitude, we
have identified a convenient expansion in terms of powers
of the intermediate particle mass, which only needs terms of
order O(mi ), O(mim j ). It is our hope that such expansion
could help in order to relate the calculation of the massive
and massless cases. In future work we plan to reevaluate this
decay using the helicity formalism suited for the spin- 3

2 case.
In Sect. 2.2 we compute the squared amplitudes for the stop
decay considering the gravitino–goldstino high energy equiv-
alence theorem that allow us to approximate the gravitino as
the derivative of the goldstino. We present in Sect. 3 our
numerical results, showing some plots where we reproduce
the stop lifetime for the approximate amplitude considered
in [30], and compare it with our complete calculation, we
also compare these results with the goldstino approximation.
Conclusions are included in Sect. 4; finally, all the analytic
full results for the squared amplitudes are in Appendices A
and B.

2 The stop lifetime within the MSSM

We start by giving some relevant formulas for the input
parameters that appear in the Feynman rules of the grav-
itino within the MSSM. The (2 × 2) stop mass matrix can be
written as

˜M2
t̃ =

(

M2
LL M2

LR

M2 †
LR M2

RR

)

, (1)

where the entries take the form

M2
LL = M2

L + m2
t + 1

6
cos 2β (4m2

W − m2
Z ),

M2
RR = M2

R + m2
t + 2

3
cos 2β sin2 θW m2

Z ,

M2
LR = −mt (At + μ cot β) ≡ −mt Xt . (2)

The corresponding mass eigenvalues are given by

m2
t̃1

= m2
t + 1

2
(M2

L + M2
R) + 1

4
m2

Z cos 2β − �

2
(3)

and

m2
t̃2

= m2
t + 1

2
(M2

L + M2
R) + 1

4
m2

Z cos 2β + �

2
, (4)

where �2 = (

M2
L − M2

R + 1
6 cos 2β(8m2

W − 5m2
Z )

)2 +
4m2

t |At +μ cot β|2. The mixing angle θt̃ appears in the mix-

ing matrix that relate the weak basis (t̃L , t̃R) and the mass

eigenstates (t̃1, t̃2), and it is given by tan θt̃ = (m2
t̃1

−M2
LL )

|M2
LR | .

From these expressions it is clear that in order to obtain a
very light stop one needs to have a very large value for the
trilinear soft supersymmetry-breaking parameter [29,34]. It
turns out that such a scenario helps to obtain a Higgs mass
value in agreement with the mass measured at LHC (125–126
GeV) in a consistent way within the MSSM.

Following Ref. [35], we derived the expressions for all the
relevant interactions vertices that appear in the amplitudes for
the decay width (t̃1 → ˜G W b), whose Feynman graphs are
shown in Figs. 1–3. We shall need the following vertices:

V1(t̃1 t ˜G) = − 1√
2M

(γ νγ μ pν)(cos θt̃ PR + sin θt̃ PL), (5)

V2(t b W ) = ig2√
2
γρPL , (6)

V3(t̃1 W b̃i ) = − ig2κi√
2

(p + q1)μ , (7)

V4(b̃i b ˜G) = − 1√
2M

(γ νγ μq2ν)(ai PR + bi PL), (8)

V5(t̃1 b χ+
i ) = −i(Si + Piγ5), (9)

V6(χ
+
i W ˜G) = − 1√

2M

(

− 1

4
/pγ ργ μ(V1i PR −Ui1PL)

−mWγ νγ μ(Vi2 sin βPR +Ui2 cos βPL)
)

,

(10)

where t̃1 denotes the lightest stop, while t is the top quark
and ˜G denotes the gravitino. With b we denote the bottom
quark, while W is the gauge boson, χ+

i denotes the chargino
and b̃i is the sbottom. With PR and PL corresponding to the
left and right projectors, ai bi , Si , Pi are defined in Appen-
dices A and B, as well the mixing matrices V1i , U1i , which
diagonalize the chargino factor.

For the case when the gravitino approximates the gold-
stino state, the interaction vertices that will appear in the
amplitudes for the decay width (t̃1 → G W b) are the fol-
lowing:

˜V1(t̃1 t G) =
(

m2
t − m2

t̃1

2
√

3Mm
˜G

)

(cos θt̃ PR + sin θt̃ PL), (11)

˜V4(b̃i b G) =
⎛

⎝

m2
b − m2

b̃i

2
√

3Mm
˜G

⎞

⎠ (ai PR + bi PL), (12)

˜V6(χ
+
i W G) = −

mχ+
i√

6Mm
˜G

[/pγ ρ(V1i PR −Ui1PL)], (13)

whereas the verticesV2(t b W ), V3(t̃1 W b̃i ), andV5(t̃1 b χ+
i )

remain the same as in the gravitino case.
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2.1 The Amplitude for t̃1 → ˜G W b

The decay lifetime of the stop was calculated in Ref. [30],
where the chargino contribution was approximated by includ-
ing only the dominant term. Here we shall calculate the full
amplitude and determine the importance of the neglected
term for the numerical calculation of the stop lifetime. In the
following we need to consider the Feynman diagrams shown
in Figs. 1, 2, and 3, which contribute to the decay amplitude
for t̃1(p) → ˜G(p1)W (k) b(p2), with the momenta assign-
ment shown in parentheses.

The total amplitude is given by

M = Mt + Mb̃i
+ MC

χ+
i

, (14)

where Mt , Mb̃i
, MC

χ+
i

denotes the amplitudes for top,

sbottom, and chargino mediated diagrams, respectively. In
the calculation of Ref. [30], the chargino-mediated diagram
included only part of the vertex V6(χ

+
i W ˜G). Here, in order

to keep control of the vertex V6 and therefore Mc
χ+
i

, we shall

split Mc
χ+
i

into two terms as follows:

Mc
χ+
i

= M0
χ+
i

+ ˜Mχ+
i

, (15)

where M0
χ+
i

denotes the amplitude considered in Ref. [30],

which only includes the second term of (10) (with two
gamma matrices), while ˜Mχ+

i
includes the first term (with 3

gamma matrices). Then the averaged squared amplitude (14)
becomes

t̃1
t

b

W

Ψµ

V1

V2

Fig. 1 Top mediated diagram

t̃1 b̃i V4

Ψµ

bW

V3

Fig. 2 Sbottom mediated diagram

t̃1 χ+
i V6

Ψµ

Wb

V5

Fig. 3 Chargino mediated diagram

| M |2 = | Mt |2 + | Mb̃i
|2 + | M0

χ+
i

|2 + | ˜Mχ+
i

|2

+2Re
(

M0 †
χ+
i

˜Mχ+
i

+ M†
tMb̃i

+ M†
tM0

χ+
i

+M†
t
˜Mχ+

i
+ M†

b̃i
M0

χ+
i

+ M†
b̃i

˜Mχ+
i

)

. (16)

From the inclusion of the vertices Vi from each graph, we
can build each amplitude as follows:

Mt = Ct Pt (q1)
μ p
μ(At + Btγ5)( /q1 + mt )

×γ ρερ(k)PLu(p2), (17)

Mb̃i
= Cb̃i

Pb̃i (q2)
μq
μ
2 (ai Pl + bi PR)pρερ(k)PLu(p2),

(18)

M0
χ+
i

= C0
χ+
i
Pχ+

i
(q3)
μγ ρερ(k)γ μ(Vi +�iγ5)( /q3+mχ )

×(Si + Piγ5)u(p2), (19)

˜Mχ+
i

= Cχ+
i
Pχ+

i

μ/pγ ργ μ(Ti + Qiγ5)ερ(k)(/q3 + mχ )

×(Si + Piγ5)u(p2). (20)

Here Ct = g2
2M , Cb̃i

= g2κi
M , C0

χ+
i

= mW
M , and Cχ+

i
= 1

8M .

We have defined q1 ≡ p− p1, q2 ≡ p−k, and q3 ≡ p− p2,
and ερ(k) denotes the W polarization vector. Expressions for
At̃ , Bt̃ , ai , bi , κi , Vi , Ai , Si , and Pi are presented in Appen-
dices A and B. Then, after performing the evaluation of each
expression, we find it convenient to express each squared
amplitude as follows:

| Mψa |2= C2
ψa

| Pψa (qa) |2 Wψaψa , (21)

where ψa = (t, b̃ j , χ
+
k ). The functions Pψa (qa) correspond

to the propagators factors, thus, for the chargino, ψa = χ+
i ,

we have

Pχ+
i
(q3) = 1

q2
3 − m2

χ+
i

+ iε
. (22)

Similar expressions hold for the sbottom and the top contri-
butions, Pb̃(q2) and Pt (q1), respectively. The terms Wψaψa

include the traces involved in each of the squared amplitudes,

Wtt = Tr
[

Mρσ Dμν p
μ pν(At̃ + Bt̃γ5)(/q1 + mt )γ

ρ

×PL /p2PRγ σ (/q1 + mt )(At̃ − Bt̃γ5)
]

, (23)

Wb̃i b̃i
= Tr

[

pρ pσ Mρσ Dμνq
μ
2 q

ν
2 (Ri + Ziγ5)

×/p2(R j − Z jγ5)
]

, (24)

W 0
χ+
i χ+

i
= Tr

[

Mρσ D
ρσ (Vi + �iγ5)(/q3 + mχ )

×(Si + Piγ5)/p2

×(S j − Pjγ5)(/q3 + mχ )(Vj − � jγ5)
]

, (25)

123



157 Page 4 of 12 Eur. Phys. J. C (2016) 76 :157

Wχ+
i χ+

i
= Tr

[

Mρσ Dμν /pγ ργ μ(Ti + Qiγ5)(/q3 + mχ )

×(Si + Piγ5)/p2(S j − Pjγ5)

×(/q3 + mχ )(Tj − Q jγ5)γ
νγ σ

/p
]

. (26)

For simplicity, we have written the completeness relations
for the gravitino field and the vector polarization sum of the
boson W as follows:

3
∑

λ=1

ερ(k, λ)ε∗
σ (k, λ) = −gρσ + kρkσ

m2
W

= Mρσ (27)

3
∑

λ̃=1


μ(p1, λ̃)
ν(p1, λ̃) = −(/p1 + mG̃) ×
⎧

⎨

⎩

⎛

⎝gμν − pμ pν

m2
G̃

⎞

⎠

−1

3

(

gμσ − pμ pσ

m2
G̃

) (

gνλ − pν pλ

m2
G̃

)

γ σ γ λ

}

= Dμν. (28)

The functions Wψaψa depend on the scalar products of the
momenta p, p1, p2, k, q1, q2, and q3. After carefully ana-
lyzing the resulting traces (handed with FeynCalc3 [38,39])
we find that these functions can be written as powers of the
intermediate state masses, as follows:

Wψaψa = w1ψaψa + mψaw2ψaψa + m2
ψa

w3ψaψa . (29)

Full expressions for each function wiψaψa , ∀ i = 1, 2, 3, are
included in Appendix A. Furthermore, we also find that the
interference terms can be written in a similar form, namely:

M†
ψa
Mψb = CψaCψb P

∗
ψa

(qa)Pψb (qb)Wψaψb . (30)

Again, as in the previous case, the function Wψaψb includes
the traces appearing in the interferences, specifically we have

˜Wχi+χi+ = Tr
[

Mρσ Dμν /pγ ργ μ(Ti + Qiγ5)(/q3 + mχ )

×/p2(Si − Piγ5)(S j − Pjγ5)

×(/q3 + mχ )(Vj − � jγ5)γ
νgσ

]

, (31)

Wtb̃i
= Tr

[

Mρσ p
ρ
/p2PRγ σ (/q1 + mt )(At̃ − Bt̃γ5)

×pμDμνq
ν
2 (Ri + Ziγ5)

]

, (32)

Wtχ+
i

= Tr
[

Mρσ /p2PRγ σ (/q1 + mt )(At̃ − Bt̃γ5)

×pμD
μρ(�i + Viγ5)(/q3 + mχ )

×(Si + Piγ5)
]

, (33)

3 Progress in automatic calculation of MSSM processes with gravitino
has appeared recently [36], some of our results have been checked by
the authors of Ref. [37] and they found agreement in the results (private
communication).

˜Wtχ+
i

= Tr
[

Mρσ Dμν /pγ ργ μ pν(Ti + Qiγ5)(/q3 + mχ )

×(Si + Piγ5)/p2PRγ σ

×(/q1 + mt )(At̃ − Bt̃γ5)
]

, (34)

W
χ+
i b̃i

= Tr
[

Mρσ p
ρ(pν − kν)/p2(Si − Piγ5)

×(/q3 + mχ )(�i − Viγ5)

×Dνσ (R j + Z jγ5)
]

, (35)

˜W
χ+
i b̃i

= Tr
[

Mρσ Dμν(p
ν − kν)(Ri + Ziγ5)

×/p2(Si − Piγ5)(/q3 + mχ )

×(Ti − Qiγ5)γ
μγ ρ

/ppσ
]

. (36)

It turns out that the functions Wψaψb can be expressed also
in powers of the intermediate masses:

Wψaψb = w1ψaψb + mψa (w2ψaψb + mψbw3ψaψb )

+mψbw4ψaψb . (37)

The w jψaψb , ∀ j = 1, 2, 3, 4, are as the wiψaψa 4-
momentum’s scalar products functions completely deter-
mined by the kinematics of our decay. We consider (29) and
(37) to be a useful way to present our results as well an easy
manner to compute complicated and messy traces. Then the
decay width can be obtained after integration of the 3-body
phase-space

d�

dx dy
=

m2
t̃1

256 π3 | M |2 . (38)

The variables x and y are defined as x = 2
E

˜G
mt̃1

and y = 2 EW
mt̃1

.

Numerical results for the lifetime τ = 1
�

will be presented
and discussed in Sect. 3.

2.2 The amplitudes t̃1 → G W b with the goldstino
approximation

In this section we shall present the calculation of the stop
decay using the gravitino–goldstino high energy equivalence
theorem [32]. In the high energy limit (m

˜G � mt̃1 ) we could
consider the gravitino field (spin 3

2 particle) as the derivative
of the goldstino field (spin

( 1
2

)

particle). We shall consider in
this section the same Feynman diagrams, Figs. 1, 2, and 3, as
we used in Sect. 2.1, but with the proviso that the gravitino
field shall be described by the goldstino fields. Making the

replacement 

˜G → i

√

2
3

1
m

˜G
∂μ
 in the gravitino interaction

lagrangian, one obtains the effective interaction lagrangian
for the goldstino as is shown in [35]. The averaged squared
amplitude for the Goldstino is then written as

123



Eur. Phys. J. C (2016) 76 :157 Page 5 of 12 157

| MG |2=| MG
t |2 + | MG

b̃i
|2 + | MG

χ+
i

|2

+ 2Re
(

MG †
t MG

b̃i
+ MG †

t MG
χ+
i

+ MG †
b̃i

MG
χ+
i

)

. (39)

As in Sect. 2.1, we can build the amplitudes from the inclu-
sion of all the vertices into the expressions from each graph,
namely:

MG
t = ˜Ct Pt (q1)
(At̃ + Bt̃γ5)(/q1 + mt )γ

ρPLερ(k)u(p2),

(40)

MG
b̃i

= ˜Cb̃i
Pb̃i (q2)
(Ri + Ziγ

5)u(p2)p
σ εσ (k), (41)

MG
χ+
i

= ˜Cχ+
i
Pχ+

i
(q3)/pγ

ρ(Ti + Qiγ5)
ερ(k)(/q3 + mχ )

×(Si + Piγ5)u(p2). (42)

Here the superindex “G” that appears in the amplitudes (40)–
(42) refers to the goldstino amplitudes. The constants appear-

ing in front of the amplitudes are ˜Ct = −g2

(

m2
t −m2

t̃1

4
√

6Mm
˜G

)

,

˜Cb̃i
= g2κi

(

m2
b−m2

b̃i

4
√

6Mm
˜G

)

and ˜Cχ+
i

= −
m

χ
+
i√

6Mm
˜G

. We obtain

similar expressions to (21) for the squared amplitudes of the
goldstino case, namely:

| MG
ψa

|2= ˜C2
ψa

| Pψa (qa) |2 WG
ψaψa

, (43)

where the function WG
ψaψa

includes traces corresponding to
the goldstino squared amplitudes, which are given as follows:

WG
tt = Tr

[

(/p1 + mG̃)(At̃ + Bt̃γ5)(/q1 + mt )γ
ρPLMρσ /p2

×PRγ σ (/q1 + mt )(At̃ − Bt̃γ5)
]

, (44)

WG
b̃i b̃i

= Tr
[

pρ pσ Mρσ

×(/p1 + mG̃)(Bi + Ziγ5)/p2(Bj − Z jγ5)
]

, (45)

WG
χ+
i χ+

i
= Tr

[

Mρσ (/p1 + mG̃)/pγ ρ(Ti + Qiγ5)(/q3 + mχ )

×(Si + Piγ5)/p2(S j − Pjγ5)(/q3 + mχ )

×(Tj − Q jγ5)γ
σ
/p
]

, (46)

the functions WG
ψaψa

depend on the scalar products of the
momenta p, p1, p2, k, q1, q2, and q3, these functions will
also be written as powers of the intermediate state masses,
namely:

WG
ψaψa

= wG
1ψaψa

+ mψawG
2ψaψa

+ m2
ψa

wG
3ψaψa

. (47)

All the full expressions for each function wG
iψaψa

, ∀ i =
1, 2, 3, can be found in Appendix B. Again, the interference
terms for the goldstino are also written in the form

MG †
ψa

MG
ψb

= ˜Cψa
˜Cψb P

∗
ψa

(qa)Pψb (qb)W
G
ψaψb

. (48)

The functions Wψaψb correspond to the traces involved in the
interference terms, i.e.

WG
tb̃i

= Tr
[

Mρσ /p2PRγ σ (/q1 + mt )(At̃ − Bt̃γ5)

×(/p1 + mG̃)(Bi + Ziγ5)p
ρ
]

, (49)

WG
tχ+

i
= Tr

[

Mρσ (/p1 + mG̃)/pγ ρ(Ti + Qiγ5)(/q3 + mχ )

×(Si + PIγ5)

×/p2PRγ σ (/q1 + mt )(At̃ − Bt̃γ5)
]

, (50)

WG
χ+
i b̃i

= Tr
[

Mρσ /p2(Si −Piγ5)(/q3+mχ )(Ti − Qiγ5)γ
ρ
/p

×(/p1 + mG̃)(R j + Z jγ5)p
σ
]

. (51)

The WG
ψaψb

functions also are expressed as powers of the
intermediate masses:

Wψaψb = wG
1ψaψb

+ mψa (w
G
2ψaψb

+ mψbwG
3ψaψb

)

+mψbwG
4ψaψb

. (52)

The full expressions for wG
jψaψb

, ∀ j = 1, 2, 3, 4, can be
found in Appendix B.

3 Numerical results

The decay width is obtained by integrating the differential
decay width over the dimensionless variables x, y which

have limits given by 2μG < x < 1+μG̃−μW with μi = m2
i

m2
t̃1

and

y± =
(2 − x)

(

μG̃+μW − x + 1
)

±
√

x2 − 4μG̃

(

μG̃−μW − x + 1
)

2
(

μG̃ − x+1
) ,

(53)

� =
∫ 1+μG−μW

2μG

∫ y+

y−

m2
t̃1

256 π3 | M |2 dy dx . (54)

After integrating numerically the expressions for the differ-
ential decay width, we obtain the values for the decay width,
for a given set of parameters. We consider two values for the
stop mass, mt̃1 = 200 GeV and mt̃1 = 350 GeV, we also fix
the chargino mass to be mχ+

i
= 200, 500 GeV, while the

sbottom mass is fixed to be mb̃i
= 300, 500 GeV.

In Figs. 4 and 5 we show the lifetime of the stop, as a
function of the gravitino mass, within the ranges 200–250
GeV for the case with mt̃1 = 350 GeV, and 50–100 GeV
for mt̃1 = 100 GeV. We show the results for the case when
one uses the full expression for chargino–gravitino–W vertex
(circles), as well as the case when the partial inclusion of such
vertex, as was done in [30] (triangles) and in the limit of the
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Fig. 4 Stop lifetime 1

Fig. 5 Stop lifetime 2

goldstino approximation (squares). We noticed that for low
gravitino masses (m

˜G → 0) the full gravitino result becomes
almost indistinguishable from the goldstino case, while the
partial gravitino result has also similar behavior. For large
gravitino masses (m

˜G
∼= mt̃1 ) the results for the stop lifetime

using the full gravitino and goldstino approximation could
be very different, up to O(50 %) different.

On the other hand, the values for the stop lifetime using the
full gravitino and partial gravitino limit are very similar for
low gravitino masses, while for the largest allowed masses
the difference in the results is at most of order O(50 %). The
value of the lifetime obtained in all theses cases turns out
to be of order 107–1012 s, which results in a scenario with
large stop lifetime that has very special signatures both at
colliders and has also important implications for cosmology,
as discussed in Ref. [30].

For instance, regarding the effect on BBN, the stop t̃1 has to
form quasi-stable sbaryons (t̃1qq) and mesinos (t̃1q̄), whose
late decays could have affected the light element abundance
obtained in BBN, while negatively charged stop sbaryons
and mesinos could contribute to lower the Coulomb barrier
for nuclear fusion process occurring in the BBN epoch. How-
ever, as argued in [30] the great majority of stop antisbaryons
would have annihilated with ordinary baryons to make stop

antimesinos and most stop mesinos and antimesinos would
have annihilated. The only remnant would have been neu-
tral mesinos which would be relatively innocuous, despite
their long lifetime because they would not have important
bound state effects. Further discussion of BBN issues of Ref.
[33] divide the stop lifetime into regions that could have an
effect, but the larges ones (which represent our results) do
not pose problems for the success of BBN. Then, regarding
the effect of late stop decay on the Cosmic Microwave Back-
ground (CMB), we have included some comments in the text,
to estimate the main effects. The arguments read as follows.
Very long lifetimes (τ > 1012 s) would have been excluded if
one uses the approximate results of Ref. [40], which present
bounds on the lifetime τ (for the case when stau is the NLSP)
using the constraint in the chemical potential μ < 9 × 10−5.
However, it was discussed in Ref. [41] that a more precise
calculation reduces the excluded region for lifetimes, ending
at about τ ∼ 1011 s–1012 s. Thus, the region with very large
stop lifetimes could also survive. Specific details that change
from the stop decay (3-body) as compared with stau decays
(2-body), such as the energy release or stop hadronization,
will affect the calculation, but the numerical evaluation of
such an effect is beyond the scope of our paper.

4 Conclusions

In this paper we have calculated the stop t̃1 lifetime in MSSM
scenarios where the massive gravitino is the lightest super-
symmetric particle (LSP), and therefore is a viable dark
matter candidate. The lightest stop t̃1 corresponds to the
next-to-lightest supersymmetric particle (NLSP). We have
focused on the kinematical domain m

˜G + mt > mt̃1 >

m
˜G + mb + mW , where the stop decay width is dominated

by the mode t̃1 → b W G̃.
The amplitude for the full calculation of the stop 3-body

decay width includes contributions from top, sbottom, and
chargino as intermediate states. We have considered the full
chargino–gravitino vertex, which improves the calculation
presented in Ref. [30]. Besides performing the full calcu-
lation with a massive gravitino, we have also evaluated the
stop decay lifetime for the limit when the gravitino can be
approximated by the goldstino state. Our analytical results
are conveniently expressed, in both cases, using an expan-
sion in terms of the intermediate state mass, which helps in
order to identify the massless limit.

We find that the results obtained with the full chargino
vertex are not very different from the approximation used in
Ref. [30], in fact they only differ approximately by 50 %.
The comparison of the full numerical results with the ones
obtained for the goldstino approximation, show that in the
limit of low gravitino mass (m

˜G � mt̃1 ) there is not a signif-
icant difference in values of the stop lifetime obtained from
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each method. However, for m
˜G � mt̃1 the difference in life-

time could be as high as 50 %. Numerical results for the
stop lifetime give a value of order 107–1012 s, which makes
the stop behave like a quasi-stable state, which leaves spe-
cial imprints for LHC search. Our calculation shows that the
inclusion of the neglected term somehow gives a decrease
in the lifetime of the stop. However, it should be pointed out
that the region of parameter space corresponds to the NUHM
model.

Acknowledgments We would like to acknowledge the support of
CONACYT and SNI. We also acnknowledge to Abdel Perez for his
valuable comments. B.O. Larios is supported by a CONACYT gradu-
ate student fellowship.

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

A Analytical expressions for amplitudes with gravitino
in the final state

In this appendix we present explicitly the full results for
the 10 wψaψa functions that arose from a convenient way to
express the large traces that appear in the squared amplitudes
(21), as well as the 18 wψaψb functions in the interferences
(30) of the 3-body stop t̃1 decay with gravitino in the final
state. First, we shall present the contributions for the squared
amplitudes, then we shall present the interferences.

A.1 Top contribution

For the averaged squared amplitude of the top quark contri-
bution, the functions w1t t , w2t t , and w3t t are

w1t t = 4a1h1

3m2
Wm2

G̃

(

f2(m
2
W (6m2

G̃
+ 2h5m

2
t̃1

− q2
1 )

+6 f3m
2
W + 4 f 2

3 ) − 2 f1
(

m2
G̃

(−(

4 f3 + 3m2
W

))

+ f2(4 f3 + 3m2
W ) + f3q

2
1

) + (q2
1 − 2m2

G̃
)

×(m2
Wm2

G̃
+ 3 f3m

2
W + 2 f 2

3 )

+4 f 2
1 ( f2 − m2

G̃
) − 2m2

Wm2
G̃
h5m

2
t̃1

− 4 f 2
2 m

2
W

)

, (55)

w2t t = 8a2h1

3m2
WmG̃

(m2
W (m2

G̃
+ m2

t̃ − 2 f2) − f1(4 f3 + 3m2
W )

+3 f3m
2
W + 2 f 2

1 + 2 f 2
3 ), (56)

w3t t = 4a3h1

3m2
Wm2

G̃

(m2
W ( f2 − m2

G̃
) − 3 f3m

2
W − 2 f 2

3 + 2 f1 f3).

(57)

The functions f1, f2, and f3 are functions of the variables
x and y that were defined previously in Sect. 3, they are

f1 = m2
t̃1

2 y, f2 = m2
t̃1

2 x, f3 = m2
t̃1

2 (−1−μ
˜G −μW + x + y),

with μ
˜G = m2

˜G
m2
t̃1

and μW = m2
W

m2
t̃1

. We have also used in (55)–

(57) the substitutions h1 = ( f 2
2 −m2

G̃
m2

t̃1
), a1 = (At̃ − Bt̃ )

2,

a2 = A2
t̃
−B2

t̃
, and a3 = (At̃+Bt̃ )

2, with At̃ = cos θt̃+sin θt̃
and Bt̃ = cos θt̃ − sin θt̃ .

A.2 Sbottom contribution

For the averaged squared amplitude of the squark sbottom
contribution, the function w1b̃i b̃i

is

w1b̃i b̃i
=

8Di j1h2h3(( f2 − f3)2 − q2
2m

2
G̃
)

3m2
Wm2

G̃

. (58)

Here h2 = f2 − f3 − m2
G̃

and h3 = f 2
1 − m2

Wm2
t̃1

. We have
made in (58) the following substitution: ai PR + bi PL =
1
2 (Ri + Ziγ5) such that Di j1 = Ri R j + Zi Z j , with Ri =
ai + bi , Zi = ai − bi , R j = a j + b j , and Z j = a j − b j ,
and with ai = (sin θb̃, cos θb̃), bi = (cos θb̃,− sin θb̃) and
κi = (cos θt̃ cos θb̃,− cos θt̃ cos θb̃).

A.3 Partial chargino contribution (M0
χ+
i

)

For the averaged squared amplitude of the chargino contri-
bution, the functions w0

kχ+
i χ+

i
, ∀ k = 1, 2, 3, are as follows:

w0
1χ+

i χ+
i

= − 8�ij1h4

3m2
Wm2

G̃

(

(m2
G̃

+ f3)(2(m2
G̃

+m2
W )+4 f3−q2

3 )

+ f2(−2m2
G̃

− 2 f3 + q2
3 ) − 2 f1(m

2
G̃

+ f3)
)

, (59)

w0
2χ+

i χ+
i

= −8h4(�ij1 + �ij2)(h5 − f1 − f2)

3m2
WmG̃

, (60)

w0
3χ+

i χ+
i

= 8�ij3h4h2

3m2
Wm2

G̃

, (61)

with h4 = 2m2
Wm2

G̃
+ f 2

3 and h5 = m2
G̃

+ 2 f3 + m2
W , we

have also used the following substitutions: �i j1 = (Si S j +
Pi Pj )(ViVj−�i� j )−(Si Pj+Pi S j )(�i V j−Vi� j ), �i j2 =
(Si S j + Pi Pj )(ViVj − �i� j ) + (Si Pj + Pi S j )(�i V j −
Vi� j ), �i j3 = (Si S j + Pi Pj )(ViVj + �i� j ) + (Si Pj +
Pi S j )(�i V j + Vi� j ), with Vi = Vi2 sin β + Ui2 cos β and
�i = Vi2 sin β − Ui2 cos β. For the low-to-moderate range
of tan β we have

S1 = 1

2

(

−g2 cos φL + g2mt sin φL sin θt̃√
2mW sin β

)

, (62)

P1 = 1

2

(

−g2 cos φL − g2mt sin φL sin θt̃√
2mW sin β

)

, (63)
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where cos φL ,± sin φL are elements of the matrix V that
diagonalize the chargino mass matrix, and expressions for
S2 and P2 may be obtained by replacing cos φL → − sin φL

and sin φL → cos φL in (62) and (63).

A.4 Full chargino contribution ( ˜Mχ+
i

)

For the averaged squared amplitude ˜Mχ+
i

of the chargino
contribution, the functions wkχ+

i χ+
i

, ∀ k = 1, 2, 3, are:

w1χ+
i χ+

i
= q2

3 Pij1h7, (64)

w2χ+
i χ+

i
= 16mG̃(Pij1 + Pij2)

3m2
W

×(h5 − f1 − f2)(2 f 2
1 − 5m2

Wm2
t̃1
), (65)

w3χ+
i χ+

i
= Pij2h7, (66)

where we have defined

h7 = 16

3m2
Wm2

G̃

(

2 f1( f2(2( f2 − f3) f3 − m2
G̃
(2 f3 + m2

W ))

− f3m
2
G̃
m2

t̃1
) + h2(2 f 2

2 m
2
W − m2

t̃1
h6)

+ f 2
1 (4 f2m

2
G̃

− 2m4
G̃
)
)

. (67)

With h6 = 3m2
Wm2

G̃
+ 2 f 2

3 , we have used the substitution
Vi1PR −Ui1PL = Ti + Qiγ5 in the first term of the interac-
tion vertex V6(χ

+
i W G̃), we have also made the following

substitutions in the functions (64)–(66):

Pi j1 = (Si S j + Pi Pj )(Ti Tj + Qi Q j ) − (Si Pj + Pi S j )

×(Ti Q j + QiTj ), (68)

Pi j2 = (Si S j + Pi Pj )(Ti Tj + Qi Q j ) + (Si Pj + Pi S j )

×(Ti Q j + QiTj ). (69)

A.5 Interference terms

M0†
χ+
i

˜Mχ+
i
interference

For the interference term M0†
χ+
i

˜Mχ+
i

, the w̃kχ+
i χ+

i
functions,

∀ k = 1, 2, 3, 4, are

w̃1χi+χi+ = 16Sij1

3m2
WmG̃

(

f 2
1 (m2

G̃
(8 f3 + 2m2

W − q2
3 ) + 4 f 2

3 )

+ f1
(

4 f2 f3(2m
2
G̃

+ f3 − q2
3 )

−(m2
G̃
(4 f3 + m2

W ) + 2 f 2
3 )(2(m2

G̃
+ m2

W )

+4 f3 − q2
3 )

)

+ f2m
2
W (−m2

G̃
(2 f2 − 4 f3 − 2m2

W + q2
3 )

+2m4
G̃

+ f2q
2
3 ) + f 2

3 q
2
3m

2
t̃1

)

, (70)

w̃2χi+χi+ = 16(Sij2 + Sij3)

3m2
Wm2

G̃

(

m2
t̃ (− f3m

2
G̃
( f3 − 3m2

W )

+2m2
Wm4

G̃
− 2 f 3

3 )

+2 f1
(

f3m
2
G̃
h5 + 2 f2(m

2
Wm2

G̃
+ f 2

3 )
)

− f2m
2
W (5m2

G̃
h5 + f2(2 f3 − 3m2

G̃
))

− f 2
1 (4 f3m

2
G̃

+ m4
G̃
)
)

, (71)

w̃3χi+χi+ = − 16Sij4

3m2
WmG̃

(

f2m
2
W ( f2 − m2

G̃
)

+ f1(m
2
G̃
(4 f3 + m2

W ) + 2 f3( f3 − 2 f2))

− f 2
1 m

2
G̃

+ f 2
3 m

2
t̃1

)

, (72)

In order to have control in the calculations with huge expres-
sions, we have made the following substitutions in the func-
tions (70)–(72):

Si j1 = (Si S j + Pi Pj )(Ti Vj + Qi� j ) − (Si Pj + Pi S j )

×(QiVj + Ti� j ), (73)

Si j2 = (Si S j + Pi Pj )(Ti� j + QiVj ) − (Si Pj + Pi S j )

×(Qi� j + Ti Vj ), (74)

Si j3 = (Si S j + Pi Pj )(Ti� j + QiVj ) + (Si Pj + Pi S j )

×(QiVj + Ti� j ), (75)

Si j4 = (Si S j + Pi Pj )(Ti Vj + Qi� j ) + (Si Pj + Pi S j )

×(QiVj + Ti� j ). (76)

M0†
χ+
i
Mb̃i

interference

For the interference term M0†
χ+
i
Mb̃i

, the functions w jχ+
i b̃i

,

∀ j = 1, 2, are

w1χ+
i b̃i

= − 4ηij1

3m2
WmG̃

(

− f1
(

m2
t̃ (m

2
Wm2

G̃
+ f 2

3 )

−2 f3 f2(m
2
G̃

+ 3 f3 − m2
W )

+2 f 2
3 h5 + f 2

2 (2 f3 − m2
W )

)

+m2
W

(

m2
t̃ bigl(m

2
G̃
(−2 f2 + 4 f3 + m2

W )

+2m4
G̃

+ f 2
3

) + f2(− f2(2m
2
G̃

+ 6 f3 + m2
W )

+2 f3h5 + 2 f 2
2 )

)

+ f 2
1 (−m2

G̃
(−2 f2 + 4 f3 + m2

W ) − 2m4
G̃

+ 2 f 2
3 )

+ f 3
1 m

2
G̃

)

, (77)

w2χ+
i b̃i

= 8ηij2h2

3m2
Wm2

G̃

(m2
W (m2

G̃
h5m

2
t̃1

+ f2( f3 − f2))

− f 2
1 m

2
G̃

+ f1( f2 − f3) f3). (78)
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In the functions (77) and (78), we have made the following
substitutions:

ηi j1 = R j (�i Si − Vi Pi ) + Z j (�i Pi − Vi Si ), (79)

ηi j2 = R j (�i Si + Vi Pi ) + Z j (�i Pi + Vi Si ). (80)

M†
tM0

χ+
i
interference

For the interference term M†
tM0

χ+
i

the functions w j tχ+
i

,

∀ j = 1, 2, 3, 4, are

w1tχ+
i

= 2�i1

3m2
WmG̃

(

2 f1
(

m2
t̃ (m

2
G̃
( f3 + 2m2

W ) − f 2
3 )

− f2(m
2
G̃
h8 + 2 f3(3 f3 + m2

W ))

− f3m
2
G̃
h5 + f 2

2 (2 f3 − 3m2
W )

)

+m2
t̃

(−m2
Wm2

G̃
(−4 f2 + 6 f3 + m2

W )

−4m2
Wm4

G̃
+ f3((2 f2 + f3)m

2
W + 2 f3( f3 − f2))

)

+ f 2
1 (m2

G̃
(−4 f2 + 10 f3 + 3m2

W ) + 4m4
G̃

+ 8 f2 f3)

+ f2
(

2 f 2
3 (m2

G̃
+ m2

W )

+ f2m
2
W (4m2

G̃
− 4 f2 + m2

W ) + 4 f2 f3m
2
W + 4 f 3

3

)

−6 f 3
1 m

2
G̃

)

, (81)

w2tχ+
i

= 4�i2

3m2
Wm2

G̃

(

−m2
t̃ ( f2( f

2
3 − 2m2

Wm2
G̃
) + 2m2

Wm4
G̃
)

+ f1
(

f3m
2
G̃
m2

t̃1
+ m4

G̃
(m2

W − f3)

− f2m
2
G̃
(2 f3 + m2

W ) + 2 f 2
2 f3

)

+ f2(m
2
G̃
((2 f2 − f3)m

2
W + f 2

3 ) + f2( f3 − 2 f2)m
2
W )

+2 f 2
1 m

2
G̃
(m2

G̃
− f2)

)

, (82)

w3tχ+
i

= 2�i3

3m2
WmG̃

(

m2
t̃ h9 − f1m

2
G̃
( f1 − 2 f3 + 2m2

W )

−3 f 2
2 m

2
W + 2 f2 f3

(

m2
W − f3

))

, (83)

w4tχ+
i

= − 2�i4

3m2
Wm2

G̃

(

−m2
G̃
m2

t̃1
(4 f3m

2
W + h9)

−2 f1
(

f3m
2
G̃
h5 + f2(2 f 2

3 − m2
Wm2

G̃
)
)

+2 f2 f
2
3 h5 + f 2

2 m
2
W (3m2

G̃
+ 2 f3) + f 2

1 (4 f3m
2
G̃

+ m4
G̃
)
)

.

(84)

Here h8 = 2 f3 − m2
W and h9 = 3m2

Wm2
G̃

+ f 2
3 . We have

made the following substitutions in the functions (81)–(84):
�i1 = (At̃ − Bt̃ )(Si − Pi )(�i + Vi ), �i2 = (At̃ − Bt̃ )(Si −
Pi )(�i − Vi ), �i3 = (At̃ + Bt̃ )(Si − Pi )(�i − Vi ), and
�i4 = (At̃ + Bt̃ )(Si − Pi )(�i + Vi ).

M†
tMb̃i

interference

For the interference termM†
t Mb̃i

, the functions w j t b̃i
, ∀ j =

1, 2, are

w1t b̃i
= 2 (�i1 + �i2)

3m2
Wm2

G̃

(

f 2
1

(

2 f2m
2
G̃
(−2m2

t̃1
+ h8)

−2m2
G̃
m2

t̃1
( f3 − 2m2

G̃
) + m4

G̃
h8

−4 f 2
2 (m2

G̃
+ f3) + 4 f 3

2

) + 2 f1
(

m2
t̃1

(−m4
G̃
( f3 − 2m2

W )

+ f3m
2
Wm2

G̃
+ f2 f3( f3 − f2)

) + f3m
2
G̃
m4

t̃1

+ f2
(

f3m
2
G̃
( f2 − f3 + m2

W )

−m2
Wm4

G̃
+ f2( f3 − f2)m

2
W

))

+m2
W

(

m2
t̃1

(

m4
G̃
(2 f2 + m2

W )

+(4 f 2
2 − 4 f3 f2 − f 2

3 )m2
G̃

−2 f2( f2 − f3)
2) − 2m2

G̃
m4

t̃1
(2m2

G̃
− f2 + f3)

− f 2
2 m

2
G̃
(2 f2 − h8)

)

+4 f 3
1 m

2
G̃
( f2 − m2

G̃
)
)

, (85)

w2t b̃i
= 2 (�i1 − �i2)

3m2
WmG̃

(

f 2
1 (2 f 2

2 − m2
G̃
(2m2

t̃1
+ h8))

+ f1
(

m2
t̃ (m

2
G̃
h8 − f 2

3 )

+2 f2(m
2
Wm2

G̃
− f3m

2
W + f 2

3 ) − f 2
2 (2 f3 + m2

W )
)

+m2
W

(

m2
t̃ (−m2

G̃

(

2 f2

+m2
W ) − 2 f 2

2 + 2 f3 f2 + f 2
3 ) + 2m2

G̃
m4

t̃1

+ f 2
2 (2 f2 − h8)

) + f 3
1 m

2
G̃

)

. (86)

with �i1 = (Ri − Zi )At̃ and �i2 = (Zi − Ri )Bt̃ .

˜M†
χ+
i
Mb̃i

interference

For the interference term ˜M†
χ+
i
Mb̃i

, the functions w̃ jχ+
i b̃i

,

∀ j = 1, 2, are

w̃1χ+
i b̃i

= 8 f1Cij1

3m2
Wm2

G̃

(

2 f1
(

f3m
2
G̃
(m2

t̃ + h5)

+ f2(2m
2
Wm2

G̃
+ m4

G̃
− 2 f 2

3 )

+ f 2
2 (2 f3 − m2

G̃
)
) − m2

t̃

(

m4
G̃
(2 f3 + m2

W )

+m2
G̃

(

f3(3 f3 + 4m2
W )

−2 f2( f3 + m2
W )

) + 2( f2 − f3) f
2
3

)

− f2m
2
W

(

m2
G̃
(−3 f2 + 4 f3 + 2m2

W )

+2m4
G̃

+ 2 f2( f2 − f3)
) + f 2

1 (m4
G̃

− 4 f2m
2
G̃
)
)

, (87)
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w̃2χ+
i b̃i

= −
16 f1Cij2h2(− f3h5m

2
t̃1

− f2m
2
W + f1( f2 + f3))

3m2
WmG̃

.

(88)

We have made the following substitutions in the functions
(87) and (88):

Ci j1 = Ti (R j Si + Z j Pi ) − Qi (R j Pi + Z j Si ),

Ci j2 = Ti (R j Si + Z j Pi ) + Qi (R j Pi + Z j Si ). (89)

M†
t
˜Mχ+

i
interference

For the interference term M†
t
˜Mχ+

i
, the functions w̃ j tχ+

i
,

∀ j = 1, 2, 3, 4, are:

w̃1tχ+
i

= 8Ri1

3m2
Wm2

G̃

(

−m2
G̃
m4

t̃1
(4 f3m

2
W + h9)

+m2
t̃

(

f 2
2 m

2
W (3m2

G̃
+ 4 f3) + m2

G̃

(

m2
Wm2

G̃

− f 2
3

)

h5 + 2 f2h5(m
2
Wm2

G̃
+ f 2

3 )
)

+ f 2
1

(

m2
G̃
m2

t̃1
(m2

G̃
+ 4 f3) − 3m4

G̃
h5

+ f2(4m
2
Wm2

G̃
+ 6m4

G̃
) + f 2

2 (8 f3 − 4m2
G̃
)
)

+2 f1
(

m2
t̃

(−(2m4
G̃
( f3 + m2

W )

+( f3 − 2 f2)m
2
G̃
( f3 + m2

W ) + 2 f2 f
2
3 )

)

−2 f2( f2 − m2
G̃
)( f3h5 + f2m

2
W )

)

− f 2
2 m

2
W (m2

G̃
+2 f2)h5+ f 3

1 (6m4
G̃

−8 f2m
2
G̃
)
)

,

(90)

w̃2tχ+
i

= 8Ri2

3m2
WmG̃

(

2 f1(m
2
t̃ (m

2
G̃
( f3 + 2m2

W ) − f 2
3 )

−2 f2( f3h5 + f2m
2
W ))

+h5(m
2
t̃ ( f

2
3 − m2

Wm2
G̃
) + f 2

2 m
2
W )

+ f 2
1

(

m2
G̃
(−2 f2 + 6 f3 + 3m2

W )

+3m4
G̃

+ 8 f2 f3
) − 6 f 3

1 m
2
G̃

)

, (91)

w̃3tχ+
i

= 8Ri3

3m2
Wm2

G̃

(

2 f1(− f3m
2
G̃
h5m

2
t̃1

+2 f2m
2
G̃
( f3 − m2

W ) − 2 f3 f
2
2 )

+m2
t̃ (2 f2(m

2
Wm2

G̃
+ f 2

3 ) − f 2
3 m

2
G̃

+ m2
Wm4

G̃
)

− f 2
2 m

2
W (m2

G̃
+ 2 f2 − 4 f3)

+ f 2
1 (4 f2m

2
G̃

− 3m4
G̃
)
)

, (92)

w̃4tχ+
i

= 8Ri4

3m2
WmG̃

(

m4
t̃ h9 − m2

t̃

(−m2
G̃
( f 2

3 − 2 f2m
2
W )

+m2
Wm4

G̃
+ f2((3 f2 − 4 f3)m

2
W

+2 f 2
3 )

) + 2 f1
(

f2(2m
2
G̃
(m2

W − f3)

+ f2(2 f3−m2
W ))−m2

t̃ (m
2
G̃
(m2

W −2 f3) + 2 f2 f3)
)

+ f 2
1 (−6 f2m

2
G̃

− m2
G̃
m2

t̃1
+ 3m4

G̃
+ 4 f 2

2 )

+ f 2
2 m

2
W (m2

G̃
+ 2 f2 − 4 f3)

)

. (93)

We have made the following substitutions in the functions
(90)–(93): Ri1 = (At̃ − Bt̃ )(Si + Pi )(Ti − Qi ), Ri2 = (At̃ +
Bt̃ )(Si − Pi )(Ti + Qi ), Ri3 = (At̃ − Bt̃ )(Si + Pi )(Ti + Qi ),
and Ri4 = (At̃ + Bt̃ )(Si − Pi )(Ti − Qi ).

B Analytical expressions for the amplitudes
for the goldstino approximation

In this appendix we present explicitly the full results for the
seven wG

ψaψa
functions that arose from the squared ampli-

tudes (43), as well as the eight wG
ψaψb

functions that appear
in the interference terms (48) of the 3-body stop t̃1 decay with
goldstino in the final state. First, we shall present the con-
tribution for the squared amplitudes, then we shall present
the interferences. We shall shown that the wG

ψaψa
and wG

ψaψb
functions are very compacts expressions, opposed to the
resulting functions in the gravitino case that we have pre-
sented in Appendix A. The approximation of the gravitino
field by the derivative of the goldstino field is good in the
high energy limit (m

˜G � mt̃1 ), in the sense that in this limit
they behave similar and also in the simplification of the com-
putations.

B.1 Top contribution

For the averaged squared amplitude of the top quark contri-
bution, the resulting functions w̃ j t t , ∀ j = 1, 2, 3, are

w̃1t t = 4
2a1

m2
W

(

f2(m
2
W (6m2

G̃
+ 2h5m

2
t̃1

− q2
1 ) + 6 f3m

2
W

+4 f 2
3 ) − 2 f1(−m2

G̃
(4 f3 + 3m2

W )

+ f2(4 f3 + 3m2
W ) + f3q

2
1 ) + (q2

1 − 2m2
G̃
)(m2

Wm2
G̃

+3 f3m
2
W + 2 f 2

3 )

+4 f 2
1 ( f2 − m2

G̃
) − 2m2

Wm2
G̃
h5m

2
t̃1

− 4 f 2
2 m

2
W

)

,

(94)

w̃2t t = 4a2mG̃

m2
W

(

m2
W (m2

G̃
+ m2

t̃ − 2 f2) − f1(4 f3 + 3m2
W )

+3 f3m
2
W + 2 f 2

1 + 2 f 2
3

)

, (95)

w̃3t t =
2a3(m2

W ( f2 − m2
G̃
) − 3 f3m2

W − 2 f 2
3 + 2 f1 f3)

m2
W

.

(96)

With a1, a2, and a3 defined previously in Appendix A.
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B.2 Sbottom contribution

We have for the averaged squared amplitude of the sbottom
squark contribution the w̃1b̃i b̃i

function,

w̃1b̃i b̃i
= 4Dij1h2h3

m2
W

, (97)

with Di j1 defined previously in Appendix A.

B.3 Chargino contribution

For the averaged squared amplitude of the chargino contri-
bution, the resulting functions w̃ jχ+

i χ+
i

, ∀ j = 1, 2, 3, are

w̃1χ+
i χ+

i
= 4q2

3 Pij1

m2
W

(

m2
t̃ (m

2
W (m2

G̃
+ f2) + 3 f3m

2
W

+2 f 2
3 − 2 f1 f3) + 2 f2(2 f1( f1 − f3)

−(3 f1 + f2)m
2
W )

)

, (98)

w̃2χ+
i χ+

i
= 12mG̃h5m

2
t̃1
(Pij1 + Pij2) (h5 − f1 − f2) , (99)

w̃3χ+
i χ+

i
= 4Pij2

m2
W

(

m2
t̃ (m

2
W (m2

G̃
+ f2) + 3 f3m

2
W

+2 f 2
3 − 2 f1 f3) + 2 f2(2 f1( f1 − f3)

−(3 f1 + f2)m
2
W )

)

, (100)

where Pi j1 and Pi j2 are defined in Appendix A.

B.4 Interference terms

MG †
t MG

˜bi
interference

For the interference term MG †
t MG

˜bi
, the functions w j t b̃i

,
∀ j = 1, 2, are

w1t b̃i
= 2(�i1 + �i2)

m2
W

(

− f1( f3(m
2
t̃ − m2

G̃
) + f2m

2
W )

+m2
W

(

m2
t̃ (2m

2
G̃

+ f3)

− f2(m
2
G̃

+ m2
t̃ )

) + 2 f 2
1 ( f2 − m2

G̃
)
)

, (101)

w2t b̃i
= 2mG̃(�i1 − �i2)(m2

W ( f2 − m2
t̃
) + f 2

1 − f3 f1)

m2
W

.

(102)

Here �i1 and �i2 are defined above in Appendix A.

MG †
χ+
i
MG

˜bi
interference

For the interference term MG †
χ+
i
MG

˜bi
, the functions wG

jχ+
i b̃i

,

∀ j = 1, 2, are:

wG
1χ+

i b̃i
= 4Cij1mG̃

m2
W

(

m2
t̃ (m

2
W (h5 − f2) + f1 f3) − f 2

1 h5

)

,

(103)

wG
2χ+

i b̃i
= 4Cij2

m2
W

(−m2
Wh5m

2
t̃1
h2 + f 2

1 (2 f2 − m2
G̃
)

− f1( f3h5m
2
t̃1

+ f2m
2
W )

)

, (104)

with Cij1 and Cij2 defined above in Appendix A.

MG†
t MG

χ+
i
interference

For the interference term MG†
t MG

χ+
i

, the functions wG
jtχ+

i
,

∀ j = 1, 2, 3, 4, are

wG
1tχ+

i
= 4Ri1 mG̃

m2
W

(

m2
t̃ (m

2
W (4m2

G̃
− 3 f2 + 3m2

W )

+5 f3m
2
W − 2 f 2

3 ) + f2m
2
W (2 f2 − 3h5)

−2 f 2
1 m

2
G̃

+ f1(4 f2( f3 + m2
W )

−3m2
Wh5m

2
t̃1

)
)

,

wG
2tχ+

i
= 4Ri2

m2
W

(

m2
t̃ ( f3(2 f3 + m2

W ) − m2
Wm2

G̃
)

+ f2m
2
W (3h5 − 2 f2)

+2 f 2
1 m

2
G̃

− 4 f1 f2( f3 + m2
W )

)

, (105)

wG
3tχ+

i
= 4Ri3 mG̃

m2
W

(

m2
W (m2

t̃ − f2) − f1(2 f3 + 3m2
W ) + 2 f 2

1

)

,

(106)

wG
4tχ+

i
= Ri4

m2
W

(

4(2 f1( f1 − f3) − (3 f1 + f2)m2
W )(2 f2 − m2

G̃
)

+4h5m
2
t̃1

(( f2 + 3 f3)m2
W + 2 f3( f3 − f1))

)

, (107)

with Ri1, Ri2, Ri3, and Ri4 defined in Appendix A.
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