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Abstract A variable speed of light (VSL) cosmology is
described in which the causal mechanism of generating pri-
mordial perturbations is achieved by varying the speed of
light in a primordial epoch. This yields an alternative to infla-
tion for explaining the formation of the cosmic microwave
background (CMB) and the large scale structure (LSS) of
the universe. The initial value horizon and flatness prob-
lems in cosmology are solved. The model predicts primordial
scalar and tensor fluctuation spectral indices ns = 0.96 and
nt = −0.04, respectively. We make use of the δN formal-
ism to identify signatures of primordial nonlinear fluctua-
tions, and this allows the VSL model to be distinguished from
inflationary models. In particular, we find that the parameter
fNL = 5 in the variable speed of light cosmology. The value
of the parameter gNL evolves during the primordial era and
shows a running behavior.

1 Introduction

Although inflationary models have been successful in fitting
cosmological data [1], there have been issues raised about the
fundamental consequences of the models [2]. In particular,
the need for chaotic and eternal inflation models has raised
the specter of a multiverse cosmological scenario [3,4]. The
question as to whether such a scenario can be falsified by
observations and the lack of predictability of inflation models
has been a cause for concern. Moreover, the standard single-
field inflation models suffer from significant fine-tuning, such
as the requirement of a slow-rolling potential and the fine-
tuning needed to fit the magnitude of the CMB amplitude [5–
10].

We shall consider a model based on the idea that the speed
of light c can have a significantly larger value in the very
early universe [11–22]. This assumption leads to a resolu-
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tion of the horizon and flatness problems, thereby solving
the initial value problem in early universe cosmology. A
bimetric variable speed of light (VSL) model [23–27] has
been proposed with two metric tensors. One metric and its
light cone describe a varying speed of light and a constant
speed of gravitational waves, while the other metric and its
light cone describe a constant speed of light and a varying
speed of gravitational waves. This model cannot produce an
observed value for relic gravitational waves and a non-zero
tensor mode spectral index nt .

In the following, we will formulate a version of VSL based
on an earlier VSL model with one metric. In Sect. 2, we
postulate a gravitational action in which the speed of light
c = c(x) is a dynamical field. The total action also con-
tains an action for a minimally coupled scalar “seed” field
φ, which will produce quantum primordial fluctuations. It
also contains an action inducing a spontaneous violation
of Lorentz invariance [11,12,28–31] by means of a non-
vanishing vacuum expectation value of a vector field ψμ. The
Lorentz group SO(3, 1) is spontaneously broken resulting in
SO(3,1)→ O(3)× R, where R is the absolute preferred time
corresponding to the comoving time t in the preferred frame
associated with the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric. In Sect. 3, we develop the VSL cosmology
and we show how the model can solve the horizon and flatness
problems in initial value cosmology. Section 4 presents the
calculations of the power spectra and spectral indices for pri-
mordial scalar density perturbations and tensor gravitational
waves. Section 5 we calculate the non-gaussianities in our
VSL model. In Sect. 6 we end with concluding comments.

The VSL cosmology can remove the fine-tuning of the
initial values in the standard big-bang cosmology and fit the
available observational data, such as an almost scale invari-
ant, adiabatic and Gaussian scalar matter power spectrum and
the potential observation of a gravitational wave power spec-
trum. As a viable alternative to standard inflationary models,
it can relieve the need for fine-tuning present in these models

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-3971-6&domain=pdf
mailto:jmoffat@perimeterinstitute.ca


130 Page 2 of 11 Eur. Phys. J. C (2016) 76 :130

and not require a multiverse scenario in the form of eternal
inflation.

2 The action and field equations

We adopt the following action:

S = SG + Sψ + Sφ + SM , (1)

where

SG = 1

16πG

∫
d4x

√−g

[
�(R + 2�) − κ

�
∂σ �∂σ �

]
. (2)

Here, G is Newton’s gravitational constant, g = det(gμν),
R = gμνRμν , � is the cosmological constant, �(x) = c4(x)
and κ is a dimensionless constant. The action Sψ is given by

Sψ = −
∫

d4x
√−g

[
1

4
BμνBμν + W (ψμ)

]
, (3)

where ψμ is a vector field, Bμν = ∂μψν −∂νψμ, and W (ψμ)

is a potential. The scalar field action Sφ is defined by

Sφ =
∫

d4x
√−g

[
1

2
(∂μφ∂μφ) − V (φ)

]
, (4)

where φ is a scalar field and V (φ) is a potential. The matter
action is SM = SM (φm, gμν) where φm denotes matter fields.

The energy-momentum tensor is

Tμν = TMμν + Tψμν + Tφμν, (5)

where

1√−g

δSX
δgμν

= −1

2
TXμν, [X = M, ψ, φ]. (6)

The Tψμν and Tφμν are given by

Tψμν = BμαBν
α−1

4
gμνB

αβBαβ−2
∂W (ψμ)

∂gμν
+gμνW (ψμ),

(7)

and

Tφμν = ∂μφ∂νφ− 1

2
gμνg

αβ∂αφ∂βφ −2
∂V (φ)

∂gμν
+gμνV (φ).

(8)

The variations of the action with respect to gμν and �

yield the field equations:

Gμν − gμν� = 8πG

�
Tμν + 1

�
(∇μ∇ν − gμν∇α∇α)�

+ κ

�2

(
∂μ�∂μ� − 1

2
gμν∂

α�∂α�

)
, (9)

∇α∇α� = 8πG

3 + 2κ
T, (10)

where Gμν = Rμν − 1
2gμνR, T = gμνTμν and ∇σ is the

covariant derivative with respect to the metric gμν . We also
obtain the field equations:

∇μ(Bμν) − ∂W (ψμ)

∂ψν

= 0, (11)

and

gμν∇μ∇νφ + ∂V (φ)

∂φ
= 0. (12)

The energy-momentum tensor Tμν satisfies the conservation
law:

∇νT
μν = 0. (13)

In the action S we have made the speed of light c a dynam-
ical degree of freedom, in addition to the dynamical degrees
of freedom associated with the metric gμν and the fields ψμ

and φ.
We must now require that local Lorentz invariance and

diffeomorphism invariance are violated, so that the speed
of light c = c(t) cannot be made constant by a coordinate
transformation as is the case in GR. Let us choose W (ψμ) to
be of the form of a “Mexican hat” potential [11,12]:

W (ψμ) = −1

2
μ2ψμψμ + 1

4
λ(ψμψμ)2, (14)

where λ > 0 and μ2 > 0. If W has a minimum at

vμ ≡ ψμ = 〈0|ψμ|0〉, (15)

then the spontaneously broken solution is given by

v2 ≡ ψμψμ = μ2

λ
. (16)

We choose the ground state to be described by the timelike
vector:

ψ(0)
μ = δμ0v = δμ0

(
μ2

λ

)1/2

. (17)
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The homogeneous Lorentz group SO(3, 1) is broken down
to the spatial rotation group O(3). The three rotation gener-
ators Ji (i = 1, 2, 3) leave the vacuum invariant, Jivi = 0,
while the Lorentz boost generators Ki break the vacuum sym-
metry Kivi �= 0. The spontaneous breaking of the Lorentz
and diffeomorphism symmetries produces massless Nambu-
Goldstone modes and massive particle modes [30,31]. The
spontaneous breaking of Lorentz invariance and diffeomor-
phism invariance has selected a preferred frame and direction
of time.

3 Initial value conditions and cosmology

We will work in our application to cosmology in the preferred
frame in which the metric is of the FLRW form:

ds2 = c2dt2 − a2
[

dr2

1 − Kr2 + r2(dθ2 + sin2 θdφ2)

]
, (18)

where K is the Gaussian curvature of space and K =
0,+1,−1 (in units of [length]−2) for flat, closed and open
models, respectively. The metric has the group symmetry
O(3) × R with a preferred comoving time t . The energy-
momentum tensor Tμν will be described by a perfect fluid:

Tμν =
(

ρ + p

c2

)
uμuν − pgμν, (19)

where uμ = dxμ/ds is the fluid element four-velocity and
ρ and p are the matter density and pressure, respectively.

As in inflationary models, the horizon problem is solved
in our VSL model [11]. Consider a locally flat patch with the
line element:

ds2 = c2dt2 − (dxi )2. (20)

From the geodesic equation for light travel ds2 = 0, we get

dt2 = 1

c2 (dxi )2. (21)

In the limit when c → ∞ in an early phase of the universe,
dt2 → 0 and the Minkowski light cone is squashed. Now
all points in an expanding bubble near the beginning of the
universe will be in causal communication with one another.
The horizon scale is determined by

dH = ca(t)
∫ t

0

dt ′

a(t ′)
. (22)

Let us assume that for t > tc we have c = c0. Then for
t < tc we get dH → ∞ as c → ∞ and in the phase t < tc
all points in the expanding spacetime will have been in causal
communication.

Setting � = 0, the Friedmann equation is given by

H2 + Kc2

a2 = 8πGρ

3
− 4H

ċ

c
+ 8κ

3

ċ2

c2 , (23)

where H = ȧ/a, ρ = ρM + ρψ + ρφ + ρr and ρr denotes
the density of radiation.

In standard big-bang cosmology with c = c0:

|�(10−43sec)−1| ∼ O(10−60), |�(1 sec)−1| ∼ O(10−16),

(24)

where� = ρ/ρc,ρc = 3H2/8πG and the Planck time tPL ∼
10−43 sec. This implies that the radius of curvature Rcurv at
the Planck time was very large compared to the Hubble radius
RH = c0/H :

Rcurv(10−43 sec) ∼ 1030RH , Rcurv(1 sec) ∼ 108RH .

(25)

This means that the universe in standard big-bang cosmology
was very special at the Planck time. The universe has survived
some 1060 Planck times without re-collapsing or becoming
curvature dominated.

We obtain from (23) the Friedmann equation:

� − 1 = Kc2

ȧ2 + 4

H

ċ

c
− 8κ

3H2

ċ2

c2 , (26)

where � = 8πGρ/3H2. In order to resolve the flatness prob-
lem, we separate out the initial value �i−1 and the final value
�0 − 1 in (26):

�0 − 1 = Kc2
0

ȧ2
0

(27)

and

�i − 1 = Kc2
i

ȧ2
i

+ 4

Hi

ċi
ci

− 8κ

3

ċ2
i

H2
i c

2
i

, (28)

where c0 is the present speed of light. Dividing (27) by (28)
yields

�0 = 1 + Kc2
0

ȧ2
0c

2
i

(
K
ȧ2
i

+ 4ċi
Hi c3

i
− 8κ ċ2

i
3H2

i c
4
i

) |�i − 1|. (29)

We have for ci = c0:

�0 = 1 + ȧ2
i

ȧ2
0

|�i − 1|. (30)
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If ȧi/ȧ0 < 10−5 corresponding to an early phase of infla-
tionary acceleration and |�i − 1| ∼ O(1), then �0 = 1
to a high accuracy [32]. This solves the flatness problem in
inflationary models.1

In our VSL model, the flatness problem can also be solved.
When in an early phase:

Hic
3
i � 4ċi , 3H2

i c
4
i � 8κ ċ2

i , (31)

then we have

�0 ∼ 1 + c2
0ȧ

2
i

c2
i ȧ

2
i

|�i − 1|. (32)

For ci → ∞, �0 = 1 is predicted to a high accuracy. During
the radiation dominated phase with a(t) ∝ t1/2 the radiation
density is given by

ρr = 4σ

c
T 4 = b

c3 T
4, (33)

where σ is the Stefan-Boltzmann constant, b = 8π5k4
B/15h3

and kB and h are Boltzmann’s constant and Planck’s constant,
respectively. Thus, ρr → 0 as c → ∞ and from this we can
deduce that �i = 8πGρr/3H2

i in (29) is sufficiently diluted,
so that for a large enough initial value of ci we have �0 = 1
to a high degree of accuracy.

In the VSL model, traces of an initial inhomogeneity will
be sufficiently smoothed out as the universe expands. How-
ever, in inflation models bubbles of inflation can be produced
that do not inflate sufficiently and these will generate a non-
uniformity problem as the universe expands to the present
day [2].

We have adopted the scenario that in the very early uni-
verse the speed of light c(t) has a large value during a short
time duration when ti < t < tc, and it has the value c = c0

for t > tc when the Friedmann equations and the cosmology
are described by GR.

Let us assume for our scalar fluctuation “seed” field φ that
in (12) V (φ) = 0, yielding

φ̈ + 3H φ̇ = 0. (34)

The solution to this equation is

φ̇ = √
12B

(
a∗
a

)3

, (35)

where B is a constant and a∗ is a reference value for a. For
large φ̇ the kinetic contribution to ρφ ∝ 1

2 (φ̇)2 will dominate

1 By implementing a measure Gibbons and Turok [33] find that the
probability of Ne e-folds of inflation is of order exp(−3Ne).

the matter densities ρM and ρψ and the Friedmann equation
(23) for t > tc and c = c0 becomes

H2 + Kc2
0

a2 = 1

12
φ̇2. (36)

Substituting the solution (35), we get

H2 + Kc2
0

a2 = B2
(
a∗
a

)6

. (37)

Because the field φ dominates in the early universe, we can
neglect the spatial curvature for c = c0 and we obtain the
approximate solution given by

a(t) = a∗(3Bt)1/3, H(t) = 1

3t
. (38)

The equation of state for a massless scalar field gives for the
exponent n in a(t) ∝ tn the value n = 2/3(1 + w), so for
n = 1/3 we get w = 1.

We observe that there is no explicit source for the field φ

in Eq. (12), which implies that as the universe expands the
field φ becomes increasingly diluted to the point where it
has unobservable effects at present. By performing a post-
Newtonian expansion of the gravitational field in the solar
system, we have: g00 ≈ 1 + 2GM�/c2

01 AU. If the contribu-
tion of the field φ is to be significant in the solar system, then
2GM�/c2

01 AU ∝ φ̇2. However, as the universe expands we
have according to (35) that φ̇ ∼ 1/a3, so that the effects of
the scalar field φ will become unobservable in the present
universe.

4 Primordial fluctuations and gravitational waves

Let us consider in our VSL model the mechanism for the
generation of cosmological fluctuations and the growth of
large structures without inflation. In inflationary models,
scalar quantum fluctuations oscillate until their wavelengths
become equal to the Hubble radius RH = c0/H . When
they pass beyond RH the oscillations are damped and the
fluctuation modes are “frozen” as classical fluctuations with
amplitude δφ ∼ H/2π [32]. In an inflationary spacetime the
wavelengths of quantum field fluctuations δφ are stretched
by rapid expansion:

λ f ∝ a(t) ∝ exp(Ht), (39)

where H is approximately constant. Short-wavelength fluc-
tuations are quickly redshifted by the inflationary expansion
until their wavelengths are larger than the size of the horizon
RH .
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In our VSL model, the wavelengths of the quantum field
fluctuations δφ are stretched by the short duration large
increase of c:

λ f = c

ν f
, (40)

where ν f is the frequency. The redshifted wavelengths of the
short-wavelength fluctuations become larger than the horizon
and are frozen in as classical fluctuations. The amplitudes of
quantum modes are calculated at the horizon crossing, when
the wavelength of a mode is equal to a/k = c0/H . For an
inflationary epoch with 60 e-folds of inflation of the cosmic
scale a, the initial matter fluctuations and gravitational waves
with wavelengths λi are stretched to their wavelengths today
by the amount:

λ0 ∼ exp(N )λi , (41)

where N is the number of e-folds of inflation, N ≥ 60.
In the VSL model, the initial fluctuation wavelengths λi are
stretched by an equivalent amount:

λ0 ∼ Qλi , (42)

where Q � 1030.
The fluctuations are of two kinds: scalar matter quantum

fluctuations and tensor gravitational wave fluctuations. Let
us consider first the scalar fluctuations. We will consider a
scenario in which we assume that V (φ) = 0. The fluctuations
δφ(t, x) about a cosmological background will be considered
in the comoving frame with the minimally-coupled Klein-
Gordon field equation:

d2δφk

dt2 + 3H
dδφk

dt
+ c2

0k
2

a2 δφk = 0, (43)

where k = |k| and

δφ(x) = (2π)−2/3
∫

d3k exp[−ik · x]δφk. (44)

By substituting the solution (38) into (43), we get the equa-
tion of motion:

d2δφk

dt2 + 1

t

dδφk

dt
+ c2

0k
2

a2∗(3Bt)2/3 δφk = 0. (45)

This equation has the general Bessel function solution [25]:

δφk(y) = A1 J0(y) + A2Y0(y), (46)

where A1 and A2 are constant coefficients and

y = c0k

2a∗H�

(
a

a∗

)2

. (47)

Here, H� = (3B)2/3/3a∗ and we define H� = c0/�0, where
�0 is the length scale at which the normalized wave function
is in its ground state.

We can obtain from (46) the normalized plane wave solu-
tion:

δφk(tk) =
(

8πGh̄

c2
0(2πak)3ωk

)1/2

cos(ωk tk − k · x + δ), (48)

where

ωk = c0k

ak
. (49)

This solution is approximately equivalent to the one we get
from adopting a flat Minkowski spacetime. We assume that
after the fluctuation modes cross the horizon they are in a
classical state in the Minkowski spacetime.2

The scale at which the fluctuation mode exists is given by
the condition:

ak = k�0. (50)

From this condition, we get from (47):

yk = γ k3, (51)

where yk is the value of y evaluated for a = ak and γ =
�3

0/2a3∗ .
If we assume that we should use (48) as initial data for

the classical solution of (43), then we will match not only
the initial perturbation, but also its time derivative. Keeping
only the dominant contribution as y → 0 and ωk = c0k/ak
gives

δφk≈
(

9πGh̄

2c2
0(2πak)3ωk

)1/2

cos(ωk tk−k·x+δ) ln(yk)J0(yk).

(52)

From (49), (51) and the Planck length, �PL = (Gh̄/c3
0)

1/2 ∼
10−33 cm, we obtain the density perturbation power spec-
trum:

Pδφ = 9

2(2π)3

(
�2

PL

�2
0

)
ln2(yk). (53)

2 Hollands and Wald [34] considered a model which did not have a
VSL or inflationary mechanism to stretch the quantum fluctuation wave-
lengths to super-horizon lengths. They assumed that the classical fluc-
tuations were born super-horizon, were frozen at a length scale �0 and
were described by a plane wave in its ground state. Due to the lack
of a VSL or inflationary dilution of the radiation density, the value of
the radiation density at the epoch when the fluctuations were born was
unphysically large [35]. As demonstrated in Eq. (33), the VSL mecha-
nism as in the case of inflation dilutes the radiation density.
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Recalling that φ̇2 ∼ 12H2, we obtain the curvature power
spectrum:

PR(k) =
(
H2

φ̇2

)
Pδφ = 3

8(2π)3

(
�2

PL

�2
0

)
ln2(yk). (54)

Moreover, we have

PR(k) = 2π2As

(
k

k∗

)ns−1

, (55)

where As is the scalar fluctuation amplitude and ns is the
spectral index. The power spectrum (54) is scale invariant
except for the factor ln2(yk). The non-scale invariant con-
tribution results from matching the initial state and its time
derivative, and that the Bessel function Y0(yk) is logarith-
mically divergent when yk → 0. This will lead to a slight
deviation from a scale invariant spectrum.

The scalar mode spectral index is given by

ns = 1 + d lnPR
d ln k

. (56)

From (51) and (54), we get

ns = 1 + 6

ln(yk)
. (57)

The running of the spectral index is calculated from

αs = dns/d ln k, (58)

which yields

αs = − 1
2 (1 − ns)

2. (59)

We have in the large scale limit the anisotropic amplitude:

δH = 2

5

√
PR ≈ 2

5

(
3

8(2π)3

)1/2(
�PL

�0

)
| ln(yk)|. (60)

By adopting

2

5

(
3

8(2π)3

)1/2

| ln(yk)| ∼ O(1), (61)

we have δH ∼ �PL/�0. Fixing the length scale � to be
�0 ∼ 105�PL ∼ 10−28 cm, which is of the order of the grand
unification scale, we can match the amplitude of the observed
CMB fluctuations, δH ∼ 10−5.

For the value ln(yk) ∼ −150, we obtain the result for the
spectral index:

ns ∼ 0.96. (62)

This is in good agreement with the result obtained by Planck
Mission [1]:

ns = 0.9603 ± 0.0073. (63)

For the running of the spectral index ns , we get

αs ∼ −8 × 10−4, (64)

which is in approximate agreement with the Planck Mission
result:

αs = −0.013 ± 0.0090. (65)

In inflationary models the derivation of the power spec-
trum and the spectral index depend sensitively on the shape
of the inflaton potential V (φinflaton) and its derivatives with
respect to φ. The condition of a slow-roll potential is required
to produce enough e-folds of inflation. This is not the case in
our VSL derivation of the power spectrum and the spectral
index. Our derivation of the scalar fluctuation power spec-
trum does not depend sensitively on the shape of the potential
V (φ). This can reduce the VSL model dependence and asso-
ciated fine-tuning problems.

We now turn to the spectrum of relic gravitational waves.
The conformally flat background metric is

ds2 = a2(η)
(
c2dη2 − (dxi )2

)
. (66)

In our model the wavelength of gravity waves is given by
λg = cg/νg , where νg is the frequency of a gravitational
wave. During the phase when cg � c0 gravitational waves
are generated and their wavelengths are stretched and cross
the horizon. As the universe expands, the amplitude of the
gravitational wave spectrum passes back into the observable
universe and we can observe a B-polarization with a non-zero
spectral index nt and ratio r = tensor/scalar.

The tensor perturbations can be expressed as

ds2 = a2
[
c2dη2 − (δi j + 2hi j )dx

idx j
]
, (67)

where

hi j =
∫

d3k
(2π)3/2

2∑
λ=1

ψk,λei j (k, λ exp(ik · x)), (68)

and where ei j (k, λ) is a polarization tensor satisfying ei j =
e ji , eii = 0, ki ei j = 0 and ei j (k, λ)e∗

i j (k, μ) = δλμ. More-
over, we have

〈ψk,λ, ψ
∗
l,λ〉 = 2π2Pδψδ(k − l), (69)

where Pδψ is the gravitational wave spectrum.
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The gravitational tensor component can be expressed as
the superposition of two scalar polarization wave modes:

htensor+,× = φ+,× = scalar, (70)

where +,× refer to the longitudinal and transverse polariza-
tion modes, respectively. The modes obey the scalar equa-
tion of motion at the horizon and super-horizon scales when
c = c0:

d2φ+,×,k

dt2 + 3H
dφ+,×,k

dt
+ c2

0k
2

a2 φ+,×,k = 0. (71)

The sizes of the second and third terms depend on the mag-
nitude of c0k/aH . If c0k/aH → 0, then the gravitational
wave mode is outside the horizon and we can neglect the
third term and the solution to the wave equation approaches
a constant. If c0k/aH is large, the mode is inside the horizon
and the second term becomes sub-leading. The mode then
undergoes a damped oscillation and decays as 1/a. The ten-
sor modes of interest are outside the horizon with constant
values determined by the primordial distribution, generated
at a sub-horizon scale during the phase when cg has a large
value cg � c0. During the radiation and matter domination
epochs the modes gradually re-enter the horizon and damp
away. Only the tensor modes which entered the horizon just
before the surface of last scattering lead to important effects
in the CMB.

The tensor mode power spectrum is

Pt (k) = Pψ(kp)

(
k

kp

)nt
, (72)

where kp = 0.004 Mpc−1 is the pivotal scale. By solving the
scalar wave equation (71) in the same manner as was done for
the scalar matter fluctuations, we obtain the power spectrum:

Pt (k) = k3Pφ+,×(k) = N

(2π)3

(
�2

PL

�2
0

)
ln2(yk), (73)

where N is a constant. As in the case of the scalar matter fluc-
tuations, the gravitational wave mode fluctuations are scale
invariant up to the slight scale breaking factor ln2(yk).

The tensor mode spectral index is given by

nt = d lnPt

d ln k
. (74)

This yields the result

nt = 6

ln(yk)
. (75)

Choosing, as before for the scalar perturbations, the value
ln(yk) ∼ −150 we obtain

nt = −0.04. (76)

This spectral index (tilt) nt is red which agrees with the stan-
dard inflationary model result for nt . A measurement of the
tensor mode tilt nt is needed to give a definitive test of the
models. A joint analysis of the BICEP2/Keck Array observa-
tional data found strong evidence for foregound dust and no
statistical significant evidence for gravitational wave tensor
modes. An upper limit was obtained for the tensor-to-scalar
mode ratio r < 0.12 [36].

If we now adopt the result r < 0.12 [36], then we
get |r/nt | < 3. The single-field inflationary model deter-
mines a consistency condition by the slow-roll parameter,
ε = −Ḣ/H2, related to the equation of state p = ε − ρ.
For r = 16ε and nt = −2ε the model gives |r/nt | = 8,
which is satisfied irrespective of the form of the single-field
inflationary potential.

5 Non-gaussianities in the VSL cosmology

In this section, we first briefly review the standard process of
calculating nonlinear perturbations by virtue of the so-called
δN formalism. Within the context of the VSL cosmology,
primordial fluctuations are seeded by the scalar field φ and,
therefore, the mechanism of generating primordial curvature
perturbation in the VSL cosmology is analogues to the curva-
ton scenario [46–49]. Then, with the assumption that the end
of the epoch c � c0 when c = c0 is a uniform total density
slice, we generalize the δN formalism [50–54] to be applica-
ble to our case. Afterwards, we analyze the non-gaussianities
of primordial curvature perturbations in VSL cosmology.

5.1 The generalized δN formalism

The δN formalism is available upon two conditions: firstly,
the universe is isotropic and homogenous at extremely large
scales that can accommodate a large number of causally iso-
lated regions; secondly, the perturbation is frozen after the
horizon exit. These two conditions are easily met in inflation-
ary cosmology. However, for alternatives to inflation, if one
can argue based on them, the δN formalism is still available.
The first condition is in fact related to the horizon problem
and, hence can be satisfied in quite a number of alternative
models. For the second condition, it is not satisfied in mat-
ter bounce cosmology and marginally satisfied in ekpyrotic
cosmology. In VSL models, the universe is still expanding
with an effective equation of state parameter w = 1, and as
a result, the dominant perturbation grows as a logarithmic
function. In this case, the second condition is also satisfied
and from this argument the δN formalism is available as well
in VSL.
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On superhorizon scales, if we assume negligible interac-
tion between primordial scalar field φ and other matter fields,
the component curvature perturbation on the uniform density
slice can be identified as

ζi (x) = δN (x) + 1

3

∫ ρi (x)

ρ̄(t)

dρ̃i

ρ̃i + Pi (ρ̃i )
, (77)

through the δN formalism, where the subscript i represents
the component matter field in the universe.

Having the component curvature perturbation in mind,
we can calculate the curvature perturbation on the uniform
density slice. In analogy with the curvaton mechanism, it is
natural to choose this slice at the end moment of c � c0

period when c = c0. On the uniform density slice we have

ρr + ρφ = ρ̄, (78)

where ρr and ρφ represent the radiation and scalar field den-
sities, respectively. For the primordial scalar field, the back-
ground dynamics behaves as a stiff fluid with an effective
equation of state wφ = 1. Then, following Eq. (77), we can
obtain [55]:

ρr = ρ̄r e
4(ζr−ζ ), ρφ = ρ̄φe

6(ζφ−ζ ). (79)

As a consequence, the curvature perturbation ζ can be derived
on the uniform density slice through the relation:

ζ = r̃ζφ, (80)

where

r̃ = 3�φ

2 + �φ

. (81)

Here, we have introduced the transfer efficiency coeffi-
cient r̃ and �φ ≡ ρ̄φ/ρ̄tot is the density parameter for
the primordial scalar field. Note that, in a generic case,
r̃ = 3(1 +wφ)�φ/[4 + (3wφ − 1)�φ], and we have applied
the relation wφ = 1. In the VSL cosmology, we have �φ = 1,
for the scalar field dominates over other matter fields at the
end of the primordial era. This implies that the transfer from
the scalar field fluctuations into primordial curvature pertur-
bations is very efficient and thus, r̃ = 1.

Within the local ansatz of the curvature perturbation, one
can expand its form order by order as follows,

ζ(x) = ζ1(x) + ζ2(x) + ζ3(x) + O(ζ4)

= ζ1(x) + 3

5
fNLζ 2

1 (x) + 9

25
gNLζ 3

1 (x) + O(ζ4), (82)

where ζ1 is the fluctuation of the Gaussian distribution, and
ζn for n > 1 are the non-Gaussian fluctuations. From the
above expansion, we obtain

fNL = 5

3

ζ2

ζ 2
1

, gNL = 25

9

ζ3

ζ 3
1

, (83)

for the local type. To be general, one can relate the nonlin-
earity parameters to the bispectrum and the trispectrum via:

B(k1,k2,k3) = 6

5
fNL[P(k1)P(k2) + 2 perm],

T (k1,k2,k3,k4) = 54

25
gNL[P(k1)P(k2)P(k3) + 3 perm]

+ τNL[P(k1)P(k2)P(|k1 + k3|) + 11 perm], (84)

where these spectra are associated with the correlation func-
tions as follows:

〈ζ(k1)ζ(k2)〉 = (2π)3P(k1)δ
(3)

(
2∑

a=1

ka

)
, (85)

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3B(k1,k2,k3)δ
(3)

(
3∑

a=1

ka

)
,

〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉

= (2π)3T (k1,k2,k3,k4)δ
(3)

(
4∑

a=1

ka

)
.

Moreover, the two point correlation function is related to the
regular power spectrum through the relation:

Pζ (k) = k3

2π2 P(k). (86)

5.2 Primordial perturbations and non-gaussianities
in the VSL cosmology

Following the discussion in the previous subsection, one can
find that the dynamics of primordial curvature perturbation
would be identified by the variation of the generalized VSL
e-folding number by making use of the local ansatz. To cal-
culate such a variation, we need to know the evolution of
the background universe. The scalar field satisfies the Klein-
Gordon equation:

φ̈ + 3H φ̇ = 0. (87)

In this phase, a ∝ t1/3 and, therefore, the Hubble parameter
is expressed as

H(t) = 1

3t
. (88)

Substituting Eq. (88) into the background equation of
motion (87) yields the following solution:

φ(t) = φ f + γ ln

(
t

t f

)
, φ̇(t) = γ

t
, (89)

where φ f denotes the value of the scalar field at the end
moment of the phase t f when c = c0. The coefficient γ is
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an integration constant that can be determined by the back-
ground Friedmann equation.3 Without loss of generality, we
keep γ as a free coefficient and see its effect on the variation
of the effective e-folding number.

In our case, the VSL equivalent of the e-folding number
is given by

N ≡
∫ t f

t
Hdt = 1

3
ln

(
t

t f

)
, (90)

and, correspondingly, the trajectories of the background
dynamics can either be described by the phase space of (φ, φ̇)

or that of (N , γ ). In this regard, the method of calculating
δN is similar to the analysis of [56]. However, the effects of
the background evolution of the VSL cosmology upon cur-
vature perturbations are analogous to those occurring in the
study of the matter bounce cosmology [57,58], where there
is no quasi de Sitter expansion. To be explicit, from now on
we switch to the phase space of (φ, γ ). Consequently, the
VSL equivalent of the e-folding number takes the form:

N = N (φ, λ) = φ − φ f

3γ
. (91)

By expanding the scalar field φ, and determining the inte-
gration constant γ via φ → φ + δφ and γ → γ + δγ , we
can determine the curvature perturbations order by order up
to third order:

ζ1 = N,φδφ,

ζ2 = 1

2
N,φφδφ2 + N,φγ δφγ + 1

2
N,γ γ δγ 2,

ζ3 = 1

6
N,φφφδφ3 + 1

3
N,φφγ δφ2γ

+ 1

3
N,φγ γ δφγ 2 1

6
N,γ γ γ δγ 3. (92)

In the above expression, the subscript ,φ ≡ ∂/∂φ denotes the
derivative with respect to φ. After having obtained the expres-
sion N in (91), we can explicitly determine the coefficients
such asN,φ . The above expression automatically includes the
assumption that the field fluctuations are described before the
primordial era by a highly Gaussian distribution.

From (89) we get

γ = γ (φ, φ̇) = φ − φ f

W
(

φ−φ f

t f φ̇

) , (93)

where W is the Lambert function. As a consequence, we can
find

δγ � γ,φδφ = γ

γ + φ − φ f
δφ, (94)

3 The constant γ in (89) is not to be confused with the γ in (51).

where the contribution of δφ̇ is secondary at superhorizon
scales. Inserting the above expression into Eq. (92), we can
derive

ζ1 = − 1

3(γ + φ − φ f )
δφ , (95)

ζ2 = 1

3(γ + φ − φ f )2 δφ2 , (96)

ζ3 = − (2γ − φ + φ f )

9γ (γ + φ − φ f )3 δφ3. (97)

Recall that the nonlinearity parameters satisfy the relations
in (83). Consequently, these parameters can be identified in
the VSL cosmology as follows:

fNL = 5,

gNL = 25(2γ − φ + φ f )

3γ
. (98)

From Eq. (98), we observe that the nonlinearity parameter at
second order fNL is a positive constant of order unity and thus
is almost scale invariant. However, the nonlinearity parame-
ter at third order gNL is a function of the scalar field during
the primordial phase and therefore implies a strong scale
dependence.

6 Conclusions

We have formulated a VSL model in which the homogeneous
Lorentz group SO(3, 1) is spontaneously broken to the rota-
tion group O(3) by the non-zero vacuum expectation value
〈0|ψμ|0〉. This determines a preferred time t in the cosmolog-
ical model corresponding to the comoving time in an FLRW
spacetime.

In contrast to the inflationary scenario, our VSL model
prediction of the almost scale invariant, Gaussian fluctuation
spectra for matter and relic gravitational waves does not rely
on determining the shape of a potential and its derivatives.
The model can relieve the fine-tuning that is inevitably a
consequence of inflationary models. Once the short duration
phase of c � c0 and cg � cg0 has taken place and the wave-
lengths of the initial primordial quantum fluctuations and
gravitational waves have been stretched through the horizon,
then classical solutions of the wave equations for the quan-
tum and gravitational wave fluctuations can be employed
to generate the power spectra and the spectral indices of
the scalar and tensor fluctuation modes. Our VSL model
can produce the non-zero scalar and tensor spectral indices
ns = 0.96 and nt = −0.04. Combined with the bound on
the r = tensor/scalar ratio, r < 0.12, we obtain |r/nt | < 3.

We have derived in our variable speed of light (VSL)
model the primordial nonlinear fluctuations. We find that the
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parameter fNL = 5 which is compatible with the Planck2015
result: fNL = 2.7±5.8 [45]. The parameter gNL evolves dur-
ing the primordial era and displays a running behavior. These
results will allow the VSL model to be distinguished from
inflationary models and other models such as the bouncing
and string gas cosmology models.

Since the ordered phase in the spontaneous symmetry
breaking of Lorentz invariance is at a much lower entropy
than the restored, disordered symmetry phase and due to the
existence of a domain determined by the direction of the vev,
〈0|ψμ|0〉, a natural explanation is given for the cosmological
arrow of time and the origin of the second law of thermo-
dynamics [11,12,37]. The ordered state of low entropy in
the symmetry broken phase with c � c0, becomes a state
of high entropy in the symmetry restored disordered phase
with c = c0. The spontaneous symmetry breaking of the
gravitational vacuum leads to a manifold with the structure
O(3)×R, in which time appears as an absolute external time
parameter. The vev 〈0|ψμ|0〉 points in a chosen direction of
time to break the symmetry of the vacuum creating an arrow
of time.
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