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Abstract We evaluate differential cross sections for pro-
duction of four jets in multi-Regge kinematics at a hadron
collider. The main focus lies on the azimuthal angle depen-
dences. As in previous studies, the ratios of correlation func-
tions of products of cosines of azimuthal angle differences
among the tagged jets offer us the cleanest quantities to com-
pare with the experimental data. The calculations are based
on the jet production from a single BFKL ladder with a con-
volution of three BFKL Green functions where we always
have two forward/backward jets tagged in the final state. We
also demand the tagging of two further jets in more central
regions of the detectors with a relative separation in rapidity
from each other, plus the inclusive production of an arbitrary
number of mini-jets. We show that dependences on the trans-
verse momenta and rapidity of the two central jets can be a
distinct signal of the onset of BFKL dynamics.

1 Introduction

The study of the asymptotic behavior of scattering amplitudes
in the limit of high center-of-mass energy is an active area
of research for particle phenomenology. The Large Hadron
Collider (LHC) is producing an abundance of data allow-
ing for the study of very exclusive observables with stringent
cuts in the final state. One of the key points for understanding
multi-jet production at high energies is the multi-Regge kine-
matics (MRK). MRK is the kinematics that, by presupposing
a strong ordering in rapidity for the final state jets, allows for
large logarithms in the colliding energy to be present in all
orders of the perturbative expansion. This fact alone calls for
a resummation framework of the large logarithms in energy.

In the high energy (Regge) limit, the common basis for
the perturbative description of a hard process in QCD is the
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Balitsky–Fadin–Kuraev–Lipatov (BFKL) approach, at lead-
ing (LL) [1–12] and next-to-leading (NLL) [13,14] accu-
racy. This approach offers a resummation of those enhanced
terms in MRK in regions of phase space where a fixed-order
calculation might not be enough. This formalism has been
successfully applied to lepton–hadron deep inelastic scatter-
ing at HERA (see, e.g. [15,16]) to describe quite inclusive
processes, which are not that suitable though, if one is inter-
ested in discriminating between BFKL dynamics and other
resummation programs. At the LHC, however, it is possible to
investigate processes with much more exclusive final states
which could, in principle, be only described by the BFKL
framework. This would allow us to precisely determine the
applicability window of the framework.

With this idea in mind there has been a lot of recent activity
in the study of the so-called Mueller–Navelet jets [17], i.e. the
inclusive hadro-production of two forward jets with large and
similar transverse momenta and a big relative separation in
rapidity Y , proportional to

√
s, and with associated inclusive

mini-jet radiation. Interesting observables associated to this
process are the azimuthal angle (θ ) correlations 〈cos (n θ)〉
of the two tagged jets, and it has been shown [18–21] that the
further gluon radiation manifests as a fast decrease of these
functions with Y . However, these observables are strongly
affected by collinear effects [22,23] due to their dependence
on the n = 0 Fourier component in θ of the BFKL kernel,
which is strongly dependent on collinear radiation. In order
to remove this problem, new observables were proposed [22,
23] which are independent from the n = 0 contribution:
the ratios RM

N = 〈cos (M θ)〉/〈cos (N θ)〉. They have been
calculated at NLL [24–28] and show a very good agreement
with the experimental data at the LHC.

Nevertheless, Mueller–Navelet configurations are still too
inclusive to study MRK with precision. A step toward other
observables capable to pin down the MRK dynamics in much
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more detail has been taken in [29], where a new study was
proposed that demands the tagging of a third, central in rapid-
ity, jet within the usual Mueller–Navelet configuration. It
is important to remain within the general Mueller–Navelet
setup because having two forward/backward jets allows the
use of collinear factorization which is in a better theoreti-
cal control than kt -factorization. Since a unique footprint of
BFKL physics is its azimuthal angle dependence, the main
new observables studied in [29] are the ratios

RMN
PQ = 〈cos (M φ1) cos (N φ2)〉

〈cos (P φ1) cos (Q φ2)〉 ,

with φ1 and φ2 being the azimuthal angle difference, respec-
tively, between the first and the second (central) jet and
between this one and the third jet. These observables depend
strongly on the pt and less strongly on the rapidity of the
central jet, and this information can be used to probe the
characteristic properties of the BFKL ladder in a very pre-
cise way.

The present work, original results of which are presented
in the next Section, is a natural continuation of [29], by allow-
ing the production of a second central jet, thus making it pos-
sible to define more differential distributions in the transverse
momenta, azimuthal angles and rapidities of the two central
jets, for fixed values of the four momenta of the forward jets.

2 Inclusive four-jet production

We now present the analysis of events with two for-
ward/backward jets together with two more central jets, all
of them well separated in rapidity from each other, making
use of the BFKL formalism to describe the associated inclu-
sive multi-jet emission. The two tagged forward/backward
jets A and B have transverse momentum �kA,B , azimuthal
angle ϑA,B , and rapidity YA,B , while the pair of tagged more
central jets are characterized, respectively, by �k1,2, ϑ1,2 and
y1,2. The differential cross section on the latter variables can
be written in the form

d6σ 4−jet
( �kA, �kB,YA − YB

)

d2 �k1dy1d2 �k2dy2

= ᾱ2
s

π2k2
1k

2
2

∫
d2 �pA

∫
d2 �pB

∫
d2 �p1

∫
d2 �p2

× δ(2)
(

�pA + �k1 − �p1

)
δ(2)

(
�pB − �k2 − �p2

)

× ϕ
( �kA, �pA,YA − y1

)
ϕ ( �p1, �p2, y1 − y2)

× ϕ
(

�pB, �kB, y2 − YB

)
. (1)

Here we have introduced the rapidity ordering characteris-
tic of MRK: YA > y1 > y2 > YB ; and k2

1, k2
2 lie above the

experimental resolution scale. ϕ are BFKL gluon Green func-
tions normalized to ϕ ( �p, �q, 0) = δ(2) ( �p − �q) /(2π) and
ᾱs = αs Nc/π .

Following the course taken in Ref. [29], our goal is to
define and study the behavior of observables for which the
BFKL approach will show distinct features with respect to
other formalisms and, if possible, are also quite insensitive to
higher-order corrections. We start with the study of a quan-
tity similar to the usual Mueller–Navelet case such that we
integrate over the azimuthal angles of the two central jets
and over the difference in azimuthal angle between the two
forward jets, 
θ = ϑA − ϑB − π , to define

∫ 2π

0
d
θ cos (M
φ)

∫ 2π

0
dϑ1

×
∫ 2π

0
dϑ2

d6σ 4−jet
( �kA, �kB,YA − YB

)

dk1dy1dϑ1dk2dϑ2dy2

= 4ᾱ2
s

k1k2

×
(
eiMπ �̃M ( �kA, �kB,YA,YB , �k1, �k2, y1, y2) + c.c.

)

(2)

where

�̃n( �kA, �kB , YA, YB , �k1, �k2, y1, y2)

=
∫ +∞

0
dpA pA

∫ +∞

0
dpB pB

∫ 2π

0
dφA

∫ 2π

0
dφB

×
(
pA + k1e−iφA

)n (
pB − k2eiφB

)n
√(

p2
A + k2

1 + 2pAk1 cos φA
)n √(

p2
B + k2

2 − 2pBk2 cos φB
)n

× ϕn

(
| �kA|, | �pA|, YA − y1

)
ϕn

(
| �pB |, | �kB |, y2 − YB

)

× ϕn

(√
p2
A + k2

1 + 2pAk1 cos φA,

√
p2
B + k2

2 − 2pBk2 cos φB , y1 − y2

)
(3)

and

ϕn (|p|, |q|,Y ) =
∫ ∞

0
dν cos

(
ν ln

p2

q2

)
eᾱsχ|n|(ν)Y

π2
√
p2q2

, (4)

χn (ν) = 2 ψ(1) − ψ

(
1 + n

2
+ iν

)
− ψ

(
1 + n

2
− iν

)

(5)

(ψ is the logarithmic derivative of Euler’s gamma function).
The associated experimental observable corresponds to the
mean value of the cosine of 
θ = ϑA − ϑB − π in the
recorded events:

123



Eur. Phys. J. C (2016) 76 :165 Page 3 of 9 165

〈cos(M(ϑA − ϑB − π))〉

=
∫ 2π

0 d
θ cos(M
θ)
∫ 2π

0 dϑ1
∫ 2π

0 dϑ2
d6σ 4−jet

dk1dy1dϑ1dk2dϑ2dy2∫ 2π
0 d
θ

∫ 2π
0 dϑ1

∫ 2π
0 dϑ2

d6σ 4−jet

dk1dy1dϑ1dk2dϑ2dy2

.

(6)

In order to improve the perturbative stability of our predic-
tions (see [30] for a related discussion) it is convenient to
remove the contribution from the zero conformal spin [which
corresponds to the index n = 0 in Eq. (4)] by defining the
ratios

RM
N = 〈cos(M(ϑA − ϑB − π))〉

〈cos(N (ϑA − ϑB − π))〉 (7)

where we consider M, N as positive integers.
Our next step now is to propose new observables, different

from those characteristic of the Mueller–Navelet case though
still related to azimuthal angle projections. We thus define

CMNL =
∫ 2π

0
dϑA

∫ 2π

0
dϑB

∫ 2π

0
dϑ1

∫ 2π

0
dϑ2

× cos (M (ϑA − ϑ1 − π)) cos (N (ϑ1 − ϑ2 − π))

× cos (L (ϑ2 − ϑB − π))

×
d6σ 4−jet

( �kA, �kB,YA − YB

)

dk1dy1dϑ1dk2dϑ2dy2
, (8)

where we consider M , N , and L > 0, and integer. After a bit
of algebra we have

CMNL = 2π2ᾱ2
s

k1k2
(−1)M+N+L

× (�̃M,N ,L + �̃M,N ,−L + �̃M,−N ,L

+ �̃M,−N ,−L + �̃−M,N ,L + �̃−M,N ,−L

+ �̃−M,−N ,L + �̃−M,−N ,−L ) (9)

with

�̃m,n,l =
∫ +∞

0
dpA pA

∫ +∞

0
dpB pB

∫ 2π

0
dφA

∫ 2π

0
dφB

× e−imφA eilφB
(
pAeiφA + k1

)n (
pBe−iφB − k2

)n
√(

p2
A + k2

1 + 2pAk1 cos φA
)n √(

p2
B + k2

2 − 2pBk2 cos φB
)n

× ϕm

(
| �kA|, | �pA|, YA − y1

)
ϕl

(
| �pB |, | �kB |, y2 − YB

)

× ϕn

(√
p2
A + k2

1 + 2pAk1 cos φA,

√
p2
B + k2

2 − 2pBk2 cos φB , y1 − y2

)
. (10)

In order to drastically reduce the dependence on collinear
configurations we can remove the zero conformal spin con-
tribution by defining the following ratios:

RMNL
PQR

= 〈cos(M(ϑA − ϑ1 − π)) cos(N (ϑ1 − ϑ2 −π)) cos(L(ϑ2 − ϑB − π))〉
〈cos(P(ϑA − ϑ1 − π)) cos(Q(ϑ1 − ϑ2 − π)) cos(R(ϑ2 − ϑB − π))〉

(11)

with integer M, N , L , P, Q, R > 0.
It is now possible to numerically investigate many differ-

ent momenta configurations. In order to cover two character-
istic cases, namely kA ∼ kB and kA < kB (or equivalently
kA > kB) we choose the following two fixed configurations
for the transverse momenta of the forward jets: (kA, kB) =
(40, 50) and (kA, kB) = (30, 60) GeV. We also fix the rapidi-
ties of the four tagged jets to the values YA = 9, y1 = 6,
Y2 = 3, and YB = 0 whereas the two inner jets can have
transverse momenta in the range 20 < k1,2 < 80 GeV.

In Fig. 1 we present our results for the normalized coeffi-
cients C111, C112, C121 and C122 after they are divided by their
respective maximum. We find that the distributions are quite
similar for the two configurations here chosen ((kA, kB) =
(40, 50), (30, 60)GeV) apart from the coefficientC121, which
is quite more negative for the latter configuration when the
transverse momentum of the first central jet, k1, is low. Fur-
ther coefficients, normalized as above, are calculated in Fig. 2
for the cases C211, C212, C221, and C222. Again they are rather
similar with the exception of C221 at low pt of one of the
centrals jets with largest rapidity.

Since these coefficients change sign on the parameter
space here studied, it is clear that for the associated ratios
RMNL

PQR there will be some lines of singularities. We have

investigated R121
212, R212

211 and R221
222 in Fig. 3.

In this case the configurations (kA, kB) = (40, 50), (30,

60) GeV behave quite differently. This is due to the variation
of the position of the zeros of those coefficients CMN P cho-
sen as denominators in these quantities. It would be very
interesting to test if these singularity lines are present in
any form in the LHC experimental data. A further set of
ratios, R111

112, R111
122, R112

122, and R222
211, with their characteris-

tic singular lines, is presented in Fig. 4. In general, we have
found a very weak dependence on variations of the rapid-
ity of the more central jets y1,2 for all the observables here
presented.

We have used both Fortran and Mathematica for the
numerical computation of the ratios RMNL

PQR . We made exten-
sive use of the integration routine Vegas [31] as imple-
mented in the Cuba library [32,33]. Furthermore, we used
the Quadpack library [34] and a slightly modified version
of the Psi [35] routine.

We conclude here our numerical analysis. We have offered
several interesting observables where BFKL effects could
have sizable effects. More detailed calculations are needed,
including the introduction of parton distribution functions
effects and higher-order terms in jet vertices and Green func-
tions. However, we argue that the bulk of the relevant con-
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Fig. 1 k1,2-dependence of the
normalized C111, C112, C121 and
C122 for the two selected cases
of forward jet transverse
momenta kA and kB
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Fig. 2 k1,2-dependence of the
normalized C211, C212, C221 and
C222 for the two selected cases
of forward jet transverse
momenta kA and kB
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Fig. 3 k1,2-dependence of
R121

212, R212
211 and R221

222 for the
two selected cases of
forward/backward jets
transverse momenta kA and kB
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Fig. 4 k1,2-dependence of
R111

112, R111
122, R112

122 and R222
211 for

the two selected cases of
forward/backward jets
transverse momenta kA and kB
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tributions are already contained in the calculations here dis-
cussed, in particular, for the ratios RMNL

PQR . It will be very
important to compare against the BFKL Monte Carlo code
BFKLex [36–42] as well as to calculate the same quantities
with other, more conventional, approaches [43–45] in order
to gauge if they differ from our results. This includes those
analysis where the four-jet predictions stem from two inde-
pendent gluon ladders [46,47].

3 Summary and outlook

We have presented new observables to study four-jet pro-
duction at hadron colliders in terms of its azimuthal angle
dependences. These correspond to the ratios of correlation
functions of products of cosines of azimuthal angle dif-
ferences among the tagged jets. We used a single BFKL
ladder approach, with inclusive production of two for-
ward/backward and two further, more central, tagged jets.
The dependence on the transverse momenta and rapidities of
the two central jets is a distinct signal of BFKL dynamics.
For future work, more accurate analyses are needed: the intro-
duction of parton distribution functions, higher-order effects,
and realistic experimental cuts. It is also pressing to calculate
our proposed observables using other approaches not based
on the BFKL approach and to test how they can differ from
our predictions. Last but not least, we encourage our experi-
mental colleagues to analyze these observables in recent and
future LHC data.
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