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Abstract Perturbative quantization of Yang–Mills theory
with a gauge algebra given by the classical double of a
semisimple Lie algebra is considered. The classical double
of a real Lie algebra is a nonsemisimple real Lie algebra that
admits a nonpositive definite invariant metric, the indefinite-
ness of the metric suggesting an apparent lack of unitarity.
It is shown that the theory is UV divergent at one loop and
that there are no radiative corrections at higher loops. One-
loop UV divergences are removed through renormalization
of the coupling constant, thus introducing a renormalization
scale. The terms in the classical action that would spoil uni-
tarity are proved to be cohomologically trivial with respect to
the Slavnov–Taylor operator that controls gauge invariance
for the quantum theory. Hence they do not contribute gauge
invariant radiative corrections to the quantum effective action
and the theory is unitary.

1 Introduction

Nonreductive metric Lie algebras are Lie algebras that (i)
cannot be written as a direct product of semisimple and
Abelian Lie algebras but (ii) admit a metric, where by a met-
ric is meant a nondegenerate symmetric bilinear form that is
invariant under the adjoint action. Here we will be concerned
with perturbative quantization of Yang–Mills theory for a
particular class of such algebras, known as classical doubles.
These algebras describe the gauge symmetries in a variety of
problems, including three-dimensional gravity [1,2], asymp-
totically flat solutions to the Einstein equations in three and
four dimensions [3–5], string actions in doubled space [6],
or 1/Ncolor expansions for baryons in QCD [7].

Many WZW models [8–14] based on nonreductive Lie
algebras, though of a different type, have a simpler struc-
ture than the WZW models based on semisimple Lie alge-
bras. This suggests considering Yang–Mills theories in four
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dimensions and investigate if the simplifications introduced
in two dimensions by going nonreductive carry through to
four dimensions. The problem was addressed in Ref. [15]
for a class of nonreductive algebras called double extensions.
One-loop radiative corrections for certain models were com-
puted and it was argued that, if renormalizability is assumed,
there would not be higher-loop corrections. An apparent lack
of unitarity was found.

The classical double, we denote it as g�, of any real Lie
algebra g is a Lie algebra of dimension twice the dimension
of g that admits a metric. This metric determines a Yang–
Mills Lagrangian for the field that results from gauging the
algebra. For g simple, the self-antiself dual instantons of the
g� Yang–Mills theory in four-dimensional Euclidean space
have been studied elsewhere [16]. Every g� instanton has an
embedded g instanton with the same instanton number and
twice the number of collective coordinates. This doubling of
degrees of freedom and the simpler structure of classical dou-
bles as compared to double extensions suggest considering
perturbative quantization of Yang–Mills theory with gauge
algebra g�.

The theory is shown to have UV divergences at one loop
but no radiative corrections at higher loops. As in the clas-
sical case, the physical degrees of freedom of the quantum
theory are doubled with respect to the g theory. In particular,
the first and only coefficient (since there are no radiative cor-
rections beyond one loop) of the beta function is twice that of
the g theory. To disentangle truly gauge invariant one-loop
corrections from those due to gauge fixing, the Slavnov–
Taylor operator for the quantum theory is used. The term in
the classical action that would spoil unitarity is cohomolog-
ically trivial with respect to the Slavnov–Taylor operator, so
in the quantum effective action it can be put to zero through
a field redefinition and poses no problem for unitarity.

The manuscript is organized as follows. Section 2 con-
tains a brief reminder of classical doubles g� and their
Lie groups G�. Classical Yang–Mills theory with gauge
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group G� is formulated in Sect. 3, and the path integral
generating the theory’s Green functions is derived. With the
mind set in avoiding miscounting the theory’s degrees of
freedom, special consideration is given to gauge fixing, and
three derivations for the gauge fixing terms in Landau gauge
are presented. Section 3 also discusses the emergence of the
classical theory as a limit of Yang–Mills theory with gauge
algebra the direct product g×g. Section 4 contains our pertur-
bative analysis, with the calculation of one-loop 1PI radiative
corrections and the proof that there are no higher-loop cor-
rections. The one-loop divergences are removed in Sect. 5
by adding a gauge invariant counterterm consistent with uni-
tarity, so the one-loop contribution to the quantum effective
action is positive definite. We conclude in Sect. 6.

2 Semidirect products of Lie algebras and their groups

We start by recalling the definitions of classical double of
a Lie algebra and its Lie group. Consider an arbitrary Lie
algebra g of dimension n with basis {Ta} and commutation
relations [Ta, Tb] = fabc Tc. As a vector space, g has a dual
vector space g∗. Take on g∗ the canonical dual basis {Za},
given by Za(Tb) = δab. The classical double of g, denoted
by g�, is the Lie algebra of dimension 2n with basis {Ta, Zb}
and commutators

[Ta, Tb] = fab
c Tc , [Ta, Zb] = − fac

b Zc, [Za, Zb] = 0.

(2.1)

It is trivial to check that these commutators satisfy the Jacobi
identity, so indeed they define a Lie bracket. In a more mathe-
matical language [14], the algebra g� is the semidirect prod-
uct g � g∗ obtained by the coadjoint action of g on g∗.

It is clear from the commutators (2.1) that g� is not
semisimple, so its Killing form is degenerate and cannot be
used as a metric. For convenience we recall that a metric on
a Lie algebra is a symmetric, nondegenerate, bilinear form
� such that

�(A , [B,C]) = �( [A, B] ,C) (2.2)

for all A, B, C in the algebra. The relevance of condi-
tion (2.2) is that it implies invariance under the adjoint action
of the algebra’s Lie group,

�(e−C A eC , e−C B eC ) = �(A, B) . (2.3)

It is straightforward to check that, for {Ta, Zb} above, the
bilinear symmetric form

Tb Zb

� = Ta
(

ωab δba
)

.
Za δba 0

(2.4)

is nondegenerate and solves Eq. (2.2), hence is a metric on
g�. Here ωab = ω(Ta, Tb) is an arbitrary invariant, symmet-
ric, bilinear form on g that may be degenerate. It is worth
remarking that g is arbitrary and need not be metric itself.

Denote by G�, G, and N the Lie groups obtained by expo-
nentiation of the algebras g�, g, and g∗. Every element h of
G and every n of N can be uniquely written as h = eT

and n = eZ , for some T in g and some Z in g∗. In turn,
every element g of G� can be uniquely written as g = hn.
The product g3 = g1g2 of two elements g1 = h1n1 and
g2 = h2n2 of G� is given by g3 = h3n3, with h3 = h1h2

and n3 = (h−1
2 n1h2)n2. It is clear that g3 is in G� since

the Campbell–Hausdorff formula and the commutators (2.1)
imply that h3 is in G and n3 is in N. It is very easy to see that
the group G� is the semidirect product of G with the normal
Abelian subgroup N. Since N is isomorphic to Rn , the group
G� is noncompact.

So far no restriction has been placed on g. Assume now
that it is semisimple. In this case, g� can be viewed as a limit
of the direct product of gwith itself [16]. To see this, take ωab

in Eq. (2.4) proportional to the Killing form of g. Since ωab is
nondegenerate, indices in the structure constants fabc can be
raised and lowered using ωab and its inverse ωab, defined by
ωabωbc = δac. This gives completely antisymmetric struc-
ture constants,

fabc = fab
d ωdc , fabc = − fbac = fbca .

Perform in g∗ the change of generators Za → Za = ωabZb.
In the basis {Ta, Zb} the Lie bracket (2.1) reads

[Ta, Tb] = fab
c Tc , [Ta, Zb] = fab

c Zc , [Za, Zb] = 0

(2.5)

and the metric � is recast as

Tb Zb

� = Ta
(

ωab ωab
)

.
Za ωab 0

(2.6)

Consider now the commutators

[Ta, Tb] = fab
c Tc , [Ta, Zb] = fab

c Zc ,

[Za, Zb] = t2 fab
c Tc, (2.7)

where t is an arbitrary real parameter. It is trivial to show that
they satisfy the Jacobi identity for all t . Hence they define a
Lie algebra, call it g t

�
, that reduces to g� in the limit t → 0.

Furthermore, g t
�

admits the invariant metric
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Tb Zb

� t = Ta
(

ωab ωab
)

.
Za ωab t2ωab

(2.8)

The change of basis

X±
a = 1

2

(
Ta ± 1

t
Za

)
, (2.9)

in g t
�

transforms the Lie bracket (2.7) in

[X±
a , X±

b ] = fab
c X±

c , [X+
a , X−

b ] = 0 (2.10)

and gives for the metric �t in Eq. (2.8) the block diagonal
form

X+
b X−

b

� t = X+
a

( 1
2

(
1 + 1

t

)
ωab 0

)
.

X−
a 0 1

2

(
1 − 1

t

)
ωab

(2.11)

It is clear from Eqs. (2.10) and (2.11) that g t
�

is the direct
product g×g, so its Lie group G t

�
is the direct product G×G.

3 The gauge fixed classical action

We assume from now on that g is semisimple and work in
the basis {Ta, Zb} of g�. The commutation relations are as
in Eq. (2.5) and the metric � as in (2.6). The Lie groups of g
and g� will be denoted by G and G�. All quantities taking
values in g� will be written in boldface, whereas their Ta
and Za components will be labeled with subscripts t and z.
For the gauge field Aμ and its field strength Fμν = ∂μAν −
∂ν Aμ + [Aμ, Aν], we have

Aμ = Aa
TμTa + Aa

ZμZa ,

Fμν = Fa
TμνTa + Fa

Zμν Za .

The expressions of Fa
Tμν and Fa

Zμν in terms of Aa
Tμ and Aa

Zμ

follow from the commutators (2.5),

Fa
Tμν = ∂μA

a
tν − ∂ν A

a
Tμ + fbc

a Ab
Tμ Ac

Zν ,

Fa
Zμν = ∂μA

a
Zν − ∂ν A

a
Zμ + fbc

a (
Ab
Tμ Aa

Zν − Ab
Tν Aa

Zν

)
.

The action of the covariant derivative Dμ = ∂μ + [Aμ, ] on
any tensor � = �a

tTa + �a
zZa has components

(
Dμ�

)a
T = ∂μ �a

T + fbc
a Ab

Tμ �c
T ,

(Dμ�)aZ = ∂μ�a
Z + f a

bc Ab
Tμ �c

Z + f a
bc Ab

Zμ �c
T.

On the right hand side of the first equation, one recognizes
the covariant derivative for the algebra g, which we denote
by Dμ,

D
aμ
c := δc

a ∂μ + fbc
a Ab

Tμ . (3.1)

Finite gauge transformations read

Aμ → A′
μ = g−1 ∂μg + g−1Aμ g ,

Fμν → F′
μν = g−1Fμν g ,

(3.2)

with g an arbitrary group element in G�,

g(x) = exp
[
θaT(x)Ta

]
exp

[
θaZ(x)Za

]
.

Infinitesimally these transformations take the form

δAa
Tμ = DμθaT , (3.3)

δAa
Zμ = DμθaZ + f a

bc Ab
ZμθcT (3.4)

for the gauge field, and

δFa
Tμν = f a

bc Fb
Tμνθ

c
T , (3.5)

δFa
Zμν = f a

bc

(
Fb
zμνθ

c
T + Fb

Tμνθ
c
Z

)
(3.6)

for the field strength. The invariance condition (2.3) for
the metric � and the transformation law (3.2) for the field
strength Fμν imply that the Lagrangian density

Lym = 1

4g2 �
(
Fμν, Fμν

)

= 1

4g2 ωab
(
Fa
TμνF

bμν
T + 2 Fa

Tμν Fbμν
Z

)
, (3.7)

where g is a coupling constant, is gauge invariant. We are
interested in perturbatively quantizing Yang–Mills theory
with Lagrangian Lym. To obtain a path integral that gen-
erates the theory’s Green functions, we next fix the gauge.
We do this in three different ways.

Gauge fixing I. Introduce a ghost field c, an antighost field
c̄ and a Lagrange multiplier field b,

c = caT Ta + caZ Za ,

c̄ = c̄aT Ta + c̄aZ Za ,

b = baT Ta + baZ Za .

Use the infinitesimal form of the gauge transformations to
define a BRS operator s by its action on the fields,

sAμ = Dμc , sc = −cc , s c̄ = b , sb = 0. (3.8)

The operator s commutes with ∂μ, Aμ and b, and anticom-
mutes with c and c̄. The BRS transformations for the t and z
components of the fields can be obtained either from the def-
inition of s in Eq. (3.8) and the commutations relations (2.5),
or directly from Eqs. (3.3) and (3.4). They read

s ATμ = Dμc
a
T , scaT = − 1

2
fbc

a cbT c
c
T,

sc̄aT = baT, sbaT = 0 , (3.9)
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and

s Aa
Zμ = Dμc

a
Z + fbc

a Ab
Zμc

c
T ,

scaZ = − fbc
a cbTc

c
Z , sc̄aZ = baZ , sbaZ = 0. (3.10)

Using Eqs. (3.8), or their equivalent Eqs. (3.9) and (3.10), it
is very easy to check that s2 = 0. Note that the BRS trans-
formations (3.9) are the same as for the semisimple gauge
algebra g. In Lorenz gauge, the gauge fixing Lagrangian is
the BRS variation

Lgf = − 1

g2 s �
(
c̄ ,

α

2
b + ∂A

)
,

whereα is the gauge parameter and a contraction of the space-
time indices in ∂μ and Aμ is understood. Expanding in terms
of field components, Lgf becomes

Lgf = 1

g2 ωab

[
− α

2
( baT b

b
T + 2 baT b

b
Z ) − baT (∂Ab

T )

− baT (∂Ab
Z) − baZ (∂Ab

T)

+ c̄aT
(
∂DcbT

) + c̄aT
(
∂DcbZ

)
+ c̄aT ∂ ( fcd

b Ac
Z c

d
T) + c̄aZ

(
∂DcbT

) ]
,

(3.11)

with Dμ the g covariant derivative in Eq. (3.1). The gauge
fixed Lagrangian is the sum

L� = Lym + Lgf . (3.12)

Introduce external sources {J�} = {Jμ, ζ̄ , ζ , B} for the
fields {�} = {Aμ, c, c̄, b}, with

J� = J�
a
T Ta + J�

a
Z Za .

The path integral that generates the theory’s Green functions
is given by

Z
[
J, ζ̄ , ζ , B

] =
∫

[dA] [dc] [dc̄] [db]

exp
[
−

∫
d4x L� + Sext

]
, (3.13)

where [d�] = [d�T] [d�Z] for every field �, and Sext is the
source term

Sext = 1

g2

∫
d4x

[
�(J, A) + �(ζ̄ , c) + �(c̄, ζ )

+�(B, b)
]
. (3.14)

The external sources are coupled to fields through the Lie
algebra metric �, so that

�(J�,�) = ωab
(
J�

a
T �b

T + J�
a
T �b

Z + J�
a
Z �b

T

)
for every field � and its source J�. The Green functions are
obtained by functionally differentiating with respect to the
external sources. For example, 〈Aa

Tμ(x)Ab
Zν(y)〉 is given by

ωac δ

δ J cμ
Z (x)

ωbd
[

δ

δ J d ν
T (y)

− δ

δ J d ν
Z (y)

]
ln Z [Jφ]

∣∣∣∣
Jφ=0

.

Gauge fixing II. Equivalently, the path integral (3.13) can
be derived as follows. In the naive path integral

∫
[dA] exp

[
−

∫
d4x Lym

]
, (3.15)

to avoid integrating over gauge equivalent degrees of free-
dom, replace

∫
[dA] →

∫
[dA] δ

(
∂A − f

)

∂A , (3.16)

where the Dirac delta imposes the Lorenz gauge fixing con-
dition ∂A = f and


∂A = det

[
δ

δθ(y)
∂
(
A + δ A

)
(x)

]
∂A=0

is the corresponding Faddeev–Popov determinant. Proceed
now as usual:

(i) Average over f with Gaussian type weight. That is,
introduce in the measure

∫
[d f ] exp

[
− 1

2αg2

∫
d4x �( f , f )

]
.

(ii) Exponentiate δ
(
∂A− f

)
by means of an auxiliary field

b,

δ
(
∂A − f

) =
∫

[db] exp
[ i

g2

∫
�(b, ∂A − f )

]
.

(iii) Write the determinant


∂A=det δ(4)(x − y)

(
∂ μDc

a
μ(x) 0

fbca ∂ μAb
Zμ(x) ∂ μDc

a
μ(x)

)

as a path integral over Grassmann fields ca1 , ca2 , and
c̄1a, c̄2a ,


∂A =
∫

[dc̄1] [dc̄2] [dc1] [dc2] exp

×
[

− 1

g2

∫
d4x

(
c̄1a ∂Dca1 + c̄2a f acb

×∂μ(Acμ
T cb1) + c̄2a ∂Dca2

)]
.
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Use next (i)–(iii) in Eq. (3.16), integrate over f , make the
change1

caT = ca1 , caZ = ca2

c̄aT = ωab c̄2b , c̄aZ = ωab ( c̄1b − c̄2b) , (3.17)

and replace b with ib. This gives for the path integral the
expression in Eq. (3.13).

Gauge fixing III. The observation at the end of Sect. 2 con-
cerning deformations of g� suggests that classical G� Yang–
Mills theory can be regarded as a limit of G × G Yang–Mills
theory. To see this, consider two copies of a Yang–Mills the-
ory, both with gauge group the semisimple Lie group G. Label
the copies with the subscripts + and −, so that Aa±μ, Fa±μν ,
and g± denote their gauge fields, field strengths and coupling
constants. Fix in both copies a Lorenz gauge by introducing
ghost, antighost, and auxiliary fields ca±, c̄a±, and ba±, and a
BRS operators s given by

s Aa±μ = D±μc
a± , sca± = − 1

2
fbc

a cb± cc± ,

sc̄a± = ba± , sba± = 0 .

The corresponding gauge fixed Lagrangians read

L± = 1

4g2±
ωab F

a±μν F bμν
±

− 1

g2±
ωab s

[
c̄ a±

(α±
2

b b± + ∂Ab±
)]

.

The sum

L+− = L+ + L−

describes two theories not interacting with each other. Write
g± in terms of a coupling constant g and a parameter t as

1

g2±
= 1

2g2

(
1 ± 1

t

)
,

and introduce fields �a
T and �a

Z given by

�a
T = 1

2
(�a+ + �a−) , �a

Z = 1

2t
(�a+ − �a−)

for �a± = Aa±μ, ca±, c̄a±, ba±, Take now α+ = α− = α and
send t → 0. In this limit, the + and − sectors couple and
the Lagrangian L+− becomes the Lagrangian L� of the G�

theory given by Eqs. (3.7), (3.11) and (3.12).

1 A more precise notation for the t and z components of a g�-valued
field is � = �Ta Ta + �Za Za . Not to load the writing, we have used
instead �a

T := �Ta and �a
Z := �Za. Using � and �−1 to lower and

raise indices, one has

�Ta = ωab (�b
T + �b

Z) , �Za = ωab �b
T

�a
T = ωab φZb , �a

Z = ωab (�Tb − �Zb ) .

Hence (c̄1a, c̄2a) in Eq. (3.17) is nothing but (c̄Ta , c̄Za ).

4 Radiative corrections

To explicitly calculate radiative corrections, we take in this
section g to be su(N). The group G is then SU(N) and for
G� we use the notation SU(N)

�
.

In the conventions of Sect. 2, in which a group element
h of SU(N) is written as eT , the elements T of su(N ) in
the defining (fundamental) representation are traceless anti-
hermitean matrices. We normalize the structure constants
fabc of su(N ) by requiring fca d fdb c = Nδab. This gives
for the Killing form kab = Nδab and amounts to taking
tr[T(R)aT(R)b] = C2δab in a representation R, with C2 = N
in the adjoint representation and C2 = −1/2 in the defining
representation. For ωab in Eq. (2.6), we take

ωab = δab , (4.1)

so indices in f c
ab are lowered and raised with δab and δab.

Feynman rules inLorenz gauge. Introduce external sources
Kμ and H for the nonlinear BRS transforms sAμ and sc,

Kμ = Kaμ
T Ta + Kaμ

Z Za ,

Hμ = Ha
T Ta + Ha

Z Za .

The path integral (3.13) becomes

Z
[
J, ζ̄ , ζ , B; K , H

] =
∫

[dA] [dc] [dc̄] [db]

× exp
[
−

∫
d4x L� + Sext + SKH

]
, (4.2)

where SKH is given by

SKH = 1

g2

∫
d4x

[
�(K , sA) − �(H, sc)

]
(4.3)

and �(K , A) and �(H, sc) read

�(K , sA) = ωab
(
Kaμ
T s Ab

Tμ + Kaμ
T s Ab

Zμ + Kaμ
Z s Ab

Tμ

)
,

�(H, sc) = ωab
(
Ha
T scbT + Ha

T scbZ + Ha
Z scbT

)
.

The Feynman rules of the theory follow from Z [· · · ] in (4.2)
and are collected in Figs. 1, 2 and 3, where solid lines denote
gauge propagators and dashed lines ghost propagators. The
expressions of Dab

μν(p) and 
ab(p) in Fig. 1 are

Dab
μν(p) = g2 δab

p2

[
δμν + (α − 1)

pμ pν

p2

]
(4.4)

and


ab(p) = − g2 δab

p2 . (4.5)
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Fig. 1 Free propagators for
SU(N)� Yang–Mills in Lorenz
gauge

Aa
Tμ(−p) Ab

Zν(p)

p
= Dab

μν(p)
c̄a
T(−p) cb

Zν(p)

p
= Δab(p)

Aa
Zμ(−p) Ab

Tν(p)

p
= Dab

μν(p)
c̄a
Z(−p) cb

T(p)

p
= Δab(p)

Aa
Zμ(−p) Ab

Zν(p)

p
= −Dab

μν(p)
c̄a
Z(−p) cb

Z(p)

p
= −Δab(p)

Fig. 2 Vertices for SU(N)�
Yang–Mills theory in Lorenz
gauge

Aa
Tμ(p)

Ab
Tν(q) Ac

Tρ(k)

,

Aa
Tμ(p)

Ab
Tν(q) Ac

Zρ(k)

=
1
g2 V abc

μνρ(p, q, k)

Aa
Tμ

Ab
Tν

Ad
Tσ

Ac
Tρ

,

Aa
Tμ

Ab
Tν

Ad
Zσ

Ac
Tρ

=
1
g2 W abcd

μνρσ

Aa
Tμ

cb
T c̄c

T(p)

p ,

Aa
Tμ

cb
Z c̄c

T(p)

p ,

Aa
Zμ

cb
T c̄c

T(p)

p ,

Aa
Tμ

cb
T c̄c

Z(p)

p = − i

g2 fabc pμ

In turn, the gauge vertices Vabc
μνρ(p, q, k) and Wabcd

μνρσ in Fig. 2
read

V abc
μνρ(p, q, k) = i f abc

[
(q − k)μ δνρ + (k − p)ν δρμ

+(p − q)ρ δμν

]
and

Wabcd
μνρσ = −[

f abe f cde
(
δμρδνσ − δμσ δνρ

)
+ f ace f dbe

(
δμσ δρν − δμνδρσ

)
+ f ade f bce

(
δμνδσρ − δμρδσν

) ]
.

We remark that the free propagators do not have tt compo-
nents, and that their tz component is equal to their zt compo-
nent. This will play an important role in the analysis below.

Consider for comparison conventional SU(N) Yang–Mills
theory in Lorenz gauge. Its gauge fixed Lagrangian is recov-
ered from L� by setting all the z components equal to

zero. To avoid confusion, we reserve the subscripts t and
z for the field components of the SU(N)

�
theory, and use

Aa
μ, ba, c̄a, ca , and Ka

μ, Ha without subscripts for the fields
and the nonlinear BRS sources of the SU(N) theory. The
gauge field and ghost free propagators of the SU(N) theory
are given by Dab

μν(p) and 
ab(p) in Eqs. (4.4) and (4.5),
which are equal to the tz and zt free propagators of
the SU(N)

�
theory. The Feynman rules for the vertices

A3, A4, c̄Ac, K Ac, and Hcc of the SU(N) theory are as
in Figs. 2 and 3.

We now proceed to compute radiative corrections. To
regulate whatever UV divergences may occur, we will use
dimensional regularization with D = 4 − 2ε, so from now
on all diagrams and Green functions should be understood as
dimensionally regularized. Since dimensional regularization
manifestly preserves BRS invariance, the dimensionally reg-
ularized Green functions will solve the functional identities
associated to BRS invariance.
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Fig. 3 External vertices for
SU(N)� Yang–Mills theory in
Lorenz gauge

Ka
Tμ

Ac
Tνcb

T

,
Ka

Tμ

Ac
Tνcb

Z

,
Ka

Tμ

Ac
Zνcb

T

,
Ka

Zμ

Ac
Tνcb

T

= − 1
g2 fabc δμν

Ha
T

cb
T

cc
T

,
Ha

Z

cb
T

cc
T

,
Ha

T

cb
T

cc
Z

=
1
g2 fabc

One-loop radiative corrections. The only 1PI one-loop
diagrams that occur in perturbation theory have all their exter-
nal legs of type t. To prove this, note first that the vertices
of the theory, see Figs. 2 and 3, have either no or one leg
of type z. Assume now that there is a 1PI one-loop diagram
with an external z leg, and call U1 to the vertex to which the
leg is attached. All the other legs of U1 will be of type t. To
close a loop, two of these t legs must be internal. Since there
are no tt propagators, each internal t leg must propagate
into type z. Each one of the resulting z legs will in turn be
attached to a different vertex. Call these vertices U2 and U3.
From U2 and U3 only t legs will come out. One may go
on and introduce new vertices, but the loop will never close
since there are no tt propagators to join two t legs. Hence
1PI one-loop diagrams have all their external legs of type t.
The only nonzero 1PI Green functions at one loop are then
〈�1t(p1) . . . �nt(pn)〉SU(N )� , where �it stands for any of
the fields Aa

Tμ, c̄aT, caT or the sources Ka
Tμ, Hc

T.
Consider for example the two-point 1PI function 〈Aa

Tμ

Ab
Tν〉SU(N)

�
. At one loop, it receives contributions from the

diagrams in Fig. 4, where the number under each diagram
is the diagram’s symmetry factor. We have drawn in Fig. 5
the one-loop diagrams that contribute to the 1PI function
〈Aa

μA
b
ν〉SU(N) of SU(N) Yang–Mills theory. Since the propa-

gators and vertices in both sets of diagrams are the same, we
conclude that

〈Aa
TμA

b
Tν 〉SU(N)

�
= 2 〈Aa

μA
b
ν 〉SU(N) . (4.6)

Writing only the divergent part as ε → 0, this gives

〈Aa
Tμ(−p) Ab

Tν(p)〉SU(N )�=
(13

3
−α

)
Cε �ab

μν(p) + O(ε0),

where Cε is the constant

Cε = − C2

16π2ε
. (4.7)

Equation (4.6) can be extended to all 1PI functions as
follows. Consider a 1PI one-loop diagram in the SU(N)

�

theory. Since all its external legs are of type t and there are no
tt propagators, all its vertices have one internal leg of type z.
Label clockwise the vertices in the loop asU1, . . . ,Un . The z
leg coming out of vertexU1 must be connected to an internal t

AT AT

AT AZ

1
2

AT AT

AT AZ

AZ AT
1
2

AT AT

c̄T cZ

cZ c̄T
−1

AT AT

AZ AT

1
2

(a)

AT AT

AT AZ

AZ AT
1
2

(b)

AT AT

c̄Z cT

cT c̄Z
−1

(c)

Fig. 4 One-loop corrections to 〈ATAT〉SU(N)�

A A

A A

1
2

(a)

A A

A A

A A
1
2

(b)

A A

c̄ c

c c̄

−1

(c)

Fig. 5 One-loop corrections to 〈AA〉SU(N )

leg of a neighboring vertex, say U2, through a zt propagator.
In turn U2 is connected to U3 through another zt propagator,
and so on, until the loop is closed, with Un connecting to
U1 via a zt propagator. For every such diagram, there is a
diagram with the same vertices and the only difference that
now the internal z leg fromU1 connects with an internal t leg
inUn through a zt line, rather than withU2. This implies that
Un connects with Un−1 through a zt line, and so on until the
loop is closed with a zt propagator from U2 with U1. These
two diagrams give the same contribution to the 1PI function,
which in turn is equal to the contribution of the equivalent
1PI diagram in the SU(N) theory. Hence we have

〈�1,t(p1) . . . �n,t(pn)〉SU(N)� = 2〈�1(p1) . . . �n(pn)〉SU(N) .

This reduces the calculation of the one-loop 1PI Green func-
tions in the SU(N)

�
theory to that in the SU(N) theory. The

left column In Table 1 collects all the one-loop 1PI Green
functions in SU(N)

�
Yang–Mills theory that are UV diver-

gent, whereas the column in the center lists their UV diver-
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Table 1 UV divergent 1PI
Green functions in SU(N)

�

theory and their counterterms

1PI UV divergent Green function Contribution from �̄ε
1 Contribution from �̄ct

1

〈Aa
Tμ(−p)Ab

Tν(p)〉
( 13

3 − α
)
Cε �ab

μν(p) − (
c1 + 2c2

)
�ab

μν(p)

〈Aa
Tμ(p)Ab

Tν(q)Ac
Tρ(k)〉 ( 17

6 − 3
2 α

)
Cε V abc

μνρ (p, q, k) − (c1 + 3c2) V abc
μνρ (p, q, k)

〈Aa
Tμ(p)Ab

Tν(q)Ac
Tρ(k)Ad

Tσ (r)〉 ( 4
3 − 2α

)
Cε Wabcd

μνρσ − (
c1 + 4c2

)
Wabcd

μνρσ

〈c̄aT(−p)cbT(p)〉 1
2 (3 − α)Cεδ

ab p2 (c2 − c3) δab p2

〈c̄aT(p)Ab
Tμ(q)ccT(k)〉 iαCε f abc pμ ic3 f abc pμ

〈Ka
Tμ(−p) cbT(p)〉 1

2 (3 − α)Cε δab ipμ (c2 − c3) δab ipμ

〈Ka
Tμ(p) Ab

Tν(q) ccT(k)〉 −αCε f abcδμν −c3 f abcδμν

〈Ha
T (p) cbT(q) ccT(k)〉 − αCε f abc − c3 f abc

gent contributions as computed in dimensional regulariza-
tion. The column on the right will be discussed in Sect. 5.

Vanishing of 1PI radiative corrections beyond one loop.
Any 1PI n-loop diagram can be obtained by joining two exter-
nal legs in a 1PI (n–1)-loop diagram. In our case, since 1PI
one-loop diagrams have all their external legs of type t and
there are no tt propagators, it is impossible to have two- and
higher-loop 1PI diagrams.

We end this section by noting that, again because 1PI
Green functions have all their external legs of type t and
to these it is only possible to attach free tz propagators, the
only on-shell Green functions that receive radiative correc-
tions are those having all their external legs of type z.

5 The BRS identity, renormalization, and unitarity

The effective action that generates the 1PI Green functions
of G� Yang–Mills theory is obtained by writing

Z [J, ζ̄ , ζ , B; K , H] = exp
(− W [J, ζ̄ , ζ , B; K , H] )

and performing a Legendre transformation on W [J, ζ̄ , ζ ,

B; K , H] as follows. Introduce Legendre fields { Ã, c̃, ˜̄c, b̃}
for the sources {J, ζ̄ , ζ , B} through the functional deriva-
tives

Ãa
Tμ(x) = −ωab δW

δ JbμZ (x)
,

Ãa
Zμ(x) = ωab

[
δW

δ JbμZ (x)
− δW

δ JbμT (x)

]
,

b̃aT(x) = −ωab δW

δBb
Z(x)

,

b̃aZ(x) = ωab
[

δW

δBb
Z(x)

− δW

δBb
T(x)

]
,

c̃aT(x) = −ωab δW

δζ̄ b
Z(x)

,

c̃aZ(x) = ωab
[

δW

δζ̄ b
Z(x)

− δW

δζ̄ b
T(x)

]
,

˜̄caT(x) = ωab δW

δζ b
Z(x)

,

− ˜̄caZ(x) = ωab
[

δW

δζ b
Z(x)

− δW

δζ b
T(x)

]
.

Solve these equations for {J, ζ̄ , ζ , B} in terms of fields
{ Ã, c̃, ˜̄c, b̃}, and use the solutions to construct the effective
action functional

�[ Ã, c̃, ˜̄c, B̃; K , H] = W [J, ζ̄ , ζ , B; K , H]
+

∫
d4x ωab

(
JaT Ã

b
T + JaT Ã

b
Z + JaZ Ã

b
T + ζ̄ aT c̃bT + ζ̄ aT c̃bZ

+ ζ̄ aZ c̃bT + Ba
T b̃

b
T + Ba

T b̃
b
Z + Ba

Z b̃
b
T

+ ˜̄caT ζ b
T + ˜̄caT ζ b

Z + ˜̄caZ ζ b
T

)
.

The very same methods as for Yang–Mills theory with
semisimple gauge group show that � has the form

� = �̄ −
∫

d4x ωab

×
[ α

2

(
b̃aT b̃

b
T + 2 b̃aT b̃

b
Z

) + b̃aT ∂ Ãb
T + b̃aT ∂ Ãb

Z + b̃aZ ∂ Ãb
T

]
,

(5.1)

where the functional

�̄ = �̄[ Ãμ, c̃, Gμ, H]
depends on Kμ and ˜̄c through the combination

Gμ = Kμ + ∂μ
˜̄c

and satisfies the BRS identity

∫
d4x ωab

[
δ�̄

δ Ãa
T

δ�̄

δGb
Z

+ δ�̄

δ Ãa
Z

(
δ�̄

δGb
T

− δ�̄

δGb
Z

)

− δ�̄

δc̃aT

δ�̄

δHb
Z

− δ�̄

δc̃aZ

(
δ�̄

δHb
T

− δ�̄

δHb
Z

)]
= 0.

(5.2)
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The analysis in Sect. 4 implies that �̄ is the sum

�̄ = �̄0 + h̄ �̄1 (5.3)

of a tree-level contribution

�̄0 = 1

g2

∫
d4x ωab

[
1

4
F̃a
T F̃

b
T + 1

2
F̃a
T F̃

b
Z − Ga

T D̃c̃bT

− Ga
T

(
D̃c̃bZ + fcd

b Ãc
Z c̃

c
T

)
− Ga

Z D̃c̃bT − 1

2
fcd

b Ha
T c̃cT c̃

d
T

− fcd
b Ha

T c̃cT c̃
d
Z − 1

2
fcd

b Ha
Z c̃cT c̃

d
T

]
(5.4)

and a one-loop contribution �̄1. The term �̄0 satisfies the BRS
identity (5.2). Substituting Eq. (5.3) in Eq. (5.2), it follows
that �̄1 must satisfy


�̄1 = 0,

where 
 is the Slavnov–Taylor operator


 =
∫

d4x ωab
[

δ�̄0

δ Ãa
T

δ

δGb
Z

+ δ�̄0

δGa
Z

δ

δ Ãb
T

+ δ�̄0

δ Ãa
Z

(
δ

δGb
T

− δ

δGb
Z

)
+

(
δ�̄0

δGa
T

− δ�̄0

δGa
Z

)
δ

δ Ãb
Z

− δ�̄0

δc̃aT

δ

δ H̃b
Z

− δ�̄0

δ H̃a
Z

δ

δc̃bT

− δ�̄0

δc̃aZ

(
δ

δHb
T

− δ

δHb
Z

)
−

(
δ�̄0

δHa
T

− δ�̄0

δHa
Z

)
δ

δc̃bZ

]
.

(5.5)

The very same arguments as for the semisimple case show
that 
 is nilpotent, 
2 = 0. The explicit expressions for
the action of 
 on ( Ãa

Tμ, Ãa
Zμ), (c̃aT, c̃aZ) (Ga

Tμ,Ga
Zμ) and

(Ha
T , Ha

z ) are given in the appendix. The operator 
 is the
quantum analog of the BRS operator and controls gauge
invariance for the quantum theory. The only gauge invariant
radiative corrections are those which are cohomologically
nontrivial with respect to 
. That is, those that cannot be
written as 
X for any X . Cohomologically trivial correc-
tions are of the form 
X , originate in gauge fixing and do
not contribute to on-shell amplitudes.

We can add to �̄1 any functional �̄ct
1 such that 
�̄ct

1 = 0.
If �̄ct

1 subtracts the UV divergences in �̄1, the sum �̄ ′
1 =

�̄1 + �̄ct
1 will be finite and still satisfy 
�̄ ′

1 = 0, thus can be
taken as the one-loop contribution to the quantum effective
action. Since the UV divergences in the theory are local, we
are interested in the solution of equation 
�̄ct

1 = 0 over the
space of local integrated functionals of mass dimension four

and ghost number zero.2 The most general solution over this
space has the form

�̄ct
1 = c1STT + 
X , (5.6)

where c1 is an arbitrary real coefficient, STT is the G Yang–
Mills classical action

STT = 1

4

∫
d4x ωab F̃

a
T F̃b

T (5.7)

and X is any local integrated functional of mass dimension
three and ghost number −1. Note that the cohomologically
nontrivial part of the solution (5.6) does not have a term

Stz = 1

2

∫
d4x ωab F̃

a
T F̃b

Z . (5.8)

This is so since Stz can be written as 
Y, with Y given by

Y =
∫

d4x ωab
(
Ga

T Ã
b
Z + Ha

T c̃
b
Z

)
. (5.9)

We observe here an important difference between the coho-
mologies of the BRS operator s and the Slavnov–Taylor oper-
ator 
 over the space of local integrated functionals of mass
dimension four and ghost number zero. While Stt and Stz
are both nontrivial with respect to s, only Stt is nontrivial
with respect to 
.

Recall now that the classical action is the sum of the terms
Stz and Stz. The first one of them is positive definite and the
second one is not. This would seem to point to a loss of unitar-
ity. This, however, is only apparent since, being cohomologi-
cally trivial with respect to 
, Stz does not carry gauge invari-
ant radiative corrections in the quantum effective action.

In Sect. 4 we have used dimensional regularization to com-
pute the one-loop contribution, call it �̄

dreg
1 , to the quantum

effective action for SU(N)
�

. It consists of a divergent part
�̄ε

1 as ε → 0, formed by the terms listed in the left and center
columns in Table 1, and a finite part �̄fin

1 ,

�̄
dreg
1 = �̄ε

1 + �̄fin
1 .

Since dimensional regularization is BRS invariant, both �̄ε
1

and �̄fin
1 satisfy 
�̄ε

1 = 
�̄fin
1 = 0. To remove the UV

divergences, we take �̄ct
1 as in Eq. (5.6), with X given by

X =
∫

d4x ωab
(
c2 G

a
T Ãb

T + c3 Ha
T c̃bT

)
(5.10)

and c2 and c3 real coefficients. The counterterm �̄ct
1 then pro-

duces the contributions listed in the right column of Table 1.
We choose c1, c2 and c3 so that �̄ε

1 + �̄ct
1 = 0. This corre-

sponds to a minimal subtraction scheme and defines a finite
renormalized effective action

�̄ = lim
ε→0

(
�̄0 + �̄fin

1

)
.

2 Both the BRS operator and the Slavnov–Taylor operator have mass
dimension one and ghost number 1.
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Using the results in Table 1, we have

c1 = 22

3
Cε c2 = − α + 3

2
Cε , c3 = −α Cε , (5.11)

with Cε as in Eq. (4.7). These values for c1, c2 and c2 are
twice those for SU(N) Yang–Mills theory. This implies in
particular that the first coefficient of the beta function for
SU(N)

�
is −22/3, rather than the usual −11/3.

Multiplicative renormalization. The subtraction performed
by the counterterm �̄ct

1 in Eqs. (5.6) and (5.10) is equivalent
to multiplicative renormalization. To see this, recall that in
multiplicative renormalization, the fields and the coupling
constant in the tree-level action �̄0 in Eq. (5.4) are regarded
as bare fields {A0μ, c0, G0μ, H0} and bare coupling constant
g0. Renormalized quantities are then introduced through the
equations

A a
0Tμ = ZT

A Ãa
Tμ , A a

0Zμ = ZZ
A Ãa

Zμ ,

c a
0T = ZT

c c̃aT , c a
0Z = ZZ

c c̃aZ ,

G a
0T = ZT

G Ga
T , G a

0Z = ZZ
G Ga

Zμ ,

Ha
0T = ZT

G Ha
T , H a

0Z = ZZ
G Ha

Z

and

g0 = Zgg .

Writing every renormalization constant as Z = 1+ δZ , with
δZ first-order in perturbation theory, the action �̄0[�0, g0]
is recast as

�̄0[ Ã0, c̃0, G0, H0, g0] = �̄0[ Ã, c̃, G, H, g]
+ δ�̄0[ Ã, c̃, G, H, g] ,

where the counterterm δ�̄0[· · · ] collects all contributions of
order one,

δ�̄0[ Ã, c̃, G, H, g] = 1

g2

∫
d4x ωab

×
[ 1

2
(2 δZT

A − 2 δZg) Ã
aμ
T

(
δμν∂

2 − ∂μ∂ν

)
Ãbν
T + · · ·

]
.

The requirement that δ�̄0[�̃, g] must cancel the UV diver-
gences fixes

δZg = − g2c1

2
, δZT

c + δZT
G = −g2(c1 + c2 + c3) ,

δZT
A = g2c2 , δZT

H + 2 δZT
c = g2(c3 − c1) ,

where c1, c2, and c3 are the coefficients in the right column
in Table 1. Since there are no one-loop 1PI diagrams with
z external legs, there are no conditions for δZZ

� . The ques-
tion then arises as to what is the meaning of the z terms in
δ�̄0[�̃, g]. Our analysis above indicates that they should be
cohomologically trivial with respect to the Slavnov–Taylor
operator. This is indeed the case. A long but straightforward

calculation shows that, for

δZZ
A=δZT

A , δZZ
c = δZT

c , δZZ
G = δZT

G , δZZ
H = δZT

H ,

the functional δ�̄0[ Ã, c̃, G, H, g] can be written as

δ�̄0[ Ã, c̃, G, H, g] = c1STT + 
(X +U ) , (5.12)

where X is given by Eq. (5.10) and U has the form

U =
∫

d4x ωab

[
(c1 + c2)G

a
T Ã

b
Z − (c1 + 2c2 + c3) H

a
T c̃

b
Z

+c2 G
a
Z Ã

b
T − c3 Ha

Z c̃
b
T

]
.

The difference between the counterterms δ�̄0 above and �̄ct
1

in Eqs. (5.6) and (5.10) is 
U , which is cohomologically
trivial.

All in all, the only gauge invariant radiative corrections
are those in c1, which account for a renormalization of the
coupling constant. This introduces a renormalization scale
in the quantum effective action and the quantum theory is
asymptotically free.

6 Discussion

The pattern observed for the gauge invariant degrees of free-
dom in the quantum theory resembles very much that for the
self-antiself dual instantons of the classical theory [16]. In
the classical case, the number of collective coordinates of
the G� instantons is twice that of the embedded G instan-
tons, yet ωabFa

TμνF
bμν
Z does not contribute to the instanton

number. Now the gauge invariant radiative corrections are
doubled and ωabFa

TμνF
bμν
Z is cohomologically trivial with

respect to the Slavnov–Taylor operator.
Our discussion may have some implications for Yang–

Mills theories with more general nonreductive real metric Lie
algebras. There is a structure theorem [17] that states that all
real metric Lie algebras are direct products of Abelian alge-
bras, simple real Lie algebras, and double extensions d(h, g)
of a real metric Lie algebra h by an algebra g.3 The double
extension d(h, g) is obtained [14,17] by forming the classical
double g� and then by acting with g on h via antisymmetric
derivations. Incidentally we mention that the classical dou-
ble g� can be viewed as the double extension of the trivial
algebra by g.

According to the theorem, since h must be metric, three
possibilities must be considered for h in forming double
extensions d(h, g). The first one is that h is a simple real
Lie algebra. In this case [14], the algebra of antisymmetric
derivations of h is h itself and the double extension d(h, h)

is isomorphic to the direct product h × h�. The resulting

3 The theorem goes further and specifies the nature of g in the double
extension.
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Yang–Mills theory then separates into two Yang–Mills the-
ories, not interacting with each other, one with gauge group
H and one with group H�. The second possibility is that
h is Abelian, of dimension m. Being Abelian, any nonde-
generate, symmetric bilinear form on h is a metric, and it can
always be brought to a diagonal form with all the entries in the
diagonal equal to +1 and −1. If the number of occurrences
of +1 is p, and the number of occurrences of −1 is q, the
algebra of antisymmetric derivations of h is any subalgebra
of so(p, q) [14]. Many of the nonsemisimple WZW models
considered in the literature [8–13] and their four-dimensional
Yang–Mills analogs [15] fall into this class. In this instance
unitarity remains an open problem. We think that a thor-
ough analysis of the corresponding Slavnov–Taylor operator
should shed some light on the problem. The third possibility
for h is that it is a double extension, which takes us back to
the starting point.
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Appendix

The action of the Slavnov–Taylor operator (5.5) on the fields
( Ãa

Tμ, Ãa
Zμ) and (c̃aT, c̃aZ) is given by


 Ãa
Tμ = − D̃μc̃

a
T ,


 Ãa
Zμ = − (

D̃μc̃
a
T + fbc

a Ãb
Zμ c̃cT

)
,


c̃aT = 1

2
fbc

a c̃bT c̃
c
T ,


c̃aZ = fbc
a c̃bT c̃

c
Z ,

Modulo an irrelevant overall sign, these expressions gener-
alize the classical BRS operator s in Eqs. (3.9) and (3.10).
The action on (Ga

Tμ,Ga
Zμ) and (Ha

T , Ha
z ) is in turn


Ga
Tμ = − (

D̃ρ F̃a
Tρμ + f abc Gb

Tμ c̃cT
)
,


Ga
Zμ = − (

D̃ρ F̃a
Zρμ + fbc

a Ãbρ
Z F̃c

Tρμ

)
+ fbc

a (
Gb

Zμ c̃cT + Gb
Tμ c̃cZ

)
,


Ha
T = D̃μG

aμ
T − fbc

a Hb
T c̃cT ,


Ha
Z = D̃μG

aμ
Z − fbc

a Gbμ
Tμ Ã

cμ
Z − fbc

a (
Hb
Z c̃cT+Hb

T c̃cZ
)
.

With this, it is matter of algebra to check that (i) the action of

 on �̄ct

1 in Eqs. (5.6) and (5.10) produces the terms in the
right column of Table 1, (ii) that STZ in Eq. (5.8) equals 
Y ,
with Y given by Eq. (5.9), and (iii) that δ�̄0[ Ã, c̃, G, H, g]
can be written as in Eq. (5.12).
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