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Abstract We study scalar perturbations of four-
dimensional topological nonlinear charged Lifshitz black
holes with spherical and plane transverse sections, and we
find numerically the quasinormal modes for scalar fields.
Then we study the stability of these black holes under massive
and massless scalar field perturbations. We focus our study
on the dependence of the dynamical exponent, the nonlinear
exponent, the angular momentum, and the mass of the scalar
field in the modes. It is found that the modes are overdamped,
depending strongly on the dynamical exponent and the angu-
lar momentum of the scalar field for a spherical transverse
section. In contrast, for plane transverse sections the modes
are always overdamped.
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1 Introduction

The gauge/gravity duality contains interesting gravity theo-
ries. One of these is known as Lifshitz gravity, which can
be dual to scale-invariant field theories, not being confor-
mally invariant. In this context, interesting properties are
found when the gauge/gravity duality is generalized to non-
relativistic situations [1–13], with the Lifshitz holographic
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superconductor being one of the best studied systems. Such
theories exhibit the anisotropic scale invariance t → χ zt ,
x → χx , with z �= 1, where z is the relative scale dimension
of time and space. Systems with such behavior appear, for
instance, in the description of strongly correlated electrons.

In [12] the Lifshitz spacetime at any dimension D was
obtained coupling the Proca field to Einstein gravity with
a negative cosmological constant; however, it was impossi-
ble to construct black holes. On the other hand, electrically
charged black holes with massless Maxwell fields are very
known at any dimension but these gauge fields are incompat-
ible with the Lifshitz asymptotic. The solution to the problem
of constructing charged asymptotically Lifshitz black holes
was solved adding the Maxwell action to the described Proca
system [14]. In this work, only configurations for the dynam-
ical exponent z = 2(D − 2) were found; however, in [15]
these configurations were extended to a much more general
charged black holes for any value of the dynamical expo-
nent z > 1 by considering nonlinear electrodynamics. Very
recently, in [16], analytic topological Lifshitz black holes
with constant curvature horizon in the presence of a power-
law Maxwell field in four and higher dimensions were con-
structed.

In this work, we consider a matter distribution outside the
event horizon of the topological nonlinear charged Lifshitz
black hole in 4 dimensions with a spherical and plane trans-
verse section and dynamical exponent z [16]. The matter is
parameterized by scalar fields minimally coupled to grav-
ity. Then we obtain numerically the quasinormal frequencies
(QNFs) for scalar fields by using the improved AIM [17],
which is an improved version of the method proposed in
[18,19] and which has been applied successfully in the con-
text of quasinormal modes (QNMs) for different black hole
geometries (see for instance [17,20–27]). Then we study their
stability under scalar perturbations. We focus our study on the
dependence of the dynamical exponent, the nonlinear expo-
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nent, the angular momentum, and the mass of the scalar field
in obtaining overdamped and non-overdamped quasinormal
frequencies, mainly, motivated by a recent work, where the
authors showed that for d > z + 1, at zero momenta, the
modes are non-overdamped, whereas for d ≤ z + 1 the sys-
tem is always overdamped [24]. This is contrary to other
Lifshitz black holes where the QNFs show the absence of a
real part [28–34].

On the gravity side of the gauge/gravity duality the QNFs
[35–40] provide information as regards the stability of black
holes under matter fields that evolve perturbatively in their
exterior region; these fields are considered mere test fields,
with no backreaction over the spacetime itself. Recently, a
study of the stability of a non-Schwarzschild black hole in
quadratic gravity was performed in [41]. Also, QNMs have
been shown to be related to the area and entropy spectrum
of the black hole horizon. Besides, the QNFs determine how
fast a thermal state in the boundary theory will reach thermal
equilibrium [42] according to the gauge/gravity duality [43],
where the relaxation time of a thermal state is proportional
to the inverse of the smallest imaginary part of the QNFs of
the dual gravity background, which was established due to
the QNFs of the black hole being related to the poles of the
retarded correlation function of the corresponding perturba-
tions of the dual conformal field theory [44].

The paper is organized as follows. In Sect. 2 we give a
brief review of the topological nonlinear charged Lifshitz
black holes that we will consider as background. In Sect. 3
we calculate the QNFs of scalar perturbations numerically
by using the improved AIM. Finally, our conclusions are in
Sect. 4.

2 Topological nonlinear charged Lifshitz black holes

The topological nonlinear charged Lifshitz black holes that
we consider are solutions to the Einstein–dilaton gravity in
the presence of a power law and two linear Maxwell electro-
magnetic fields [16]. The action is given by

S = − 1

16π

∫
M
d4x

√−g

×
(
R−2(∇φ)2−2�4+(−e−2λ1φF)p−

3∑
i=2

e−2λiφHi

)
,

(1)

where R is the Ricci scalar on the manifold M , φ is the dilaton
field, �4 is the cosmological constant, λi are constants. F
and Hi are the Maxwell invariants of electromagnetic fields
Fμν = ∂[μAν] and (Hi )μν = ∂[μ(Bi )ν], where Aμ and (Bi )μ
are the electromagnetic potentials. The following metric is
the solution for the equations of motion of the theory defined
by the action (1):

ds2 = −r2z

l2z
f (r)dt2 + l2

r2

dr2

f (r)
+ r2d	2

k, (2)

where d	2
k is the metric of the spatial 2-section, which can

have positive curvature, k = 1, negative curvature, k = −1,
or zero curvature, k = 0, and

f (r) = 1 + kl2

r2z2 − m

rz+2 + q2p

r
4+z+2 , (3)

if the constant �4 is

�4 = − (z + 1)(z + 2)

2l2
. (4)

The gauge field is given by

Frt = q1b2(z−1)

r
4+1 , (5)

and the gauge potential by

At = −q1b2(z−1)


4r
4
, (6)

where

q2p = (2p − 1)b2(z−1)

2
4l−2p(z−1)−2
(2q2

1 )p, (7)


4 = z − 2 + 2

(2p − 1)
, (8)

with q1 and b being constants. Also, in order to have a finite
mass, 
4 should be positive, which imposes the following
restrictions on p and z:

• for p < 1/2, z − 1 > (3 − 2p)/(1 − 2p),
• for 1/2 < p ≤ 3/2, all z(≥ 1) values are allowed,
• for p > 3/2, z − 1 > (2p − 3)/(2p − 1).

3 Quasinormal modes

The Klein–Gordon equation for a scalar field minimally cou-
pled to curvature is

1√−g
∂μ

(√−ggμν∂ν

)
ψ = m2

sψ, (9)

wherems is the mass of the scalar field ψ . Thus, the QNMs of
scalar perturbations in the background of a four-dimensional
topological nonlinear charged Lifshitz black hole are given
by the scalar field solution of the Klein–Gordon equation
with appropriate boundary conditions. Now, by means of the
following ansatz:
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ψ = e−iωt R(r)Y (θ, φ), (10)

where Y (θ, φ) is a normalizable harmonic function on
the two-sphere which satisfies the eigenvalues equation
∇2Y (θ, φ) = −QY (θ, φ), where Q = �(� + 1) � =
0, 1, 2, . . ., the Klein–Gordon equation yields

1

r z+3 ∂r

[
r z+3 f (r)∂r R

]

+
[(

l

r

)2(z+1)
ω2

f (r)
−

(
l

r

)2 Q

r2 −
(
l

r

)2

m2
s

]
R(r) = 0.

(11)

Also, defining R(r) as

R(r) = K (r)

r
, (12)

and by using the tortoise coordinate r∗ given by

dr∗ = lz+1dr

r z+1 f (r)
, (13)

the Klein–Gordon equation can be written as a one-
dimensional Schrödinger equation,

d2K (r∗)
dr2∗

+
[
ω2 − V (r)

]
K (r∗) = 0, (14)

where the effective potential V (r),

V (r) =
(r
l

)2z
f (r)

(
(z + 1)

l2
f (r)+ r

l2
f ′(r)− Q

r2 −m2
s

)
,

(15)

diverges at spatial infinity; see Fig. 1. Therefore, we will
consider that the field vanishes at the asymptotic region as
a boundary condition or a Dirichlet boundary condition. In
Fig. 2 we plot the behavior of the effective potential near the
horizon for different values of Q.

It is worth mentioning that it is not trivial to find analytical
solutions to Eq. (11). Therefore, we will perform numerical
studies by using the improved AIM [17]. In order to imple-
ment the improved AIM we make the change of variables
u = 1 − rH/r in Eq. (9). Then the Klein–Gordon equation
yields

r z+1
H (1 − u)1−z f (u)∂2

u R(u) + r z+1
H (1 − u)2

×
(

f ′(u)

(1 − u)1+z
+ f (u)(1 + z)

(1 − u)z+2

)
∂u R(u)

+
(
l2(z+1)ω2(1 − u)z−1

r z−1
H f (u)

+ r z−1
H l2Q

(1 − u)z−1 − m2
s r

z+1
H l2

(1 − u)z+1

)

×R(u) = 0. (16)

Fig. 1 The behavior of V (r) with l = 1, m = 1, q1 = 0.1, ms = 0.1,
b = 1, z = 2, p = 2, and Q = 2

Fig. 2 The behavior of V (r) with l = 1, m = 1, q1 = 0.1, ms = 0.1,
b = 1, z = 2, p = 2, and Q = 0, 2, 6, 12, 20

Now, in order to propose an ansatz for the scalar field, we
must consider its behavior on the event horizon and at spatial
infinity. Accordingly, on the horizon, u → 0, its behavior is
given by

R (u → 0) ∼ C1u
i lz+1ω

r zH f ′(0) + C2u
−i lz+1ω

r zH f ′(0) . (17)

So, if we consider only ingoing waves on the horizon, we
must impose C1 = 0. Also, asymptotically, from Eq. (16),
the scalar field behaves as

R (u → 1) ∼ D1 (1 − u)1/2(1+(1+z)−
√

(2+z)2+4m2l2)

+ D2 (1 − u)1/2(1+(1+z)+
√

(2+z)2+4m2l2) . (18)

So, in order to have a null field at infinity, we must impose
D1 = 0. Therefore, taking into account these behaviors we
define

R (u) = u
−i lz+1ω

r zH f ′(0) (1 − u)1/2(1+(1+z)+
√

(2+z)2+4m2l2) (19)

as ansatz. Then, by inserting these fields into Eq. (16),
we obtain the homogeneous linear second-order differential
equation for the function χ(z)

χ ′′ = λ0(z)χ
′ + s0(z)χ, (20)
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where

λ0(u) = − r−z
H

A1(−1 + u)u f (u)

× (
√

(1+A2)2−4B2A1r
z
Hu f (u)−2il(1+z)(u−1)ω f (u)

+ A1r
z
Hu((A2 − z) f (u) + (u − 1) f ′(u))), (21)

s0(z) = − r−2(1+z)
H

2A2
1(u − 1)2u2 f (u)2

×(2A2
1l

2+2zr2
H (1 − u)2zu2ω2 − 2l2+2z(u − 1)2ω2

−2i A1l
1+zr zH (u − 1)ω

×(1 + u(−1 + A2 +
√

(1 + A2)2 − 4B2 − z))

−1 −
√

(1 + A2)2 − 4B2 − 2B2A2

+
√

(1 + A2)2 − 4B2(A2 − z) − z) f (u)2

+2A1l
2r zH (−m2r2

H + Q(u − 1)2)u

+(r2
H (u − 1)((1 + A2 +

√
(1 + A2)2 − 4B2)

×A1r
z
Hu − 2il1+z(u − 1)ω) f ′(u))), (22)

where

A1 = f ′(0), A2 = 1 + z, B2 = −m2l2. (23)

This can be solved numerically (see [27] for more details).
So, we choose the parameters l = 1, m = 1, q1 = 0.01, and
b = 1. Then, in Table 1, we show the fundamental quasi-
normal frequency and the first overtone for a massive scalar
field ms = 0.1 and for a massless scalar field ms = 0 with
z = 2, p = 2, and different values of the angular momentum
Q. We can observe that the modes are non-overdamped at
zero momenta. Otherwise, the system is always overdamped.
Then, in Table 2, we set Q = 0 and we show some of the low-
est QNFs for p = 2, and different values of z for a massive
scalar field ms = 0.1 and for a massless scalar field ms = 0.
We observe that there is a limit on the dynamical exponent
z (z ≈ 2.3), above which the system is always overdamped.
Additionally, in Table 3 we show some fundamental QNFs,
for z = 2, Q = 0, and different values of the nonlinear expo-
nent p for a massive scalar fieldms = 0.1, and for a massless
scalar field ms = 0, where we can observe that the behav-
ior of the modes (overdamped or non-overdamped) do not
depend on p. It is worth mentioning that in all the cases ana-
lyzed, we observe that the modes have a negative imaginary
part, which ensures the stability of four-dimensional topo-
logical nonlinear charged Lifshitz black holes with spherical
transverse section under scalar perturbations.

The results obtained previously can be generalized for a
plane transverse section. The effective potential has a similar
behavior on the horizon and at the asymptotic region to the
case of a spherical transverse section. Now, in Tables 4, 5, and
6 we show the QNFs for some cases analyzed for the spherical

Table 1 QNFs for a massive scalar field ms = 0.1 and for a massless
scalar field ms = 0 with l = 1, m = 1, q1 = 0.1, b = 1, z = 2, p = 2,
and different values of Q

n Q = 0 Q = 2 Q = 6 Q = 12 Q = 20

ms = 0.1

0 0.77567–3.99596i −2.86912i −1.37093i −3.36678i −1.99983i

1 1.10519–7.98646i −4.43686i −4.32506i −6.05415i −5.19559i

ms = 0

0 0.77560–3.99350i −2.86614i −1.36758i −3.36350i −1.99611i

1 1.10505–7.98396i −4.43456i −4.32229i −6.05129i −5.19239i

Table 2 QNFs for a massive scalar field ms = 0.1 and for a massless
scalar field ms = 0 with l = 1, m = 1, q1 = 0.1, b = 1, p = 2, Q = 0,
and different values of z

n z = 2 z = 2.3 z = 3 z = 4 z = 8

ms = 0.1

0 0.77567–3.99596i −3.78732i −3.58853i −3.87382i −5.65842i

1 1.10519–7.98646i −4.68822i −5.75581i −6.74363i −10.62950i

ms = 0

0 0.77560–3.99350i −3.78550i −3.58710i −3.87273i −5.65784i

1 1.10505–7.98396i −4.68582i −5.75415i −6.74243i −10.62890i

Table 3 QNFs for a massive scalar field ms = 0.1 and for a massless
scalar field ms = 0 with l = 1, m = 1, q1 = 0.1, b = 1, z = 2, Q = 0,
and different values of p

n p = 1 p = 2 p = 2.5

ms = 0.1

0 0.74428–3.98456i 0.77567–3.99596i 0.77694–3.99763i

1 1.02904–7.96141i 1.10519–7.98646i 1.10760–7.98995i

ms = 0

0 0.74424–3.98210i 0.77560–3.99350i 0.77687–3.99516i

1 1.02895–7.95893i 1.10505–7.98396i 1.10746–7.98745i

Table 4 QNFs for a massive scalar field ms = 0.1 and for a massless
scalar field ms = 0 with l = 1, m = 1, q1 = 0.1, b = 1, z = 2, p = 2,
and different values of Q. Plane transverse section

n Q = 0 Q = 2 Q = 6 Q = 12 Q = 20

ms = 0.1

0 −3.96288i −2.69635i −1.41179i −3.38114i −2.12450i

1 −4.03773i −4.57823i −4.27695i −5.99855i −5.19243i

ms = 0

0 −3.96040i −2.69346i −1.40842i −3.37791i −2.12082i

1 −4.03522i −4.57576i −4.27417i −5.99572i −5.18929i

transverse section. Here, in all the cases analyzed, we observe
that the system is overdamped with a negative imaginary part,
which ensures the stability of four-dimensional topological
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Table 5 QNFs for a massive scalar field ms = 0.1 and for a massless
scalar field ms = 0 with l = 1, m = 1, q1 = 0.1, b = 1, p = 2, Q = 0,
and different values of z. Plane transverse section

n z = 2 z = 3 z = 4 z = 8

ms = 0.1

0 −3.96288i −3.52783i −3.85397i −5.65638i

1 −4.03773i −5.75795i −6.73535i −10.62790i

ms = 0

0 −3.96040i −3.52634i −3.85284i −5.65580i

1 −4.03522i −5.75627i −6.73412i −10.62730i

Table 6 QNFs for a massive scalar field ms = 0.1 and for a massless
scalar field ms = 0 with l = 1, m = 1, q1 = 0.1, b = 1, z = 2, Q = 0,
and different values of p. Plane transverse section

n p = 1 p = 2 p = 2.5

ms = 0.1

0 −3.81513i −3.96288i −3.98601i

1 −4.16136i −4.03773i −4.01793i

ms = 0

0 −3.81272i −3.96040i −3.98352i

1 −4.15879i −4.03522i −4.01543i

nonlinear charged Lifshitz black holes with a plane transverse
section under scalar perturbations.

4 Concluding comments

In this work we calculated numerically the QNFs of scalar
field perturbations for four-dimensional topological nonlin-
ear charged Lifshitz black holes with spherical and plane
transverse sections. Then we studied the stability of these
black holes under massive and massless scalar field pertur-
bations and we have shown that for all the cases analyzed,
the modes have a negative imaginary part, which ensures the
stability of four-dimensional topological nonlinear charged
Lifshitz black holes with spherical and plane transverse sec-
tions under scalar perturbations. Also, it was found that the
modes are overdamped, depending heavily on the dynami-
cal exponent and the angular momentum of the scalar field
for a spherical transverse section. However, the modes of
a four-dimensional topological nonlinear charged Lifshitz
black hole with a plane transverse section are always over-
damped.
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