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Abstract Recent elaborated by Harko et al., the f (R, T )

theories of gravity allow one to contemplate an optimistic
alternative to dark energy, for which R and T stand for the
Ricci scalar and the trace of the energy-momentum tensor,
respectively. Although the literature has shown that the T
dependence on the gravitational part of the action – which
is due to the consideration of quantum effects – may induce
some novel features in the scope of late-time cosmological
dynamics, in the radiation-dominated universe, when T = 0,
no contributions seem to arise from such theories. Appar-
ently, f (R, T ) contributions to a radiation-dominated uni-
verse may arise only from the f (R, T φ) approach, which
is nothing but the f (R, T ) gravity in the case of a self-
interacting scalar field whose trace of the energy-momentum
tensor is T φ . We intend, in this article, to show how f (R, T φ)

theories of gravity can contribute to the study of the pri-
mordial stages of the universe. Our results predict a grace-
ful exit from an inflationary stage to a radiation-dominated
era. They also predict a late-time cosmic acceleration after a
matter-dominated phase, enabling the f (R, T φ) theories to
describe, in a self-consistent way, all the different stages of
the dynamics of the universe.

1 Introduction

Plenty of efforts have been made in the theoretical framework
with the purpose of explaining the accelerated regime our
universe has passed through a fraction of a second after the
Big Bang, named the “inflationary era”. It is common to
describe this phenomenon via scalar fields [1–7], although
another reputed form to describe it comes from f (R) gravity
[8–11].

Recently, a more general theory of gravity, named f (R, T )

gravity, was proposed by Harko et al. [12]. A priori it can also
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contribute to inflationary era studies through its scalar field
approach, named f (R, T φ) gravity [12].

Although the late-time acceleration of the universe expan-
sion [13–15] has been broadly investigated in such a theory
of gravity [16–25], the inflationary era still presents a lack of
examination. The same happens for the radiation-dominated
era of the universe.

For the radiation era, the lack of f (R, T ) applications is
quite predictable for the following reason. The equation of
state (EoS) of the universe is p = ρ/3 at this stage, with
p and ρ representing the pressure and density of the uni-
verse, respectively. Such an EoS yields a null trace for the
energy-momentum tensor of a perfect fluid. A null trace for
the energy-momentum tensor yields the f (R) formalism for
the f (R, T ) functional forms found in the literature (see, for
instance, [12,16–25]). Hence the study of the radiation era
of the universe in f (R, T ) gravity seems to be quite tricky.

A priori, it seems reasonable to affirm that the f (R, T )

gravity does not contribute to the study of the radiation-
dominated universe, since the contribution coming from the
trace of the energy-momentum tensor in f (R, T ) vanishes
at this stage. Specifically, such a shortcoming or incomplete-
ness has attracted attention recently [23–26].

In [23], the authors argued that the high redshift f (R, T )

cosmological solutions tend to recover the standard model
of cosmology if the f (R, T ) functional form is linear in R,
precisely because, when z � 1, the radiation with the EoS
p = ρ/3 dominates the dynamics of the universe, making the
trace of the energy-momentum tensor vanish. Therefore, no
novel contributions would come from the f (R, T ) theories
of gravitation at the radiation era.

In [24], in order to enable f (R, T ) gravity theory to con-
tribute also to a radiation-dominated universe, a compactified
space-like extra dimension had to be invoked.

In [25], with the purpose of obtaining well-behaved solu-
tions at the radiation stage of the universe, f (R, T ) gravity
was generalized, by allowing the speed of light c to vary.
Moreover, an alternative scenario to inflation was obtained.
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By developing the f (R, T φ) approach, which is sub-
missive to f (R, T ) gravity, we intend, here, to enable
the f (R, T ) theories to contribute also to inflationary and
radiation-dominated eras, in a self-consistent way. Recall that
once T = 0 at the radiation stage, it is natural to expect that
f (R, T ) theories retrieve f (R) gravity or even general rel-
ativity (GR) when f (R) ∼ R, and in such a way one would
not expect any new information to be derived from f (R, T )

gravity. To enable the f (R, T ) gravity to describe a radi-
ation universe by itself, without necessarily recovering the
outcomes of the f (R) formalism,we should have a theory
describing all the different stages of the dynamics of the uni-
verse. In order to do so, we will implement the first-order
formalism [27,28] to the f (R, T φ) gravity.

We will not omit the recent dynamical features our uni-
verse has presented. In other words, a late-time cosmic accel-
eration, which is corroborated by Type Ia Supernovae obser-
vations [13,14] and described in �CDM cosmology by the
presence of the cosmological constant in the standard Ein-
stein field equations (FEs), shall also be described in our
model.

2 The f (R, Tφ) gravity

Early- and late-time accelerations of the universe expansion
can be explained in the framework of scalar field models [1–
7,29–35]. The consideration of f (R, T ) gravity in the case
of a self-interacting scalar field φ yields f (R, T φ) gravity
[12].

Here we will work with the case f (R, T φ) = −R/4 +
f (T φ), where R stands for the Ricci scalar, while T φ is the
trace of the energy-momentum tensor of the scalar field, so
that

Sφ =
∫

d4x
√−gL(φ, ∂μ φ) (1)

is the action of such a field, with g being the determinant
of the metric with signature (+, −, −, −). Throughout this
article we will choose units such that 4 π G = c = 1. More-
over, we are going to deal with a standard Lagrangian density
for a real scalar field, whose form is

L = 1

2
∂μφ∂μφ − V (φ) , (2)

for which a self-interacting potential V (φ) is assumed.
Furthermore, since the energy-momentum tensor of the

scalar field is given by

T φ
μν = 2

∂ L
∂ g μν

− gμν L, (3)

its trace is

T φ = −∂μφ∂μφ + 4V (φ). (4)

The f (R, T φ) = −R/4+ f (T φ) gravity model is defined
in the following form:

S =
∫

d4x
√−g

[
− R

4
+ f (T φ) + L(φ, ∂μ φ)

]
, (5)

for which we have inserted the gravitational part of the action.
By minimizing the above action, we obtain

Gμν = 2[Tμν − gμν f (T
φ) − 2 f ′(T φ) ∂μφ ∂νφ], (6)

where Gμν is the Einstein tensor and f ′ is the derivative of
f (T φ) with respect to T φ .

For the action (5), a flat Friedmann–Robertson–Walker
universe has the following Friedmann equations:

3

2
H 2 =

[
1

2
− 2 f ′(T φ)

]
φ̇ 2 − f + V, (7)

Ḣ + 3

2
H2 = −

[
φ̇ 2

2
+ f (T φ)

]
+ V, (8)

in which φ = φ(t), H = ȧ/a is the Hubble parameter, a is
the scale factor and a dot denotes a derivative with respect to
time.

We are also able to derive the equation of motion for such
a system,

[1 − 2 f ′(T φ)](φ̈ + 3H φ̇) − 2 ḟ ′(T φ)φ̇

+[1 − 4 f ′(T φ)]Vφ = 0, (9)

with the notation Vφ ≡ dV (φ)/dφ.

3 First-order formalism

Let us implement the first-order formalism to the model
above, by following the recipe presented in [27,28]. First
of all, it is straightforward to observe from (7) and (8) that
the Hubble parameter obeys the differential equation

Ḣ = − (
1 − 2 f ′) φ̇ 2. (10)

Then the initial ingredient that we may consider in order to
establish the first-order formalism is based on the definition

φ̇ ≡ −Wφ, (11)

with Wφ ≡ dW (φ)/dφ and W an arbitrary function of the
field φ. Such a procedure is commonly used in cosmological
scenarios coupled with scalar fields, as in [29] and references
therein. This assumption implies that (10) is rewritten as

Ḣ = − (
1 − 2 f ′) W 2

φ . (12)
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If we establish that

H ≡ h(φ) + c, (13)

where c is a real constant, then Eq. (10) requires the following
constraint to the function h:

hφ = (1 − 2 f ′)Wφ. (14)

Moreover, the Friedmann equations impose the requirement
that the potential V (φ) obey the relation

V = 3

2
(h + c) 2 + f −

(
1

2
− 2 f ′

)
W 2

φ . (15)

3.1 Examples

We can apply the first-order formalism by considering a spe-
cific form for the function f (T φ). As in [28], let us deal with
f (T φ) = α (T φ)n , with α as a constant and n as an integer.
Note that such a functional form for f (T φ) straightforwardly
yields the GR case when α = 0. Moreover, it is the analo-
gous of the form f (T ) = αT n in f (R, T ) gravity without
scalar field, first suggested in [12] for deriving an accelerated
cosmological scenario and then applied to a number of other
f (R, T ) well-behaved cosmological models, such as [18,19,
24,25], among many others. Such an assumption yields

f (T φ) = α
(
−φ̇ 2 + 4V

) n = α
(
−W 2

φ + 4V
) n

, (16)

f ′ = α n
(
−φ̇ 2+4V

) n−1 = α n
(
−W 2

φ + 4V
) n−1

. (17)

In this study, we are going to consider the function W to
be given by

W (φ) = a1 sin φ, (18)

with a1 being a real constant. Such a form for W (φ) is a sine-
Gordon type of model, and it has been broadly studied in the
literature, specially in investigations related with classical
field theory, as in [36] and references therein. Very recently,
this model was applied in the context of braneworld scenarios
for f (R, T ) gravity [28].

Here, as a matter of simplicity, we focus on the case n = 1,
which leads to

f ′ = α. (19)

Then, by substituting f ′ in Eq. (14), we find

h(φ) = (1 − 2 α) a1 sin φ, (20)

which means that

H = (1 − 2 α) a1 sin φ + c. (21)

Moreover, it is straightforward to see that the potential V is

V =
3
2 [(1 − 2α)a1 sin φ + c]2 − ( 1

2 − α
)
a2

1 cos2 φ

1 − 4α
.

(22)

From Eq. (18) one can see that the first-order differential
equation for this scenario has the form

φ̇ = − a1 cos φ, (23)

whose analytical solution is

φ(t) = 2 tan−1
{

tanh

[
1

2
(b1 − a1t)

]}
, (24)

with b1 being a real constant. The previous solution allows
us to rewrite Eq. (21) as

H = (1 − 2α) a1 tanh(b1 − a1t) + c, (25)

which is presented in detail in the upper panel of Fig. 1 below,
where we can see that H exhibits a kink-like profile as a direct
consequence of the model defined in Eq. (18).

We can use the last result to determine the expansion
parameter (or scale factor) a(t), whose explicit form is given
by

a = e c t [sech(b1 − a1t)]
(1−2α) . (26)

Moreover, the analytical EoS parameter is

ω = [12(α − 2)α + 7] a2
1 − 3

[
(1 − 2α)2a2

1 + c2
]

cosh[2(b1 − a1t)] + 6 (2α − 1) a1 c sinh[2(b1 − a1t)] − 3c2

[4(2 − 3α)α − 3] a2
1 + 3

[
(1 − 2α)2a2

1 + c2
]

cosh[2(b1 − a1t)] + 6 (1 − 2α) a1 c sinh[2(b1 − a1t)] + 3c2
, (27)

and its features can be observed in the central panel of Fig. 1.
We can verify from the analytical cosmological parameters
that small deviations of the values of the constants produce
cosmological scenarios which are similar to those presented
in Fig. 1. Therefore, the time evolution of our parameters
is not so strongly dependent on the initial conditions of the
model.

Another interesting model is

W (φ) = a1

(
φ 3

3
− φ

)
, (28)
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Fig. 1 The upper panel shows the evolution of H(t), the central panel
shows ω, and the lower panel shows T φ , for α = −1, a1 = 0.3, b1 = 3,
and c = 0.988, in the W (φ) = a1 sin φ model

whose first-order differential equation is such that

φ̇ = a1

(
1 − φ 2

)
, (29)

which is satisfied by

φ = tanh (a1 t + b1), (30)

where b1 is a real constant. This last first-order differential
equation represents the so-called φ4 type of model, which is
also broadly investigated in classical field theory, as one can
see in [37] and references therein.

In the present case, we are dealing with f (T φ) = α T φ

again. Therefore, we can combine the previous ingredients
to determine the following form for the function h(φ):

h = (1 − 2 α) a1 φ

(
φ 2

3
− 1

)
. (31)
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Fig. 2 The upper panel shows the evolution of H(t), the central panel
shows ω, and the lower panel shows T φ , for α = −4, a1 = 0.2,
b1 = −2.5, and c = 1.31, in the W (φ) = a1 (φ 3/3 − φ ) model

The last equation results in the following relation for the
Hubble parameter:

H(t) = c − a1

6
(1 − 2α)

{
3 sinh(a1t + b1)

+ sinh [3(a1t + b1)]

}
sech3(a1t + b1), (32)

which is presented in detail in the upper panel of Fig. 2 below.
As in the previous example, it is possible to choose the arbi-
trary constants in order to obtain a kink-like profile for H .

We can also show that the potential V for this analytical
model is

V = 1

1 − 4α

{
1

6

[
(1 − 2α) a1 φ

(
φ2 − 3

)
+ 3 c

]2

×
(

1

2
− α

)
a2

1

(
φ2 − 1

)2
}

. (33)
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Withal, the expansion parameter for such a case is given
by the following:

a = exp

[
c t + 1

6
(1 − 2 α) sech2(a1t + b1)

]
(34)

× [cosh(a1t + b1)]
2
3 (2α−1) ,

while the EoS parameter reads

ω = −1 + 192(1 − 4α)a2
1 cosh2(a1t + b1)

×
{

− 8 [4α(5α − 2) + 5] a2
1

+3
[
4(4(α − 3)α + 1)a2

1 + 45c2
]

cosh[2(a1t + b1)]
+6

[
4(1 − 2α)2 a2

1 + 9 c2
]

cosh[4 (a1t + b1)]
+16 α2a2

1 cosh[6 (a1t + b1)]
−16 α a2

1 cosh[6 (a1t + b1)]
+4 a2

1 cosh[6 (a1t + b1)] + 9 c2 cosh[6 (a1t + b1)]
+216 α a1 c sinh[2 (a1t + b1)]
+144 α a1 c sinh[4 (a1t + b1)]
+12 (2α − 1) a1 c sinh[6 (a1t + b1)]
−108 a1 c sinh[2 (a1t + b1)]
−72 a1 c sinh[4 (a1t + b1)] + 90 c2

}−1

. (35)

The latter is plotted in the central panel of Fig. 2. Again, if
we take small deviations of these parameters we determine
similar cosmological scenarios.

4 Cosmological interpretations

In Sect. 3, we were able to depict the time evolution of H
and ω derived from the first-order formalism applied to the
f (R, T φ) theory. Recall that our aim in this work is to enable
f (R, T ) gravity to induce a complete cosmological scenario,
which includes the primordial eras of the universe, since the
theory seems to present some shortcomings at these stages.
Therefore, it is worth checking if the cosmological param-
eters derived previously indeed resemble, for small values
of time, what is expected for the dynamics of the primordial
universe.

In the previous section we have also plotted the evolution
of the trace of the energy-momentum tensor of the scalar
field, which will be interpreted below.

The inflationary model states that early in the history of
the universe, its expansion has accelerated. From the standard
Friedmann equations, this happens if the universe is domi-
nated by a component with EoS ω < −1/3 [38,39]. Accord-
ing to standard cosmology, during inflation, the energy den-
sity of the universe was dominated by a constant, say, �ι, in
such a way that the Friedmann equations read H2

ι ∼ �ι. The

Hubble parameter was, then, constant during the inflationary
era. Indeed, one may write, for inflation, aι ∼ eHιt [38,39].

From the upper panels of Figs. 1 and 2, the Hubble param-
eter values predicted from our model indeed remain approx-
imately constant during a small period of time after the
Big Bang, in agreement with inflationary scenario. In fact,
Ḣ ∼ −0.003 and ∼ −0.0003 at t = 0.01 for Figs. 1 and 2,
respectively.

After inflation, H must evolve as ∝ t−1
H , with tH being

the Hubble time [38,39], in accordance with Figs. 1 and 2.
Still in the upper panels of Figs. 1 and 2, one should note

that for high values of time, H behaves once again as a con-
stant. From standard cosmology, it is well known that for high
values of time, H is proportional to ρ� (the density of the cos-
mological constant), which is, indeed, a constant. Therefore,
the recent cosmic acceleration our universe is undergoing can
be described by a scale factor which evolves as eH0t , with the
constant behavior of H being predicted in Figs. 1 and 2 for
high values of time.

In the central panels of Figs. 1 and 2, we have depicted the
evolution of the EoS parameter ω with time. By analyzing
it, one can see that for small values of time, ω ∼ −1. This
is in agreement with some constraints that have been put to
inflationary EoS recently [40–42].

After representing inflation, ω smoothly evolves to ∼1/3.
This is the maximum value the EoS should assume during
the evolution of the universe. Moreover, 1/3 is precisely the
value of the EoS which describes the radiation-dominated
era of the universe [38,39], i.e., the model predicts a smooth
transition from an inflationary stage to a radiation-dominated
era.

The central panels of Figs. 1 and 2 show that ω → −1 in
time. According to recent observations of the anisotropies in
the temperature of cosmic microwave background radiation
[15], this is the present value of the universe EoS and is
responsible for the recent cosmic acceleration.

The fact that nowadays the universe is passing through
its second phase of accelerated expansion justifies such an
evolution for ω. Since an accelerated universe is described
by a negative EoS, it is expected that during the whole evo-
lution of the universe, the value of ω, coming from ∼ −1,
which is related to the inflationary stage, first increases, tend-
ing to a decelerating phase, then decreases, returning to an
accelerated phase.

Furthermore, the lower panels of Figs. 1 and 2 show the
time evolution of the trace of the energy-momentum tensor
of the scalar field for the models.

First, one can note that the values assumed by such a quan-
tity are always ≥0, as they, indeed, should be.

The high values of the density and temperature which are
known to characterize the Big Bang, together with the infla-
tionary EoS mentioned above, lead us to expect the maxi-
mum values of the trace of the energy-momentum tensor of
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the scalar field to occur during inflation, as corroborated by
Figs. 1 and 2.

At the radiation era, T φ must vanish. We zoomed in on
Figs. 1 and 2, lower panels, in order to make explicit such
a predicted feature. Note that after a period assuming its
maximum values, the trace of the energy-momentum ten-
sor T φ → 0 at the same time scale ω → 1/3 in Figs. 1 and
2, central panels. Such a property reinforces the good behav-
ior of our solutions, specifically at the primordial stages of
the evolution of the universe.

In the matter-dominated era, T φ must be 
=0. The same
happens for the second period of acceleration. Indeed, the
plots of T φ show that after the radiation era, T φ increases.
Still, its values are small, due to the low density of the uni-
verse at these stages, specially when compared to the ρ values
at inflation.

Remarkably, T φ remains constant for high values of time.
Since T φ ∝ ρ, this characterizes the late-time dynamics of
the universe to be dominated by a constant. Recall that in
standard cosmology, for high values of time, the cosmolog-
ical constant � dominates the dynamics of the universe. As
argued above, ρ� remains, indeed, constant as time passes
by. Such an important feature of standard cosmology is pre-
dicted from the f (R, T φ) approach here presented.

5 Discussion and perspectives

In this article we established a first-order formalism to deter-
mine two analytical models related to the f (R, T φ) the-
ory. Such a formalism was constructed from the definition
observed in Eq. (11).

The mentioned expression together with Eq. (7) and (13)
gave us a constraint for the potential V , which can be seen in
(15). Moreover, the arbitrary function h(φ) was introduced
and its form is directly related to f ′.

The first analytical model was generated by considering
W = a1 sin φ and the specific form for f (T φ) showed in
(16). Such definitions led us to determine h(φ), besides the
potential V , the Hubble parameter H , as well as other cos-
mological quantities like the expansion and EoS parameters.
In the second case, we adopted W = a1 (φ 3/3−φ), and one
more time we determined the function h and the cosmologi-
cal parameters for the model.

We can directly see that the field φ(t) satisfies the equation
of motion (9) for both models. Furthermore, this first-order
formalism may help us to obtain other one-field analytical
scenarios and also may lead us to hybrid analytical models,
where the coupling between an f (R, T φ,χ ) function is con-
sidered with a two scalar field Lagrangian. Such a scenario
shall be derived and presented in the near future.

Another further work may rise from an alternative form
for f (R, T φ), such as f (R, T φ) = g(R)h(T φ), with g(R)

and h(T φ) being functions of R and T φ , respectively. Such
a functional form suggests a high coupling between matter
and geometry, and therefore may imply some novelties in
gravitational and cosmological perspectives. We can conjec-
ture that by coupling such kind of theories with a scalar field
Lagrangian may lead us to a new set of Friedmann equations
and to different equations of motion. Once we have these
ingredients, we may try to apply the first-order formalism
and then compute the constraints that the superpotential will
obey. In fact, the analog of that model for f (R, T ) gravity
without scalar field was investigated in [16].

We have obtained from the first-order formalism applied to
f (R, T φ) gravity two models able to describe all the different
dynamical stages of the universe, from inflation, to radiation,
to matter and dark-energy dominated.

For the first time, an f (R, T ) cosmological model was
able to describe all the dynamical stages of the universe con-
tinuously, including the primordial ones. There was no need
of invoking different EoS or functional forms for f (T φ) in
different stages in order to be able to account for all the tran-
sient eras of the dynamics of the universe, as in [26,43,44],
for instance. In fact, there was no need of invoking any EoS
at all. Such a quantity was obtained simply by dividing the
solutions p by ρ.

It is a remarkable fact that the inflationary scenarios of
our models have smoothly decayed to a radiation-dominated
era. This phenomenon is sometimes called a “graceful exit”
and it is not trivial to obtain (see [45,46] for the grace-
ful exit achievement through decaying vacuum models). In
fact, an ideal inflationary scenario must naturally decay to a
radiation-dominated era [47,48], as in the present case.

Also remarkable is the fact that the models are well
behaved in the radiation stage. The match between the time
scales for ω = 1/3 and T φ = 0 in Figs. 1 and 2 reinforces
that.

Not just the present models were able to describe a smooth
transition between inflationary and radiation-dominated eras,
but they were also able to predict the matter-dominated phase,
with ω = 0, and the recent cosmic acceleration the universe is
undergoing [13–15], from an EoS parameter whose late-time
values agree with WMAP cosmic microwave background
observations [15].

Therefore, departing from a cosmological scenario derived
from GR, we have obtained an EoS which varies with time,
allowing, through its evolution, the dynamics of the universe
to be dominated by different components in a natural form.
Moreover, in order to obtain a recent cosmic acceleration, we
did not have to insert a cosmological constant in the model
FEs, in this way evading the cosmological constant problem
[49–51].

The f (R, T φ) cosmological scenario derived in this work
is somewhat similar to a decaying vacuum �(t) model, such
as those presented in [45,46], for instance. First, it should be
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stressed that recently in [26], the f (R, T ) theories have been
interpreted as a generalization of the Brans–Dicke model
[52–56]. As argued by the authors in [26], the extra terms
in the f (R, T ) FEs may play the role of additional terms
of effective gravitational and cosmological “constants” Geff

and �eff . Those extra terms in �eff are responsible for the
vacuum decay in �(t)-like models.

Second, in both decaying vacuum and f (R, T ) mod-
els, the covariant derivative of the energy-momentum tensor
∇μTμν does not vanish. In decaying vacuum models, this
requires necessarily some energy exchange between matter
and vacuum, through vacuum decay into matter or vice versa.

The vacuum-decay models presented in [45,46], for
instance, are capable of describing the complete history of
the universe in an effective unified framework, in the same
way the present f (R, T φ) model does. In those models, the
vacuum always decays in the dominant dynamical compo-
nent of each stage. However, in order to be able to describe
the various phases of the dynamics of the universe, the func-
tional form taken for �(t) is proposed on phenomenologi-
cal grounds, by extrapolating backwards in time the present
available cosmological data. On the other hand, the f (R, T φ)

scenario is independent from ansatz or phenomenology.
Note also that the �(t) model presented in [45] was mimic

through a scalar field model (check Sect. 4 of such a refer-
ence). This corroborates the argument that one might have
some fundamental analogy between scalar fields and decay-
ing vacuum models.

In this article, we have also formally brought to the atten-
tion of the scientific community the shortcoming surrounding
the f (R, T ) theories of gravity in the regime T = 0. It is,
indeed, straightforward to realize that in such a regime of
f (R, T ) gravity one automatically recovers the f (R) theo-
ries, or GR when f (R) is linear in R [23]. We have shown,
for the first time, that it is possible to describe radiation in
f (R, T ) gravity not necessarily by the recovering of GR, but
through extra dynamical terms coming from a scalar field in
the f (R, T φ) approach.

If one focuses specifically on the radiation era predicted
by the f (R, T φ) model here presented, one is able to obtain a
scale factor which evolves as the one of standard cosmology
purely from the f (T φ) contribution, which is a complemen-
tary novel feature of the f (R, T ) gravity, as we will show
below.

Taking T φ = 0 in (4) yields φ̇2 = 4V (φ). Since in this
case f (T φ) = α(T φ)n = 0, one obtains, from (10),

Ḣ = −4V (φ). (36)

From Eqs. (11), (15), and (36), one can write Ḣ = −2H2,
which, integrated, for the scale factor a yields a ∼ t1/2. From
standard cosmology [38,39], this is exactly the time propor-
tionality of the scale factor of a radiation-dominated universe.

Therefore the formalism presented in this article surpasses
the f (R, T = 0) issue, since it enables f (R, T ) gravity
to describe a radiation-dominated universe purely from its
dependence on T φ .

Besides some questions exposed in the Introduction, very
recently, the drawback in f (R, T ) theory was raised in [26],
in which the authors have searched for different forms for
f (T ) in different stages of the universe. In the radiation-
dominated stage, they found that f (T ) should be a non-
null constant. As the authors have considered the f (R, T )

theories as a generalization of Brans–Dicke gravity, the
f (T ) ∼ cte case leads to Geff and �eff to be, indeed, con-
stants, as may be seen in [26]. Therefore no contributions to
a T = 0 universe would come from the f (R, T ) formalism
on this approach, departing from the results of the present
work.

One could argue that the f (R) formalism retrieval in
f (R, T ) theories when T = 0 is not a shortcoming, being
just an intrinsic property of such theories. However, below
we bring to the reader’s attention some fundamental areas of
knowledge which will have to be neglected if the f (R, T )

theories, indeed, simply recover the f (R) formalism when
T = 0.

Many contributions to physics, astrophysics, and cosmol-
ogy will come from the imminent detection of gravitational
waves (GWs) [57,58]. Their detection will clarify some per-
sistent and important issues, such as the absolute ground state
of matter [59], and also will lead us to consider it a pow-
erful tool in estimating the parameters of compact binary
systems [60], constraining the equation of state of neutron
stars [61] and the values of brane cosmological parameters
in braneworld models [62], and distinguishing GR from alter-
native theories of gravity [63].

The study of the propagation of GWs will be relevant in
particular once they have been generated [64]. The energy-
momentum tensor Tμν is then set to zero in order to obtain
the wave equation for vacuum [65–67]. In the same way the
EoS ω = 1/3 yields a null trace for the energy-momentum
tensor; this will happen for vacuum, with Tμν = 0. There-
fore it is expected that the study of GWs, as the derivation
of their primordial spectrum, for instance, in the f (R, T )

formalism, yields the same predictions as those obtained via
f (R) gravity [68].

A powerful tool to study the properties of GWs was devel-
oped in [69]. It consists in characterizing the polarization
states of GWs in a given theory.1 In order to do so, one eval-
uates the Newman–Penrose (NP) quantities [70,71]. In [63],
from the NP quantities calculation, the authors have found
extra polarization states for the f (R) gravity. Those extra
states may be corroborated by experiment once the advanced

1 In general relativity, there are two polarization states of gravitational
waves, known as plus and cross polarizations.
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GW detectors, such as LIGO [57] and VIRGO [58], start they
next run. Since the NP formalism is applied to the vacuum
FEs of a given theory, such an application to the f (R, T )

theory is expected to yield the same extra polarization states
as those of the f (R) formalism [63].

The Kerr metric describes the geometry of an empty space
(Tμν = 0) around a rotating uncharged black hole (BH) with
axial symmetry. Kerr BHs studies have been constantly seen
in the literature (see, for instance, [72–75]). Since BHs are
characterized by strong gravitational fields in quantum length
scales, it is expected that their physics will bring about some
new insights as regards quantum theories of gravity [76,77].
Once again, one would not obtain new contributions to the
study of the space-time around a Kerr BH from the f (R, T )

formalism; in such a way the f (R) theories outcomes should
be expected [78–81].

Hence, one can see that the lack of contributions from
f (R, T )gravity will appear not only in a radiation-dominated
universe, but also in studies made in the vacuum regime, since
Tμν = 0 → T = 0. In other words, in the absence of the
f (R, T φ) approach presented here, one would expect the
retrieval of features of the f (R) formalism in the study, not
only of a radiation-dominated universe, but also in those of
GWs and space-times surrounding BHs.

For instance, in the search for new polarization states of
GWs mentioned above, one works with the vacuum FEs of a
theory. It is expected that if one considers the vacuum on the
rhs of standard f (R, T ) FEs (see Eq. (11) of [12]), one gets,
after application of the NP formalism, the same polarization
states of the f (R) theory [63]. On the other hand, by taking
Tμν = 0 (and consequently T = 0) in the present model FEs
(6),2 one expects the third term inside the brackets to survive
in the vacuum regime. This term should naturally yield some
departure from both GR and f (R) gravity in the study of
GWs’ polarization states. Moreover, it could be responsible
for novelties in other astrophysical areas submissive to the
GW subject, such as the characterization of the GW spectrum
[64], the evolution of cosmological perturbations [82], and
the GW background from cosmological compact binaries
[83].

Furthermore, other vacuum studies in f (R, T ) gravity
will be possibly pursued, such as the Tolman–Oppenheimer–
Volkoff–de Sitter equation [84] and the vacuum polarization
by topological defects [85], among many others. The points
above justify the search for evading the f (R, T = 0) issue,
which was presented in this article.

The contributions from the present work are able to moti-
vate new branches in the study of the radiation universe and
vacuum in f (R, T ) gravity. The present formalism makes it
possible to make the most of the f (R, T ) theories. Although

2 Recall that we have assumed that f (R, T ) is linear in R, so that the
lhs of Eq. (6) is purely the Einstein tensor, as in general relativity.

the retrieval of the f (R) formalism in the T = 0 regime
would not necessarily be a critical feature of the f (R, T )

theories, it would make us overlook plenty of applications
of those theories, which may generate some remarkable out-
comes. Some of those, as possible extra polarization states
of GWs, may be inferred by experiment soon.
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