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Abstract We consider an extension of the Starobinsky
model, whose parameters are functions of an extra scalar
field. Our motivation is to test the robustness (or sensi-
tivity) of the Starobinsky inflation against mixing scalaron
with another (matter) scalar field. We find that the extended
Starobinsky model is (classically) equivalent to the two-field
inflation, with the scalar potential having a flat direction. For
the sake of fully explicit calculations, we perform a numerical
scan of the parameter space. Our findings support the viabil-
ity of the Starobinsky-like two-field inflation for a certain
range of its parameters, which is characterized by the scalar
index ns = 0.96 ± 0.01, the tensor-to-scalar ratio r < 0.06,
and a small running of the scalar index at |αs | < 0.05.

1 Introduction

Cosmological inflation in the early Universe is practically
well established both theoretically and experimentally. It
gives the universal solution to many problems of the Standard
Cosmology, because it predicts homogeneity of our Universe
at large scales, its spatial flatness, its large size and entropy,
as well as the almost scale-invariant spectrum of cosmologi-
cal perturbations, in remarkable agreement with the COBE,
WMAP, PLANCK, and BICEP2 measurements of the cosmic
microwave background (CMB) radiation spectrum. Inflation
is also thought of as the amplifier of microscopic quantum
field fluctuations in vacuum, and it is the only known mech-
anism for seeds of the macroscopic structure formation.

The standard mechanism of inflation in field theory uses
a scalar field (called inflaton), whose potential energy drives
inflation. The inflaton scalar potential should be flat enough
to meet the slow-roll conditions during the inflationary stage.
Physical nature and fundamental origin of inflaton and its

a e-mail: kaneda-sho@ed.tmu.ac.jp
b e-mail: ketov@tmu.ac.jp

interactions to the standard model (SM) elementary particles
are unknown.

Starobinsky inflation [1–5] offers the gravitational origin
of inflaton by identifying it with the spin-0 part of spacetime
metric. In the Higgs inflation [6–8] inflaton is identified with
the Higgs field of the SM. Both those single-field inflationary
models offer the very economic and viable descriptions of
chaotic inflation together with the clear origin of the inflaton
field either from gravitational theory or from particle theory,
respectively. As regards slow-roll inflation, the predictions of
the Starobinsky and Higgs inflationary models are essentially
the same (see below in this section).

The simplest Starobinsky model of inflation is based on
the modified gravity action [1]

S[g] =
∫

d4x
√−g

[
−1

2
R + 1

12M2 R
2
]

(1.1)

in terms of 4D spacetime metric gμν(x) with the scalar cur-
vature R, where we have used the natural units with the
reduced Planck mass MPl = 1 and the spacetime signature
(+,−,−,−). Slow-roll inflation takes place in the high-
curvature regime (M � H � 1 and |Ḣ | � H2), where
the Hubble function H(t) has been introduced. Then the
Starobinsky inflationary solution (attractor!) takes the simple
form

H ≈ M2

6
(texit − t), 0 < t ≤ texit. (1.2)

The inflationary model (1.1) has a single mass parameter M
whose value is fixed by the observational cosmic microwave
background (CMB) data as M = (3.0×10−6)( 50

Ne
) where Ne

is the e-foldings number. The predictions of the Starobinsky
model (1.1) for the spectral indices ns ≈ 1 − 2/Ne ≈ 0.964,
r ≈ 12/N 2

e ≈ 0.004 and low non-Gaussianity are in agree-
ment with the WMAP and PLANCK 2013 data (r < 0.13
and r < 0.11, respectively, at 95 % CL) [9], though they
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are in disagreement with the BICEP2 measurements (r =
0.2 + 0.07,−0.05) [10]. The enhancement of the tensor-to-
scalar-ratio r of the Starobinsky model to the higher values
can be achieved via modification of the simplest Ansatz (1.1)
by (matter) quantum corrections (beyond one loop) [11,12].
However, the Planck 2015 data [13] excludes a significant
enhancement of r beyond r = 0.08. Therefore, the Starobin-
sky model (1.1) still perfectly fits the current observational
data.

It raises the natural question on the theory side about the
robustness of the simplest Starobinsky model (1.1) against
mixing scalaron with other (matter) scalars. Though the
current observational data favors a single-field inflation, it
is very unlikely that any single-field inflationary model is
capable to provide the ultimate description of inflation. As
regards a more fundamental description of inflation in super-
gravity and string theories, multi-field inflation is a must;
see e.g., Refs. [14–16]. The direct observational evidence
for multi-field inflation would be a detection of primordial
isocurvature perturbations beyond the adiabatic spectrum
(see Appendix A for details).

In this paper, we study the two-field extensions of the
Starobinsky model by non-minimal couplings, motivated by
generic supergravity extensions of Eq. (1.1) in Ref. [17].

The action (1.1) can be dualized by the Legendre–Weyl
transform [18,19] to the standard (quintessence) action of the
Einstein gravity coupled to a single physical scalar (canoni-
cally normalized inflaton) φ having the scalar potential

V (φ) = 3

4
M2

(
1 − e−

√
2
3 φ

)2

. (1.3)

During slow-roll inflation the R2 term dominates in the
action (1.1), whereas the coupling constant in front of it
is dimensionless. It implies the (approximate) rigid scaling
invariance of the Starobinsky inflation in the high-curvature
(high-R; or in the large-field φ → +∞) limit [8]. The scaling
invariance is not exact for finite values of R, and its viola-
tion is exactly measured by the slow-roll parameters, in full
correspondence to the observed (nearly conformal) spectrum
of the CMB perturbations. The (approximate) flatness of the
inflaton scalar potential implies the (approximate) shift sym-
metry of the inflaton field. It also implies the alternative phys-
ical interpretation of the inflaton field as the pseudo-Nambu–
Goldstone boson associated with spontaneous breaking of the
scale invariance [20–22].

Similar observations apply to the Higgs inflation in the
presence of a non-minimal coupling of the Higgs field to
the spacetime scalar curvature [6]. It also has the approxi-
mate (rigid) scale invariance and, actually, the same scalar
potential (1.3) during slow-roll inflation [8]. The Higgs
inflation is based on the Lagrangian (in the Jordan frame)
[6]

LJ = √−gJ

{
−1

2
(1 + ξφ2

J )RJ + 1

2
gμν

J ∂μφJ∂νφJ − VH(φJ)

}
,

(1.4)

having the real scalar field φJ(x) non-minimally coupled to
gravity with the coupling constant ξ , and the Higgs scalar
potential

VH(φJ) = λ

4

(
φ2

J − v2
)2

. (1.5)

The action (1.4) can be rewritten to the Einstein frame by
the Weyl transformation

gμν = gμν
J

(1 + ξφ2
J )

. (1.6)

It gives rise to the standard Einstein–Hilbert term (− 1
2 R) for

gravity in the Lagrangian. However, it also leads to a non-
minimal (or non-canonical) kinetic term of the scalar field φJ.
To get the canonical kinetic term, a scalar field redefinition
is needed, φJ → ϕ(φJ), subject to the condition

dϕ

dφJ
=

√
1 + ξ(1 + 6ξ)φ2

J

1 + ξφ2
J

. (1.7)

As a result, the non-minimal theory (1.4) is classically equiv-
alent to the standard (canonical) theory of the scalar fieldϕ(x)
minimally coupled to gravity,

LE = √−g

{
−1

2
R + 1

2
gμν∂μϕ∂νϕ − V (ϕ)

}
, (1.8)

and having the scalar potential [6]

V (ϕ) = VH(φJ(ϕ))

[1 + ξφ2
J (ϕ)]2

. (1.9)

Given a large positive ξ � 1, one easily finds in the large-

field limit ϕ �
√

2
3ξ−1 that

ϕ ≈
√

3

2
log(1 + ξφ2

J ) (1.10)

and

V (ϕ) ≈ λ

4ξ2

(
1 − exp

[
−

√
2

3
ϕ

])2

(1.11)

indeed. Comparing Eqs. (1.3) and (1.11) gives rise to the
identification [8]

M =
√

λ

3
ξ−1. (1.12)

The LHC and TEVATRON measurements of the masses of
Higgs and t-quark, however, imply (via the renormalization
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group and the Standard Model particle content) that the effec-
tive Higgs potential coupling constant λ becomes negative at
around 1011 GeV [23], which is lower than the expected
scale of inflation. It means that the SM has to be extended by
new particles and new physics.

It is still possible that inflaton is neither Starobinsky
scalaron nor Higgs field, but a mixture of them. This pos-
sibility leads to a two-field inflation also. Another motiva-
tion to study the Starobinsky-like two-field inflation comes
from 4D, N = 1 supergravity with chiral matter superfields,
where inflaton is automatically extended to a complex field
as the leading bosonic field component of an N = 1 scalar
supermultiplet. For example, as demonstrated in Ref. [17],
a generic N = 1 supergravity extension of the simplest
Starobinsky model (1.1) leads to the non-minimal couplings
of the Higgs field to both R and R2 gravity terms. It is com-
monplace in string cosmology that the inflaton is mixed with
other scalars (moduli), so that a stabilization of the latter is
required for inflation.

Our paper is organized as follows. In Sect. 2 we define the
new class of two-field inflationary models as a combination
(and a generalization) of Eqs. (1.1) and (1.4), and rewrite
them to the more standard (dual) form. Those inflation-
ary models interpolate between the Starobinsky and Higgs
(single-field) inflationary models, and they can accommo-
date a broader range of values for the tensor-to-scalar ratio.
In Sect. 3 we set up the equations of motion, and classify our
model against the other two-field inflationary models studied
in the literature. In Sect. 4 we focus on the particular case
by dropping the Higgs part of the scalar potential. In Sect. 5
we summarize our numerical findings in the special two-field
model of the Starobinsky-like inflation. Section 6 is our Con-
clusion. The technical details as regards linear perturbations,
their spectra, and their evolution are collected in Appendix A.

2 Starobinsky- and Higgs-inspired two-field inflation
models

Our new inflationary model (in Jordan frame) of a real scalar
field φ non-minimally coupled to the Starobinsky (R + R2)

gravity is given by

(−g)−1/2L = −1

2
f 2(φ)R + 1

12M2(φ)
R2

+1

2
gμν∂μφ∂νφ − V (φ). (2.1)

Its non-minimal couplings are described by two generic func-
tions f (φ) and M(φ) in place of the constant parameters MPl

and M of the original Starobinsky model (1.1).1

1 More general couplings, including an arbitrary function of φ and R,
were considered in Ref. [24].

Both functions enter the Lagrangian (2.1) via their
squares, in order to avoid ghosts. It is worth mentioning that
both non-minimal couplings are required by renormalization
of the (R + R2) gravity coupled to matter. In other words,
we just replaced the parameters of the Starobinsky (R+ R2)

gravity by functions of a (Higgs) scalar field φ.
Should the scalar field φ be stabilized by its scalar poten-

tial V (φ) to some vacuum expectation value φ0, our model
reduces to the standard Starobinsky model (Sect. 1). Should
the M2(φ) be sent to infinity, the Higgs inflationary setup is
recovered.

In the case of the truly Higgs field φ, its scalar potential
takes the form

VH(φ) = λ

4

(
φ2 − v2

)2
(2.2)

in terms of the coupling constants λ > 0 and v = 〈φ〉0 ≡ φ0.
Thus, the model (2.1) describes all the quintessence mod-

els with a non-minimal coupling to R (like the Higgs infla-
tion) and the R + R2 gravity model of Starobinsky (1.1) as
the particular cases. A non-minimal coupling to the R2 term
is our new feature when M(φ) is truly field-dependent.

In order to understand the physical significance of our
model, and put it under the standard treatment in theoretical
cosmology (in Einstein frame), let us replace the R2 by the
2χR − χ2 in Eq. (2.1), where the new scalar χ has been
introduced as follows:

(−g)−1/2L = −1

2

(
f 2
1 − 1

3M2 χ

)
R − 1

12M2 χ2

+1

2
gμν∂μφ∂νφ − VH(φ). (2.3)

It is easy to check that it is classically equivalent to the origi-
nal model (2.1) because the equation of motion of the χ field
is algebraic, and its solution reads χ = R.

Introducing the notation

A(φ, χ) = f 2
1 (φ) − 1

3M2(φ)
χ (2.4)

allows us to rewrite Eq. (2.3) to the Brans–Dicke-type form

(−g)−1/2L = −1

2
AR− 1

12M2 χ2 + 1

2
gμν∂μφ∂νφ−VH(φ).

(2.5)

When assuming positivity of A (to avoid ghosts), i.e.

f 2
1 (φ) >

1

3M2 χ, (2.6)

the Weyl transformation of metric, gμν → A(φ, χ)gμν ,
gives rise to the standard (Einstein–Hilbert) term for gravity
in the classically equivalent (dual) Lagrangian,
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(−g)−1/2L = −1

2
R + 3

4A2 g
μν∂μA∂ν A + 1

2A
gμν∂μφ∂νφ

− 1

12M2 χ2 − A2VH(φ), (2.7)

where we have used the Einstein-frame metric and have
ignored an additive total derivative. Hence, our model takes
the form of the non-linear sigma model (NLSM) [25]

(−g)−1/2L = −1

2
R+ 1

2
gμνGi j (φ, χ)∂μφi∂νφ j −V (φ, χ),

(2.8)

having the NLSM metric (i, j = 1, 2, the primes denote the
derivatives with respect to φ)

Gi j = 1

A2

(
3
2

(
2 f1 f ′

1 + 2
3 M

−3M ′χ
)2 + A −M−2

(
f1 f ′

1 + 1
3 M

−3M ′χ
)

−M−2
(
f1 f ′

1 + 1
3 M

−3M ′χ
) 3

2

( 1
3 M

−2
)2

)
(2.9)

in terms of the two scalars φ1,2 = (φ, χ), minimally coupled
to gravity in the physical (Einstein) frame, and having the
scalar potential

V (φ, χ) = 1

12M2 χ2 + A2VH(φ). (2.10)

The NLSM kinetic terms have no ghosts under the condi-
tion (2.6) because

det Gi j = 1

6M4A3 . (2.11)

The NLSM in Eqs. (2.8) and (2.9) can be further simplified
by considering A as the new independent scalar field (instead
of χ ) and doing the field redefinition

A = exp

(√
2

3
ρ

)
, (2.12)

which leads to the canonical kinetic term of the scalar field
ρ. We find

(−g)−1/2L = −1

2
R + 1

2
gμν∂μρ∂νρ + 1

2
exp

(
−

√
2

3
ρ

)
gμν∂μφ∂νφ

−3

4
M2(φ)

[
f 2(φ) − exp

(√
2

3
ρ

)]2

− exp

(
2

√
2

3
ρ

)
VH(φ).

(2.13)

Hence, the full scalar potential V (φ, ρ) is given by

V (φ, ρ) = 3

4
M2(φ)

{
f 2(φ) − exp

(√
2

3
ρ

)}2

+ exp

(
2

√
2

3
ρ

)
VH(φ).

(2.14)

The first term of the scalar potential has a flat direction
along

ρ =
√

3

2
ln f 2(φ), (2.15)

while the second term in the case (2.2) has the absolute min-
imum at φ = v. Therefore, along the flat direction (2.15),
the full scalar potential (2.14) has the absolute minimum at
φ = v in the Minkowski vacuum. Moreover, along the flat
direction (2.15), our model reduces to a single-field model
having the scalar potentialV (φ) in terms of the non-canonical
scalar φ. The latter can be traded for a canonical scalar by a
field redefinition, similarly to that of Eq. (1.7).

We would like to emphasize that the discovered existence
of a flat direction is automatic in the class of models under
consideration, and it does not require supersymmetry. In a
generic solution, two scalar fields φ and ρ are going to evolve
toward the flat direction.

In order to make our model to be more specific and treat-
able for numerical calculations, in the following we eliminate
the functional freedom above by choosing

f 2(φ) = 1 + αφ2 and M2(φ) = M2(1 + βφ2) (2.16)

with some (non-negative) coupling constants α, β, and M .
The choice (2.16) is also motivated by renormalizability.

Though each of the quantum field theories (2.1) and (2.13)
is not renormalizable as a theory of quantum gravity, it still
makes sense to demand the (limited) renormalizability of the
quantized scalar sector in a classical (curved) gravitational
background. Then the non-minimal couplings (2.16) natu-
rally arise with the renormalization counterterms [26,27].
The Higgs potential (2.2) also fits the limited renormaliz-
ability requirement.

The field theory (2.13) has two real scalars (ρ, φ) mini-
mally coupled to the Einstein gravity and having the scalar
potential (2.14). The kinetic term of the ρ scalar is canoni-
cally normalized, whereas the canonical term of the φ scalar
has the ρ-dependent factor. In the next sections we study
two-field inflation in those models.

3 Classification of our model against the literature

Though our model (2.13) has the non-canonical kinetic term
of φ, it falls into the class of the two-field inflationary models
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studied, e.g., in Ref. [28] in the slow-roll approximation and
having the action

S =
∫

d4x
√−g

×
[
−1

2
R+ 1

2
(∂μρ)(∂μρ)+ e2b(ρ)

2
(∂μφ)(∂μφ) − V (ρ, φ)

]
.

(3.1)

As regards cosmological perturbations, their spectra and
evolution in the theory (3.1), we employ the results of
Refs. [28–32] in the linear approximation with respect to
the slow-roll parameters. To make our paper self-contained
and complete, a derivation of the relevant equations is sum-
marized in Appendix A. Those results are used in Sect. 5 for
our numerical analysis.

3.1 Equations of motion

When assuming a spatially flat Friedmann–Lemaître–Robert-
son–Walker (FLRW) Universe with the metric

ds2 = dt2 − a(t)2dx2, (3.2)

the field equations in the theory (3.1) take the form

ρ̈ + 3H ρ̇ + V,ρ = b,ρe2bφ̇2, (3.3)

φ̈ + (3H + 2b,ρ ρ̇)φ̇ + e−2bV,φ = 0, (3.4)

H2 = 1

3

[
1

2
ρ̇2 + 1

2
e2bφ̇2 + V

]
, (3.5)

Ḣ = −1

2

[
ρ̇2 + e2bφ̇2

]
, (3.6)

where the dots stand for the time derivatives, the subscripts
after the comma denote the derivatives with respect to the
fields, and H = ȧ/a is the Hubble function.

In two-field inflation the slow-roll parameters form 2 × 2
matrices, (I, J = (ρ, φ) = 1, 2),

εI J ≡
(

ερρ ερφ

ερφ εφφ

)
and ηI J ≡

(
ηρρ ηρφ

ηρφ ηφφ

)
, (3.7)

whose entries are given by

ερρ = ρ̇2

2H2 , ερφ = eb
ρ̇φ̇

2H2 , εφφ = e2b φ̇2

2H2 , (3.8)

ηI J = V,I J

3H2 , (3.9)

ε ≡ ερρ + εφφ = − Ḣ

H2 . (3.10)

In the case (3.1) one finds

εI J = 1

2H2

(
ρ̇2 ebρ̇φ

ebρ̇φ e2bφ̇2

)
(3.11)

and

ηI J = 1

3H2

(
V,ρρ V,ρφ

V,ρφ V,φφ

)
. (3.12)

3.2 Correspondence of our model to the literature

In our case (2.13), we have to specify above that

b(ρ) = −1

2

√
2

3
ρ, b,ρ = −1

2

√
2

3
, b,ρρ = 0, (3.13)

as well as

V,ρ =
√

3

2
M2exp

(√
2

3
ρ

) [
exp

(√
2

3
ρ

)
− f 2

]
, (3.14)

V,φ = 3

2
MM,φ

×
[
f 2−exp

(√
2

3
ρ

)]2

+ 3

2
M2 f,φ

[
2 f 3−2 f exp

(√
2

3
ρ

)]
+(VH)φ,

(3.15)

and

V,ρρ = M2exp

(√
2

3
ρ

) [
2exp

(√
2

3
ρ

)
− f 2

]
, (3.16)

V,ρφ = √
6Mexp

(√
2

3
ρ

) [
M,φ

{
exp

(√
2

3
ρ

)
− f 2

}
−M f f,φ

]
,

(3.17)

V,φφ = 3

2

(
M2

,φ + MM,φφ

) [
f 2 − exp

(√
2

3
ρ

)]2

+ 3

2

(
4MM,φ f,φ + M2 f,φφ

) [
2 f 3 − 2 f exp

(√
2

3
ρ

)]

+ 3

2
M2 f 2

,φ

[
6 f 2 − 2exp

(√
2

3
ρ

)]
+ (VH),φφ, (3.18)

where we have used the scalar potential (2.14).
The equations of motion for cosmological perturbations

are given by Eqs. (7.25) and (7.26), whose “coefficients” are
listed in Eqs. (7.27), (7.28), (7.29), and (7.30) of Appendix A.
Therefore (see Appendix A again), the perturbation (power)
spectra are given by Eqs. (7.68), (7.69), and (7.70) at the
horizon crossing, and by Eqs. (7.79), (7.80), and (7.81) on
super-Hubble scales, with

ξ = −
√

ε

3
. (3.19)
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4 Special case with VH = 0

A simple two-field inflationary model of the same type as
defined in our Eq. (2.1), though with a mass term instead of
the Higgs scalar potential and without non-minimal interac-
tions to R or R2, was considered in Ref. [32]. It was found by
numerical calculations in Ref. [32] that the Starobinsky infla-
tion is robust against that extension for a certain range of the
ratio of two scalar masses. The model of Ref. [32] is in good
agreement with the Planck data [13]. Multi-field dynamics
of Higgs inflation in the presence of non-minimal couplings
was analyzed in Ref. [33] where it was found that it is also
in very good agreement with the Planck measurements.

In what follows, we restrict ourselves to the different case
with VH = 0 (or in the limit λ → 0), when the functions
f (φ) and M(φ) are given by Eq. (2.16), for simplicity. Then
the scalar potential reads

V (φ, ρ) = 3

4
M2

(
1 + βφ2

)

×
[(

1 + αφ2
)

− exp

(√
2

3
ρ

)]2

. (4.1)

The slow-roll matrices take the form

εI J = 1

2H2

⎛
⎝ ρ̇2 e− 1

2

√
2
3 ρ

ρ̇φ̇

e− 1
2

√
2
3 ρ

ρ̇φ̇ e−
√

2
3 ρ

φ̇2

⎞
⎠ , (4.2)

whereas the ηI J is the same as that in Eq. (3.12) with

M−2V,ρρ =
(

1 + βφ2
)

exp

(√
2

3
ρ

)

×
[

2 exp

(√
2

3
ρ

)
− (1 + αφ2)

]
, (4.3)

M−2V,ρφ = √
6βφ exp

(√
2

3
ρ

) [
exp

(√
2

3
ρ

)
−

(
1 + αφ2

)]

−√
6αφ

(
1 + βφ2

)
exp

(√
2

3
ρ

)
, (4.4)

M−2V,φφ = 3

2
β

[(
1 + αφ2) − exp

(√
2

3
ρ

)]2

+ 12αβφ2 (
1 + αφ2) + 3α

(
1 + αφ2) (

1 + βφ2) − 3α2φ2 (
1 + βφ2)

− 12αβφ2 exp

(√
2

3
ρ

)
− 3α

(
1 + βφ2) exp

(√
2

3
ρ

)

+ 3α2φ2 (
1 + αφ2)−1 (

1 + βφ2) exp

(√
2

3
ρ

)

+ 9α2φ2 (
1 + βφ2) − 3α2φ2 (

1 + αφ2)−1 (
1 + βφ2) exp

(√
2

3
ρ

)
.

(4.5)

In particular, the Hubble function squared of Eq. (3.5)
reads

H2 = 1

6
ρ̇2 + 1

6
e−

√
2
3 ρ

φ̇2 + 1

4

(
1 + βφ2

)

×
[
(1 + αφ2) − exp

(√
2

3
ρ

)]2

. (4.6)

5 Numerical results

The two-field scalar potential (4.1) is semi-positively defi-
nite. It reduces to the Starobinsky scalar potential (1.3) at a
fixed (or stabilized) φ, and to a power-law scalar potential
V/M2 (as a sum of the α2φ4 and the α2βφ6 terms) at a fixed
(or stabilized) ρ.

The shape of the Starobinsky scalar potential atα = β = 0
is given in Fig. 1. In that case the scalar potential does not
depend upon φ at all. The one-dimensional deformations of
the scalar potential in the α- and β-directions are given by
Fig. 2a, b, respectively.

The deformed scalar potential in the β-direction (Fig. 2a)
at α = 0 essentially amounts to rescaling the M2 to the
M2(1+βφ2), though the effect of stabilization of φ is already
visible in Fig. 2a. A change of the parameter β at α = 0
merely affects the amplitude of CMB fluctuations that fixes
the effective scalaron mass, Meff = (3.0×10−6)( 50

Ne
). Hence,

the Starobinsky inflationary pattern is very robust against
changes of β as long as βφ2 � 1 or, simply, when β is much
less than 1. The situation does not significantly change under
small finite values of the parameter 0 < α � 1, as is illus-
trated by Fig. 2b. When either α, or β, or both, grow well
beyond 1, the field φ is quickly stabilized, as is illustrated by
Fig. 3a, b. However, our numerical calculations show that the
inflation becomes not viable by failing to get the observed
value of the spectral (scalar) index ns . Therefore, in the fol-
lowing, we assume that both α and β are well below 1.

Fig. 1 The scalar potential V/M2 of the Starobinsky model at α = 0
and β = 0. It serves as the starting point for deformations in the moduli
space (α, β)
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Fig. 2 a The scalar potential V/M2 at α = 0 and β = 1. b The scalar potential V/M2 at α = 0.01 and β = 0

Fig. 3 a The scalar potential V/M2 at α = 1 and β = 1000. b The scalar potential V/M2 at α = 100 and β = 10

Fig. 4 The scalar potential V/M2 at α = 0.01 and β = 0.001

As our primary example, we investigate the viable infla-
tionary model specified by the parameters α = 0.01 and
β = 0.001 in more detail below. The profile of its scalar
potential is given in Fig. 4.

The (time) running of the slow-roll parameters ε and η in
our special example is given by Fig. 5a, b, respectively. The
spectral scalar index at the pivot scale is given by ns = 0.96±
0.01. As to the tensor-to-scalar ratio r , we get r = 0.056 ±

0.003. The spectral scalar index running αs ≡ dns/d ln k is
|αs | < 0.05 in all our models.

To get those results, we used numerical solutions to the
background equations of motion, whose graphs are given by
Fig. 6a, b, for the fields ρ and φ, respectively.

Our numerical calculations in this section support the
qualitative conclusion that the Starobinsky inflation is robust
against the field dependence in the non-minimal functions
f (φ) and M(φ), as long as the non-minimal coefficients α

and β are much less than 1. In other words, the Starobinsky
inflation is stable against small deformations of the non-
minimal couplings as long as those deformations are much
less than of the order 1 (in Planck units). In the case of large
deformations, inflation persists but is not viable.

We also found that at the end of inflation the scalaron
field ρ oscillates near its minimum and thus contributes to
(pre)heating, whereas the (matter) scalar field φ does not,
approaching a constant value. It can be already seen in Fig. 6a,
b, but it is much better illustrated by our numerical findings
in Fig. 7a, b. Actually, the field φ starts oscillating and thus
contributing to the reheating only when the parameter α is
much larger than 1, however, it does not lead to a viable
inflation.
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Fig. 5 a The running slow-roll parameter ε at α = 0.01 and β = 0.001. b The running slow-roll parameter η at α = 0.01 and β = 0.001

Fig. 6 a The running of ρ at α = 0.01 and β = 0.001. b The running of φ at α = 0.01 and β = 0.001

The profile of the ρ-solution does not significantly change
under varying parameters α and β. The behavior of the φ

scalar during slow-roll and after is more sensitive to the val-
ues of the parameters α and β. In all cases we observe stabi-
lization of φ after slow roll, as long as one of the parameters α

or β is positive. It gives another manifestation of the robust-
ness of the Starobinsky inflation against small changes of the
parameters α and β.

Finally, the numerical solutions to the perturbation equa-
tions for fluctuations δρ and δφ on the background speci-
fied by Fig. 6, in our primary example with the parameters
α = 0.01 and β = 0.001, are presented in Fig. 8.

6 Conclusion

We found that the Starobinsky inflation is robust against mix-
ing scalaron with another (matter) scalar via non-minimal
interactions of the latter with both R and R2 terms in the
original (Jordan) frame, as long as the non-minimal field cou-
plings are much smaller than one (in the Planck units). The
non-minimal couplings were introduced by promoting the
parameters of the original Starobinsky model to the (mat-
ter scalar) field-dependent functions, under the additional

restriction of renormalizability of matter in the classical grav-
itational background.

We confirmed numerically that the inflationary trajec-
tory in our two-field inflationary models remains close to
the single-field attractor solution in the original Starobinsky
model [1] under adding small non-minimal couplings to the
R and R2 terms in Eq. (2.1). Our main statement is reflected
in the title of our paper by calling our two-field inflation-
ary models the Starobinsky-like ones. Though our numerical
solutions to the dynamical equations (Sect. 5) were obtained
by using some initial conditions for inflation, we found that
the dependence of our solutions upon small changes in the
initial conditions is weak and rather unimportant. It is related
to the facts that (1) our numerical solutions also exhibit an
attractor-type behavior (see e.g., Refs. [36,37] for more), and
(2) our scalar potentials do not have ridges that are generi-
cally present in multi-field inflation caused by non-minimal
couplings and whose presence leads to strong dependence
upon the initial conditions at the onset of inflation [38].

The two-field Starobinsky-like inflation becomes not
viable when any of the non-minimal parameters is of the
order one or larger. Our results are complementary to the
findings of Ref. [32] where the robustness of the Starobinsky
inflation was established in another two-field Starobinsky-
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Fig. 7 a The typical behavior of the scalar field ρ near its minimum after inflation. b The typical behavior of the scalar φ near its minimum after
inflation

Fig. 8 a The behavior of δρ. b The behavior of δφ

like limit with α = β = 0 and a non-vanishing mass term of
the matter scalar.

The main difference of our two-field inflationary models
against the single-field Starobinsky model is the presence
of isocurvature perturbations. However, those perturbations
turn out to be very small and (currently) undetectable. As was
argued in Ref. [39], significant isocurvature perturbations
in generic multi-field inflationary models with non-minimal
couplings may account for the observed low power in the
CMB angular power spectrum of temperature anisotropies at
low multipoles [40]. However, in our models the isocurvature
perturbations are not amplified enough to be the reason for
that observation.

Though we did not investigate primordial non-Gaussianities
in our Starobinsky-like two-field inflationary models, we
expect them to be negligible, like the original (single-field)
Starobinsky model.

The field-dependent couplings are quite natural from the
viewpoint of string theory where all coupling constants are
given by expectation values of scalar fields. As regards the

physical meaning of our two scalars from the viewpoint of
string theory, it is conceivable that scalaron is related to string
theory dilaton, whereas another (matter) scalar is given by
one of the moduli arising from superstring compactification.
A detailed investigation of the possible connection of our
models to string theory is beyond the scope of this paper.
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Appendix A: cosmological perturbations, their power
spectra and evolution at the horizon and super-Hubble
scales

Linear perturbations

The standard form of scalar-perturbed spacetime metric in
the longitudinal gauge (when the off-diagonal spatial com-
ponents of the stress-energy tensor vanish) is given by

ds2 = (1 + 2�)dt2 − a2(1 − 2�)dx2. (7.1)

One can decompose the scalar fields into their back-
grounds and perturbations as follows:

ρ(t, x) = ρ(t) + δρ(t, x), (7.2)

φ(t, x) = φ(t) + δφ(t, x). (7.3)

The Fourier components of the perturbations are denoted
by δρk(t) and δφk(t), respectively. When omitting the sub-
script k for simplicity, as is common in the literature, the
perturbed Klein–Gordon equations of motion read

δ̈ρ + 3H δ̇ρ +
[
k2

a2 + V,ρρ − (b,ρρ + 2b2
,ρ)φ̇2e2b

]
δρ

+V,ρφδφ − 2b,ρe2bφ̇ ˙δφ = 4ρ̇�̇ − 2V,ρ�, (7.4)

¨δφ + (3H + 2b,ρ) ˙δφ +
[
k2

a2 + e−2bV,φφ

]
δφ + 2b,ρ φ̇δ̇ρ

+
[
e−2b(V,φρ − 2b,ρV,φ) + 2b,ρρρ̇φ̇

]
δρ

= 4φ̇�̇ − 2e−2bV,φ�. (7.5)

The Einstein equations lead to the energy and momentum
constraints as follows:

3H
(
�̇ + H�

) + Ḣ� + k2

a2 �

= −1

2

(
ρ̇δ̇ρ + e2bφ̇ ˙δφ + b,φe2bφ̇2δρ + V,ρδρ + V,φδφ

)
,

(7.6)

�̇ + Hφ = 1

2

(
ρ̇δρ + e2bφ̇δφ

)
. (7.7)

In terms of the Mukhanov–Sasaki (MS) variables [34],

Qρ ≡ δρ + ρ̇

H
� and Qφ ≡ δφ + φ̇

H
�, (7.8)

the perturbed Klein–Gordon equations take the form

Q̈ρ+3H Q̇ρ−2e2bb,ρ φ̇ Q̇φ+
(
k2

a2 +Cρρ

)
Qρ+CρφQφ =0,

(7.9)

Q̈φ + 3H Q̇φ + 2b,ρ ρ̇ Q̇φ + 2b,ρ φ̇ Q̇ρ

+
(
k2

a2 + Cφφ

)
Qφ + CφρQρ = 0, (7.10)

where the background equations and the energy-momentum
constraints above have been used in the notation [28],

Cρρ = −2e2bb2
,ρ φ̇2 + 3ρ̇2 − e2bρ̇2φ̇2

2H2 − ρ̇4

2H2 − e2bb,ρρ φ̇2

+ 2V,ρ

H
+ V,ρρ, (7.11)

Cρφ = 3e2bρ̇φ̇ − e4bρ̇φ̇3

2H2 − e2bρ̇3φ̇

2H2 + ρ̇V,φ

H
+ e2bφ̇V,ρ

H
+ V,ρφ,

(7.12)

Cφφ = 3e2bφ̇2 − e4bφ̇4

2H2 − e2bρ̇2φ̇2

2H2 + 2φ̇V,φ

H
+ e−2bV,φφ,

(7.13)

Cφρ = 3ρ̇φ̇ − e2bρ̇φ̇3

2H2 − ρ̇3φ̇

2H2 + 2b,ρρ ρ̇φ̇ − 2e−2bb,ρV,φ

+ e−2bρ̇V,φ

H
+ φ̇V,ρ

H
+ e−2bV,ρφ. (7.14)

Adiabatic and entropy perturbations

It is common in the literature to decompose cosmological
linear scalar perturbations into two directions that are either
parallel or orthogonal to the trajectory in the field space [34].
The first type of perturbations is called curvature (or adia-
batic) perturbations, whereas the second type is called isocur-
vature (or entropy) perturbations, respectively. It can be done
by introducing the linear combinations (they do not refer to
new scalar fields)

δσ ≡ cos θδρ+sin θebδφ and δs ≡ − sin θδρ+cos θebδφ,

(7.15)

where we have used the notation

cos θ ≡ ρ̇

σ̇
, sin θ ≡ φ̇eb

σ̇
, σ̇ ≡

√
ρ̇2 + e2bφ̇2. (7.16)

The corresponding MS variables Qσ ≡ δσ + σ̇
H � are

given by the linear combinations

Qσ ≡cos θ Qρ+sin θ ebQφ, δs≡− sin θ Qρ+cos θ ebQφ.

(7.17)

The gauge-invariant quantity, known as the co-moving cur-
vature perturbation [34], reads in terms of Qσ follows:

R ≡ H

σ̇
Qσ , (7.18)
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while the renormalized entropy (isocurvature) perturbation
[34] is given by

S ≡ H

σ̇
δs. (7.19)

In terms of the adiabatic and entropy “vectors” in field
space, defined by [28]

E I
σ = (cos θ, e−b sin θ), E I

s = (− sin θ, e−b cos θ),

I = {ρ, φ} , (7.20)

the corresponding first order derivatives are

Vσ = E I
σV,I , Vs = E I

s V,I , (7.21)

and the second order derivatives are

Vσσ = E I
σ E

J
σ V,I J , Vσ s = E I

σ E
J
s V,I J , Vss =E I

s E
J
s V,I J .

(7.22)

Given the notation above, the background equations of
motion in the adiabatic and entropy directions are

σ̈ + 3H σ̇ + Vσ = 0, (7.23)

θ̇ = −Vs
σ̇

− b,ρ σ̇ sin θ, (7.24)

respectively. The equations of motion for the perturbations
are given by

Q̈σ + 3H Q̇σ +
(
k2

a2 + Cσσ

)
Qσ + 2Vs

σ̇
δ̇s + Cσ sδs = 0,

(7.25)

δ̈s + 3H δ̇s +
(
k2

a2 + Css

)
δs − 2Vs

σ̇
Q̇σ + Csσ Qσ = 0,

(7.26)

where we have again used the notation [28]

Cσσ = Vσσ −
(
Vs
σ̇

)2

+ 2σVσ

H
+ 3σ̇ 2 − σ̇ 4

2H2 − b,ρ

×
(
s2
θ cθVσ + (c2

θ + 1)sθVs
)

, (7.27)

Cσ s = 6HVs
σ̇

+ 2VσVs
σ̇ 2 + 2Vσ s + σ̇Vs

H

+2bρ

(
s3
θVσ − c3

θVs
)

, (7.28)

Css = Vss −
(
Vs
σ̇

)2

+ b,ρ(1 + s2
θ )cθVσ

+b,ρc
2
θ sθVs − σ̇ 2(b,ρρ + b2

,ρ), (7.29)

Csσ = −6HVs
σ̇

− 2VσVs
σ̇ 2 + σ̇Vs

H
, (7.30)

with sθ and cθ standing for the sin θ and cos θ , respectively.

Perturbation spectra

We are now in a position to study the perturbation spectra of
the two-field inflation and evolution of its perturbations. The
power spectra of the adiabatic and entropy perturbations are
given by the correlation functions [28]

〈
Q∗

σk
Qσk′

〉 = 2π2

k3 PQσ (k)δ(k − k′), (7.31)

〈
δs∗

kδsk′
〉 = 2π2

k3 Pδs(k)δ(k − k′), (7.32)

〈
Q∗

σk
δsk′

〉 = 2π2

k3 CQσ δs(k)δ(k − k′). (7.33)

The cosmologically important scales are given by (1) the
horizon crossing (inside the Hubble scale) and (2) the scales
over the Hubble scale, so that it is natural to evaluate the
correlation functions at those scales, along the standard pro-
cedure [28].

Evolution of perturbations at the horizon crossing

In terms of the conformal time τ = ∫ 1
a(t)dt and the new

variables

uσ = aQσ , us = aδs, (7.34)

Eqs. (7.25) and (7.26) can be rewritten

u′′
σ + 2Vs

σ̇
au′

s +
[
k2 − a′′

a
+ a2Cσσ

]
uσ

+
[
−2Vs

σ̇
a′ + a2Cσ s

]
us = 0, (7.35)

u′′
s − 2Vs

σ̇
au′

σ +
[
k2 − a′′

a
+ a2Css

]
us

+
[

2Vs
σ̇

a′ + a2Csσ

]
uσ = 0, (7.36)

where the primes denote the derivative with respect to the
conformal time τ .

In the slow-roll approximation these equations can be fur-
ther simplified as

[(
d2

dτ 2 + k2 − 2 + 3ε

τ 2

)
1 + 2E

1

τ

d

dτ
+ M

1

τ 2

] (
uσ

us

)
=0,

(7.37)

with the notation

E =
(

0 −ησ s

ησ s 0

)
+

(
0 ξs3

θ

−ξs3
θ 0

)
, (7.38)

M=
(−6ε + 3ησσ 4ησ s

2ησ s 3ηss

)
+

(
3ξs2

θ cθ −4ξs3
θ

−2ξs3
θ −3ξcθ (1 + s2

θ )

)
,

(7.39)
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and

ξ ≡ √
2b,ρ

√
ε. (7.40)

In Eqs. (7.38) and (7.39) we kept only the linear terms
with respect to b,ρ because it is suppressed by the MPl and
b,ρρ = 0 in our case (2.13). The terms proportional to ξ are
written down separately, in order to emphasize the differ-
ence between the canonical and non-canonical kinetic terms.
According to Ref. [28], it is convenient to introduce L and
Q by

2L = 2E
τ

, Q =
(
k2 − 2 + 3ε

τ 2

)
1 + M

τ 2 , (7.41)

and then rewrite Eq. (7.37) in the standard (in mathematical
physics) form

u′′ + 2Lu′ + Qu = 0. (7.42)

As the next step, again following Ref. [28], let us introduce
the time-dependent matrixR which satisfiesR′ = −LR, and
the new vector v defined by u = Rv. Then the equation above
can be resolved for v as

v′′ + R−1
(
−L2 − L′ + Q

)
Rv = 0, (7.43)

where

−L2 − L′ � 1

τ 2 E (7.44)

in the linear order with respect to the slow-roll parameters.
It follows

−L2 −L′ +Q �
(
k2 − 2 + 3ε

τ 2

)
1+ 1

τ 2 (E + M) , (7.45)

where the second term reads

1

τ2 (E + M) = 3

τ2

( −2ε + ησσ + ξs2
θ cθ ησ s − ξs3

θ
ησ s − ξs3

θ ηss − ξcθ (1 + s2
θ )

)
.

(7.46)

It is usually assumed in the literature that the slow-roll
parameters vary slowly enough during the few e-folds when
the inflationary scale crosses the Hubble radius. In that case,
one can replace the time-dependent matrix with its value at
the Hubble crossing. In other words, the matrix on the r.h.s.
of Eq. (7.46) is supposed to be evaluated at k = aH , so
that the remaining time dependence only exists in the overall
coefficient 3/τ 2. Then one can always diagonalize this matrix
by using a time-independent rotation matrix,

R̃∗ =
(

cos �∗ − sin �∗
sin �∗ cos �∗

)
, (7.47)

so that

R̃∗
−1

(E + M) R̃∗ = Diag
(
λ̃1, λ̃2

)
, (7.48)

where the star subscript refers to the horizon crossing.
Since R varies slowly around the Hubble crossing, one

can replace R by R∗. When using the notation [28]

λ̃1 + λ̃2 = 3 (ησσ + ηss − 2ε − ξcθ ) , (7.49)

(λ̃1 − λ̃2) sin 2�∗ = 6
(
ησ s − ξs3

θ

)
, (7.50)

(λ̃1 − λ̃2) cos 2�∗ = 3
(
ησσ − ηss − 2ε + ξcθ (1 + 2s2

θ )
)

,

(7.51)

at k = aH , and

w = R̃
−1
∗ R∗v, (7.52)

and one can also rewrite Eq. (7.42) as

w′′
A +

[
k2 − 1

τ 2 (2 + 3λA)

]
wA = 0 (A = 1, 2), (7.53)

with

λA = ε − 1

3
λ̃A. (7.54)

The solution to Eq. (7.53) with the proper asymptotic
behavior reads [28]

wA =
√

π

2
exp

(
i(μA + 1

2 )π

2

) √−τH (1)
μA

(−kτ)eA(k)

(7.55)

in terms of the Hankel function H (1)
μ of the first kind and of

the order μA, where [28]

μA =
√

9

4
+ 3λA, (7.56)

and eA, A = 1, 2, are the independent orthonormal (Gaus-
sian) random variables,

〈eA(k)〉 = 0,
〈
eA(k)e∗

B(k′)
〉 = δABδ(3)(k − k′). (7.57)

Because of the independence of w1 and w2, the corre-
lations of uσ and us around the Hubble crossing can be
expressed in terms of Qσ and δs as
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a2
〈
Q†

σ Qσ

〉
= cos2 �∗

〈
w

†
1w1

〉
+ sin2 �∗

〈
w

†
2w2

〉
, (7.58)

a2
〈
δs†δs

〉
= sin2 �∗

〈
w

†
1w1

〉
+ cos2 �∗

〈
w

†
2w2

〉
, (7.59)

a2
〈
δs†Qσ

〉
= 1

2
sin 2�∗

(〈
w

†
1w1

〉
−

〈
w

†
2w2

〉)
, (7.60)

where we have

〈
w

†
AwA

〉
= π

4
(−τ)

∣∣∣H (1)
μA

(−kτ)

∣∣∣2 ≡ 1

2k

1

(kτ)2 GA(−kτ).

(7.61)

Therefore, after taking into account that

a � −1 + ε∗
H∗τ

, (7.62)

one finds [28]

PQσ =
(
H∗
2π

)2

(1 − 2ε∗)
[
cos2 �∗G1(−kτ) + sin2 �∗G2(−kτ)

]
,

(7.63)

Pδs =
(
H∗
2π

)2

(1 − 2ε∗)
[
sin2 �∗G1(−kτ) + cos2 �∗G2(−kτ)

]
,

(7.64)

CQσ δs =
(
H∗
2π

)2

(1 − 2ε∗)
sin 2�∗

2
[G1(−kτ) − G2(−kτ)] .

(7.65)

Given λA � 1, i.e. μA � 3
2 +λA, one can further simplify

the result above, by expanding GA(x) as follows:

GA(x) = π

2
x3

∣∣∣H 3
2
(x)

∣∣∣2
(1 + 2λAg(x))

= (1 + x2)(1 + 2λAg(x)), (7.66)

where the new function has been introduced,

g(x) = Re

⎛
⎝ 1

H (1)
3
2

(x)

dH (1)
μ (x)

dμ

∣∣∣∣∣
μ= 3

2

⎞
⎠ . (7.67)

It follows that the power spectra and the correlations of
curvature and entropy perturbations are

PR =
(

H2∗
2πσ̇∗

)
(1 + k2τ 2)

×
[

1 + 2ε∗ + (6ε∗ − 2ησσ∗ − 2ξ∗s2
θ cθ )g

(
k

aH∗

)]
,

(7.68)

PS =
(

H2∗
2πσ̇∗

)2

(1 + k2τ 2)

×
[

1 − 2ε∗ + (2ε∗ − 2ηss∗ + 2ξ∗(1 + s2
θ∗)cθ∗)g

(
k

aH∗

)]
,

(7.69)

CRS =
(

H2∗
2πσ̇∗

)2

(1 + k2τ 2)(2ξ∗s3
θ − 2ησ s∗)g

(
k

aH∗

)
.

(7.70)

Evolution of perturbations on super-Hubble scales

A two-field inflationary model is reduced to a single-field
inflationary model when the isocurvature perturbations are
suppressed. Then the adiabatic spectrum takes the form

P SH
R (k) � H4

4πσ̇
. (7.71)

However, it does not apply to our model (Sect. 2) in a generic
case where it does not reduce to the Higgs or the Starobinsky
(single-field) inflationary model.

The existence of the isocurvature modes is a generic fea-
ture of two-field inflationary models, and it is going to affect
adiabatic perturbations also during the super-Hubble scale
evolution, so that Eq. (7.71) does not apply, in general. To
get the power spectra and the correlation functions in that
case, one should solve the coupled system of Eqs. (7.25) and
(7.26). A numerical approach is the only way in most cases.

However, in some special cases, when the slow-roll
approximation is at work, one may analytically solve the
equations of motion on the super-Hubble scales too. The
example considered in Ref. [28] was Eqs. (7.25) and (7.26)
in the slow-roll approximation,

Q̇σ � AHQσ + BHδs and δ̇s � DHδs, (7.72)

where

A = −ησσ + 2ε − ξcθ s
2
θ , (7.73)

B = −2ησ s + 2ξs3
θ � 2

dθ

dN
− 2ξsθ , (7.74)

D = −ηss + ξcθ (1 + s2
θ ). (7.75)

Equation (7.72) implies that adiabatic and isocurvature
perturbations have a strong interaction unless the isocur-
vature perturbations rapidly decay. For constant values of
(A, B, D), Eq. (7.72) can be solved as [28]

Qσ (N ) � eAN Qσ∗ + B

D − A

(
eDN − eAN

)
δs∗, (7.76)

δs(N ) � eDN δs∗, (7.77)

where the number N of the e-folds after the Hubble crossing
has been introduced.

Given

(
H

σ̇

)
�

(
H∗
σ̇∗

)
e−AN , (7.78)
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one can easily find the power spectra and the correlation
functions as [28]

P SH
R (N ) � P̄R∗ + P̄S∗

(
B

γ

)2 (
eγ N − 1

)2

+2C̄RS∗
B

γ

(
eγ N − 1

)
, (7.79)

P SH
S (N ) � P̄S∗e2γ N , (7.80)

CSH
RS(N ) � C̄RS∗eγ N + P̄S∗

B

γ
eγ N

(
eγ N − 1

)
, (7.81)

whereγ = D−A, and the P̄R∗, P̄S∗ and C̄RS∗ are supposed
to be evaluated in the asymptotic limits of Eqs. (7.68), (7.69),
and (7.70), respectively, i.e. at kτ → 0.

Unfortunately, as already noticed in Ref. [28], the con-
stant slow-roll approximation does not hold for many e-folds,
and it breaks down long before the exit from inflation. In
another analytically treatable case, with the mass terms as the
scalar potential and the canonical kinetic terms for scalars,
the curvature and isocurvature perturbations were computed
in Ref. [35].
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