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Abstract For a modified Randall–Sundrum model (Jones
et al. in Phys. Rev. D 88:025048, 2013), the graviton equa-
tions are derived and the mass spectrum found. The latter
includes a massless graviton and a continuum mass with a
gap. There is no negative mass-squared in the spectrum, so the
model is stable. The gravitational Newtonian limit is obtained
with an exponentially suppressed modification from the extra
dimension.

1 Introduction

Extra dimensional brane-world models were first introduced
in [1] and then in [2] (see also [3]) to solve the hierarchy prob-
lem in fundamental interactions including gauge fields and
gravity. The basic idea of these models and their followers is
an assumption that matter and gauge fields are confined on a
three-dimensional brane embedded in a higher dimensional
spacetime, while the gravity, by definition, can travel in all
dimensions. This is compatible with observations, provided
either the extra dimension volume is of the order of the TeV
scale as suggested in [1] or somehow warped over the brane
as in [2].

The mentioned assumption is supported by string theory
in which (D-)branes are defined to be where open strings
ended. The latter correspond to the standard model fields in
the low energy limit. In contrast, closed strings can propagate
into extra dimension(s) off the brane and in the low energy
limit correspond to gravitons. Despite this justification, it is
important to understand the mechanism of field localization
on the brane in the low energy scales and independent of the
string theory. This was not very satisfactory and all Standard
Model’s particles could not be trapped into the brane in the
original five-dimensional version of this model, though there
are successes by using some six-dimensional models [4–7].
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In this regard, in [8], a five-dimensional modified Randall–
Sundrum (MRS) model was proposed and shown that it
improves the field localization behavior on the brane. This
model, locally, looks very similar to the original RS, but it
was shown that they differ globally [8]. An important differ-
ence is that, in contrast to the RS model, the new one does
not contain any five-dimensional cosmological constant.

Regarding progress in the field localization by propos-
ing [8], it is worth examining the effective four-dimensional
gravitational behavior of this model. In this article, we inves-
tigate the gravitational perturbation of the background and
find the graviton spectrum. We show that it excludes negative
mass modes which signing stability of the model. Moreover,
its Newtonian gravity limit is studied.

The organization of this paper is as follows. In Sect. 2 we
introduce the metric and recall its differences with the RS.
In Sect. 3, we perturb the background and find the graviton
mass spectrum. In Sect. 4, we study the Newtonian limit and
conclude in Sect. 5.

2 The background metric

Consider the five-dimensional Einstein–Hilbert gravity act-
ion, which reads as follows:

Sg = 1

2κ2

∫
d5x

√
|g(5)|R + Sbrane + Smatter (1)

in which Sbrane is a localized action of brane(s) and Smatter is
the action for any matter in the system. In the next section it
will be shown that μν-component of energy-momentum ten-
sor comprises two terms, a delta Dirac term which indicates
the brane and a constant term which could emanate from a
scalar source field [8].
Based on this action, the following metric can be introduced
as a solution to the equations of motion which contains a
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3-brane at the origin of fifth dimension [8]:

ds2 = e−2k|r |ηABdx Adx B = e−2k|r |(ημνdxμdxν+dr2) (2)

where r is the extra dimension varying from −∞ to +∞
and the Latin letters are from 1 to 5 and Greek letters (brane
coordinates) from 1 to 4. In addition, ημν is Minkowskian
metric with ημν = diag(−1, 1, 1, 1). Henceforth, we use the
nomination of [8] and call (2) the r-metric.

It is worth recalling the well-known Randall–Sundrum
(RS) metric [9]:

ds2
RS = e−2k|z|ημνdXμdXν + dz2. (3)

At first sight it seems that the r-metric (2) can be converted
to the RS metric (3), by the following transformation [8]:

e−k|r | = 1 − k|z|

dxμ = e−k|z|

1 − k|z|dXμ.
(4)

However, these two metrics cannot be for the same spacetime
for at least two reasons [8]: First, the above coordinate trans-
formation is singular at z = 1/k, so it cannot be extended to
all space. Second, a global coordinate transformation needs to
be an exact differential as dxμ = ∂xμ/∂XνdXν+∂xμ/∂zdz,
which is manifestly not the case. Moreover, it is shown in [8]
that the consistent Einstein equation including the energy-
momentum of the brane requires the cosmological constant
to be zero as we already have set in (1), in contrast to the
Randall–Sundrum model, which contains a negative five-
dimensional cosmological constant. Furthermore the field
localization of different spin fields gets an improvement com-
pared to the original Randall–Sundrum model [8].

3 Field equations and Graviton modes

To derive Einstein’s field equations, for the matter of conve-
nience, a different coordinate system is adopted:

ds2 = e2σ (ημνdxμdxν) + dy2 (5)

with σ = ln(1 − k|y|). By inserting (5) in the Einstein’s
equation:

κ2Tμν = gμν(3σ̈ + 6σ̇ 2), (6)

κ2T55 = 6σ̇ 2, (7)

where a dot represents the derivative with respect to the
y extra dimension.

To find graviton modes in the MRS model, the metric
would be perturbed around the fixed background (5) as fol-

lows:

GAB = gAB + hAB . (8)

Plug (8) into (1) and keep up to second order in h, then the
variation due to hAB gives the linearized equation of motion
[9]:

∇T∇NhMT + ∇T∇T hMN − ∇M∇Nh − gMN∇T∇ShT S

+ ∇T∇T h − 2κ2
(
TMT h

T
N + TNT h

T
M − 1

2
TMNh

−1

2
gMNTT Sh

T S − T S
S

6
(2hMN − gMNh)

)

+ κ2L hMN = 0 (9)

where h = hA
A and TMN is from (6) and (7). It could be shown

that adopting the unitary gauge is feasible [10]:

hμ5 = 0 and h55 = f (xμ)enσ := ϕ (10)

where n is a constant. By rewriting the equation of motion
(9) for different components we get

μν-component:

1

2

(
∂ρ∂ρhμν − ∂μ∂ρhρν − ∂ν∂

ρhρμ + ḧμν

) + 4σ̇ 2hμν

+ 1

2
∂μ∂ν h̃ + 1

2
∂μ∂νϕ + 1

2
gμν

[
∂ρ∂σ hρσ − ∂ρ∂ρ h̃ − ¨̃h

− 4σ̇
˙̃h − ∂μ∂νϕ − 6σ̇ 2h̃ + 3σ̇ 2ϕ(2 + n)

]

+ σ̈

(
3

2
gμνϕ + 2hμν − 3

2
gμν h̃

)
− (3σ̈ + 6σ̇ 2)hμν = 0,

(11)

μ5-component:

1

2
∂5(∂μh̃ − ∂νhμν) − 3

2
σ̇ ∂μϕ = 0, (12)

55-component:

1

2
(∂μ∂νhμν − ∂μ∂μh̃) − 3

2
σ̇

˙̃h
+ (13 + 2n)σ̇ 2ϕ − 3σ̇ 2h̃ = 0, (13)

in which h̃ = gμνhμν . Equations (11–13) are a system of
coupled partial differential equations which can be solved if
one decouples them. To do this, we use the following tensor
decomposition [11]:

hμν = Egμν + B,μν + Cμ,ν + Cν,μ + Dμν (14)

where E and B are scalars (called radion in the context of
the RS model), Cμ is a divergenceless vector and Dμν a
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traceless-divergenceless tensor (graviton). Then inserting
this in the equations of motion one finds

μν-component:

1

2

(
− 2Eρ

,ρgμν − C ρ
μ,νρ − C ρ

ν,μρ + D ρ
μν,ρ + 2E,μν

+ (Egμν),55 + B,μν55 + Cμ,ν55 + Cν,μ55 + Dμν,55

)

+ 1

2
ϕ,μν +4σ̇ 2(−2Egμν +B,μν +Cμ,ν +Cν,μ + Dμν)

+ 1

2
gμν

(
− 4Ë−Bρ

,ρ55−4σ̇ (4Ė+Bρ
,ρ5)−ϕ ρ

,ρ −6B ρ
,ρ σ̇ 2

+ 3σ̇ 2ϕ(2 + n)
)
+σ̈

(
3

2
gμνϕ−4gμνE + 2B,μν +2Cμ,ν

+ 2Cν,μ + 2Dμν − 3

2
gμνB

ρ
,ρ

)
= 0 (15)

μ5-component:

3

2
Ė,μ − 3

2
σ̇enσ f,μ − 1

2
Ċ ν

μ,ν = 0, (16)

55-component:

− 3

2
σ̇ gμν Ḃ,μν +(13+2n)σ̇ 2enσ f − 3

2
E μ

,μ −12σ̇ 2E−6σ̇ Ė

= 0. (17)

One of the advantages of the decomposition (14) is that
it enables one to make a distinction between the degrees of
freedom of the model. Since we are interested in studying
the effects of the graviton, we can consistently set equal to
zero all parts of the decomposition (14) but the tensorial part
Dμν . Having done so, the only non-trivial equation would be
the μν-component of the equation of motion:

∂ρ∂ρDμν + D̈μν − (4σ̇ 2 + 2σ̈ )Dμν = 0. (18)

Let us solve (18) by two boundary conditions. The first
one is

lim
y→ 1

k

Dμν(x, y) = 0 (19)

and the second one is canceling out coefficients of the Dirac
delta in (18).

By imposing the Fourier transform along the brane coor-
dinates on Eq. (18):

e−2σ p2 D̃μν − ¨̃Dμν + (4σ̇ 2 + 2σ̈ )D̃μν = 0 (20)

where p2 := ημν pμ pν = −m2. Equation (20) is called a
Schrodinger-like equation and can be solved to find

D̃μν = wμνe
n1σ + uμνe

n2σ (21)

where wμν and uμν are some constant tensors, and

n1 = 1

2
+

√
9

4
− m2

k2 , n2 = 1

2
−

√
9

4
− m2

k2 . (22)

Considering the second boundary condition results in

(
wμν(2 − n1) + uμν(2 − n2)

)
δ(y) = 0

wμν = −3 + a

3 − a
uμν := Fuμν, (23)

where

F = −3 + a

3 − a
, a =

√
9 − 4m2

k2 . (24)

Two boundary conditions in (19) and (23) make four cases:

1. m2 = 0 then n1 = 2, n2 = −1 and by condition (23),
uμν = 0. So wμν can be found by normalizing the solu-
tion as follows:

∫ 1/k

−1/k
e−σ D2

μνdy = 1,

|wμν |2
∫

e(2n1−1)σ dy = |wμν |2
∫

(1 − k|y|)3dy = 1,

|wμν |2 = 2k.

For later use we find

D2
μν

∣∣∣
y=0

= 2k. (25)

2. Either m2 < 0 or 0 < m2 ≤ 2k2, then the solution (21)
does not meet the boundary conditions, since by (19), n2

is negative, and we should take uμν = 0. However, (23)
then implies wμν = uμν = 0. So there is no graviton.
Indeed by (23), as long as n1, n2 �= 2, wμν , and uμν are
either both zero or non-zero, thus n1 and n2 should be
both non-negative due to the first boundary condition.
The massless graviton is an exception, since n1 = 2 for
m2 = 0.

3. 2k2 < m2 ≤ 9
4k

2, and by using (23),wμν is proportional
to uμν , so to find them, we normalize the solution to 1:

∫ 1
k

− 1
k

e−σ D2
μνdy = 1,

|uμν |2
∫ (

F2(1−k|y|)a+(1−k|y|)−a − 2F
)

dy = 1,

|uμν |2 = k

2
(

F2

1+a + 1
1−a − 2F

) .
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Then

D2
μν

∣∣∣
y=0

= |uμν |2(F − 1)2 = k
m2 − 2k2

m2 − k2 . (26)

4. 9
4k

2 < m2 then n1,2 = (1 ± i |a|)/2, using (23) and
normalizing the solution to 1, we find
∫ 1

k

− 1
k

e−σ D2
μνdy = 1,

|uμν |2
∫ (

|F |2 + 1 − F(1 − k|y|)+ia

− F∗(1 − k|y|)−ia
)

dy = 1,

|uμν |2 = k

2
(
|F |2 + 1 − 2Re( F

1+ia )
) .

Then

D2
μν

∣∣∣
y=0

= |uμν |2(|F |2 + 1 − 2Re(F)) = k
m2 − 2k2

m2 − k2 .

(27)

Note that the final results in Eqs. (26) and (27) are the
same.

Before going on it is worth commenting on these results.
First, there is no negative mass-squared graviton. This
implies the stability of the background metric against tenso-
rial perturbations. Our analysis reveals that there is a massless
mode which as we will see in the next section is important to
reach a Newtonian gravity limit. Moreover, there is a mass
gap which separates the massless mode from the continuum.
This is consistent with the fact that massive gravitons have
not yet been found experimentally.

4 Newtonian limit

The gravitational potential of a source mass M produced by
the exchange of graviton reads as the Yukawa potential [12]:

V (ρ) = M

4π

+∞∑
mn=0

g2 e
−mnρ

ρ
(28)

where ρ is the distance on the brane from the source and sum
is over the graviton spectrum found in the previous section
and g is coupling constant for the gravitational interaction
and can be given as [10],

g2 = κ2

4
D̃2

μν

∣∣∣
y=0

=
⎧⎨
⎩

κ2k
2 for m2 = 0,

κ2k
4

(
m2−2k2

m2−k2

)
for m2 > 2k2,

(29)

in which we have used (25)–(27).

The interaction term in the gravitational Lagrangian is [10]

Lint = κ

2
hμν

∣∣∣
y=0

Tμν (30)

where Tμν is the energy-momentum tensor for matters on
the 3-brane and κ2 = 8πG

k such that

Sg = 1

2κ2

∫ √
|g(5)|R(5)dyd4x, (31)

because R(4)
μν is contained in R(5)

μν :

Sg ∼ 1

2κ2

∫
e2σ

√
|g(4)|e−σ R(4)dyd4x + · · ·

= 1

2κ2

∫ √
|g(4)|R(4) 1

k
d4x;

then

1

2κ2k
= 1

16πG
(32)

where G is the four-dimensional gravitational constant.
Because of the partly continuous mass spectrum, the sum
in (28) turns into an integration and it can be shown that the
integral measure dm is proportional to k:

V (ρ) = GM

2k

⎛
⎝2k

ρ
+

+∞∑
mn �=0

e−mnρ

ρ

g2

k

⎞
⎠

= GM

ρ

(
1 +

∫ +∞
√

2k

1

2k

m2 − 2k2

m2 − k2 e−mρdm

)
; (33)

the integration on the right hand side is accounted for by

∫ +∞
√

2k

1

2k

m2 − 2k2

m2 − k2 e−mρdm = e−√
2kρ

2kρ

− 1

4
Ei

(
1, (

√
2−1)kρ

)
e−kρ + 1

4
Ei

(
1, (

√
2+1)kρ

)
ekρ


 e−2
√

2kρ
(

− 1

4(
√

2−1)kρ
+O

(( 1

kρ

)2)) for kρ � 1.

(34)

Then the potential for ρ � 1/k at first orders reads

V (ρ) 
 GM

ρ

(
1 − e−2

√
2kρ

4(
√

2 − 1)kρ

)
(35)

So, as justified by Eq. (35), the MRS model meets the grav-
itational Newtonian limit, consistent with observations.

Experimentally bounds on k can be found by a direct mea-
surement of the gravitational force in torsion balance or can-
tilever experiments. These are based on the Yukawa potential
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as follows [13]:

V (ρ) = −GM

ρ

[
1 + αe−rλ] (36)

α being the strength and λ the range of the additional poten-
tial. Their order of magnitudes were reported to be in different
ranges, but typical orders can be considered as α ∼ 10−2 and
λ ∼ 50µm [14,15]. Comparing with our model, we estimate
k to be a few eV . This looks very small and one may worry
about KK modes production in accelerators. Why we have
not yet seen them relies on their small coupling. As seen in
Eq. (29), for fixed k the effective gravitational coupling as
a function of mass starts from 0 at m2 = 2k2 to one half
of the massless coupling for very large KK massive modes.
Therefore, it is improbable to produce a KK graviton mode
in the accelerators like LHC due to the weakness of the grav-
itational coupling.

5 Discussion and conclusion

In this paper, we constructed the gravitational perturbation
of a MRS model, see (9), and found the equations of motion
for different components of the metric perturbation in Eqs.
(11)–(13). By the decomposition (14) and the unitary gauge,
we solved the equations of motion. The mass spectrum for
the graviton modes depicted a massless mode which domi-
nates the Newtonian gravity limit, and a continuum that is
responsible for a small correction to the Newtonian limit in
short distances. Interestingly, there is a mass gap which sepa-
rates the single massless mode from the mass continuum; this
could be a reason why massive gravitons have not yet been
detected experimentally. The higher dimensional corrections
to the Newtonian gravity are exponentially suppressed due to
the mass gap. A similar behavior has recently been reported
in [16]. Roughly speaking this can be seen in any background
with an effective potential which asymptotically grows to a
positive constant. In our case, by considering Eq. (20) in σ

coordinates, it looks like a Schrödinger equation with a con-
stant potential equal to 2k2, which is exactly the gap found
in the spectrum. In contrast, the massless graviton originates
from the delta function localization of the brane.

Finally, it is worth mentioning that there is no negative
mass-squared in the graviton spectrum, which indicates the
stability of the model.
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