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Abstract For a large class of mass-varying massive-gravity
models, the graviton mass cannot provide the late-time cos-
mic expansion of the universe due to its vanishing at late time.
In this work, we propose a new class of mass-varying massive
gravity models, in which the graviton mass varies according
to a kinetic term of a k-essence field. By using a more general
form of the fiducial metric, we found a solution such that a
non-vanishing graviton mass can drive the accelerated expan-
sion of the universe at late time. We also perform dynamical
analyses of such a model and find that without introducing
the k-essence Lagrangian, the graviton mass can be respon-
sible for both dark contents of the universe, namely dark
energy, which drives the accelerated expansion of the uni-
verse, and non-relativistic matter, which plays the role of dark
matter. Moreover, by including the k-essence Lagrangian, we
find that it is possible to alleviate the so-called cosmic coin-
cidence problem.

1 Introduction

Massive gravity has its own series of developments as a mod-
ified gravity beyond general relativity. Back in 1939, Fierz
and Pauli investigated a first model of massive gravity [1].
The model was a linearized general relativity, where the fluc-
tuation of geometry propagates a spin-2 graviton, plus lin-
ear interactions, which, in particle physics language, corre-
sponds to giving a non-zero mass to the graviton; hence the
name “massive gravity”. This model was supposed to coin-
cide with general relativity in the massless limit but it faced
a theoretical crisis when discontinuities in such a limit were
found by van Dam et al. [2,3]. In particular, the discontinu-
ities were found as different predictions between Fierz–Pauli
massive gravity and general relativity. The problem remained
unsolved for several years, until Vainshtein proposed a way
out by introducing higher-order interactions into the Fierz–
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Pauli massive gravity [4]. In other words, he claimed that
within a particular scale, coined the Vainshtein radius, any
predictions from the linear theory cannot be trusted unless
nonlinear contributions are taken into account. However,
adding such nonlinearities, claimed by Boulware and Deser,
not only fixes the discontinuity problem but also introduces
a theoretical inconsistency, namely a Boulware–Deser ghost
[5]. This ghost is an extra degree of freedom, apart from 5
degrees of freedom originally existing in the linear massive
gravity, whose kinetic term has the wrong sign. The ghost
problem had been a blockage for the massive-gravity the-
ory until recently, in 2010, de Rham, Gabadadze, and Tolley
found suitable nonlinear interactions which do not excite the
Boulware–Deser mode; this is dubbed dRGT massive grav-
ity [6,7]. Thus, massive gravity became again an active field
of study.

Although it was just a generalization back then, massive
gravity has its modern motivations. Introducing a non-zero
mass to a graviton shrinks the scale at which the gravity
works. In other words, the graviton mass weakens the grav-
itation at a large scale. As a result, it allows a cosmic accel-
eration and hence may be able to describe the mysterious
dark energy in its language. This motivates cosmologists
to study its cosmological implications. Moreover, since de
Rham, Gabadadze, and Tolley found a healthy nonlinear mas-
sive gravity model, the theory had again opened a door to
various researches on massive gravity; not only its cosmol-
ogy but also the study of astrophysical objects in the theory,
like black holes [8–13]. For cosmological models of massive
gravity, it has been found that the solutions in the models with
Minkowski fiducial metric do not admit the flat and closed
FLRW solutions for the physical metric [14,15]. In order
to obtain all kinds of FLRW solutions, one may consider a
general form of the fiducial metric [16–20].

It has been found, however, that there are some inconsis-
tencies when cosmology is taken into account. For exam-
ple, some degrees of freedom cease to exist when the
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Friedmann–Lemaître–Robertson–Walker (FLRW) ansatz is
assumed [19]. This leads to numerous studies beyond the
dRGT massive gravity [21–39]. One of those is to generalize
a constant graviton mass to be varied by other scalar field,
dubbed mass-varying massive gravity [24–27]. The theory is
proven to be free from a Boulware–Deser ghost. However,
cosmological implications of such a model indicates a uni-
verse with subdominant contributions from massive gravity.
In particular, the graviton mass is governed by the inverse of
a scale factor of the universe which will vanish at late time.
Consequently, such a model cannot give a proper explanation
of the cosmic expansion caused by the massive graviton.

In this work, we propose an alternative way to construct a
mass-varying massive gravity. The graviton mass is not only
determined by a scalar field, but also by the kinetic term of
the scalar field. Moreover, the scalar field is governed by a
k-essence Lagrangian [40–42]. Under the FLRW ansatz, we
found a solution whose the graviton mass do not necessarily
vanish at late time. Moreover, by assuming both the k-essence
and the graviton mass to behave as perfect fluids, we found
that the graviton mass can give rise to a “dust-like” matter
while combined with other contributions it is possible to have
an equation of state parameter close to −1, as suggested by
recent observations [43]. Such matter may be responsible
for a dark matter, another mysterious content known to exist
in addition to the ordinary matter. Since the graviton mass
can give rise to both of the dark contents, it is tempting to
consider as regards its evolution whether there exists an epoch
in which the two contents in the dark sector are comparable,
the so-called cosmic coincidence problem.

Our paper is organized as follows. In Sect. 2, the proposed
model is addressed along with its equations of motion in the
FLRW background. We also discuss some crucial properties
of the model in this section where we have shown the exis-
tence of the dust-like matter expected to be responsible for
the dark matter. With the help of appropriate assumptions, we
show in Sect. 3 the solution to this model which corresponds
to the dark energy and the non-vanishing characteristic of the
graviton mass existing in this model. After sketching some
perspectives, we begin the dynamical system analysis in Sect.
4 to find all possible fixed points and their stabilities, and the
extended analyses are covered in Sect. 5. We conclude our
work in the last section by the discussion of key ideas of
our work and of whether or not the coincidence problem is
alleviated.

2 The model and the background equations

We consider a mass-varying dRGT massive-gravity action
where the graviton mass is varied by the k-essence field.
Usually, one may consider the graviton mass as a function
which varies as the scalar field propagates [24–27]. However,

in this work, we will consider the graviton mass not only
as a function of the scalar field φ but also its kinetic term
X ≡ − 1

2g
μν∇μφ∇νφ. The action of such a model can be

expressed as

S =
∫

d4x
√−g

[
M2

p

2
R[g] + V (X, φ)(L2[g, f ]

+ α3L3[g, f ] + α4L4[g, f ]) + P(X, φ)

]
, (1)

where R is a Ricci scalar corresponding to a physical metric
gμν , V (X, φ) is a square of the graviton mass which depends
on the scalar field and its kinetic term,Li represents the inter-
actions of the i th order of the massive graviton, and P(X, φ)

is the Lagrangian of the k-essence field. In particular, those
interactions of the massive graviton are constructed from two
kinds of metrics and can be expressed as follows:

L2[g, f ] = 1

2

(
[K]2 − [K2]

)
, (2)

L3[g, f ] = 1

3!
(
[K]3 − 3[K][K2] + 2[K3]

)
, (3)

L4[g, f ] = 1

4! ([K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3]
− 6[K4]), (4)

where the tensor Kμν is constructed from the physical metric
gμν and an another metric fμν as

Kμ
ν = δμ

ν −
(√

g−1 f

)μ

ν

, (5)

where the square roots of those tensors are defined so that√
g−1 f

μ

ρ

√
g−1 f

ρ

ν = (
g−1 f

)μ

ν
. In massive gravity, apart

from the physical metric, there exists another kind of the
metric tensor, fμν , usually named “fiducial metric”, which is
an object introduced to the theory so that one can construct
non-trivial interactions from the metric tensors as in Eqs. (2),
(3), and (4). Those complicated combinations in the interac-
tions, with arbitrary values of the parameters α3, α4, are to
ensure the absence of the Boulware–Deser (ghostly) degree
of freedom [6,7]. Moreover, thanks to the Stuckelberg tricks,
the general covariance, or the gauge symmetry, can be well
integrated into the massive gravity via

fμν = ∂μϕρ∂νϕ
σ f̃ρσ , (6)

provided that each of the fields ϕμ transforms as a scalar
under any coordinate transformation. As for the f̃ab, one can
choose it to be any kind of metric which shares the symme-
tries of the physical metric. For example, one can have a four-
dimensional Minkowski metric being the fiducial metric for
a cosmological solution [15], or even a higher-dimensional
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kind of metric whose reduced four-dimensional metric is
isotropic and homogeneous and is considered as the fiducial
metric in the cosmological solution [20].

In this work, we consider the cosmological implications
of the proposed model, where the isotropic and homoge-
neous universe is assumed whose spacetime is represented
quite well by the Friedmann–Lemaître–Robertson–Walker
(FLRW) metric as follows:

ds2 = −N (t)2dt2 + a(t)2
i j (x)dx
idx j , (7)

where N (t) is a lapse function, a(t) represents a scale factor,
which determines the scale of the spatial distance, and


i j (ϕ) = δi j + kδiaδ jbϕaϕb

1 − kδlmϕlϕm
, (8)

is the spatial maximally symmetric metric whose spatial cur-
vature is characterized by k ∈ {−1, 0,+1} corresponding to
the open, flat, and closed geometry, respectively. As claimed,
the FLRW ansatz is also used as the fiducial metric,

f̃μνdϕμdϕν = −n(ϕ0)2
(

dϕ0
)2 + α(ϕ0)2
i j (ϕ)dϕidϕ j ,

(9)

where n and α are a lapse function and a scale factor in the
fiducial sector. Plugging those in Eq. (1), the mini-superspace
action of the model reads

S =
∫

d4x

√
1

1 − kr2

[
M2

p

(
−3

aȧ2

N
+ 3kNa

)

+ 3Na3V
(
F − G

n

N

)
+ Na3P

]
, (10)

where

F ≡
(

2 + 4

3
α3 + 1

3
α4

)
− (3 + 3α3 + α4) X̄

+ (1 + 2α3 + α4) X̄
2 − (α3 + α4)

X̄3

3
, (11)

G ≡ 1

3
(3 + 3α3 + α4) − (1 + 2α3 + α4) X̄

+ (α3 + α4) X̄
2 − α4

X̄3

3
, (12)

and we have defined

X̄ ≡ α

a
, η ≡ n

N
. (13)

To determine the dynamics of the system, one can vary the
action in Eq. (10) with respect to dynamical variables which
are N , a, φ, and the Stuckelberg fields ϕμ. The corresponding

equations of motion, assuming the unitary gauge ϕμ = xμ

for simplicity, read

M2
p

(
3H2 + 3

k

a2

)
= −3V F + 6XV,X (F − Gη)

+ (
2X P,X − P

)
, (14)

M2
p

(
2Ḣ

N
+ 3H2 + k

a2

)
= −3V F + V F,X̄

(
X̄ − η

) − P,

(15)

V̇

V
= NH

(
1 − h X̄

) F,X̄

G
, (16)

Na3 (
3V,φ (F − Gη) + P,φ

)

= d

dt

[(
a3

√
2X

) (
3V,X (F − Gη) + P,X

)]
, (17)

3HN (−2X P,X − 6XV,X (F − Gη) + V F,X̄

(
X̄ − η

)
)

= d

dt

(−3V F + (
2X P,X + 6XV,X (F − Gη)

) − P
)
,

(18)

where the last equation is obtained from the conservation
on the energy-momentum tensor; ∇μT

μ
ν = 0 and we have

defined

h ≡ Hα

H
, Hα ≡ α̇

αn
. (19)

From the above equations, one can see that Eq. (14) is a
Friedmann equation with extra matter contents coming from
the graviton mass. As a partner to the Friedmann equation,
the so-called acceleration equation corresponds to Eq. (15).
Since we have the Bianchi identity relating the equations of
motion, these five equations of motion are not entirely inde-
pendent. Note that this set of equations recovers the original
self-accelerating cosmology when the square of a graviton
massV is constant by which the usual condition F,X̄ (1 − hη)

is obtained readily from Eq. (16) [15]. However, as V is
no longer constant, the equations of motion look even more
complex than those in general relativity. To simplify the fol-
lowing calculations, we choose P such that the k-essence
field behaves as a perfect fluid. The appropriate form of P ,
which satisfies such a behavior, is

P(X, φ) = P0X
1+w
2w = P0X

γ /2, (20)

where γ ≡ 2X P,X/P ≡ 1+w
2w

, P0 is a constant, and w is
an equation of state parameter corresponding to the perfect
fluid represented by the k-essence field [44]. Moreover, we
let the graviton mass function mimic the perfect-fluid form
as

V = V0X
λ/2, (21)
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whose λ characterizes the power of the kinetic term as γ

does for P , i.e. λ ≡ 2XV,X/V and V0 is a constant. Note
that under these assumptions, both P and V vary according
to the kinetic term of φ but not the φ itself. Usually, in the
quintessence model the continuity equation for the scalar
field is obtained from the equation of motion of φ [45,46].
Taking that into account, we consider the equation of motion
of φ in Eq. (17); then under the perfect-fluid assumptions for
P and V in Eqs. (20) and (21) we have

d

dt

((
a3

√
2X

) (
6XV,X (F − Gη) + 2X P,X

)) = 0. (22)

After simple manipulations, the above equation gives the
continuity equation for the k-essence field as

d

dt
ρX + 3HNρX = Ẋ

2X
ρX , (23)

where we have defined

ρX ≡ (
2X P,X + 6XV,X (F − Gη)

)
. (24)

Equation (23) determines the dynamics of the matter of
energy density ρX which resides in the Friedmann equation
in Eq. (14). Interestingly, this looks exactly like a continuity
equation of a “dust-like” matter with the interaction with the
other matter sector determined by the flow rate of the form
Ẋ

2X ρX . One can also integrate Eq. (22) to find an expression
for ρX in terms of the scale factor as

ρX =
√

2XC

a3 , (25)

where C is an integration constant. In the case of a constant
X , this ensures one of the properties that this matter shares
with the dust; the energy density is inversely proportional
to a3 as the dust is. According to such characteristics, it is
reasonable to interpret ρX as a dark matter. By doing so, this
kind of dark matter possesses some interesting features. First
of all, ρX is a dust-like matter which can arise naturally from
the massive-gravity sector indicating that dark matter may
be just an artifact of the varying graviton mass caused by the
kinetic term of the k-essence field. Moreover, this claim is
still valid even in the case of P = 0. Since a graviton mass
can represent dark energy in a generic class of the dRGT
massive gravity, this suggests a unification of the dark sec-
tor, namely dark energy and dark matter, by such a varying
graviton mass. Second, by having this kind of matter in the
theory, we may expect this model of mass-varying massive
gravity to solve the cosmic coincidence problem, where the
universe is known to be composed mainly of comparable
amounts of dark energy and dark matter. Thanks to the uni-
fication suggested above, it may be possible to provide an

explanation on the coincidence problem by the existence of
the graviton mass alone, while the cosmic acceleration also
counts.

Since the equations of motion are coupled in a very cum-
bersome way, to get a picture of the whole of this system we
need to perform a dynamical analysis, which is the main sub-
ject in the very last section. However, we can still get some
rough descriptions, as a guideline to the dynamical analy-
sis, by introducing some simple assumptions to the system,
which is done in the next section.

3 Dark energy solution for the self-accelerating universe

It is widely known that our universe is expanding with an
acceleration for which dark energy is responsible. There is
recent observational evidence indicating that the observed
effective equation of state parameter of the dark energy is
close to −1 [43]. In this section, we shall adopt this char-
acteristic by treating all the contributions from the graviton
mass to have such a property. We define

ρg ≡ −3V F + 6XV,X (F − Gη) , (26)

pg ≡ 3V F − V F,X̄

(
X̄ − η

)
. (27)

From the above definition, the corresponding equation of
state parameter is defined as

wg ≡ pg
ρg

. (28)

By treating ρg as an energy density of dark energy, we set
wg = −1 and then we have the following condition:

6XV,X (F − Gη) = V F,X̄

(
X̄ − η

)
. (29)

To simplify the calculation, we use the perfect-fluid form of
V in Eq. (21). Consequently, Eq. (29) becomes

3λ (F − Gη) = F,X̄

(
X̄ − η

)
, (30)

λ = F,X̄

(
X̄ − η

)
3 (F − Gη)

. (31)

Equation (31) is a requirement for the exponent λ to have
a solution with the equation of state equal to −1. To get a
picture of this characteristic, let us assume

X̄ = constant, (32)

η = constant, (33)

then h = 1

η
. (34)

123



Eur. Phys. J. C (2016) 76 :17 Page 5 of 11 17

Under these assumptions, the exponent λ in Eq. (31) is just
a constant. To investigate this further, we consider Eq. (16)
under the previous assumptions,

V̇

V
= NH

(
1 − h X̄

) F,X̄

G
,

λẊ

2X
= NH

(
1 − X̄

η

)
F,X̄

G
,

= − (
X̄ − η

) F,X̄

Gη

ȧ

a
. (35)

From the condition of λ in Eq. (31),

Ẋ

X
= −6 (F − Gη)

Gη

ȧ

a
. (36)

Since X̄ , η, and hence F and G, are constant, this equation
can be integrated easily,

∫
dX

X
= −6 (F − Gη)

Gη

∫
da

a
,

X = C0a
− 6(F−Gη)

Gη (37)

where C0 is an integration constant. Now we have

V = V0X
−

(
1− X̄

η

)
ηF

,X̄
6(F−Gη) = V0C0a

(
1− X̄

η

) F
,X̄
G . (38)

Furthermore, Eq. (37) possibly determines a relation between
the scale factor and the rate of change of the scalar field, since

X = φ̇2

2N 2 = C0a
− 6(F−Gη)

Gη . (39)

The expression of V in Eq. (38) shows the evolution of the
(square of the) graviton mass as a evolves. In the previous
model of mass-varying massive gravity [24–27], in which the
Minkowski fiducial metric is used, the varying graviton mass
shrinks as the scale factor grows. In this model, however, the
exponent in Eq. (38) determines whether the graviton mass
will shrink or not as the scale factor grows, or whether it
will remain constant in the case that the exponent vanishes.
Note that this crucial difference is caused by the different
form of the fiducial metric, which is the FLRW metric in
this case, to be compared with the Minkowski one in the
previous models. This result indicates the sensitivity of the
fiducial metric existing in the generic dRGT massive gravity
where different fiducial metrics set different stages for the
system and provide different solutions [16–20].

One more crucial point of this analysis is that the contri-
butions from the graviton mass can have the same equation
of state parameter as dark energy, while one of those con-
tributions possesses the characteristic of dust, namely the

term 6XV,X (F − Gη). From Eq. (23), such a term belongs
to the dark matter ρX . This may be a way out for the cos-
mic coincidence problem, since we may infer that varying
graviton mass is responsible for a dark matter via the term
like 6XV,X (F − Gη), as we have claimed in the previous
section, while it can still drive the accelerating expansion. To
verify this idea, and to seek a finer description of this model,
we will perform a dynamical analysis, which can be found
in the next section.

4 Dynamical system

In this section, we will consider the dynamics of the universe
to be governed by this new class of mass-varying massive
gravity models using the method of the autonomous system.
Due to the complexity of the graviton mass, we will begin this
section with a simple analysis by considering the flat FLRW
where k = 0 and assuming that X̄ , η are constant over time,
thus h = 1/η. From this assumption, the evolution of X is
simply determined by Eq. (16) such that

X ′ = Ẋ

HN X
= 2

λ

F,X̄

G

(
1 − h X̄

) = − 6s

λ r
, (40)

λ ≡ 2XV,X

V
, (41)

where the prime denotes the derivative with respect to ln a.
The parameters r and s are constant and defined as

r ≡ Gη

F
, s ≡ F,X̄ (X̄ − η)

3F
. (42)

In order to obtain a suitable autonomous system, let us define
dimensionless variables as follows:

x = − FV

M2
pH

2 , (43)

z = − P

3M2
pH

2 , (44)

y = 2X P,X + 6XV,X F(1 − r)

3M2
pH

2 = ρX

3M2
pH

2 , (45)

γ ≡ 2X P,X

P
. (46)

By using these variables, the equations of motion can be
written in the form of autonomous equations as

x ′ = 3x
(
y + sx − s

r

)
, (47)

y′ = 3y
(
y + sx − 1 − s

λr

)
, (48)

λ′ = 6s

r

(
λ

2
− (1 + �)

)
, (49)
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Table 1 Summary of the
properties of the fixed points Name x y z weff Existence Stability

(a) 0 0 1 −1 γ = 0 0 ≤ s
r ≤ 1

(b) 1
r 0 1 − 1

r −1 + s
r γ = λ λ

1−λ
≤ s

r < 0

(c) 0 1 + s
λ r − s

λ r
s

λ r γ = 1 + λ r
s

λ
1−λ

< s
r < −1

(d) 1
1+λ(r−1)

λ(r−1)
1+λ(r−1)

0 1
λ−1 λ = s

s−r 0 < λ < 1

(e) 1+(λ−1)z0
1+λ(r−1)

− λ(1−r(z0+1))
1+λ(r−1)

z0
1

λ−1 λ = γ = s
s−r 0 < λ < 1

1 = x + y + z, (50)

y = −λx(1 − r) − zγ, (51)

where � ≡ XV,XX/V,X . Since we have five variables with
two constraints, it is sufficient to consider only three equa-
tions. Note that the constraint in Eq. (50) is derived from
Eq. (14), while the constraint in Eq. (51) is obtained from
the definition of y in Eq. (45). The equation of λ in Eq. (49)
is not directly dependent on the other variables. Therefore,
in principle, we can solve it separately. For simplicity, we
can consider λ as a parameter and then consider only the
autonomous equations with two variables, x and y. We will
extend our analysis to a more general case with λ being the
variable in the next section. The effective equation of state
parameter can be written in terms of the dimensionless vari-
ables as

weff = P + 3V F − V F,X̄ (X̄ − η)

3M2
pH

2 = −z − x + xs

= −1 + y + xs. (52)

From these autonomous equations, the corresponding fixed
points can be found by evaluating x ′ = 0 and y′ = 0 in
Eqs. (47) and (48), respectively. The properties of all the
fixed points are summarized in Table 1, while the analyses
are separately discussed for each of the fixed points below.

4.1 Fixed point (a)

From Eqs. (47) and (48), it is obvious that the system has a
fixed point (x, y) = (0, 0). By using the constraint equations,
one obtains z = 1 and γ = 0. This means that the function
P is constant and then this point corresponds to general rel-
ativity with a cosmological constant where the universe is
dominated by the cosmological constant. To ensure such a
claim, one can compute the corresponding effective equation
of state parameter, which yields weff = −1. This is exactly
the equation of state parameter of the cosmological constant
which drives the accelerating de Sitter expansion.

The stability of the fixed point can be found by analyzing
the eigenvalues of the linearly perturbed autonomous equa-
tions. By performing the linear perturbations, the eigenval-
ues can be written as (μ1, μ2) = (−3s/r,−3 − 3s/r). The

stability requires both of the eigenvalues to be negative, or
otherwise the fixed point is said to be unstable or to be a sad-
dle fixed point. In this case, the signs of those eigenvalues

are determined by the value of the term s
r = (

X̄ − η
) F,X̄

Gη
,

which means 0 ≤ s
r ≤ 1 for the stable fixed point. Note that

in the case of vanishing eigenvalues, like s = 0, one has to
consider the perturbations up to second order or use a numer-
ical investigation in order to determine the stability. In this
analysis, we ensure the stability in this case by the numerical
method and we have found that it is stable.

Even though this fixed point can provide a period of late-
time expansion, it is not much of interest due to the dis-
appearance of the graviton mass. This resulting property is
one of the drawbacks in the previous model of mass-varying
massive gravity [24–27].

4.2 Fixed point (b)

One of possible fixed points may be in the form (x, y) =
(x0, 0) by which the universe is governed mainly by massive
gravity alone. From Eq. (47), one can find x0 as follows:

x0 = 1

r
. (53)

According to Eq. (45), there are two possible solutions for
this kind of fixed point. One is r = 1 in which x0 = 1, z0 = 0,
and another one is λ = γ in which x0 = 1

r , z0 = 1 − 1
r . The

effective equation of state parameter can be written as

weff = −1 + F,X̄ (X̄ − η)

3Gη
= −1 + s

r
. (54)

Interestingly, weff = −1 as F,X̄ = 0 or (X̄ − η) = 0. This
characteristic is a usual cosmological solution of the orig-
inal massive gravity. In particular, this condition indicates
that the graviton mass ceases to vary, according to Eq. (16).
Moreover, since in this case z = 1 − 1

r , the pressure of the
k-essence field is non-zero for r > 1, which means the k-
essence field is supposed to be a form of matter with non-zero
pressure (not dust).

In order to find the stability condition for this fixed
point, one can find the eigenvalues of the linearly perturbed
autonomous equations, which can be written as
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(μ1, μ2) =
(

3
s

r
,−3 + 3

(λ − 1)s

λ r

)
. (55)

Again, both of the eigenvalues contain the term s/r , and then
the fixed point will be stable if λ

1−λ
≤ s

r < 0. Note that, for
this fixed point, it is possible to provide weff < −1 to satisfy
the observation, which indicates that the mean value of the
equation of state parameter is slightly less than −1 [43].

4.3 Fixed point (c)

One can obtain a fixed point such that (x, y) = (0, y0). From
Eq. (47), one can find y0 as follows:

y0 = 1 + s

λ r
. (56)

By using the constraint equation in Eq. (50), one obtains
z0 = − s

λ r . From the constraint equation in Eq. (51), we
have

γ = − y

z
= −1 + 1

z
= 1 + 1

wm
, (57)

where wm is the equation of state parameter of the fluid con-
tributed from P(X) = P0X (1+wm )/2wm . The effective equa-
tion of state parameter can be written as

weff = −z = s

λ r
. (58)

Again, there exist two significant branches of the solution
such that this fixed point is a matter-dominated point. If z =
0, this corresponds to weff = 0, which leads to the universe
being in a matter-dominated period.

The eigenvalues of the autonomous system can be written
as

(μ1, μ2) =
(

3 + 3
s

λ r
, 3 − 3

s(λ − 1)

λ r

)
. (59)

If one requires this point to represent the matter-dominated
epoch, one must set the parameters so that this point is unsta-
ble. This means the universe should evolve through this point
to end up in other stable points since we know the matter-
dominated epoch should exist in the universe’s timeline but
not nowadays. One can see that, for small negative value
of s/r , the universe can evolve in the standard history at
which fixed point (c) corresponds to a matter-dominated
period with weff ∼ 0, and fixed point (b) corresponds to
the late-time expansion of the universe due to the contribu-
tion from the graviton mass. However, it is not possible to
alleviate the coincidence problem, since the contribution of
non-relativistic matter vanishes at late time.

4.4 Fixed point (d)

According to Eqs. (47) and (48), one may consider the fixed
point corresponding to the non-zero x and y. This point can

be obtained by evaluating both (non-zero) x and y from Eqs.
(50), (51), and (47), while a constraint on the parameters by
which the non-zero (x, y) exist can be obtained from Eqs.
(47) and (48). After simple manipulation, we have

x = 1

1 + λ (r − 1)
, y = λ (r − 1)

1 + λ (r − 1)
, and z = 0,

(60)

where γ is arbitrary and λ is fixed to be λ = s
s−r . The effec-

tive equation of state parameter can be written as

weff = 1

λ − 1
. (61)

To determine the stability of this point, we find the eigen-
values of the system of equations. Interestingly, this point
renders the two autonomous equations degenerate. This can
be seen by computing the linear perturbed equations for both
x and y evaluated at this fixed point. The eigenvalues of this
autonomous system are expressed as

(μ1, μ2) =
(

0,
3λ

λ − 1

)
. (62)

The vanishing eigenvalue here is nothing but an artifact of the
degeneracy due to this fixed point. In particular, it is possible
to redefine the variables such that the problem is reduced
into a one-dimensional system. With such a redefinition, the
stability of this fixed point is due to the non-zero eigenvalue
in Eq. (62), which can be negative when 0 < λ < 1. If
this condition is taken into account, requiring the fixed point
(c) to represent the matter-dominated era will restrict the
combination s

r to vanish.
This fixed point seems to provide a possible way to allevi-

ate the coincidence problem due to the non-zero y. However,
it cannot be used since, at the late-time expansion, weff must
approach −1 and then lead to the fact that (x, y) → (1, 0).
Nevertheless, it still provides an interesting result. For the
case of s = 0 and 0 < λ 
 1, this fixed point is stable,
while the fixed point (b) is unstable and then we can use this
fixed point as the one for the late-time expansion of the uni-
verse. For this condition the fixed point (c) is still used for the
matter-dominated period with z = 0. Therefore, this means
that it is possible to obtain z = 0 for the whole history of
the universe. This leads to the fact that, without providing
an extra non-relativistic matter field such as dark matter, the
contribution from the graviton mass can play the role of both
dark matter and dark energy. This is one of the crucial prop-
erties of this model, since it can unify the two main unknown
contents of the universe, dark matter and dark energy, by
using only a graviton mass.
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4.5 Fixed point (e)

Similarly to the derivation in fixed point (d), one can solve
an algebraic equation by imposing γ = λ and requiring non-
zero x and y. As the result, the fixed point can be expressed
as

x = 1 + (λ − 1)z0

1 + λ(r − 1)
, y = −λ(1 − r(z0 + 1))

1 + λ(r − 1)
, z = z0,

(63)

where γ = λ = s
s−r and z0 is arbitrary. The effective equa-

tion of state parameter is the same as the one in the fixed
point (d), which can be written as

weff = 1

λ − 1
. (64)

Moreover, the eigenvalues for the stability analysis are still
the same asfor the fixed point (d) and then the stability condi-
tion for this fixed point can be expressed as 0 < λ < 1. Even
though this fixed point shares most properties with fixed point
(d), it cannot provide the unification of the two dark compo-
nents, since z must have a non-zero value.

From the above analyses, we experienced the incompati-
bility between matter domination and the present dark energy
domination. One may see that for a large λ, the fixed point (c)
can represent the matter-dominated epoch, while the small
value of λ is needed in the fixed point (d) or (e) to solve
the coincidence problem. It is natural to generalize the the-
ory further by allowing λ to change appropriately in time.
This idea will be adopted and carefully analyzed in the next
section.

5 Extended analyses

As we have mentioned, even though the model can be used to
unify the dark contents of the universe, it still cannot be used
to solve the coincidence problem. According to our analy-
sis, this is due to the fact that λ is set to be a constant. In
this section, we will show the possibility to solve the coin-
cidence problem when λ is set as a dynamical variable. For
completeness, we will add radiation into our consideration
and then use numerical method to show that the radiation
does not affect the unification in the dark sector. Note that
the equation of motion for the radiation is obtained by using
the conservation of its energy-momentum tensor or the con-
tinuity equation. By including the radiation and taking λ as a
dynamical variable, the autonomous equations can be written
as

x ′ = 3x

(
y + sx − s

r
+ 4

3

r

)
, (65)

y′ = 3y

(
y + sx − 1 − s

λr
+ 4

3

r

)
, (66)


′
r = 3
r

(
y + sx + 4

3
(
r − 1)

)
, (67)

λ′ = 6s

r

(
λ

2
− (1 + �)

)
, (68)

1 = x + y + z + 
r , (69)

y = −λx(1 − r) − zγ, (70)


r ≡ ρr

3M2
pH

2 , (71)

where ρr is the energy density of the radiation. The effective
equation of state parameter can be written as

weff = −1 + y + xs + 4

3

r . (72)

From Eq. (67), we can see that all fixed points we found
in the previous section still exist with 
r = 0. Also, there
exists the unstable fixed point such that 
r = 1, while x and
z (hence y) vanish. From Eq. (68), one can see that λ does
not couple to the others and the fixed point takes place at
λ = 2(� + 1). For simplicity, one can set � as a constant.
In order to confirm the claim in the previous section that
there exists a standard evolution without introducing a k-
essence Lagrangian or in the case of z = 0, we use numerical
methods to evaluate the equations above by setting s = 0.
The evolutions of x , y, and 
r are illustrated in the left panel
of Fig. 1, and the evolution of the effective equation of state
parameter is shown in the right panel of Fig. 1. We can see that
there exists non-relativistic matter, inferred as dark matter
represented by the variable y, while the variable x represents
the dark energy that drives the late-time expansion of the
universe. Both x and y are contributed from the graviton
mass.

Now, let us consider the possibility to solve the coinci-
dence problem. Let us use the fixed point (e) to be one cor-
responding to the late-time expansion of the universe. For
this fixed point, the parameters s, r , and � are obtained by
giving the initial conditions for the dynamical variables. In
order to obtain the dynamics of all variables, we have to put
the initial conditions slightly away from the fixed point. It
is sufficient to put λ slightly above the fixed point, since we
need λ to grow as time goes backward to ensure that it will
have a high enough value for the matter-dominated period.
In order to obtain weff ∼ −1 at the present time, we have to
set the value of the variable λ at the fixed point as λ f → 0.

As a result, s
r = λ f

λ f −1 → 0. In order to obtain a proper
matter-dominated period, one has to put the initial value of λ

far away from the fixed point. This situation makes the fixed
point (b) stable and then the system evolves to the point (b)
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Fig. 1 The left panel shows the evolution of x , y, and 
r . The dotted-
red line represents the evolution of x , the dashed-blue line represents
the evolution of x , and the solid-green line represents the evolution of

r . For the right panel, the evolution of weff is represented

eventually. Therefore, in order to have the fixed point (e) at
late time, one has to set weff below −1 at the fixed point,
so that the point (e) becomes a stable point. According to
this setting, we show the evolution of the dynamical vari-
ables reaching the fixed point (e) to alleviate the coincidence
problem in Fig. 2. Note that we set λ f = 0.4, leading to
weff = −1.67 and λ0 = 1.0.

In order to overcome the incompatibility among the fixed
points, one may extend the analysis by allowing s, � or r to
be dynamical variables. This will make the dynamical system
more complicated. We found another possibility to overcome
this incompatibility by imposing the constraint λ = γ for the
entire evolution. As a result, we have only three independent
equations for six variables and three constraints. The dynam-
ical variable λ can be written in terms of other variables
as

6 4 2 0 2
0.0

0.2

0.4

0.6

0.8

1.0

log a

6 4 2 0 2

1.5

1.0

0.5

0.0

log a

weff

Fig. 2 The left panel shows the evolution of x , y, x + z, and 
r .
The dotted-red line represents the evolution of x , the dashed-blue line
represent the evolution of x , the solid-black line represents the evolution
of x + z and the solid-green line represents the evolution of 
r . For the
right panel, the evolution of weff is represented. We set the parameters
such that λ f = 0.4 and λ0 = 1.0 where λ f is the value at the fixed
point and λ0 is one at the present time

λ = y

rx + y + 
r − 1
. (73)

As a result, by setting the initial condition at the radiation
dominated period, the evolution of the dynamical variables
and the effective equation of state are shown in Fig. 3. From
this figure, one can see that the evolution of the universe
reaches the fixed point (e) at late time while the matter and
radiation period are also properly presented. For the plot in
this figure, we set λ f = 0.02, and then the consequent results
are � = −0.99 and weff ∼ −1.02. Note that the behavior of
the resulting plot in Fig. 3 is sensitive to the initial value of
x at the radiation dominated period where we set it choosing
xi ∼ 10−16.
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Fig. 3 The left panel shows the evolution of x , y, x + z, and 
r .
The dotted-red line represents the evolution of x , the dashed-blue line
represent the evolution of x , the solid-black line represents the evolution
of x + z, and the solid-green line represents the evolution of 
r . For
the right panel, the evolution of weff is presented

6 Conclusion

We have constructed a new class of mass-varying massive
gravity models, in which not only the k-essence field but also
its kinetic term determines the variation of the graviton mass.
We have shown in Sect. 2 that there is a possibility for the
graviton mass to live at late time compared with the previous
model whose the graviton mass only depends on the scalar
field and shrinks as the universe grows [24–27]. After simple
manipulations and under particular assumptions, we found
that a “dust-like” matter which behaves like a non-relativistic
dust can naturally result from the graviton mass and it is a
possible candidate for dark matter. This can be seen more
clearly in the case P = 0 in which the dark matter comes
solely from the varying graviton mass. Having such matter
in the system, this model of massive gravity can describe

the cosmic accelerating expansion with the equation of state
parameter close to −1, while the universe is not entirely dom-
inated by the dark energy part contributed also by the graviton
mass. This property signals a possibility of having the uni-
verse composed of comparable amounts between dark energy
and dark matter, known as the cosmic coincidence problem.
To obtain a finer description on this, the usual method of the
dynamical analysis is performed by taking the dark matter
candidate into account and the results are carefully investi-
gated as regards the issue of the coincidence problem. For the
first simple case, the exponent of the kinetic term in the gravi-
ton mass λ is kept constant. We found the fixed points which
correspond to various epochs in the history of the universe
such as the matter-dominated period and massive-gravity-
dominated periods. However, to have those fixed points with
the appropriate stabilities in the evolution of the universe, the
results suggest a system with λ as additional variable. The
more general case, where λ is allowed to vary, is investigated
where the radiation is included. While the result covers all the
fixed points in the constant λ case, this allows the evolution in
which there exists a matter-dominated period as well as a late-
time expansion epoch. There are several crucial points in this
investigation. First, we obtain the universe in which the gravi-
ton mass serves as both dark energy and dark matter, while it
can still drive the cosmic acceleration. Second, to solve the
coincidence problem, we obtain a universe with the effective
equation of state parameter significantly below −1 unless
both λ and γ are set equal with one another for the entire evo-
lution of the universe. Since the analyses are under particular
assumptions, this model still has room for study in more com-
plicated ways. For example, one can exclude the assumptions
proposed in this work for a more complex system or one can
consider this model in a different aspect, like its astrophysical
implications. Not only as regards the applications, but also
studying the theoretical consistency, whether there exists a
ghost instability or not, is a worthy challenge which we leave
for future work. Apart from the constraints mentioned, one
may think of constraining the model with various observa-
tions. This idea is also interesting, since the observations may
judge the fate of this model by tightening it with constraints.

Acknowledgments P.W. is supported by Thailand Research Fund
(TRF) through Grant TRG5780046. L.T. is supported by the Faculty
of Science, Mahidol University through Sritrang-Thong Ph.D. schol-
arship. Moreover, the authors would like to thank String Theory and
Supergravity Group, Department of Physics, Faculty of Science, Chu-
lalongkorn University for hospitality during this work was in progress.

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2016) 76 :17 Page 11 of 11 17

References

1. M. Fierz, W. Pauli, Proc. R. Soc. Lond. A 173, 211 (1939)
2. H. van Dam, M.J.G. Veltman, Nucl. Phys. B 22, 397 (1970)
3. V.I. Zakharov, JETP Lett. 12, 312 (1970). [Pisma Zh. Eksp. Teor.

Fiz. 12, 447 (1970)]
4. A.I. Vainshtein, Phys. Lett. B 39, 393 (1972)
5. D.G. Boulware, S. Deser, Phys. Rev. D 6, 3368 (1972)
6. C. de Rham, G. Gabadadze, Phys. Rev. D 82, 044020 (2010).

arXiv:1007.0443 [hep-th]
7. C. de Rham, G. Gabadadze, A.J. Tolley, Phys. Rev. Lett. 106,

231101 (2011). arXiv:1011.1232 [hep-th]
8. M.S. Volkov, Class. Quant. Grav. 30, 184009 (2013).

arXiv:1304.0238 [hep-th]
9. G. Tasinato, K. Koyama, G. Niz, Class. Quant. Grav. 30, 184002

(2013). arXiv:1304.0601 [hep-th]
10. E. Babichev, R. Brito, Class. Quant. Grav. 32, 154001 (2015).

arXiv:1503.07529 [gr-qc]
11. S.G. Ghosh, L. Tannukij, P. Wongjun, arXiv:1506.07119 [gr-qc]
12. A.J. Tolley, D.J. Wu, S.Y. Zhou, arXiv:1510.05208 [hep-th]
13. E. Ayon-Beato, D. Higuita-Borja, J.A. Mendez-Zavaleta,

arXiv:1511.01108 [hep-th]
14. G. D’Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D.

Pirtskhalava, A.J. Tolley, Phys. Rev. D 84, 124046 (2011).
arXiv:1108.5231 [hep-th]

15. A.E. Gumrukcuoglu, C. Lin, S. Mukohyama, JCAP 1111, 030
(2011). arXiv:1109.3845 [hep-th]

16. M. Fasiello, A.J. Tolley, JCAP 1211, 035 (2012). arXiv:1206.3852
[hep-th]

17. D. Langlois, A. Naruko, Class. Quant. Grav. 29, 202001 (2012).
arXiv:1206.6810 [hep-th]

18. D. Langlois, A. Naruko, Class. Quant. Grav. 30, 205012 (2013).
arXiv:1305.6346 [hep-th]

19. A.E. Gumrukcuoglu, C. Lin, S. Mukohyama, JCAP 1203, 006
(2012). arXiv:1111.4107 [hep-th]

20. T. Chullaphan, L. Tannukij, P. Wongjun, JHEP 1506, 038 (2015).
arXiv:1502.08018 [gr-qc]

21. A. De Felice, A.E. Gumrukcuoglu, S. Mukohyama, Phys. Rev. Lett.
109, 171101 (2012). arXiv:1206.2080 [hep-th]

22. A.E. Gumrukcuoglu, C. Lin, S. Mukohyama, Phys. Lett. B 717,
295 (2012). arXiv:1206.2723 [hep-th]

23. A. De Felice, A.E. Gumrukcuoglu, C. Lin, S. Mukohyama, JCAP
1305, 0351 (2013). arXiv:1303.4154 [hep-th]

24. Q.-G. Huang, Y.-S. Piao, S.-Y. Zhou, Phys. Rev. D 86, 124014
(2012). arXiv:1206.5678 [hep-th]

25. D.J. Wu, Y.S. Piao, Y.F. Cai, Phys. Lett. B 721, 7 (2013).
arXiv:1301.4326 [hep-th]

26. G. Leon, J. Saavedra, E.N. Saridakis, Class. Quant. Grav. 30,
135001 (2013). arXiv:1301.7419 [astro-ph.CO]

27. Q.G. Huang, K.C. Zhang, S.Y. Zhou, JCAP 1308, 050 (2013).
arXiv:1306.4740 [hep-th]

28. G. D’Amico, G. Gabadadze, L. Hui, D. Pirtskhalava, Phys. Rev. D
87, 064037 (2013). arXiv:1206.4253 [hep-th]

29. A.E. Gumrukcuoglu, K. Hinterbichler, C. Lin, S. Mukohyama, M.
Trodden, Phys. Rev. D 88, 024023 (2013). arXiv:1304.0449 [hep-
th]

30. G. D’ Amico, G. Gabadadze, L. Hui, D. Pirtskhalava, Class. Quant.
Grav. 30, 184005 (2013) arXiv:1304.0723 [hep-th]

31. A. De Felice, S. Mukohyama, Phys. Lett. B 728C (2013).
arXiv:1306.5502 [hep-th]

32. A. De Felice, A.E. Gumrukcuoglu, S. Mukohyama, Phys. Rev. D
88, 124006 (2013). arXiv:1309.3162 [hep-th]

33. L. Heisenberg, JCAP 1504(04), 010 (2015). arXiv:1501.07796
[hep-th]

34. T. Kahniashvili, A. Kar, G. Lavrelashvili, N. Agarwal, L. Heisen-
berg, A. Kosowsky, Phys. Rev. D 91(4), 041301 (2015).
arXiv:1412.4300 [astro-ph.CO]

35. A.E. Gumrukcuoglu, L. Heisenberg, S. Mukohyama, JCAP 1502,
022 (2015). arXiv:1409.7260 [hep-th]

36. A.R. Solomon, J. Enander, Y. Akrami, T. S. Koivisto, F. Könnig,
E. Mörtsell, JCAP 1504(04), 027 (2015). arXiv:1409.8300 [astro-
ph.CO]

37. K. Hinterbichler, J. Stokes, M. Trodden, Phys. Lett. B725, 1 (2013).
arXiv:1301.4993 [astro-ph.CO]

38. G. Gabadadze, K. Hinterbichler, J. Khoury, D. Pirtskhalava, M.
Trodden, Phys. Rev. D 86, 124004 (2012). arXiv:1208.5773 [hep-
th]

39. M. Andrews, K. Hinterbichler, J. Stokes, M. Trodden, Class. Quant.
Grav. 30, 184006 (2013). arXiv:1306.5743 [hep-th]

40. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev.
Lett. 85, 4438 (2000). arXiv:astro-ph/0004134

41. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev.
D 63, 103510 (2001). arXiv:astro-ph/0006373

42. T. Chiba, T. Okabe, M. Yamaguchi, Phys. Rev. D 62, 023511
(2000). arXiv:astro-ph/9912463

43. P.A.R. Ade et al., Planck Collaboration, Astron. Astrophys. 571,
A16 (2014). arXiv:1303.5076 [astro-ph.CO]

44. L. Boubekeur, P. Creminelli, J. Norena, F. Vernizzi, JCAP 0808,
028 (2008). arXiv:0806.1016 [astro-ph]

45. B. Ratra, P.J.E. Peebles, Phys. Rev. D 37, 3406 (1988)
46. C. Wetterich, Nucl. Phys. B 302, 668 (1988)

123

http://arxiv.org/abs/1007.0443
http://arxiv.org/abs/1011.1232
http://arxiv.org/abs/1304.0238
http://arxiv.org/abs/1304.0601
http://arxiv.org/abs/1503.07529
http://arxiv.org/abs/1506.07119
http://arxiv.org/abs/1510.05208
http://arxiv.org/abs/1511.01108
http://arxiv.org/abs/1108.5231
http://arxiv.org/abs/1109.3845
http://arxiv.org/abs/1206.3852
http://arxiv.org/abs/1206.6810
http://arxiv.org/abs/1305.6346
http://arxiv.org/abs/1111.4107
http://arxiv.org/abs/1502.08018
http://arxiv.org/abs/1206.2080
http://arxiv.org/abs/1206.2723
http://arxiv.org/abs/1303.4154
http://arxiv.org/abs/1206.5678
http://arxiv.org/abs/1301.4326
http://arxiv.org/abs/1301.7419
http://arxiv.org/abs/1306.4740
http://arxiv.org/abs/1206.4253
http://arxiv.org/abs/1304.0449
http://arxiv.org/abs/1304.0723
http://arxiv.org/abs/1306.5502
http://arxiv.org/abs/1309.3162
http://arxiv.org/abs/1501.07796
http://arxiv.org/abs/1412.4300
http://arxiv.org/abs/1409.7260
http://arxiv.org/abs/1409.8300
http://arxiv.org/abs/1301.4993
http://arxiv.org/abs/1208.5773
http://arxiv.org/abs/1306.5743
http://arxiv.org/abs/astro-ph/0004134
http://arxiv.org/abs/astro-ph/0006373
http://arxiv.org/abs/astro-ph/9912463
http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/0806.1016

	Mass-varying massive gravity with k-essence
	Abstract 
	1 Introduction
	2 The model and the background equations
	3 Dark energy solution for the self-accelerating universe
	4 Dynamical system
	4.1 Fixed point (a)
	4.2 Fixed point (b)
	4.3 Fixed point (c)
	4.4 Fixed point (d)
	4.5 Fixed point (e)

	5 Extended analyses
	6 Conclusion
	Acknowledgments
	References




