
Eur. Phys. J. C (2016) 76:18
DOI 10.1140/epjc/s10052-015-3861-3

Regular Article - Theoretical Physics

Inflation in a viscous fluid model

Kazuharu Bamba1,a, Sergei D. Odintsov2,3

1 Division of Human Support System, Faculty of Symbiotic Systems Science, Fukushima University, Fukushima 960-1296, Japan
2 Institut de Ciencies de lEspai (IEEC-CSIC), Campus UAB, Carrer de Can Magrans, Cerdanyola del Valles, 08193 Barcelona, Spain
3 Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23 08010 Barcelona, Spain

Received: 14 October 2015 / Accepted: 20 December 2015 / Published online: 18 January 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We explore a fluid description of the inflationary
universe. In particular, we investigate a fluid model in which
the equation of state (EoS) for a fluid includes bulk viscosity.
We find that the three observables of inflationary cosmol-
ogy, i.e., the spectral index of the curvature perturbations,
the tensor-to-scalar ratio of the density perturbations, and
the running of the spectral index, can be consistent with the
recent Planck results. We also reconstruct the explicit EoS for
a fluid from the spectral index of the curvature perturbations
compatible with the Planck analysis. In the reconstructed
models of a fluid, the tensor-to-scalar ratio of the density
perturbations can satisfy the constraints obtained from the
Planck satellite. The running of the spectral index can explain
the Planck data. In addition, it is demonstrated that in the
reconstructed models of a fluid, the graceful exit from infla-
tion can be realized. Moreover, we show that the singular
inflation can occur in a fluid model. Furthermore, we show
that a fluid description of inflation can be equivalent to the
description of inflation in terms of scalar field theories.

1 Introduction

The various precise properties on inflation in the early uni-
verse [1–5] has been revealed by the recent cosmological
observations on the anisotropy of the cosmic microwave
background (CMB) radiation such as the Planck satel-
lite [6,7] and the BICEP2 experiment [8,9], in addition to the
Wilkinson Microwave anisotropy probe (WMAP) [10,11].
The nature of inflation can be known from the spectrum of
the primordial density perturbations [12–14].

Recently, in Refs. [15,16], the convenient fluid descrip-
tion of the inflationary universe has been proposed in terms
of scalar field theories, fluid models [17], and F(R) gravity
theories [18–26]. Especially, the three observables of infla-
tionary models, i.e., the spectral index of the curvature per-
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turbations, the tensor-to-scalar ratio of the density pertur-
bations, and the running of the spectral index, have been
represented by using quantities in scalar field theories, fluid
models, and F(R) gravity theories. Fluid models have been
applied to cosmological issues such as inflation [27–33] and
dark energy [34] (for recent reviews, see [17,35]).

In this paper, by extending the preceding investigations
of a fluid description [16] for the inflationary universe, we
derive the slow-roll conditions and construct the formulas of
the observables for inflationary models of the spectral index
ns of the curvature perturbations, the tensor-to-scalar ratio r
of the density perturbations, and the running αs of the spectral
index. We analyze the equation of state (EoS) for a fluid
including bulk viscosity and examine a fluid model in which
ns, r , and αs can be compatible with the recent Planck results.

In addition, we explicitly reconstruct the EoS for a fluid
from the spectral index ns of the curvature perturbations.
Particularly, we use the expression of ns as a function of
the number of e-folds N during inflation in the inflation-
ary models including the Starobinsky inflation [5], from
which the value of ns, consistent with the recent Planck
analysis, can be obtained. This reconstruction method for
scalar field theories has been proposed in Ref. [36]. In this
work, we present the reconstruction procedure in a fluid
description. We also show that in the reconstructed mod-
els of a fluid, the slow-roll inflation, i.e., the de Sitter infla-
tion, can occur. In these fluid models, the tensor-to-scalar
ratio r of the density perturbations can meet the constraints
acquired by the Planck satellite. The running αs of the
spectral index can explain the Planck results. Moreover,
we verify that in the reconstructed models of a fluid, the
graceful exit from inflation can be realized. Furthermore,
we demonstrate that in the fluid models, the singular infla-
tion [37–40] can occur. In addition, we explain the equiva-
lence between a fluid description of inflation and the descrip-
tion of inflation in terms of scalar field theories. We use
units of kB = c = h̄ = 1 and express the gravitational
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constant 8πGN by κ2 ≡ 8π/MPl
2 with the Planck mass of

MPl = G−1/2
N = 1.2 × 1019 GeV.

The organization of the paper is the following. In Sect. 2,
we explain a fluid description of the inflationary universe. In
particular, we present a fluid model in which the EoS for a
fluid includes bulk viscosity and show that the fluid model
can explain the recent Planck results of the three observables
for inflationary models. In Sect. 3, we reconstruct the EoS
for a fluid from the spectral index of the curvature pertur-
bations. We certify that inflation can happen in the recon-
structed models of a fluid, and that the tensor-to-scalar ratio
of the density perturbations can be consistent with the Planck
analysis. In Sect. 4, we investigate that the graceful exit from
inflation can be realized in the fluid models reconstructed
above. In Sect. 5, we consider the singular inflation in a fluid
model. In Sect. 6, we show that a fluid description of inflation
can be equivalent to the description of inflation in terms of
scalar field theories. Conclusions are presented in Sect. 7. In
Appendix A, the slow-roll parameters in a fluid description
are given.

2 Fluid description of inflation

We consider the case that the so-called slow-roll inflation
driven by the potential V (φ) of a scalar field φ occurs, which
plays a roll of the inflaton field. We explain the procedure [15]
to represent the slow-roll parameters in terms of the Hubble
parameter and its derivatives of the number of e-folds dur-
ing inflation. Furthermore, with these representations of the
slow-roll parameters, we describe the observables of infla-
tionary models, namely, the spectral index of the curvature
perturbations, the tensor-to-scalar ratio of the density pertur-
bations, and the running of the spectral index in fluid mod-
els [16].

2.1 Slow-roll parameters

The action of φ with the Einstein–Hilbert term is given by

S =
∫

d4x
√−g

(
R

2κ2 − 1

2
∂μφ∂μφ − V (φ)

)
. (2.1)

Here, g is the determinant of the metric gμν and R is
the scalar curvature. For the slow-roll inflation, the spectral
index ns of the curvature perturbations (i.e., the scalar mode
of the density perturbations), the tensor-to-scalar ratio r of the
density perturbations, and the running of the spectral index
αs ≡ dns/d ln k, where k is the absolute value of the wave
number k, are written as

ns − 1 = −6ε + 2η, r = 16ε, αs = 16εη − 24ε2 − 2ξ2,

(2.2)

where ε, η, and ξ are the slow-roll parameters, defined as

ε ≡ 1

2κ2

(
V ′(φ)

V (φ)

)2

, η ≡ 1

κ2

V ′′(φ)

V (φ)
,

ξ2 ≡ 1

κ4

V ′(φ)V ′′′(φ)

(V (φ))2 . (2.3)

Here, the prime shows the derivative with respect to φ

as V ′(φ) ≡ dV (φ)/dφ. Throughout this paper, the prime
denotes the derivative with respect to the argument of the
function, to which the prime operates.

We take the flat Friedmann–Lemaître–Robertson–Walker
(FLRW) metric ds2 = −dt2 +a2(t)

∑
i=1,2,3

(
dxi

)2
, where

a(t) is the scale factor. The Hubble parameter is defined by
H ≡ ȧ/a, where the dot means the time derivative.

We express the slow-roll parameters in terms of H , which
can be represented as H = H(N ), namely, as a function of
the number of e-folds N during inflation, defined as N ≡
ln (af/ai) = ∫ tf

ti
Hdt , where ai and af are the values of the

scale factor a at the initial time ti and the end time tf of
inflation, respectively. To execute this task, with a new scalar
field ϕ, we redefine φ as φ = φ(ϕ), where ϕ is identified with
N . We introduce a positive quantity ω(ϕ) (> 0) defined as
ω(ϕ) ≡ (dφ/dϕ)2, and represent V as a function of ϕ, i.e.,
V (ϕ) ≡ V (φ (ϕ)). In the FLRW background, we derive the
gravitational equations and rewrite them by using ω(ϕ) and
V (ϕ). By solving the gravitational equations with respect to
ω(ϕ) and V (ϕ), we obtain [15]

ω(ϕ) = − 2

κ2

H ′(N )

H(N )

∣∣∣∣
N=ϕ

,

V (ϕ) = 1

κ2 (H(N ))2
(

3 + H ′(N )

H(N )

)∣∣∣∣
N=ϕ

, (2.4)

with H ′(N ) ≡ dH(N )/dN . Here, the representations of
H = H(N ) and ϕ = N are acquired as solutions for the
equation of motion of φ or ϕ, and the gravitational field
equations. It is seen from the first equation in (2.4) that since
ω(ϕ) > 0, we have H ′(N ) < 0. The slow-roll parameters
in (2.3) can be rewritten by using ω(ϕ) and V (ϕ). Accord-
ingly, through the expressions of ω(ϕ) and V (ϕ) in (2.4), the
slow-roll parameters can be described in terms of H(N ) and
its derivatives with respect to N . The resultant expressions
have been given in Ref. [15].

2.2 Representation of a fluid

For a general fluid model, the EoS is given by

P(N ) = −ρ(N ) + f (ρ), (2.5)

where ρ is the energy density of a fluid, P is its pressure,
and f (ρ) is an arbitrary function of ρ. In the flat FLRW
background, for such a fluid model, the gravitational field
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equations read

3

κ2 (H(N ))2 =ρ, (2.6)

− 2

κ2 H(N )H ′(N )=ρ + P, (2.7)

Since the EoS can be expressed as ρ(N ) + P(N ) =
f (ρ), the second gravitational equation is rewritten to
− (

2/κ2
)
H(N )H ′(N ) = f (ρ). Similarly, with the expres-

sion of the EoS shown above, the conservation law 0 =
ρ′(N ) + 3 (ρ(N ) + P(N )) becomes 0 = ρ′(N ) + 3 f (ρ),
where ρ′(N ) ≡ dρ(N )/dN . From these second gravitational
equation and conservation law, we acquire

2

κ2 (H(N ))2

[(
H ′(N )

H(N )

)2

+ H ′′(N )

H(N )

]
= 3 f ′(ρ) f (ρ),

(2.8)

with f ′(ρ) ≡ d f (ρ)/dρ. Owing to this equation, it is possi-
ble to express H(N ) and its derivatives with respect to N only
with ρ(N ) and f (ρ(N )). Therefore, the slow-roll parame-
ters can be described in terms of ρ(N ) and f (ρ(N )), as is
presented in Appendix A. As a result, by substituting the
representations of the slow-roll parameters in Appendix A
into the expressions of observables of the inflationary mod-
els in (2.3), we obtain the fluid description of ns, r , and αs. In
Ref. [16], the explicit expressions of ns, r , and αs are shown.1

The EoS for a fluid can also be represented as w(N ) ≡
P(N )/ρ(N ) = −1 + f (ρ)/ρ(N ), from which we find
f (ρ)/ρ(N ) = w(N ) + 1. When | f (ρ)/ρ(N )| � 1, and
f (ρ) and ρ vary very slowly in the inflationary stage, the
approximate expressions of ns, r , and αs read [16]

(ns, r, αs) ≈
(

1 − 6
f (ρ)

ρ(N )
, 24

f (ρ)

ρ(N )
,−9

(
f (ρ)

ρ(N )

)2
)

(2.9)

= (1 − 6 (w(N ) + 1) , 24 (w(N ) + 1) ,

−9 (w(N ) + 1)2), (2.10)

where in deriving (2.10), we have used the relation
f (ρ)/ρ(N ) = w(N ) + 1.

2.3 Fluid model in which the EoS for a fluid includes bulk
viscosity

We investigate a fluid with the following EoS:

P = −ρ + Aρβ + ζ(H), (2.11)

where A and β are constants, and ζ(H) is the bulk viscosity.
As a specific case, we consider ζ(H) to have the following
form:

1 The other way to describe αs has been examined in Ref. [41].

ζ(H) = ζ̄Hγ , (2.12)

where ζ̄ and γ are constants. We note that the mass dimension
of A is −4 (β − 1), whereas that of ζ̄ is − (γ − 4). From the
Friedmann Eq. (2.6) for the expanding universe (H > 0),

we get H =
(
κ/

√
3
) √

ρ. Hence, ζ(H) can be written as a

function of ρ, namely, ζ(H) = ζ(H(ρ)). Consequently, by
comparing Eq. (2.5) with Eq. (2.11) and using Eq. (2.12), we
acquire

f (ρ) = Aρβ + ζ(H(ρ)) = Aρβ + ζ̄

(
κ√
3

)γ

ργ/2. (2.13)

Here, we state a physical reason why we have considered
the case that ζ(H) is expressed by a power in H as given in
Eq. (2.12) and hence f (ρ) is represented by the linear com-
bination of two kinds of a power in ρ as shown in Eq. (2.13).
It is assumed that only for such a case f (ρ) is expressed by
a series of a power in ρ, and through a phenomenological
approach, it is possible to analytically study the quantitative
features of the EoS for a fluid to realize inflation in which the
three observables of inflationary models, namely, the spectral
index of the curvature perturbations, the tensor-to-scalar ratio
of the density perturbations, and the running of the spectral
index, can explain the recent Planck results, as is demon-
strated below.

The Planck analysis [6,7] has shown that ns = 0.968 ±
0.006 (68 % CL), r < 0.11 (95 % CL), and αs = −0.003 ±
0.007 (68 % CL). If f (ρ)/ρ(N ) = 4.35 × 10−3, i.e., w =
−0.996, from Eq. (2.9) or (2.10), we have (ns, r, αs) =
(0.974, 0.104,−1.70 × 10−4). These results are consistent
with the Planck data.

We here demonstrate that it is possible to realize these
Planck results by choosing appropriate values of the model
parameters in Eq. (2.11) with Eq. (2.12). In other words, we
explicitly derive the values of the model parameters leading
to f (ρ)/ρ = 4.35 × 10−3. It follows from Eq. (2.13) that

f (ρ)

ρ
= Aρβ−1

c

(
ρ

ρc

)β−1

+ ζ̄

(
κ√
3

)γ

×ρ
γ/2−1
c

(
ρ

ρc

)γ /2−1

(2.14)

= Aρβ−1
c

(
Hinf

H0

)2(β−1)

+ ζ̄

(
κ√
3

)γ

×ρ
γ/2−1
c

(
Hinf

H0

)γ−2

, (2.15)

where ρc ≡ 3H2
0 /κ2 = 8.10 × 10−47 GeV4 is the critical

density, H0 = 100h km sec−1 Mpc−1 = 2.13h×10−42GeV
with h = 0.678 [6] is the current Hubble parameter [42], and
Hinf is the Hubble parameter at the inflationary stage. For
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simplicity, we set γ = 2β. In this case, from Eq. (2.15), we
obtain

f (ρ)

ρ
= J

(
Hinf

H0

)2(β−1)

, (2.16)

J ≡
[
A + ζ̄

(
κ√
3

)2β
]

ρβ−1
c . (2.17)

For the simplest case that β = 1, when J = 4.35 ×
10−3, regardless of the scale of inflation Hinf , the Planck
results can be realized. Moreover, in the case that β = 2, for
example, if (Hinf , J ) = (1.0 × 1010 GeV, 9.10 × 10−107),
(1.0 × 105 GeV, 9.10 × 10−97), we can explain the Planck
data.

3 Reconstruction of the EoS for a fluid from the
spectral index

In this section, we reconstruct the EoS for a fluid from the
spectral index of the curvature perturbations. Such a recon-
struction has been studied for the case of scalar field theories
in Ref. [36].

3.1 Reconstruction procedure in a fluid description

For the slow-roll inflation in scalar field theories, whose
action is given by Eq. (2.1), the spectral index ns of the curva-
ture perturbations, the tensor-to-scalar ratio r of the density
perturbations, and the running αs of the spectral index are
derived as follows [36]:

ns − 1 = d

dN

[
ln

(
1

V 2(N )

dV (N )

dN

)]
,

r = 8

V (N )

dV (N )

dN
,

αs = − d2

dN 2

[
ln

(
1

V 2(N )

dV (N )

dN

)]
. (3.1)

Similarly to the case of scalar field theories, in a fluid
model, it is possible to reconstruct the EoS for a fluid from
the spectral indexns of the curvature perturbations. If we have
the form of ns as a function of N , by using the first relation
in (3.1), we can obtain the expression of V (N ). Thanks to
the Friedmann Eq. (2.6), the Hubble parameter is related to
V (N ), and hence we get H = H(N ). In a fluid model, with
the other gravitational field Eq. (2.7), we can acquire the form
of f (ρ) through the EoS in Eq. (2.5).

3.2 Inflationary models with ns − 1 = −2/N

We demonstrate the reconstruction procedure in a fluid
description by exploring the inflationary models in which
ns is given by

ns − 1 = − 2

N
. (3.2)

It is well known that in the Starobinsky inflation (R2

inflation) [5], ns and r are expressed as [11] Eq. (3.2) and
r = 12/N 2, respectively. If N = 60, we find ns = 0.967
and r = 3.33 × 10−3, which are consistent with the Planck
data [7] (for a recent detailed review of inflation in mod-
ified gravity theories, see, for instance, [43]). The relation
(3.2) can be satisfied also in the chaotic inflation [44] and
the Higgs inflation with its non-minimal gravitational cou-
pling [45,46], or the so-called α-attractor [47–49], which
connects the Starobinsky, quadratic chaotic, and Higgs infla-
tions. By combining the relation (3.2) with the first equation
in (3.1), we find

V (N ) = 1

(C1/N ) + C2
, (3.3)

withC1(> 0) andC2 constants, the mass dimension of which
is four. For the potential V (N ) in Eq. (3.3), from the second
relation in (3.1), the tensor-to-scalar ratio r of the density
perturbations is expressed as

r = 8

N [1 + (C2/C1) N ]
, (3.4)

Furthermore, with the third relation in (3.1), the running
αs of the spectral index is written as

αs = − 2

N 2 . (3.5)

By using this expression, for N = 60, we acquire αs =
−5.56×10−4. This value is consistent with the Planck anal-
ysis.

In a fluid model, instead of the inflaton potential V , we
use the EoS in Eq. (2.5). In the FLRW background, the
Friedmann equation (2.6) is written as

(
3/κ2

)
(H(N ))2 =

ρ(N ) ≈ V (N ), where the last approximate equation fol-
lows from the slow-roll approximation that the kinetic term
is much smaller than the potential one as

∣∣(1/2) φ̇2
∣∣ � V .

From the relation ρ ≈ V with Eq. (3.3), we have

N ≈ C1ρ

1 − C2ρ
. (3.6)

Furthermore, it follows from the Friedmann equation with
the slow-roll approximation shown above that the Hubble
parameter is expressed as

H(N ) ≈ κ

√
1

3 [(C1/N ) + C2]
, (3.7)
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where (C1/N )+C2 > 0. From Eqs. (2.6) and (2.7) with the
Hubble parameter in Eq. (3.7), we obtain

P = −ρ − 2

κ2 H(N )H ′(N ) ≈ −ρ − 3C1

N 2κ4 H
4. (3.8)

By comparing Eq. (2.5) with Eq. (3.8), we acquire

f (ρ) ≈ − 3C1

N 2κ4 H
4 ≈ − 1

3C1

(
1 − 2C2ρ + C2

2ρ2
)

. (3.9)

Here, in deriving the second approximate equality, we
have used the Friedmann Eqs. (2.6) and (3.6).

3.3 Fluid models and inflation

Next, we explicitly show the models of a fluid, in which the
values of ns and r are consistent with the Planck results.
Plugging Eqs. (2.11) and (2.13), we have the form of EoS for
a fluid

P = −ρ + f (ρ) = −ρ + Aρβ + ζ̄

(
κ√
3

)γ

ργ/2. (3.10)

With the results in the preceding subsection, we decide
the models parameters: A, ζ̄ , β, and γ , in which Eq. (3.2)
can be satisfied.

3.3.1 Case (i): |C2ρ| � 1

When |C2ρ| � 1, from Eq. (3.9), we have

f (ρ) ≈ 2C2

3C1
ρ − C2

2

3C1
ρ2 . (3.11)

Since the value of N given by Eq. (3.6) has to be positive,
we find C2 < 0. In addition, the number of e-folds N during
inflation has to be much larger than unity such as N = 60,
and hence, from Eq. (3.6) and the condition |C2ρ| � 1,
we acquire (−C2) /C1 ≈ 1/N � 1. From Eqs. (3.10) and
(3.11), we get

w = P

ρ
≈ −1 − 2

3

(
−C2

C1

)
+ 1

3

(
−C2

C1

)
(−C2ρ)

≈ −1 + 1

3N
(−2 − C2ρ) , (3.12)

where in deriving the second approximate equality, we have
used (−C2) /C1 ≈ 1/N . For example, if |C2ρ| = O(10) and
(−C2) /C1 ≈ 1/N , where, e.g., N � 60, from Eq. (3.12), we
can obtain w ≈ −1. This implies that the slow-roll inflation,
namely, the de Sitter inflation, can occur, and hence the scale
factor can be represented as

a(t) = ai exp [Hinf(t − ti)] . (3.13)

Moreover, if (−C2) /C1 < 1/N , from Eq. (3.4), it is seen
that for N � 73, the tensor-to-scalar ratio r of the density
perturbations can meet r < 0.11, which is consistent with
the Planck results.

Through the comparison between this expression and
Eq. (2.13), we see that these expressions become equiva-
lent, i.e., the linear combination of ρ and ρ2. In this case,
there are two combinations of the model parameters, which
will be called Model (a) and Model (b), as follows:

Model (a) : A = 2C2

3C1
, ζ̄ = − 3C2

2

C1κ4 , β = 1, γ = 4,

(3.14)

and

Model (b) : A = − C2
2

3C1
, ζ̄ = 2C2

C1κ2 , β = 2, γ = 2.

(3.15)

In (3.14) and (3.15), when the second relations have been
derived by using the fourth relations. As a result, the EoS of
a fluid can explicitly be reconstructed.

3.3.2 Case (ii): |C2ρ| � 1

On the other hand, if |C2ρ| � 1, it follows from Eq. (3.9)
that

f (ρ) ≈ − 1

3C1
+ 2C2

3C1
ρ. (3.16)

With Eq. (3.6) and the condition |C2ρ| � 1, we have
C1ρ ≈ N � 1, and eventually we also find |C2| /C1 � 1.
From Eqs. (3.10) and (3.11), we acquire

w= P

ρ
≈−1−1

3

1

C1ρ
+2

3

(
C2

C1

)
≈ −1+ 1

3

(
− 1

N
+ 2

C2

C1

)
.

(3.17)

Here, the second approximate equality follows from
C1ρ ≈ N . Accordingly, from Eq. (3.17) with 1/N � 1 and
|C2| /C1 � 1, we see that w ≈ −1 can be met. Thus, the
slow-roll (de Sitter) inflation can happen, and the scale factor
can be expressed by Eq. (3.13). In addition, for C2 > 0 and
C2/C1 � 1/N , by using Eq. (3.4), it is found that even for
N � 60, the tensor-to-scalar ratio r of the density perturba-
tions becomes r < 0.11, which is consistent with the Planck
results. On the other hand, forC2 < 0 and |C2| /C1 < 1/N , it
follows from Eq. (3.4) that for N � 73, we can get r < 0.11,
similarly to that in Case (i) described above.

The comparison of this expression with Eq. (2.13) leads to
the following combinations of the model parameters, which
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Table 1 Fluid models with the EoS in Eq. (3.10) realizing the relation
(3.2). Here, C1 > 0. In Case (i), |C2ρ| � 1 and C2 < 0, whereas for
Case (ii), |C2ρ| � 1 and C2 can take both the positive and the negative
values

Case Model A ζ̄ β γ

(i) (a) 2C2/ (3C1) −3C2
2/

(
C1κ

4
)

1 4

(i) (b) −C2
2/ (3C1) 2C2/

(
C1κ

2
)

2 2

(ii) (c) −1/ (3C1) 2C2/
(
C1κ

2
)

0 2

(ii) (d) 2C2/ (3C1) −1/ (3C1) 1 0

will be named Model (c) and Model (d) as follows:

Model (c) : A = − 1

3C1
, ζ̄ = 2C2

C1κ2 , β = 0, γ = 2,

(3.18)

and

Model (d) : A = 2C2

3C1
, ζ̄ = − 1

3C1
, β = 1, γ = 0.

(3.19)

In Eqs. (3.18) and (3.19), with the fourth relations, the
second ones have been derived. In Table 1, the fluid models
with the EoS in Eq. (3.10) satisfying the relation (3.2) are
summarized.

We remark that if C2 > 0, the inflaton potential can cor-
respond to the one in the Starobinsky inflation. From the
investigations in the scalar field theories, we have C2 =
(2/3)C1 [36]. In this case, for the models in Eqs. (3.18) and
(3.19), we obtain ζ̄ = 4/

(
3κ2

)
and A = 4/9, respectively.

4 Graceful exit from inflation

In this section, we examine whether the graceful exit from
inflation can occur in a fluid model. We analyze the instability
of the de Sitter solution (H = Hinf (> 0) = constant) during
inflation by taking the perturbations of the Hubble parameter
as follows [50]:

H = Hinf + Hinfδ(t). (4.1)

Here, |δ(t)| � 1, and hence Hinfδ(t) denotes the pertur-
bations from the de Sitter solution Hinf .

We rewrite Eq. (2.8) as the following second differential
equation with respect to the cosmic time t :

Ḧ − κ4

2

[
βA2

(
3

κ2

)2β

H4β−1 +
(
β + γ

2

)
Aζ̄

(
3

κ2

)β

×H2β+γ−1 + γ

2
ζ̄ 2H2γ−1

]
= 0. (4.2)

We define the form of δ(t) as

δ(t) ≡ eλt , (4.3)

where λ is a constant, so that we can investigate the instability
of the de Sitter solution. If there is a positive solution of λ,
the de Sitter solution can be unstable. Therefore, the universe
can exit from inflation, and the reheating stage can follow,
because the absolute value of δ(t) with λ > 0 becomes larger
as the cosmic time grows at the inflationary stage.

We substitute Eq. (4.1) with Eq. (4.3) into Eq. (4.2) and
take the first order of δ(t). Accordingly, we get

λ2 − 1

2

κ4

H2
inf

Q = 0, (4.4)

Q ≡ β (4β − 1) A2
(

3

κ2

)2β

H4β
inf

+
(
β + γ

2

)
(2β + γ − 1) Aζ̄

(
3

κ2

)β

H2β+γ
inf

+γ

2
(2γ − 1) ζ̄ 2H2γ

inf . (4.5)

We see that the solutions of Eq. (4.4) are given by

λ = λ± ≡ ± 1√
2

κ2

Hinf

√Q . (4.6)

If Q > 0, we can acquire the positive solution of λ =
λ+ > 0. As a result, the exit from inflation can gracefully
occur.

Concretely, in the fluid models reconstructed above and
summarized in Table 1, we check whether the graceful exit
from inflation can be realized or not, namely, whether Q can
take a positive value or not. If the universe cannot success-
fully exit from inflation, inflation does not ends, and therefore
such a scenario corresponds to the so-called eternal inflation.
By substituting the values of A, ζ̄ , β, and γ in Models (a), (b),
(c), and (d), given by Eqs. (3.14), (3.15), (3.18), and (3.19),
respectively, into Eq. (4.6), we obtain the expressions of Q
in each models. To evaluate the values of Q, we take into
account the following facts. For all of the models, C1 > 0.
On the other hand, in Models (a) and (b), C2 < 0, while in
Models (c) and (d), C2 can become both the positive and the
negative values. For Models (a) and (b) in Case (i), we find

Model (a) : Q = 2

(
C2

C1

)2 (
Hinf

κ

)4

×
[

6 − 45C2

(
Hinf

κ

)2

+ 63C2
2

(
Hinf

κ

)4
]

> 0, (4.7)
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Table 2 The EoS for the fluid models reconstructed in Sect. III and the
conditions that in these models, the graceful exit from inflation can be
realized. In these models, ns − 1 = −2/N = 0.967 for N = 60,
r < 0.11 for N � 73 in Models (a), (b) and Models (c) and (d)

with C2 < 0, or N � 60 in Models (c) and (d) with C2 > 0, and
αs = −2/N 2 = −5.56 × 10−4 for N = 60 can be realized. These
values can explain the Planck data. Legend is the same as Table 1

Case Model EoS Conditions for the graceful exit from inflation

(i) (a) P = −ρ + [2C2/ (3C1)] ρ − [
3C2

2/
(
C1κ

4
)]

H4 No condition

(i) (b) P = −ρ − [
C2

2/ (3C1)
]
ρ2 + [

2C2/
(
C1κ

2
)]

H2 No condition

(ii) (c) P = −ρ − [1/ (3C1)] + [
2C2/

(
C1κ

2
)]

H2 C2 < 0 or C2 > (1/36) (κ/Hinf )
2

(ii) (d) P = −ρ + [2C2/ (3C1)] ρ − [1/ (3C1)] C2 < 0 or C2 > (1/18) (κ/Hinf )
2

Model (b) : Q = 6

(
C2

C1

)2 (
Hinf

κ

)4

×
[

2 − 15C2

(
Hinf

κ

)2

+ 21C2
2

(
Hinf

κ

)4
]

> 0. (4.8)

Accordingly, we always have Q > 0. While, for Models
(c) and (d) in Case (ii), we acquire

Model (c) : Q =
(
C2

C1

)2 (
Hinf

κ

)2

×
[
− 1

3C2
+ 12

(
Hinf

κ

)2
]

, (4.9)

Model (d) : Q = 2

(
C2

C1

)2 (
Hinf

κ

)2

×
[

6

(
Hinf

κ

)2

− 1

3C2

]
. (4.10)

From these relations, we find that ifC2 < 0, we getQ > 0,
whereas, in the case that C2 > 0, if the following conditions
are satisfied:

C2 >
1

36

(
κ

Hinf

)2

for Model (c), (4.11)

C2 >
1

18

(
κ

Hinf

)2

for Model (d), (4.12)

we can obtain Q > 0. Thus, for the reconstructed models of
a fluid in the previous section, it is possible for the universe
to gracefully exit from inflation.

In Table 2, we present the summary of the reconstructed
fluid models. We show the EoS of these models in the form of
Eq. (2.11) so that a term inspired by bulk viscosity can clearly
be seen. In these models, the three observables of inflation-
ary cosmology can be compatible with the Planck results.
First, the spectral index ns of the curvature perturbations is
expressed as ns − 1 = −2/N in Eq. (3.2), which can lead to
0.967 for N = 60. Second, The tensor-to-scalar ratio r of the
density perturbations can satisfy the upper limit of r < 0.11.
In Models (a) and (b) [Case (i)] and Models (c) and (d) [Case
(ii)] with C2 < 0, if N � 73, we can obtain r < 0.11. While,
in Models (c) and (d) [Case (ii)] with C2 > 0, when N � 60,

we can find r < 0.11. Third, the running αs of the spec-
tral index is given by αs = −2/N 2 in Eq. (3.5). From this
expression, we have αs = −5.56×10−4. These values of ns,
r , and αs are consistent with the Planck results. Moreover,
the universe can gracefully exit from inflation. We describe
the conditions for the graceful exit from inflation.

5 Singular inflation in a fluid model

In this section, we study the singular inflation [39] in a fluid
model. In this inflationary scenario, the idea of finite-time
future singularities in the context of the dark energy problem
is applied to inflation in the early universe.

The finite-time future singularities are classified into four
types [51]. Their features in modified gravity theories have
also been analyzed in detail [52] (for a detailed review on
the finite-time future singularities, see [17]). Among them,
the formulation of the Type IV singularity can be used in the
singular inflation, because there is no divergence in terms
of the scale factor, the energy density and pressure of the
universe.

In the type IV singularity, for t → ts, where ts is the
time when the singularity appears, the scale factor a, the
effective (i.e., total) energy density ρeff and pressure Peff

of the universe become finite as a → as, ρeff → 0 and
|Peff | → 0. Here, as is the value of a at t = ts. The case that
ρeff and/or |Peff | become non-zero finite values at t = ts [53–
80] is also included in the Type IV singularity. However, the
higher derivatives of H diverge.

In the following, we explore the inflationary stage in which
there is only a component of a fluid. Therefore, for simplic-
ity, we describe ρeff and Peff by ρ and P , respectively. We
consider the case that the Hubble parameter and scale factor
during inflation are represented as

H = Hinf + H̄ (ts − t)q , q > 1, (5.1)

a = ā exp

[
Hinf t − H̄

q + 1
(ts − t)q+1

]
, (5.2)

where H̄ , q, and ā are constants, and the mass dimension of
H̄ is q + 1.
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In the flat FLRW universe, from the gravitational field
equations, the energy density and pressure of the universe
are given by

ρ = 3H2

κ2 , P = −2Ḣ + 3H2

κ2 . (5.3)

It is seen from Eq. (5.2) and the expressions in (5.3) with
Eq. (5.1) that in the limit t → ts, all of a, ρ, and P asymptot-
ically approach finite values, while the higher derivatives of
H diverge. Thus, the Type IV singularity appears at t = ts.
By using the expressions of ρ and P in (5.2) with Eq. (5.1),
we find the following EoS for a fluid:

P=−ρ + f (ρ), f (ρ)= 2q H̄1/q

κ2

(
κ

√
ρ

3
− Hinf

)(q−1)/q

.

(5.4)

Here, f (ρ) can be described as the series of power of ρ.
In fact, if Hinf/

√
κ2ρ/3 = Hinf/H � 1, where the equality

comes from the first equation in (5.3), we find

f (ρ) ≈ 2

3(q−1)/(2q)

H̄1/q

κ(q+1)/q

×
[
ρ(q−1)/(2q) −

√
3 (q − 1)

q

Hinf

κ
ρ−1/(2q)

]
,

(5.5)

where we have taken the first order of the quantity(
Hinf/

√(
κ2ρ

)
/3

)
. It follows from Eq. (5.5) that f (ρ) is

represented as a linear combination of two powers of ρ, sim-
ilarly to that in Eq. (2.13) or (3.11). Hence, this model can
be regarded as a kind of the fluid models reconstructed in
Sect. 3.

Furthermore, Eq. (5.5) divided by ρ reads

f (ρ)

ρ
≈ 2q

3
H̄1/q

(
κ2ρ

3

)−(q+1)/(2q)

×
[

1 − (q − 1)

q

Hinf√
κ2ρ/3

]

= 2q

3

(
H̄

Hq+1

)1/q [
1 − (q − 1)

q

Hinf

H

]
. (5.6)

Here, in deriving the last equality, we have used the first
equation in (5.3). It is seen from Eq. (5.6) that for H̄/Hq+1 �
1, we have f (ρ)/ρ � 1. In this case, the observables of the
inflationary models, i.e., ns, r , and αs, can approximately be
represented by Eq. (2.9), and the values of ns, r , and αs can
be compatible with the Planck analysis, as stated in Sect. 2.3.

We explain the existence of limit of ζ̄ = 0 in Eq. (2.12), in
which the term ζ(H) in Eq. (2.12) will not exist and therefore
the EoS for a fluid in Eq. (2.11) reads P = −ρ + Aρβ . In

such a limit, from Eq. (2.5), we have f (ρ) = Aρβ , namely,
the term f (ρ) consists of the single power of ρ. On the other
hand, in Eqs. (5.5) and (5.6), the form of f (ρ) is a linear
combination of two kinds of power of ρ. The form of f (ρ)

can approximately be given in Eqs. (5.5) and (5.6) only if
the singular inflation occurs and the Hubble parameter and
the scale factor are expressed as Eqs. (5.1) and (5.2), respec-
tively, This means that for a fluid without the term ζ(H) in
Eq. (2.12), the singular inflation cannot be realized. Thus,
the existence of the term ζ(H) can influence the dynamics
of the universe filled with a fluid in the early universe.

As a consequence, it is considered that the singular infla-
tion can be realized in the fluid models in which the spectral
index of the curvature perturbations can explain the recent
Planck results.

6 Equivalence between a fluid description of inflation
and the description of inflation in terms of scalar field
theories

In this section, we demonstrate that a fluid description of
inflation can be equivalent to the description of inflation in
terms of scalar field theories (for further related investiga-
tions, see Ref. [17]). The action of scalar field theories is
expressed as

S =
∫

d4x
√−g

(
R

2κ2 − 1

2
ω(ϕ)∂μϕ∂μϕ − V (ϕ)

)
. (6.1)

Here, ω(ϕ) is a coefficient function of kinetic term of the
scalar field ϕ and V (ϕ) is the potential of ϕ. Starting from a
fluid description, we construct a scalar field theory with the
same EoS as that of a fluid. By this process, we obtain the
expressions of ω(ϕ) and V (ϕ) of the corresponding scalar
field theory to a fluid description. Consequently, we can rep-
resent a fluid description as the description of a scalar field
theory.

It is well known that in the FLRW background, ω(ϕ) and
V (ϕ) can be described as [81]

ω(ϕ) = − 2

κ2

dJ (ϕ)

dϕ
, (6.2)

V (ϕ) = 1

κ2

[
3 (J (ϕ))2 + dJ (ϕ)

dϕ

]
, (6.3)

with J (ϕ) an arbitrary function of ϕ. Here, we can take ϕ = t
and H = J (t) because ϕ can be treated as an auxiliary scalar
quantity. On the other hand, the energy density ρ and pressure
P of the scalar field ϕ read

ρ = 1

2
ω(ϕ)ϕ̇2 + V (ϕ), (6.4)

P = 1

2
ω(ϕ)ϕ̇2 − V (ϕ). (6.5)
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With these equations, we find that ω(ϕ) and V (ϕ) are
given by

ωϕ̇2 =ρ + P = f (ρ), (6.6)

V = 1

2
(ρ − P) = ρ − f (ρ)

2
. (6.7)

In deriving the second equalities in Eqs. (6.6) and (6.7),
we have used the EoS of P = −ρ + f (ρ) in a fluid descrip-
tion in Eq. (2.5). From the Friedmann Eq. (2.6), we find
ρ = 3H2/κ2. Therefore, when we have H(= I (t)), we
can express ρ = ρ(t (ϕ)) = ρ(ϕ) as a function of t (= ϕ).
Eventually, from Eqs. (6.6) and (6.7) with ρ = ρ(ϕ), we
can acquire the expressions of ω = ω(ϕ) and V = V (ϕ).
By using these processes, we can obtain the description of a
scalar field theory corresponding to an original fluid descrip-
tion.

Moreover, we consider the opposite approach from the
description of a scalar field to a fluid description. We first
have a scalar field action with ω(ϕ) and V (ϕ) in Eq. (6.1). It
follows from Eqs. (6.4) and (6.5) with φ = t and H = J (t)
that the EoS of the universe w ≡ P/ρ = −1 + f (ρ)/ρ in
Eq. (6.1) with Eq. (2.5). Plugging this relation with Eq. (6.4)
and comparing the relation obtained with w = −1+ f (ρ)/ρ,
we get f (ρ) in a fluid description. Thus, both approaches
shown above suggest the equivalence between a fluid descrip-
tion and the description in terms of scalar field theories.

As a fluid description, we address the case that f (ρ) is
given by

f (ρ) = f̄1 + f̄2

(
ρ

ρ∗

)u

, (6.8)

where f̄1, f̄2, and u are constants, and ρ∗ is a fiducial value
of ρ For f (ρ) in Eq. (6.8) with u = 1, we have the following
EoS:

P = −ρ +
(

f̄2
ρ∗

)
ρ + f̄1 , (6.9)

By comparing this form with Model (d) in Table 2, it is
seen that if f̄2/ρ∗ = 2C2/ (3C1) and f̄1 = − [1/ (3C1)],
the form of the EoS in Eq. (6.9) is equal to Model (d). This
means that in a fluid description with the form of the EoS in
Eq. (6.8), the spectral index of the curvature perturbations,
the tensor-to-scalar ratio of the density perturbations, and
the running of the spectral index can be consistent with the
Planck results.

From the substitution of Eq. (6.8) into the relation w =
−1 + f (ρ)/ρ, Eqs. (6.6) and (6.7), we obtain

w = −1 + f̄1
ρ

+ f̄2
ρ∗

(
ρ

ρ∗

)u−1

, (6.10)

ωϕ̇2 = f̄1 + f̄2

(
ρ

ρ∗

)u

, (6.11)

V = ρ − 1

2

[
f̄1 + f̄2

(
ρ

ρ∗

)u]
. (6.12)

In addition, for instance, we consider the case that the
Hubble parameter and the scale factor during inflation are
expressed by

H = h̄

t
, (6.13)

a = ãt h̄, (6.14)

where h̄ � 1 and ã( 
= 0) are constants. Such a case of h̄ � 1
corresponds to the quasi-de Sitter inflation (i.e., the slow-roll
inflation). In this case, it follows from Eqs. (6.2) and (6.3)
with ϕ = t and H = J (t) that

ω(ϕ) = 2h̄

κ2

1

ϕ2 , (6.15)

V (ϕ) = h̄
(
3h̄ − 1

)
κ2

1

ϕ2 . (6.16)

As described above, when the Hubble parameter H can
be represented as a function of t , from Eqs. (6.2) and (6.3)
with ϕ = t and H = J (t), the expressions of ω = ω(ϕ) and
V = V (ϕ) can be derived explicitly.

7 Conclusions

In the present paper, we have investigated the description of
the inflationary universe in the framework of a fluid model
in which the EoS for a fluid includes bulk viscosity. It has
been found that in a fluid description, the three observables of
inflationary models, namely, the spectral index ns of the cur-
vature perturbations, the tensor-to-scalar ratio r of the density
perturbations, and the running αs of the spectral index, can
be consistent with the recent Planck results.

Furthermore, we have explicitly reconstructed the EoS
of a fluid model from the spectral index ns of the curvature
perturbations. Particularly, we have used the expression of ns

as a function of the number of e-folds N in the inflationary
models, where the value of ns can explain the Planck data,
including the Starobinsky inflation. It has been shown that
for the fluid models reconstructed from the spectral index,
indeed, the slow-roll (de Sitter) inflation can occur. It has
also been certified that, in these fluid models, the tensor-to-
scalar ratio r of the density perturbations can meet the upper
limit found by the Planck analysis. The running αs of the
spectral index can be compatible with the Planck results.

In our previous work [16], since we have considered a
fluid without the term ζ(H) in Eq. (2.12), only for the special
case that the EoS for a fluid is approximately equal to −1 as
w = P/ρ ≈ −1, it has been shown that in a fluid model, the
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three observables of inflationary models can be consistent
with the Planck results. On the other hand, in this work, we
have introduced the additional term ζ(H) in Eq. (2.12) into
the EoS for a fluid as in Eq. (2.11). As a result, it has been
found that also for cases in which the value of w for the EoS
of a fluid is different from −1, in such a fluid model, the
three observables of inflationary models can be compatible
with the Planck analysis.

In addition, we have examined the instability of the de
Sitter solution at the inflationary stage by analyzing the per-
turbations of the Hubble parameter. It has been performed
that the universe can gracefully exit from inflation in the
reconstructed models of a fluid. We have also derived the
conditions for the graceful exit from inflation to be realized
in the reconstructed fluid models.

Moreover, we have explored the singular inflation in a
fluid model by using the formulations to describe the type IV
singularity, which is one of the four types of the finite-time
future singularity. It has been demonstrated that the singular
inflation can be realized in the fluid models where the spectral
index of the curvature perturbations can be compatible with
the Planck data.

It has also been studied that a fluid description of inflation
can be equivalent to the description of inflation in terms of
scalar field theories.

Consequently, not only the representation of inflation
in scalar field theories but also a fluid description of the
inflationary universe can explain the observational results
acquired by the Planck satellite.

The present method of the reconstruction may equally be
applied in the case that the universe is filled with several cou-
pled fluids. This description may also be applied to the cos-
mological evolution from modified gravity consistent with a
fluid description at the background evolution level.
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Appendix A: Slow-roll parameters in a fluid description

In this appendix, we present the slow-roll parameters in a
fluid description. The explicit expressions are given by

ε = 3

2
ρ(N ) f (ρ)

(
f ′(ρ) − 2

2ρ(N ) − f (ρ)

)2

,

η = 3ρ(N )

2ρ(N ) − f (ρ)

{
f (ρ)

ρ(N )
+ 1

2

(
f ′(ρ)

)2 + f ′(ρ)

− 5

2

f (ρ) f ′(ρ)

ρ(N )
+

(
f (ρ)

ρ(N )

)2

+ 1

3

ρ′(N )

f (ρ)

[(
f ′(ρ)

)2 + f (ρ) f ′′(ρ)

− 2
f (ρ) f ′(ρ)

ρ(N )
+

(
f (ρ)

ρ(N )

)2
]}

,

ξ2 = f (ρ)ρ(N )
(
f ′(ρ)−2

)
2 (2ρ(N )− f (ρ))2

[
45

2

f (ρ)

ρ(N )

(
f ′(ρ)− 1

2

f (ρ)

ρ(N )

)

+ 18

(
f (ρ)

ρ(N )

)−1 (
f ′(ρ) − 1

2

f (ρ)

ρ(N )

)2

+ 18

(
f (ρ)

ρ(N )

)−1 (
f ′(ρ) − 1

2

f (ρ)

ρ(N )

)3

− 9

(
f ′(ρ)− 1

2

f (ρ)

ρ(N )

)2

−45 f ′(ρ) + 9
f (ρ)

ρ(N )
+ I

]
,

where

I ≡ 3

(
4 f ′(ρ) − 7

f (ρ)

ρ(N )
+ 2

) {
−3

2

(
f ′(ρ) − 1

2

f (ρ)

ρ(N )

)

+
(

f (ρ)

ρ(N )

)−2
ρ′(N )

ρ(N )

[(
f ′(ρ)

)2 + f (ρ) f ′′(ρ) − 2
f (ρ) f ′(ρ)

ρ(N )

+
(

f (ρ)

ρ(N )

)2
]}

+ 2

(
f (ρ)

ρ(N )

)−2 {
−3

2

(
f (ρ)

ρ(N )

) (
ρ′(N )

ρ(N )

)

×
[

3
(
f ′(ρ)

)2 + 2 f (ρ) f ′′(ρ) − 11

2

f (ρ) f ′(ρ)

ρ(N )
+ 5

2

(
f (ρ)

ρ(N )

)2
]

+
(

ρ′′(N )

ρ(N )

) [(
f ′(ρ)

)2+ f (ρ) f ′′(ρ)−2
f (ρ) f ′(ρ)

ρ(N )
+

(
f (ρ)

ρ(N )

)2
]

+
(

ρ′(N )

ρ(N )

)2 [(
3 f ′(ρ) f ′′(ρ) + f (ρ) f ′′′(ρ)

)
ρ(N ) − 3

(
f ′(ρ)

)2

−3 f (ρ) f ′′(ρ) + 6
f (ρ) f ′(ρ)

ρ(N )
− 3

(
f (ρ)

ρ(N )

)2
]}

.
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