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Abstract We discuss a parametrization to describe possi-
ble deviations from the Kerr metric and test astrophysical
black hole candidates with electromagnetic radiation. Our
metric is a very simple generalization of the Kerr solution
with two main properties: (1) the phenomenology is quite
rich and, for example, it can describe black holes with high
Novikov–Thorne radiative efficiency or black holes of very
small size; (2) it is suitable for the numerical calculations
required to study the spectrum of thin disks. The latter point is
our principal motivation to study such a kind of parametriza-
tion, because in the analysis of real data there are usually
several parameters to fit and the problem with current non-
Kerr metrics is that the calculation times are too long.

1 Introduction

Astrophysical black hole candidates are dark and compact
objects that can be naturally interpreted as black holes and
they may be something else only in the presence of new
physics. Stellar-mass black hole candidates are compact
objects in X-ray binaries with a mass exceeding the maxi-
mum mass for a neutron star [1]. Supermassive black hole
candidates are the huge compact bodies at the center of every
normal galaxy and they turn out to be too massive, com-
pact, and too old to be a cluster of neutron stars [2]. The
non-detection of thermal radiation from the surface of these
objects is also consistent with the idea that they do not have
a surface but an event horizon [3,4].

According to general relativity, the spacetime metric
around black hole candidates should be well described by
the Kerr solution. Initial deviations from the Kerr metric are
quickly radiated away through the emission of gravitational
waves [5]. The equilibrium electric charge is completely neg-
ligible for macroscopic objects [6]. The accretion disk is usu-
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ally many orders of magnitude smaller than the central black
hole candidate and it cannot appreciably change the geome-
try of the spacetime [7].

The Kerr black hole hypothesis entirely relies on the valid-
ity of general relativity and there is no clear observational
confirmation that the spacetime geometry around black hole
candidates is described by the Kerr solution. Moreover, gen-
eral relativity has been tested only for weak gravitational
fields and it is not guaranteed that its predictions still hold in
the strong gravity regime.

In the past few years, there have been a significant work
to study how present and future observational facilities could
test black hole candidates; see e.g. Refs. [8,9]. The most com-
mon approach is to use a method similar to the parametrized
post-Newtonian (PPN) formalism [10], in which one wants
to test the Schwarzschild solution in the weak field limit.
In the case of black hole candidates, one employs a metric
that is parametrized by a number of deformation parame-
ters capable of describing possible deviations from the Kerr
background. The deformation parameters are free quantities
to be determined by observations, and a posteriori one can
check whether astronomical data require vanishing deforma-
tion parameters, as it is required by the Kerr solution.

In the literature there is already a number of parametriza-
tions suitable to test black hole candidates [11–16]. Each
proposal has its own advantages and disadvantages. How-
ever, in the analysis of real data it is necessary to calculate
a large number of spectra for different values of the model
parameters in order to find the best fit and measure the model
parameters. Typical calculations require the determination
of the point of the emission on the accretion disk and of
its redshift factor [17–23]. The Kerr metric has some nice
properties, and eventually these calculations can be done in
a reasonable time with current computational facilities. The
non-Kerr metrics used to test black hole candidates do not
have such nice properties and this becomes an issue when we
want to measure the deformation parameters with real data.
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In the present paper, we discuss a parametrization suit-
able for numerical calculations involving the electromag-
netic spectrum of thin disks. This is our main motivation,
and in particular we have in mind the continuum-fitting and
the iron line methods [17–24]. We are thus interested in a
metric with properties similar to the Kerr solution, and we
do not look for a very general black hole metric. Our met-
ric has the Carter constant and therefore the equations of
motion are separable and of first order. More importantly,
the motion along the θ -direction is like in Kerr metric and it
can be reduced to an elliptic integral, while the motion along
the r -direction can be reduced to a hyper-elliptic integral. In
general, this is probably the best we can have from the point
of view of the accuracy and the speed of the calculations.
We also note that our metric has a quite rich phenomenol-
ogy. For instance, it can describe black holes with a very
high Novikov–Thorne radiative efficiency, which is not the
case for most (if not all) parametrizations already proposed
in the literature. Such a property is quite useful when we have
fast-rotating objects, which are the best candidates to test the
Kerr paradigm. Another feature, which is usually absent in
the other parametrization, is that our black holes can be very
small. It is also worth noting that our metric has no curvature
singularities outside of the event horizon.

2 Metric

As in the other parametrizations discussed in the litera-
ture [11–16], even our choice is necessarily ad hoc and it
can only be motivated by our requirements, which are deter-
mined by the specific use we have in mind. The metric must
clearly includes the Kerr solution as a special case. We want
that there is the Carter constant, so that it is not necessary
to solve the geodesic equations but the equations of motion
are separable and of first order. To do this, we write the Kerr
metric in Boyer–Lindquist coordinates and we promote the
constant M to some functions mi (r) which depend on the
radial coordinate only. The line element reads

ds2 = −
(

1 − 2m1r

�

)
dt2 − 4am1r sin2 θ

�
dtdφ

+ �

�2
dr2 + �dθ2

+
(
r2 + a2 + 2a2m1r sin2 θ

�

)
sin2 θdφ2, (1)

where � = r2 + a2 cos2 θ , �2 = r2 − 2m2r + a2,
m1 = m1(r), and m2 = m2(r). In gtt , gtφ , and gφφ , M
has been replaced by the same function m1, because other-
wise we lose the separability of the equations of motion (see
the next section). The mass M in grr has been replaced by

the function m2, which (in general) may be different by m1

without affecting our requirement.
In the metric in Eq. (1), the radius of the event horizon,

RH, is given by the largest root in grr = 0, namely �2 = 0,
where only m2 is involved, not m1. On the other hand, the
Killing horizon is given by the largest root in

gtt gφφ − g2
tφ = 0. (2)

If m1 = m2, an extension of the rigidity theorem holds and
event horizon and Killing horizon coincide. In the general
case, with m1 �= m2, this may not be true.

We note that the metric in Eq. (1) reduces to the Kerr–
Newman solution when

m1 = m2 = M − Q2

2r
, (3)

where Q is the electric charge of the black hole. Our
metric can also describe a large class of quantum gravity
inspired black hole solutions [25–29] and some regular black
holes [30,31]. For instance, in the non-commutative inspired
black holes of Refs. [25–28], one has

m1(r) = m2(r) = γ (3/2; r2/4l20)

�(3/2)
M, (4)

where γ (3/2; r2/4l20) is the lower incomplete Gamma func-
tion, �(3/2) = √

π/2 is the Gamma function at 3/2, and l0
is the non-commutativity length scale of the theory. In the
weakly non-local theories of gravity of Ref. [29], the black
hole solutions have

m1(r) = m2(r)

= 2M

π

∫ r

0
dx x2

∫ ∞

0
dk k2 sin kr

kr
V

(
− k2

	2

)
, (5)

where V is the model-dependent form factor and 	 is the
scale of the theory. The Bardeen metric [30,31] has

m1(r) = m2(r) = r3

(
r2 + g2

)3/2 M. (6)

If the Bardeen solution is derived from Einstein gravity cou-
pled to a non-linear electrodynamics field [32], g is the mag-
netic charge of the black hole. In all these examples, we
always have m1 = m2, but in the following we will consider
the general case without this condition when it is not required
the exact expression of m1 and m2.

Let us write m1 and m2 in the following form:

mi = M
∞∑
k=0

aik

(
M

r

)k

. (7)

In the weak field regime, M/r � 1 and can be used as
an expansion parameter. The metric coefficient gtt and grr
become

123



Eur. Phys. J. C (2015) 75 :599 Page 3 of 13 599

gtt = −
[

1 − a10
2M

r
− a11

2M2

r2 + · · ·
]

, (8)

grr = 1 + a20
2M

r
+ · · · . (9)

When cast in Schwarzschild coordinates, the PPN metric
reduces to

gtt = −
[

1 − 2M

r
+ (βPPN − γPPN)

2M2

r2 + · · ·
]

, (10)

grr = 1 + γ
2M

r
+ · · · , (11)

and Solar System experiments require that βPPN and γPPN

are 1 with an accuracy at the level of 10−5 − 10−4 [33].
Within our parametrization and m1 and m2 given by Eq. (7),
we can always choose a10 = 1 (if a10 �= 1, we just redefine
M). a11 ≈ 0 and a20 ≈ 1 are constrained by Solar System
experiments. The first unconstrained coefficients are thus a12

and a21.
In the next sections, we will focus the attention on the

following choice of m1 and m2:

m1 = m2 = M

(
1 + α

M2

r2 + β
M3

r3

)
, (12)

where α and β are the two deformation parameters of our
metric. This choice is obtained from the truncation of the
general expression in Eq. (7); that is, we consider the two
leading order terms without Solar System constraints and
we neglect higher order corrections. The Kerr solution is
recovered when α = β = 0. With the choice in Eq. (12),
there are no naked singularities in the region outside of the
black hole. In the appendix, we report the expressions of the
invariants R, RμνRμν , and Rμνρσ Rμνρσ . These invariants
are everywhere regular except at r = 0.

Our final goal is to have a parametrization suitable for
the numerical calculations necessary in the study of the elec-
tromagnetic spectrum of thin disks. The background metric
enters the following calculations:

1. The motion of the particle in the disk. In the Novikov–
Thorne model [34], the disk is on the equatorial plane
orthogonal to the black hole spin, and the particles of the
accretion disk follow nearly geodesic circular orbits on
the equatorial plane.

2. The photon trajectories from the emission point in the
disk to the detection point at infinity. Actually, it is not
strictly necessary to compute the exact photon trajecto-
ries, but it is necessary to connect the emission point
on the disk to that on the image plane of the distant
observer [35,36].

3 Motion of massive particles in the equatorial plane

In the calculations of the motion of the particles in the disk,
only the metric coefficient gtt , gtφ , and gφφ are involved. So
we need to specify m1, which will be assumed to have the
form in Eq. (12), while m2 is actually irrelevant in this part.

The angular velocity of equatorial circular orbits is [17,37]

�± = − (
∂r gtφ

) ±
√(

∂r gtφ
)2 − (∂r gtt )

(
∂r gφφ

)
∂r gφφ

= m̃1/2
1

r3/2 ± am̃1/2
1

, (13)

where here and in the next formulas the upper sign refer
to corotating orbits, while the lower sign to counterrotating
orbits. Moreover, we have introduced m̃1, which is defined
by

m̃1 = M

(
1 + 3α

M2

r2 + 4β
M3

r3

)
(14)

When α = β = 0, we clearly recover the well-known Kerr
result [37]

�Kerr± = M1/2

r3/2 ± aM1/2 . (15)

Following the standard prescription to find the equatorial
circular orbits [17,37], the specific energy and specific angu-
lar momentum of the particles of the gas are

E = r3/2 − 2m1r1/2 ± am̃1/2
1

r3/4
√
r3/2 − 2m1r1/2 − m̃1r1/2 ± 2am̃1/2

1

, (16)

Lz = ±
m̃1/2

1

(
r2 ∓ 2am1/2

1 m̃−1/2
1 r1/2 + a2

)

r3/4
√
r3/2 − 2m1r1/2 − m̃1r1/2 ± 2am̃1/2

1

. (17)

We recover the correct Kerr limit for α = β = 0

E = r3/2 − 2Mr1/2 ± aM1/2

r3/4
√
r3/2 − 3Mr1/2 ± 2aM1/2

, (18)

Lz = ± M1/2
(
r2 ∓ 2aM1/2r1/2 + a2

)
r3/4

√
r3/2 − 3Mr1/2 ± 2aM1/2

. (19)

When

r3/2 − 2m1r
1/2 − m̃1r

1/2 ± 2am̃1/2
1 = 0, (20)

the denominator in Eqs. (17) and (16) vanishes and the par-
ticle has infinite energy. Equation (20) defines the radius of
the photon orbit, Rphoton, which is the minimum radius for
circular orbits (at smaller radii, there are no circular orbits).

In the spectrum of thin disks, the inner edge of the disk
plays a crucial role and it is eventually the true key-ingredient
in both the continuum-fitting and the iron line methods. In
the Novikov–Thorne model, the inner edge of the disk is at
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the innermost stable circular orbit (ISCO). In general, one
has to check the orbital stability along both the radial and the
vertical directions [17,38]. In our spacetime we have checked
that the ISCO radius is only determined by the orbital stability
along the radial direction (like in the Kerr metric), at least
for not too large values of the deformation parameters. In
this case, the ISCO radius corresponds to the minimum of
the specific energy

dE

dr
= 0 ⇒ r = RISCO. (21)

Unfortunately, it seems there is not a compact analytic
expression for RISCO as in the Kerr metric.

The so-called Novikov–Thorne radiative efficiency, which
is the actual quantities measured by the continuum-fitting
method [20], is

ηNT = 1 − EISCO, (22)

where EISCO is the specific energy of a test particle at the
ISCO radius, namely Eq. (17) evaluated at r = RISCO.

The 4-velocity of a particle in the disk is given by uμ
e =

(ute, 0, 0, uφ
e ), where uφ

e = �ute by definition of �. From the
normalization condition gμνu

μ
e uν

e = −1, we get the expres-
sion for ute

ute = 1√−gtt − 2gtφ� − gφφ�2

= r3/2
e + am̃1/2

1

r1/2
e

√
r2

e − 2m1re − m̃1re + 2am̃1/2
1 r1/2

e

, (23)

which reduces to the correct Kerr case for α = β = 0

ute = r3/2
e + aM1/2

r1/2
e

√
r2

e − 3Mre + 2aM1/2r1/2
e

. (24)

The 4-velocity of the particles in the disk is necessary to
calculate another important quantity in the calculation of the
spectrum of thin disks, namely the redshift factor g

g = νo

νe
= uμ

o kμ

uν
ekν

=
√−gtt − 2gtφ� − gφφ�2

1 − ξ�
, (25)

where νo and νe are, respectively, the photon frequency as
measured by the distant observer and the emitter, uμ

o =
(1, 0, 0, 0) is the 4-velocity of the observer, kμ is the 4-
momentum of the photon, and ξ = −kφ/kt is a constant of
motion along the photon trajectory (as a consequence of the
fact the spacetime is stationary and axisymmetric). Within
our parametrization, we find (for a ≥ 0)

g = r1/2
e

√
r2

e − 2m1re − m̃1re + 2am̃1/2
1 r1/2

e

r3/2
e + am̃1/2

1 − m̃1/2
1 ξ

. (26)

The correct Kerr limit is again recovered for α = β = 0

g = r1/2
e

√
r2

e − 3Mre + 2aM1/2r1/2
e

r3/2
e + aM1/2 − M1/2ξ

. (27)

In the end, we have g = g(re, ξ). Since re = re(ξ, q), where
q2 = Q/E2 and Q is the Carter constant (see Sect. 5), even-
tually we have [35]

g = g(ξ, q). (28)

Figures 1, 2, 3, 4, and 5 show the contour levels of the
radius of the event horizon RH (top left panels), of the photon
radius Rphoton (top right panels), of the ISCO radius RISCO

(bottom left panels), and of the Novikov–Thorne radiative
efficiency ηNT (bottom right panels) for β = 0 (Fig. 1), −0.2
(Fig. 2), −0.5 (Fig. 3), 0.2 (Fig. 4), and 0.5 (Fig. 5).

The light-green regions are the parameter space with black
holes, the white regions are those with naked singularities (no
real solution of the equation r2 − 2m2r + a2 = 0). α, β >

0 make the gravitational force at small radii stronger (they
“increase” the value of the effective mass), while α, β < 0
make it weaker. The result is that for β = 0, −0.2, and
−0.5, there may be a naked singularity for α < 0 because
in those cases the gravitational force is not strong enough
to create an event horizon. For β = 0.5, there are no naked
singularities in the plots because at small radii the dominant
term is βM3/r3 and it is positive (namely gravity is strong
and there is an event horizon).

It is worth noting that the Novikov–Thorne radiative effi-
ciency ηNT of our black holes may exceed the maximum
value for a Kerr black hole ηmax

NT ≈ 0.42. This is not the
case for most parametrizations proposed in the literature. If
a black hole candidate has a high radiative efficiency, within
the parametrizations in the literature it is quite automatic
that the deviations from Kerr must be small, or otherwise
it is impossible to reproduce the spectrum. In our case, this
is not true, which means that our parametrization includes
deviations from the Kerr solutions that are usually not taken
into account. In a similar way, our black holes can be very
small (the radius of the event horizon is small) and may also
appear small (the photon capture radius is small). This is not
the case in the other parametrizations.

4 Hamilton–Jacobi equation

The second ingredient necessary in the calculation of the
spectrum of a thin disk is the determination of the photon tra-
jectories from the point of emission to the point of detection.
In a general spacetime, this is done by solving the geodesic
equations, which are second order partial differential equa-
tions in the coordinates of the spacetime. The Kerr metric has
the Carter constant and the equations of motion are separa-
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Fig. 1 Contour levels of the radius of the event horizon RH (top left
panel), of the photon radius Rphoton (top right panel), of the ISCO
radius RISCO (bottom left panel), and of the Novikov–Thorne radiative
efficiency ηNT (bottom right panel) for β = 0. m1 and m2 are given

by Eq. (12). The spacetimes in the white region have no black hole
but a naked singularity and they have not been studied. a∗ = a/M is
the dimensionless spin parameter. RH, Rphoton, and RISCO in units with
M = 1. See the text for more details

ble and of first order. More importantly, the motion along the
θ and r directions can be reduced to elliptic integrals. The
result is that numerical calculations can be faster and more
accurate. In any non-trivial extension of the Kerr metric, this
is not possible. However, we can have a metric in which
the motion along the θ and r directions can be reduced to
hyper-elliptic integrals, with similar advantages of the Kerr
solution.

The starting point is the Hamilton–Jacobi equation

2
∂S

∂τ
= gμν ∂S

∂xμ

∂S

∂xν
. (29)

Assuming in this section the more general case with m1 and
m2 not necessarily the same, gμν is

(
∂

∂s

)2

= − A1

��1

(
∂

∂t

)2

− 4am1r

��1

(
∂

∂t

) (
∂

∂φ

)

+�2

�

(
∂

∂r

)2

+ 1

�

(
∂

∂θ

)2

+�1 − a2 sin2 θ

��1 sin2 θ

(
∂

∂φ

)2

, (30)

where �1 = r2 − 2m1r + a2 and A1 = (
r2 + a2

)2 −
a2�1 sin2 θ .

We can then proceed as in the Kerr case, looking for a
solution of the Hamilton–Jacobi equation of the form (see
Ref. [39], Chapter 7, Section 62 for the details)

S = −1

2
δτ − Et + LzφSr (r) + Sθ (θ). (31)

The solution for S is

S = −1

2
δτ − Et + Lzφ

+
∫ r

±dr ′
√

R(r ′)
�1�2

+
∫ θ

±dθ ′√�(θ ′), (32)
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Fig. 2 As in Fig. 1 for β = −0.2

where δ = 1 (δ = 0) for time-like (null) geodesics, R(r) and
�(θ) are given by

R(r) =
[(
r2 + a2

)
E − aLz

]2

−�1

[
Q + (Lz − aE)2 + δr2

]
, (33)

�(θ) = Q −
[
a2

(
δ − E2

)
+ L2

z csc2 θ
]

cos2 θ, (34)

and the signs ± in (32) depend on the photon direction and
they change at the turning points [39]. Q is the Carter con-
stant, which reduces to the Carter constant of the Kerr metric
when α = β = 0.

The equations of motion can be obtained by setting to zero
the partial derivatives of S with respect to the four constants
of motion, δ, E , Lz , and Q. From ∂S/∂Q = 0 we get

∫ r

±dr ′
√

�1

�2R
=

∫ θ

± dθ ′
√

�
. (35)

From ∂S/∂δ = 0, ∂S/∂E = 0, and ∂S/∂Lz = 0, we find,
respectively,

τ =
∫ r

dr ′r ′2
√

�1

�2R
+ a2

∫ θ

dθ ′ cos2 θ ′
√

�
, (36)

t = τ E

+2
∫ r m1(r ′)dr ′

√
�1�2R

[
r ′2E − a (Lz − aE)

]
r ′, (37)

φ = a
∫ r dr ′

√
�1�2R

[(
r ′2 + a2

)
E − aLz

]

+
∫ θ dθ ′

√
�

(
Lz csc2 θ ′ − aE

)
. (38)

As in the Kerr metric [39], it is straightforward to verify
that the system of Eqs. (35)–(38) is equivalent to the set of
equations

�2ṙ2 = �2

�1
R, (39)

�2θ̇2 = �, (40)
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Fig. 3 As in Fig. 1 for β = −0.5

�φ̇ = 1

�1

[
2am1r E + (� − 2m1r) Lz csc2 θ

]
, (41)

� ṫ = 1

�1
(A1E − 2am1r Lz) . (42)

5 Motion of massless particles from the disk
to the observer

We want now to study the motion of the photons from the
point of emission in the disk to the point of detection at
infinity. We assume the choice in Eq. (12) and we define
m = m1 = m2. For null geodesics, δ = 0 and we use the
parameters ξ = −kφ/kt and q2 = Q/k2

t , where kt = −E
and kφ = Lz . This choice is useful for δ = 0 because the
photon trajectories are independent of the photon energy. We
have

R̃ = R

E2 = r4 +
(
a2 − ξ2 − q2

)
r2

+2m
[
q2 + (ξ − a)2

]
r − a2q2, (43)

�̃ = �

E2 = q2 + a2 cos2 θ − ξ2 cot2 θ. (44)

The relation between the parameters (ξ, q) and the celes-
tial coordinates (X,Y ) of the image as seen by an observer
at infinity is the same as in Kerr (because it requires r →
∞) [39]

X = lim
r→∞

(
rp(φ)

p(t)

)
= ξ csc θo, (45)

Y = lim
r→∞

(
rp(θ)

p(t)

)

= ±
√
q2 + a2 cos2 θo − ξ2 cot2 θo, (46)

where θo is the angular coordinate of the observer at infinity.
In the calculation of the photons from the disk to the distant

observer, we are only interested in the motion on the (r, θ)-
plane. The master equation is

∫ ro

re

dr ′√
R̃

=
∫ θo

π/2

dθ ′√
�̃

, (47)
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Fig. 4 As in Fig. 1 for β = 0.2

where ro is the radial coordinate of the observer at infinity, re

is the radius of the emission point on the disk, and θe = π/2
because the disk is in the equatorial plane.

Since �̃ is independent of α and β, one can use the same
calculation technique as in Kerr [35,39–41]. The integral can
be transformed to

∫ θo

π/2

dθ ′√
�̃

= Cθ F[ψθ(π/2), κθ ], (48)

where F is an elliptic integral of the first kind with argument
ψθ and modulus κθ , while Cθ , ψθ , and κθ are functions of ξ

and q.
In the Kerr case, even the integral in r can be reduced to

an elliptic integral of the first kind. This is not possible in a
non-trivial generalization of the Kerr metric, because in the
Kerr metric the function R̃ in Eq. (47) is already a polynomial
of fourth order. However, the integral can be transformed to
a hyper-elliptic integral; see Ref. [42]. The calculations are
somewhat more difficult, but the procedure is well known. In

the case of our default choice (12), we have∫ ro

re

dr ′√
R̃

=
∫ ro

re

r ′ dr ′
√
P6(r ′)

(49)

where P6(r) is a polynomial of order 6,

P6(r) = r6 +
(
a2 − ξ2 − η

)
r4 + 2M

[
q2 + (ξ − a)2

]
r3

−a2q2r2 + 2αM3
[
q2 + (ξ − a)2

]
r

+2βM4
[
q2 + (ξ − a)2

]
. (50)

In the end, it is possible to write Eq. (49) as a function of ξ ,
q, and re and solve Eq. (47) in terms of re:

re = re(ξ, q) (51)

6 Transfer function

The calculation of the spectrum of thin disks can be conve-
niently split into two parts: one concerning the background
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Fig. 5 As in Fig. 1 for β = 0.5

metric, and another part related to the astrophysical model. In
this way, we can focus our attention on the relativistic effects
determined by the background metric, which can be later
combined with the astrophysical models already discussed
in the literature. This can be done by introducing the trans-
fer function f , which takes into account all the relativistic
effects (gravitational redshift, Doppler boosting, light bend-
ing) [35,36].

The observed flux is

Fo(νo) =
∫

Io(νo)d�̃ =
∫

g3 Ie(νe)d�̃, (52)

where Io and Ie are, respectively, the specific intensities of
the radiation detected by the distant observer and the specific
intensities of the radiation as measured by the emitter, d�̃ =
dXdY/r2

o is the element of the solid angle subtended by the
image of the disk on the observer’s sky, ro is the distance of
the observer from the source, and Io = g3 Ie follows from
Liouville’s theorem. Ie is a function of the emitted frequency
νe, but also of the emission radius re and of the direction of
the photon emission, which can be described by the polar

angle ne of the emitted photon with respect to the normal of
the disk in the rest frame of the gas.

It is convenient to introduce the relative redshift g∗ =
g∗(re, θo), defined by

g∗ = g − gmin

gmax − gmin
, (53)

which ranges from 0 to 1. Here gmax = gmax(re, θo) and
gmin = gmin(re, θo) are, respectively, the maximum and the
minimum values of g for the photons emitted from the radial
coordinate re and detected by a distant observer with polar
coordinate θo. The observed flux can now be rewritten as

Fo(νo) = 1

r2
o

∫ ∞

RISCO

∫ 1

0
πre

g2

√
g∗(1 − g∗)

× f (g∗, re, θo)Ie(νe, re, ne) dg∗ dre (54)

where f is the transfer function and takes into account all
the relativistic effects determined by the background metric

f (g∗, re, θo) = 1

πre
g
√
g∗(1 − g∗)

∣∣∣∣ ∂ (X,Y )

∂ (g∗, re)

∣∣∣∣ . (55)
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Fig. 6 Impact of the deformation parameter α on the thermal spectrum
of thin disks. Top left panel spectra in Kerr spacetimes with different
values of the spin parameter. Top right panel spectra in spacetimes
with spin parameter a∗ = 0.7 and different values of the deformation
parameter α (β = 0). Bottom panels spectra in non-Kerr spacetimes
with α = 0.2 and different values of the spin parameter a∗. The values

of the other model parameters are: mass M = 10 M, mass accre-
tion rate Ṁ = 2 × 1018 g s−1, distance D = 10 kpc, viewing angle
i = 45◦, color factor fcol = 1.6, and ϒ = 1. Flux density NEobs in
photons keV−1 cm−2 s−1, and photon energy Eobs in keV. See the text
for more details

Since∣∣∣∣ ∂ (X,Y )

∂ (g∗, re)

∣∣∣∣ = q (gmax − gmin)

Y sin θo

∣∣∣∣ ∂ (ξ, q)

∂ (g, re)

∣∣∣∣ , (56)

the calculation of the transfer function f requires the evalu-
ation of the Jacobian∣∣∣∣ ∂ (ξ, q)

∂ (g, re)

∣∣∣∣ =
∣∣∣∣∂ξ

∂g

∂q

∂re
− ∂q

∂g

∂ξ

∂re

∣∣∣∣ , (57)

which can be done numerically from Eqs. (28) and (51) in
the same way as in the Kerr case [36].

Lastly, if the transfer function depends on the emission
angle ne, this is given by [36]

cos(ne) = −nμkμ

uν
ekν

= qg

re
, (58)

because nμ = (0, 0, 1/re, 0), uν
ekν = kt/g, and q =

−kθ /kt .

7 Thermal spectrum of thin disks

While it is not the purpose of this paper to study the obser-
vational implications of our metric and to constrain α and
β, it is useful to understand the impact of these deformation
parameters on the spectrum of a black hole. To do this, we
consider the thermal spectrum of a thin disk. In this case, the
specific intensities of the radiation in the rest frame of the gas
is (for more details, see e.g. [18] and the references therein)

Ie(νe, re, ne) = 2hν3
e

c2

1

f 4
col

ϒ(ne)

exp
(

hνe
kBTcol(r)

)
− 1

, (59)

where h is the Planck constant, c is the speed of light, kB

is the Boltzmann constant, ϒ(ne) is a function that depends
on the emission model (for example, ϒ = 1 for isotropic
emission and ϒ = 1

2 + 3
4ne for limb-darkened emission),

and fcol ≈ 1.6 is the color (or hardening) factor. The color
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Fig. 7 Thermal spectrum of thin disks in non-Kerr spacetimes with α = −0.3 and β = 0.2. The other model parameters are the same as in Fig. 6.
These spectra can be understood in terms of the Novikov–Thorne radiative efficiency. See the text for more details

temperature is Tcol(r) = fcolTeff(r), where Teff(r) is the
effective temperature in the Novikov–Thorne model defined
as F(r) = σT 4

eff . σ is the Stefan–Boltzmann constant and
F(r) is the time-averaged energy flux from the surface of the
disk,

F(r) = Ṁ

4π
√−G

−∂r�

(E − �L)2

∫ r

RISCO

(E − �L)(∂ρL)dρ,

(60)

Ṁ is the mass accretion rate. E , L , and � are, respectively, the
specific energy, the axial component of the specific angular
momentum, and the orbital frequency of equatorial circular
orbits, while G is the determinant of the near equatorial plane
metric.

Observations measure the flux at the distance ro of the
observer. The impact of our deformation parameters on the
thermal spectrum of thin disks is illustrated in Figs. 6 and
7. The results could have been imagined from the contour
levels of the Novikov–Thorne radiative efficiency ηNT [20].
The shape of the spectrum is simple, as it is just a multi-
blackbody spectrum because the disk radiates as a blackbody
locally and then one has to integrate radially. The high energy
cut-off of the spectrum is determined by the Novikov–Thorne
radiative efficiency, and therefore the measurement of the
thermal component of the disk roughly corresponds to the
measurement of ηNT. We cannot distinguish objects with the
same ηNT from the sole observation of the disk’s thermal
spectrum, and therefore objects on the same contour level of
ηNT have substantially the same spectrum. We note that in our
figures we have considered even objects with spin parameter
larger than 1. In the Kerr metric, for |a∗| > 1 there is no
black hole and there are reasons to ignore these objects (see
e.g. the discussion in Ref. [8]). In our case, these objects are
black holes and they cannot be excluded a priori.

8 Concluding remarks

In this work, we have discussed a simple parametrization to
describe possible deviations from the Kerr metric and test
astrophysical black hole candidates. Our metric is suitable
for the numerical calculations required to evaluate the elec-
tromagnetic spectrum of thin disks, in particular the thermal
spectrum and the iron line profile. These are today the two
leading techniques to probe the spacetime geometry around
black hole candidates [24].

The continuum-fitting method is normally used for stellar-
mass black hole candidates only, because the temperature of a
Novikov–Thorne disk scales as M−0.25: for M ≈ 10 M, the
spectrum is in the soft X-ray band, while for supermassive
black hole candidates it is in the UV/optical bands, where
dust absorption makes an accurate measurement impossible.
Stronger constraints on possible deviations from the Kerr
metric can be obtained when the inner edge of the disk is
very close to the compact object [43]. The best target may be
the black hole binary Cygnus X-1 [44].

The iron line method can be used for both stellar-mass
and supermassive black hole candidates, because the mea-
surement does not directly depend on the mass of the object.
Stellar-mass black hole candidates have the advantage to be
brighter, so the photon count number in the iron line is high
enough, which is not the case in AGN data. However, the
spectrum of black hole binaries is more difficult to model
(mainly because of the higher temperature of the disk) and
the low energy tail of the iron line overlaps with the ther-
mal component of the disk. At the moment it is not clear if
the best targets to test the Kerr metric with the iron line are
stellar-mass or supermassive black hole candidates. Even in
this case, stronger constraints can be obtained if the inner part
of the accretion disk is very close to the central object. The
sources should also be sufficiently reflection-dominated, to
have a stronger contrast between the primary and the reflec-
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tion component. Cygnus X-1 should again be one of the most
promising targets in the case of black hole binaries [45]. For
AGN, current observations suggest that good targets would
be NGC1365 [46] and 1H0707-495 [47], as both sources are
bright, their reflection component is strong, and the inner
edge of the disk seems to be very close to the black hole
candidate.

In the analysis of real data, it is usually necessary to com-
pute many spectra to fit the model parameters. In the Kerr
case, it is possible to exploit a number of nice properties,
with the results that numerical calculations can be fast and
accurate. These properties are usually absent in non-Kerr
metrics, and the calculation times become too long. To have
a rough idea, the ray tracing calculations for one spectrum in
the Kerr metric take about 5 min with a standard computer, so
the calculation of a grid of, say, 40 spins and 20 angles takes
something like 3 days. If the calculations are done by solv-
ing the geodesic equations, the computation time increases
by about an order of magnitude is we want the same calcula-
tion accuracy. Moreover, we do not have a 2D grid any more,
but a 3D grid if we consider one deformation parameter, or a
4D grid if we have two deformation parameters at the same
time. Any parametrization has its own advantages and dis-
advantages, and in any case we cannot pretend to test black
hole candidates with the most general black hole solution,
because this would require an infinite number of deforma-
tion parameters and even in the presence of high quality data
it is impossible to constrain several deformation parameters
at the same time. Bearing in mind that any parametrization
is necessary ad hoc and subject to criticisms, in our case we
have looked for something suitable to analyze X-ray data.
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Appendix A: Invariants

With the choice of m1 and m2 in Eq. (12), we compute the
invariants R, RμνRμν , and Rμνρσ Rμνρσ to verify that the
metric is regular outside the event horizon. These three quan-
tities indeed only diverge at r = 0. The scalar curvature R is

R = −4M3

r3

1

�

(
α + 3β

M

r

)
. (A1)

The square of the Ricci tensor is given by

RμνRμν = 8M6

r2

1

�4

(
13α2 + 48αβ

M

r
+ 6α2 a

2x2

r2

+45β2 M
2

r2 + 30αβ
a2Mx2

r3 + α2 a
4x4

r4 + 36β2 a
2M2x2

r4

+6αβ
a4Mx4

r5
+ 9β2 a

4M2x4

r6

)
, (A2)

where x = cos θ . The Kretschmann scalar is

Rμνρσ Rμνρσ = 16M2r6

�6

(
3 − 45

a2x2

r2 + 20α
M2

r2

+30β
M3

r3 + 45
a4x4

r4 − 152α
a4M2x2

r4 + 46α2 M
4

r4

−186β
a2M3x2

r5
+ 146αβ

M5

r5
− 3

a6x6

r6

+20α
a4M2x4

r6 − 51α2 a
2M4x2

r6 + 117β2 M
6

r6

−30β
a4M3x4

r7 − 32αβ
a2M5x2

r7 + α2 a
4M4x4

r8

+66β2 a
2M6x2

r8 + 32αβ
a4M5x4

r9 − 6β
a6M3x6

r9

+3α2 a
6M4x6

r10 + 78β2 a
4M6x4

r10 + 24αβ
a6M5x6

r11

+α2 a
8M4x8

r12 + 42β2 a
6M6x6

r12

+6αβ
a8M5x8

r13 + 9β2 a
8M6x8

r14

)
. (A3)
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