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Abstract We apply the Symanzik improvement progra-
mme to the 4 + 1-dimensional local re-formulation of the
gradient flow in pure SU (N ) lattice gauge theories. We show
that the classical nature of the flow equation allows one to
eliminate all cutoff effects at O(a2), which originate either
from the discretised gradient flow equation or from the gradi-
ent flow observable. All the remaining O(a2) effects can be
understood in terms of local counterterms at the zero flow-
time boundary. We classify these counterterms and provide
a complete set as required for on-shell improvement. Com-
pared to the 4-dimensional pure gauge theory only a single
additional counterterm is required, which corresponds to a
modified initial condition for the flow equation. A consis-
tency test in perturbation theory is passed and allows one to
determine all counterterm coefficients to lowest non-trivial
order in the coupling.

1 Introduction

In recent years the Yang–Mills gradient flow has been estab-
lished as a very promising new tool to study non-perturbative
aspects of strongly coupled gauge theories [1–4]. The gra-
dient flow defines a deterministic mapping from the original
gauge field Aμ(x) to a smoothed gauge field configuration,
Bμ(t, x), at flow time t , which is obtained as the solution of
the gradient flow equation (see Appendix A for a summary
of our conventions),

∂t Bμ(t, x) =
∑

ν

DνGνμ(t, x), Bμ(0, x) = Aμ(x), (1)
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where Dμ = ∂μ+[Bμ, ·] denotes the gauge covariant deriva-
tive and

Gμν = ∂μBν − ∂νBμ + [Bμ, Bν], (2)

is the associated field strength tensor. The name relates to the
fact that the right hand side of (1) is equal to minus the gradi-
ent of the Yang–Mills gauge action. Hence, with increasing
flow time t , the solution, Bμ(t, x), is driven towards a min-
imum of the action and thus approaches a smooth classical
field configuration.

There is quite some freedom when translating the gradient
flow equation to a Euclidean space-time lattice. A simple
possibility is to choose Wilson’s plaquette action, SW, and to
define the lattice gauge field at finite flow time, Vμ(t, x), as
the solution of the Wilson flow equation,

a2[∂t Vμ(t, x)]Vμ(t, x)† = −g2
0∂x,μSW[V ], (3)

where ∂x,μ denotes the Lie-algebra valued derivative with
respect to Vμ(t, x). It should be noted that similar smooth-
ing operations have long been successfully applied in lat-
tice QCD. For example, the stout link smearing technique
of Ref. [5] can be understood as a discretised flow time ver-
sion of Eq. (3). The essential new element is a theoretical
understanding of the renormalisation properties of the Yang–
Mills gradient flow. In particular, in [3,4] it was proved to
all orders of perturbation theory that QCD at finite flow time
t is renormalised once it is renormalised at flow time t = 0
through the usual renormalisations of the gauge coupling
and the quark mass parameters. Furthermore, gauge invari-
ant fields at positive flow time are automatically renormalised
and do not mix with other fields of the same or lower dimen-
sions. These properties allow one to define a new class of
renormalised gauge invariant observables which can be used
to probe the theory in various ways. It also opens new ways
to define renormalised composite operators at zero flow time;
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the study of Ward identities at positive flow times [4,6,7] and
the applications of the so called “small flow-time expansion”
have received much attention recently in this context [8–10].

Many current lattice QCD applications of the gradient flow
only involve the simplest possible gauge invariant field, the
action density,

E(t, x) = −1

2

∑

μ,ν

tr{Gμν(t, x)Gμν(t, x)}. (4)

As initially proposed in [2], the expectation value 〈E(t, x)〉
can be used for a non-perturbative definition of either a ref-
erence scale or a coupling constant. This has proven very
attractive: in large volume simulations it leads to the most
precise determination of a reference scale (for a recent review
cf. [11]). On the other hand, when considered in a finite space-
time volume the scale evolution of the corresponding cou-
pling [12–16] can be traced with high statistical precision
(see [17] for a recent review).

Notwithstanding these nice properties a major practical
problem consists in the relatively large cutoff effects which
have been observed in several applications (cf. [17] and ref-
erences therein). On general grounds, the leading effects are
expected to be of order a2. Their size depends on the detailed
choices made when translating the flow equation (1) to the
lattice, but also on the discretisation of the observable and on
the lattice action. Alternative flow equations have been tried,
e.g. in Ref. [18] where the Wilson action was replaced by
the tree-level improved Lüscher–Weisz action, SLW [19,20].
For some attempts to reduce cutoff effects in the particular
observable 〈E(t, x)〉 cf. Refs. [21,22]. Here we would like to
proceed more systematically by applying the Symanzik pro-
cedure [19,23] to the 4+1-dimensional local formulation of
the theory [3,24]. This will lead us to a particular choice for
the lattice flow equation, referred to as the “Zeuthen flow”
and defined by

a2(∂t Vμ(t, x))Vμ(t, x)† = −g2
0

(
1 + a2

12
∇∗

μ∇μ

)

×∂x,μSLW[V ], (5)

with the initial condition Vμ(0, x) = Uμ(x). Here ∇μ and
∇∗

μ are the lattice forward and backward covariant deriva-
tives, respectively. We will show that the integration of the
Zeuthen flow equation does not generate any cutoff effects at
O(a2). If combined with classicalO(a2) improvement of the
observable all O(a2) effects are eliminated apart from those
corresponding to local counterterms in the action at zero flow
time. We will give a complete list of such counterterms and
test our framework to lowest non-trivial order in perturbation
theory.

The paper is organised as follows: in Sect. 2 we recall
the definition of the 4 + 1-dimensional local theory, with
flow time as the added dimension. In Sect. 3 we discuss the

general Symanzik procedure and the simplifications due to
the special properties of this theory. We present the classical
a-expansion of both the flow action and the gradient flow
observable E(t, x), as part of the simplified Symanzik pro-
cedure, and carry out the standard Symanzik analysis for the
O(a2) counterterms at the t = 0 boundary. Section 4 presents
a number of perturbative tests of the O(a2) improved theory,
and Sect. 5 our conclusions. We have included three appen-
dices regarding our notations and conventions (Appendix A),
some technical details pertaining to the classical a-expansion
(Appendix B), and some explicit expressions used in Sect. 4
(Appendix C), respectively.

2 Lattice gauge theory in 4+ 1 dimensions

The gradient flow equation can be viewed as a way to define
a particular class of observables, i.e. fields which are func-
tionals of the fundamental gauge field Uμ(x). The flow
time thus appears as an additional parameter which mea-
sures the range in space-time over which the fundamental
gauge field enters into an observable defined in terms of
the flowed gauge field Vμ(t, x). The flow time t has dimen-
sion length squared and the “smearing radius” rt = √

8t
is usually taken as the corresponding length scale.1 Thus,
gradient flow observables are non-local objects from the per-
spective of the 4-dimensional gauge theory and their prop-
erties under renormalisation are difficult to assess. More-
over, the non-locality prevents a straightforward application
of the Symanzik expansion, which is our main theoretical
tool for understanding the cutoff dependence of the theory.
For this purpose, it is therefore highly beneficial to follow [4]
and view the theory from a 4 + 1-dimensional perspective,
with flow time as the added dimension. In this re-formulation
locality is restored in the 4+1-dimensional sense, and dimen-
sional counting can be applied to classify counterterms to the
action and observables.

We start with the formulation of the lattice set-up, includ-
ing the introduction of a flow-time lattice. The latter should
be regarded as an intermediate regularisation which helps
to resolve certain technical issues [4]. While none of this is
original it serves for later reference and to fix our notation.

2.1 The 4-dimensional lattice action

On-shell O(a2) improvement of the 4-dimensional gauge
theory can be achieved by introducing, besides the 4-link
plaquette action, further 6-link Wilson loops with appropri-
ately chosen coefficients [19]. We will consider a general

1 The radius rt = √
8t amounts to two standard deviations in the Gaus-

sian smearing function which appears in the relation between Bμ(t, x)
and Aμ(x) to leading order in the coupling.
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Fig. 1 Wilson loops of type S0,S1,S2 and S3

class of lattice gauge actions parameterised by the coeffi-
cients ci (i = 0, 1, 2, 3), defined by,

Sg[U, {ci }] = 1

g2
0

3∑

i=0

ci
∑

W∈Si

Tr(1 −U (C)), (6)

where the second sum extends over all oriented Wilson loops
of type Si . As illustrated in Fig. 1, these Wilson loops are the
usual plaquettes, S0, the 2 × 1 planar loops or “rectangles”,
S1, the bent rectangles or “chairs”, S2, and finally the “par-
allelograms”, S3.

It is conventional to normalise the action by requiring

c0 + 8c1 + 16c2 + 8c3 = 1, (7)

such that the standard continuum Yang–Mills action is
obtained in the classical continuum limit, with any choice
of the three free parameters.2 Popular choices are the Wil-
son plaquette (W ) action (c0 = 1, c1,2,3 = 0) and the
tree-level improved Lüscher–Weisz (LW) action (c0 = 5/3,
c1 = −1/12, c2,3 = 0).

2.2 4 + 1-dimensional set-up

Given the 4-dimensional action, the flow equation is now
incorporated in the action as a constraint, by introducing
the Lagrange multiplier field Lμ(t, x), which is hermitian
and such that ı Lμ(t, x) is Lie-algebra valued. The 4 + 1-
dimensional action of this theory then takes the form

S[V, L] = Sg[U, {ci }]
−2a4

∫ ∞

0
dt

∑

x,μ

tr{Lμ(t, x)Fμ(t, x)}, (8)

where the boundary condition,

Vμ(0, x) = Uμ(x), (9)

2 Note, however, that the choice of the coefficients is not completely
free, with some constraints arising from positivity [19]. Our conventions
differ from this reference by the exchange c2 ↔ c3.

is assumed and

Fμ(t, x) = a−1(∂t Vμ(t, x))Vμ(t, x)†

+ a−3g2
0∂x,μSg[V ], (10)

is a shorthand notation which allows one to write the lat-
tice gradient flow equation in the form Fμ(t, x) = 0. The
action Sg[V ] is some 4-dimensional lattice gauge action for
the flowed field Vμ(t, x), the Wilson action being the sim-
plest choice [cf. Eq. (3)]. In any case it is unrelated to the
gauge action Sg[U ] in (8). How to best define Fμ(t, x) is at
the core of this work and will be discussed in the next section.

Given the action for the 4 + 1-dimensional half space
t ≥ 0, expectation values of composite fields O[V, L] are
defined as usual,

〈O〉 = Z−1
∫

D[V ]D[L]O[V, L] exp (−S[V, L]) , (11)

with the condition 〈1〉 = 1. A few remarks are in order:
first, the integration over the gauge field Vμ(t, x) includes
the integration over its boundary values at t = 0 i.e. the stan-
dard 4-dimensional gauge field Uμ(x). Hence, for observ-
ables which only depend on Uμ, the functional integrals
over Vμ|t>0 and Lμ cancel between numerator and denom-
inator, reproducing the standard expectation value of the 4-
dimensional theory. To see this more explicitly it is conve-
nient to pass to a flow-time lattice with spacing ε and lattice
points t = nε [4],
∫ ∞

0
dt a4

∑

x,μ

tr{Lμ(t, x)Fμ(t, x)}

ε
∑

n≥0

a4
∑

x,μ

→ tr{Lμ(t, x)Fμ(t, x; ε)}, (12)

where we have assumed the discretisation,

aεFμ(t, x; ε) = Vμ(t + ε, x)Vμ(t, x)†

− exp
(
−g2

0
ε
a2 ∂x,μSg[V ]

)
,

(13)

with the correct ε → 0 limit. Inserting this representation
of the action into the functional integral, the integration over
the fields Lμ(t, x) produces a string of δ-functions3

∏

x,μ

∞∏

n=0

δ[Fμ(nε, x; ε)]. (14)

These can be eliminated one by one, by integrating over
Vμ(nε, x) for strictly positive n, leaving the unconstrained
n = 0 integration over the fundamental gauge field intact, as
expected.

3 For a more careful discussion of the limits involved cf. [4].
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2.3 Gauge symmetry

By construction, the 4+1-dimensional action is gauge invari-
ant under t-independent gauge transformations,

Vμ(t, x) → �(x)Vμ(t, x)�(x + aμ̂)†, (15)

where �(x) is an SU (N )-valued gauge function. This leads
to the transformation,

Fμ(t, x) → �(x)Fμ(t, x)�(x)†, (16)

so that gauge invariance of the action is guaranteed provided
that

Lμ(t, x) → �(x)Lμ(t, x)�(x)†, (17)

i.e. Lμ(t, x) must be in the adjoint representation of the gauge
group. The integration measure is invariant under such a
change of variables, so that the gauge symmetry of the 4-
dimensional boundary theory is inherited by the bulk theory.

It is occasionally useful to generalise the gauge symmetry
to the flow-time coordinate t , i.e. admit flow-time depen-
dent gauge functions �(t, x). In the continuum theory this
amounts to replacing t = x4, ∂t → D4 = ∂4 + [B4, ·] and
∂t Bμ(t, x) → G4μ(x4, x) [1]. In the presence of the lattice
cutoff (but continuous t = x4) we define the covariant x4-
derivative by

∇4Vμ(x̃) = ∂4Vμ(x̃) + B4(x̃)Vμ(x̃)
−Vμ(x̃)B4(x̃ + aμ̂),

(18)

where x̃ = (x4, x). This, together with the transformation
under an x4-dependent gauge transformation

B4(x̃) → �(x̃)B4(x̃)�(x̃)† + �(x̃)∂4�(x̃)†, (19)

leads to the left hand side of the covariant flow equation
transforming as

[∇4Vμ(x̃)]Vμ(x̃)† → �(x̃)[∇4Vμ(x̃)]Vμ(x̃)†�(x̃)†. (20)

Rendering the t-derivative covariant in the definition of Fμ

(Eq. 10), one then obtains,

Fμ(x̃) → �(x̃)Fμ(x̃)�(x̃)†, (21)

so that 4 + 1-dimensional gauge invariance is established,
provided that Lμ(x̃) transforms just like Fμ(x̃). Discretis-
ing the flow-time coordinate is also straightforward, one just
needs to elevate the fourth component of the gauge field B4 to
a link field V4, with corresponding changes in the covariant
derivative and gauge transformation behaviour.

Finally we note that the Yang–Mills flow equation in the
continuum can be written as

G4μ =
3∑

ν=0

DνGνμ, (22)

which shows that the 4+1-dimensional theory, while exactly
gauge invariant, does not enjoy any generalised Lorentz sym-
metry. This is of course already clear from the dimensions,
in particular, ∂t and thus B4 must have mass dimension 2, in
contrast to the usual derivatives and gauge fields in 4 dimen-
sions.

3 Symanzik improvement toO(a2)

3.1 Generalities

The re-formulation of gradient flow observables in terms of
a local 4 + 1-dimensional lattice gauge theory creates the
standard situation to which Symanzik’s effective theory [23]
can be applied in the usual way. We start with Symanzik’s
effective action which is given as an expansion in powers of
a2,

Seff[B, L] = Scont
0 [B, L] + a2S2,fl[B, L]

+ a2S2,b[B, L] + O(a4).
(23)

One might worry about odd powers of a arising in a 4+1-
dimensional theory. However, as we will show in detail in
Appendix B, gauge invariance, reflection symmetries and
the fact that the flow-time parameter t has mass dimension
−2 imply that non-trivial counterterms to the action must be
even dimensional. In Eq. (23) we have separated the effec-
tive action of the flow in the 4 + 1-dimensional volume,
S2,fl, from the action S2,b with support restricted to the 4-
dimensional boundary at t = 0. Both parts will be discussed
in turn below. Besides the effective action, also local observ-
ables are described by an effective continuum field, again
expanded in powers of a2. For a generic local observable O
we write

Oeff = O0 + a2O2 + O(a4). (24)

To O(a2) the Symanzik expansion of lattice expectation
values then takes the form,

〈O〉lat = 〈O0〉 + a2〈O2〉
− a2〈O0S2,fl〉c − a2〈O0S2,b〉c + O(a4).

(25)

Here, the expectation values on the RHS are defined in
the continuum theory with respect to the continuum action
Scont

0 , and the notation 〈·〉c serves as a reminder that only the
connected part contributes to the correlation functions with
counterterm insertions, for instance
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〈O0S2,fl〉c = 〈O0S2,fl〉 − 〈O0〉〈S2,fl〉. (26)

As the next step in the Symanzik procedure one determines
a basis of counterterms both for the action and the observables
of interest. In the case of the action these take the form

S2,fl[B, L] =
∫ ∞

0
dt

∫
d4x

nfl∑

i=1

Qi (t, x), (27)

S2,b[B, L] =
∫

d4x
nb∑

i=1

Oi (x), (28)

where the fields Qi (t, x) are gauge invariant polynomials in
the fundamental fields Bμ(t, x), Lμ(t, x) and their (space-
time and/or flow-time) derivatives, and the Oi (x) are simi-
larly constructed, but evaluated at t = 0. Since a2S2,fl must
be dimensionless, the fields Qi must have mass dimension 8
and otherwise share all the symmetries with the lattice theory.
The fields Oi are dimension 6 fields, localised at the t = 0
boundary. One of the important outcomes of the Symanzik
analysis are the numbers nfl and nb of basis elements, where
fields differing by total (space-time) derivative terms are
considered equivalent. Furthermore, restricting to on-shell
improvement the field equations for Lμ, Bμ and Aμ can be
used to simplify the basis. Given a basis of counterterms the
final step of Symanzik’s procedure consists in adding lattice
representatives of these operators to the lattice action, such
that, with appropriately chosen coefficients, the terms S2,fl

and S2,b are eliminated in Symanzik’s effective action for
the improved lattice action.

A similar analysis then needs to be carried out for each
observableO of interest, i.e.O2 in Eq. (24) is given as a linear
combination of local fields of mass dimension dim(O0)+ 2,
which share all the lattice symmetries withO. While this pro-
cedure applies to any observables, we will here focus on gra-
dient flow observables, i.e. gauge invariant composite fields
with support at strictly positive flow times.

If the full Symanzik procedure as outlined above were
really necessary,O(a2) improvement would probably remain
an academic curiosity. In particular, a rather long list of
dimension 8 counterterms for S2,fl could be written down,
with little hope for practical relevance, so that one might be
tempted to give up on systematic O(a2) improvement.

Before proceeding along these lines, however, it is advis-
able to have a closer look at this particular theory. As shown
by Lüscher and Weisz, the theory is perturbatively renormal-
izable to all orders in the 4-dimensional gauge coupling g [3].
More precisely, if one restricts attention to gauge invariant
observables, one just needs to renormalise the gauge coupling
in the usual way, and also the quark masses if the bound-
ary theory is generalised to QCD.4 Moreover, any compos-

4 We assume here that the quark fields only live at t = 0, i.e. they are not
propagated into the 4 + 1-dimensional bulk. For generalisations cf. [4].

ite fields defined at finite flow time are automatically renor-
malised and do not mix with any other fields of the same or
lower canonical dimension. The action density (4) is a typical
example: its renormalisation at flow time t = 0 requires the
subtraction of both a quartic and a logarithmic divergence.
None of this is required at finite t . It is instructive to consider
leading order perturbation theory to get a basic understanding
of the mechanism at work. Effectively, at finite flow time t ,
integrals over the loop-momentum p are cut off by an expo-
nential suppression factor ∝ exp(−2tp2) in the integrand.
This renders most momentum integrals finite, so that one is
only left with those divergences which are cancelled by the
standard counterterms in the boundary theory.

Hence the 4 + 1-dimensional theory enjoys rather spe-
cial properties. In particular, the field Lμ plays the rôle of a
Lagrange multiplier field which enforces the gradient flow
equation as a constraint. The smoothening properties of this
equation are related to the fact that perturbation theory only
generates tree diagrams for the correlation functions of gra-
dient flow observables [3]. The Symanzik expansion is then
very much simplified as we expect the following to hold:

– The absence of bulk loop diagrams in the perturbative
expansion of gradient flow observables implies that clas-
sical improvement of the flow action cancels the O(a2)

effects exactly, i.e. without any corrections.
– By the same argument, non-perturbative O(a2) improve-

ment of composite operators at positive flow time can be
achieved by choosing discretisations that do not generate
O(a2) effects when expanded classically.

– The only O(a2) counterterms which receive genuine
quantum corrections are the ones living in the 4-
dimensional boundary at t = 0. The full Symanzik pro-
cedure outlined above thus needs to be applied only to
the t = 0 boundary part, S2,b, of the Symanzik action,
and of course to any observable which is at least in part
localised at the t = 0 boundary.

In the following we first remind the reader of the classical
a-expansion and then address these points in the subsequent
subsections one at a time.

3.2 The classical a-expansion

According to the preceding discussion the counterterms
appearing in S2,fl and in O2 for gradient flow observables
are completely determined by classically expanding the lat-
tice action in the 4 + 1-dimensional volume and the observ-
ables under consideration to order a2. The classical expan-
sion assumes that the lattice approximates an underlying
continuum space-time manifold on which a smooth contin-
uum gauge field, Bμ(t, x), is defined. The lattice gauge field,
Vμ(t, x), is then related to the continuum gauge field by par-
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allel transport along the lattice links. Parameterising the path
along the lattice link from x+aμ̂ to x by z(u) = x+(1−u)aμ̂

(with parameter u ∈ [0, 1]), the precise relation is obtained
by iteratively solving the differential equation,

{
d

du
− Bμ(t, z(u))

}
v(u) = 0, v(0) = 1l. (29)

The solution, v(u = 1) ≡ Vμ(t, x), can be concisely written
in terms of a path-ordered exponential,

Vμ(t, x) = P exp

{
a

∫ 1

0
du Bμ (t, z(u))

}

= 1l + a
∫ 1

0
du Bμ (t, z(u))

+ a2
∫ 1

0
du1

∫ u1

0
du2 Bμ (t, z(u1)) Bμ (t, z(u2))

+O(a3)

= 1l + aBμ(t, x) + 1

2
a2(∂μBμ(t, x) + B2

μ(t, x))

+O(a3). (30)

While it is straightforward to carry out the expansion around
a = 0, in practice, even a simple gauge invariant quantity
like the trace of the plaquette contains four link variables
which need to be expanded and combined to fourth order in
a to obtain the leading non-trivial term. It is therefore highly
advisable to perform the expansion efficiently (cf. e.g. [19,
25]). We here follow Lüscher and Weisz [19], who, for fixed
indices μ and ν, proposed to work in the following gauge:

Bμ(t, x) = 0 for all x; Bν(t, x) = 0 if xμ = 0. (31)

As a result, the expansion around x = 0 is very much
simplified. For example, the plaquette field,

Pμν(t, x) = Vμ(t, x)Vν(t, x +aμ̂)Vμ(t, x +aν̂)†Vν(t, x)
†,

(32)

is reduced to a single link,

Pμν(t, 0) = Vν(t, aμ̂)

= P exp

{
a

∫ 1

0
duBν

(
t, aμ̂ + (1 − u)aν̂

)}
.

(33)

Recalling the definition of the path-ordered exponen-
tial (30) one needs the expansion of the B-field around a = 0,

aBν(t, aμ̂ + κaν̂) = a2∂μBν(t, 0)

+ 1
2a

3{∂2
μ + 2κ∂μ∂ν}Bν(t, 0)

+ 1
6a

4{∂3
μ + 3κ∂2

μ∂ν + 3κ2∂μ∂2
ν }Bν(t, 0)

+ 1
24a

5{∂4
μ + 4κ∂3

μ∂ν + 6κ2∂2
μ∂2

ν + 4κ3∂μ∂3
ν }Bν(t, 0)

+ · · · ,

where κ is a constant and neglected terms are of order a6.
Following [19] the gauge covariant expressions can be unam-
biguously restored, with the result

aBν(t, aμ̂ + κaν̂) = a2Gμν(t, 0)

+ 1
2a

3{Dμ + 2κDν}Gμν(t, 0)

+ 1
6a

4{D2
μ + 3κDνDμ + 3κ2D2

ν }Gμν(t, 0)

+ 1
24a

5{D3
μ+4κDνD

2
μ+6κ2D2

ν Dμ+4κ3D3
ν}Gμν(t, 0)

+ · · ·
Inserting into the path-ordered exponential with appropri-
ate replacements for κ , we thus obtain the gauge covariant
expansion for the plaquette field,

Pμν = 1l + a2Gμν + 1

2
a3(Dμ + Dν)Gμν

+ 1

12
a4{(2D2

μ + 3DνDμ + 2D2
ν )Gμν + 6GμνGμν}

+ 1

24
a5{D3

μ + 2DνD
2
μ + 2D2

ν Dμ + D3
ν }Gμν

+ 1

12
a5{(3Dμ + 2Dν)(Gμν)

2 + 2GμνDνGμν}
+O(a6), (34)

which holds for any argument (t, x). Similar expressions can
be derived for the other three plaquettes in the μ − ν plane:

Qμν(t, x) = Vν(t, x − aν̂)†Vμ(t, x − aν̂)

×Vν(t, x + aμ̂ − aν̂)Vμ(t, x)†, (35)

Rμν(t, x) = Vμ(t, x − aμ̂)†Vν(t, x − aμ̂ − aν̂)†

×Vμ(t, x − aμ̂ − aν̂)Vν(t, x − aν̂), (36)

Sμν(t, x) = Vν(t, x)Vμ(t, x − aμ̂ + aν̂)†

×Vν(t, x − aμ̂)†Vμ(t, x − aμ̂), (37)

and the next few orders can be obtained with moderate addi-
tional effort.

3.3 Determination of S2,fl

To find the bulk counterterm action S2,fl we simply need to
apply the classical expansion to the bulk action in Eq. (8).
This essentially amounts to the a-expansion of the gradient
flow equation, i.e. Fμ(t, x) in Eq. (10). For the first term we
find, in the Lüscher–Weisz gauge (31),

a−1[∂t Vμ(t, 0)]Vμ(t, 0)† =
∫ 1

0
du ∂t Bμ(t, (1−u)aμ̂), (38)
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as all other terms are proportional to Bμ(t, 0) = 0. The Tay-
lor expansion can easily be performed to all orders in a with
the result

∫ 1

0
du ∂t Bμ(t, (1 − u)aμ̂) =

∞∑

n=0

an

(n + 1)!∂
n
μ∂t Bμ(t, 0).

(39)

We therefore expect that the correct gauge covariant expres-
sion at any lattice point x must read

a−1[∂t Vμ(t, x)]Vμ(t, x)† = ∂t Bμ(t, x)

+
∞∑

n=1

an

(n + 1)!D
n
μ∂t Bμ(t, x).

(40)

At this point one may wonder whether the gauge covari-
ant expression really follows unambiguously from the gauge
fixed expansion, in particular, whether the t-derivative always
has to be to the right of the covariant μ-derivatives. That
this is indeed correct can be established by using the 4 + 1-
dimensional gauge symmetry (cf. Sect. 2), which implies
that the a-expansion of this term must be given as covariant
derivatives acting on G4μ.

Turning to the second term of (10), i.e. the gradient force
term, we choose a quite general lattice gauge action parame-
terised by c0,1,2, which includes all four- and six-link Wilson
loops (plaquettes, rectangles, chairs) except the parallelo-
grams. We decompose the action as follows:

Sg[V ; c0, c1, c2] = c0Sg,pl[V ] + c1Sg,re[V ] + c2Sg,ch[V ].
(41)

We first express the gradient force in terms of plaquettes
and their covariant derivatives. For the plaquette action we
then find

g2
0∂x,μSg,pl[V ] =

∑

ν

(
Pμν(t, x) + Qμν(t, x)

†
)

AH
, (42)

where we have introduced the projection on the traceless
antihermitian part, i.e. for an N × N matrix M in colour
space we define

(M)AH = 1

2
(M − M†) − 1

2N
tr(M − M†) (43)

For the rectangle action we find

g2
0∂x,μSg,re[V ] =

∑

ν

(
2Pμν(t, x)Pμν(t, x)

−2Qμν(t, x)Qμν(t, x)

+ Pμν(t, x)Sμν(t, x) − Rμν(t, x)Qμν(t, x)

+ (a∇μPμν(t, x))Pμν(t, x) − Qμν(t, x)a∇μQμν(t, x)

+ (a∇∗
ν Qμν(t, x))Qμν(t, x)+Pμν(t, x)a∇ν Pμν(t, x)

)

AH
,

and a similar but slightly more complicated expression is
obtained for the chairs. Expanding each term to order a2 and
recombining them we get

g2
0∂x,μSg =a3 ∑

ν

{
(c0+8c1+16c2)

(
DνGνμ+ a

2 DμDνGνμ

)

+ a2
[

1
12 (c0+20c1+4c2)

(
D3

ν +2DνD2
μ

)+(c2−c1)D2
μDν

+ c2
∑

ρ

(
3D2

ρDν −4DρDνDρ +2DνD2
ρ

)]
Gνμ

}
+O(a6),

where the arguments (t, x) on the RHS have been omitted.
Collecting all results we define the expansion coefficients

Fμ(t, x) =
∞∑

n=0

anF (n)
μ (t, x), (44)

where the leading term defines the continuum limit,

F (0)
μ (t, x) = ∂t Bμ(t, x)−(c0+8c1+16c2)

∑

ν

DνGνμ(t, x).

(45)

Hence the correct normalisation to reproduce the Yang–Mills
gradient flow equation (1) is c0 + 8c1 + 16c2 = 1, which we
use to eliminate c0 in the higher order terms:

F (1)
μ = 1

2
Dμ(∂t Bμ −

∑

ν

DνGνμ),

F (2)
μ = 1

6
D2

μ∂t Bμ−
(

1

12
+c1−c2

) ∑

ν

(2DνD
2
μ + D3

ν )Gνμ

+
∑

ν

[
(c1 − c2)D

2
μDν

−c2

∑

ρ

(3D2
ρDν − 4DρDνDρ + 2DνD

2
ρ)

]
Gνμ.

Before proceeding we remark on the presence of odd pow-
ers ofa in the expansion, which seems at odds with our expec-
tation that only even powers of a occur in this theory. The
resolution of this apparent contradiction lies in the fact that
the lattice fields Fμ(t, x) and Lμ(t, x) should be defined on
the lattice link connecting x and x+aμ̂, rather than at the lat-
tice site x . In Appendix B we demonstrate how the covariant
re-expansion about the midpoint of the link, x̃ = x + 1

2aμ̂,
eliminates such terms. While this problem will not affect
our discussion of the O(a2) counterterms, it clarifies that the
correction terms are indeed of order a4.

We now proceed and work out the simplifications due to
the field equations for Bμ(t, x) and Lμ(t, x). Varying the

123



15 Page 8 of 21 Eur. Phys. J. C (2016) 76 :15

continuum action with respect to Lμ one obtains the Yang–
Mills flow equation (1), whereas the variation with respect
to Bμ(t, x) yields

∂t Lμ =
∑

ν

(
−DμDνLν − D2

ν Lμ + 2DνDμLν

)
(46)

Using the flow equation eliminates the O(a) term F (1)
μ ,

and this is the reason why theO(a2) terms remain unaffected
by the symmetrisation about the midpoint x̃ , once the field
equations are taken into account. From the continuum flow
equation we derive

∂t
∑

ν

DνGνμ =
∑

ν,ρ

(3D2
ρDν − 4DρDνDρ + 2DνD

2
ρ)Gνμ.

(47)

This allows one to rewrite the O(a2) term as follows:

F (2)
μ (t, x) =

∑

ν

{
−

(
1

12
+ c1 − c2

)
(2DνD

2
μ + D3

ν )

+
(

1

6
+c1−c2

)
D2

μDν −c2∂t Dν

}
Gνμ(t, x).

From the corresponding O(a2) flow action,

S2,fl[B, L] = −2
∫ ∞

0
dt

∫
d4x

∑

μ

tr{Lμ(t, x)F (2)
μ (t, x)},

one may now directly read off the counterterm structures Qi

that correspond with a given choice of the coefficients c1,2.
Unfortunately, there does not seem to be a choice such that
S2,fl vanishes. We also attempted to use Eq. (46) as follows:
considering the term

2c2

∫ ∞

0
dt

∫
d4x

∑

μ,ν

tr{Lμ(t, x)∂t DνGνμ(t, x)}, (48)

one may perform an integration by parts with respect to t .
This generates a surface term at t = 0,

−2c2

∫
d4x

∑

μ,ν

tr{Lμ(t, x)DνGνμ(t, x)}∣∣t=0 , (49)

which re-defines a coefficient of the counterterms entering
S2,b (cf. Sect. 3.5). Equation (46) then leads to space-time
derivatives acting on Lμ, which can be integrated by parts

(no surface terms are generated here) to redefine F (2)
μ . Unfor-

tunately, this does not yield a solution with S2,fl = 0 either.
We notice, however, that S2,fl with the Lüscher–Weisz choice
of coefficients c1 = −1/12 and c2 = 0, has a rather simple
structure,

S2,fl
∣∣
LW = −2

∫ ∞

0
dt

∫
d4x

∑

μ,ν

tr

×
{
Lμ(t, x)

1

12
D2

μDνGνμ(t, x)

}
.

To cancel this term is relatively straightforward. Starting
from the lattice gradient force defined with the Lüscher–
Weisz action, ∂x,μSLW, we simply act with

1 + 1

12
a2∇∗

μ∇μ (50)

on this gradient force, which yields the “Zeuthen flow” equa-
tion (5). The flow action S2,fl for the Zeuthen flow does
indeed vanish, i.e. we have successfully implemented O(a2)

improvement in the 4 + 1-dimensional bulk.

3.4 O(a2) improvement of E(t, x)

We here consider only the simplest observable, namely the
action density E(t, x) of Eq. (4) The two most popular lattice
discretisations of E(t, x) are referred to as plaquette (pl) and
clover (cl) definitions, respectively. They are either obtained
from the Wilson plaquette action or based on the so called
clover leaf definition of the field strength tensor,

Gcl
μν(t, x) = 1

4a2

(
Pμν(t, x) + Qμν(t, x)

+Rμν(t, x) + Sμν(t, x)
)

AH , (51)

which uses the four plaquettes (32), (35)–(37) in the μ − ν

plane. The plaquette and clover lattice versions of E(t, x)
are now given by

Epl(t, x)=−a−4

2

∑

μ,ν

[
tr(Pμν(t, x)+Pμν(t, x)

†)−2N
]
,

(52)

and

Ecl(t, x) = −1

2

∑

μ,ν

tr{Gcl
μν(t, x)G

cl
μν(t, x)}. (53)

Pushing the classical a-expansion of the plaquette Pμν (32)
to O(a6) one obtains

Epl(t, x) = Econt(t, x) + 1

24
a2

∑

μ,ν

[
tr(DμGμν(t, x))

2

+ tr(DνGμν(t, x))
2
]

−1

4
a

∑

μ,ν

(∂μ + ∂ν)tr(Gμν(t, x))
2

− 1

24
a2

∑

μ,ν

(2∂2
μ + 2∂2

ν + 3∂μ∂ν)tr(Gμν(t, x))
2

+O(a3),
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with the continuum limit Econt(t, x) given by Eq. (4). Pro-
ceeding in this way for all four plaquettes of the clover leaf
we obtain the classical expansion

Ecl(t, x) = Econt(t, x) + 1

6
a2

∑

μ,ν

[
tr(DμGμν(t, x))

2

+ tr(DνGμν(t, x))
2
]

− 1

12
a2

∑

μ,ν

(∂2
μ + ∂2

ν )tr(Gμν(t, x))
2 + O(a4).

Several remarks are in order. First, the a-expansion of the
plaquette yields contributions at every order in a, whereas the
symmetries of the clover definition imply only even pow-
ers of a. The odd powers of a could be eliminated by re-
defining Epl(t, x) as an average over the four plaquettes of
the clover leaf, which, due to the trace operation, coincide
with tr[Pμν(t, x)] for appropriately displaced arguments x .
Second, note the total derivative terms which may appear at
any order ina. Such terms do not contribute to the expectation
value 〈E(t, x)〉, provided that the chosen set-up is translation
invariant. This would e.g. be the case in a finite volume with
periodic or twisted periodic boundary conditions, and thus
in the limit of infinite volume. However, translation invari-
ance no longer holds with either Dirichlet or Neumann con-
ditions5 as required for the Schrödinger functional [13] or
with open boundary conditions [14]. Similarly, when con-
sidering higher correlation functions such as the 2-point cor-
relator of two fields E(t, x) total derivative terms cannot be
ignored. We will here focus on the translation invariant case
and from now on consider such total derivative terms negligi-
ble. This eliminates all the odd powers of a in the expansion
of Epl(t, x). Hence, both discretisations are on equal footing
and countertermsO2 for Epl and Ecl are now easily identified
as the O(a2) coefficients in the classical expansion. Given
both a-expansions we observe that the O(a2) terms have the
same structure, with the coefficients in the clover definition
being larger by a factor of 4. In any case we observe that the
linear combination

Epl–cl(t, x) = 4

3
Epl(t, x) − 1

3
Ecl(t, x), (54)

defines an O(a2) improved observable for which O2 van-
ishes. An alternative O(a2) improved definition of E(t, x)
can be obtained from the action density of a tree-level
improved lattice action such as the Lüscher–Weisz action

5 Such boundary conditions are often imposed in the Euclidean time
direction, combined with periodic boundary conditions in the spatial
directions. In this case one may distinguish between the electric and
magnetic components of E(t, x). In the latter, total derivatives only
appear in the spatial directions and thus do not contribute to the expec-
tation value.

(Eq. (6) with c0 = 5/3, c1 = −1/12 and c2,3 = 0). Here
again, any ambiguity in the definition of a density from the
action amounts to total derivative terms, which we consider
negligible in the present context.

3.5 Determination of S2,b

In this subsection we list the gauge invariant local fields of
dimension 6 which may appear in the boundary action S2,b

of Symanzik’s effective action. Disregarding total derivative
terms with respect to the space-time coordinates x , we find
the following list of seven candidate counterterms:

O1(x) =
∑

μ,ν

tr{[DμFμν(x)]DμFμν(x)}, (55)

O2(x) =
∑

μ,ν,ρ

tr{[DμFνρ(x)]DμFνρ(x)}, (56)

O3(x) =
∑

μ,ν,ρ

tr{[DμFμν(x)]DρFρν(x)}, (57)

O4(x) =
∑

μ,ν

tr{Lμ(0, x)DνFνμ(x)}, (58)

O5(x) =
∑

μ

tr{Lμ(0, x)Lμ(0, x)}, (59)

O6(x) =
∑

μ,ν

∂t tr{Gμν(t, x)Gμν(t, x)}|t=0, (60)

O7(x) =
∑

μ

tr{Lμ(t, x)∂t Bμ(t, x)}|t=0, (61)

where Fμν denotes the field strength tensor of the fundamen-
tal gauge field.

Again we apply the field equations. The Yang–Mills flow
equation implies

∂tGμν(t, x) =
∑

ρ

[DμDρGρν − DνDρGρμ], (62)

so that, after taking into account the boundary condition
Gμν |t=0 = Fμν , we have

O6 + 4O3 = total derivative, O7 = O4. (63)

This eliminates O6,7. The field equation (46) is not use-
ful here. However, a third field equation can be derived by
varying the action at t = 0 with respect to the fundamental
gauge field Aμ(x). Technically this is best done by discretis-
ing only the flow time in the 4 + 1-dimensional continuum
action and taking the limit of continuous flow time in the end.
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The resulting field equation is6

1

g2

∑

ν

DνFνμ(x) = −Lμ(0, x). (64)

This equation leads to the relations

O5 = − 1

g2 O4, O3 = −g2O4. (65)

At this point it is useful to recall the situation in the stan-
dard 4-dimensional theory [19]. In fact there is a 1-parameter
family of O(a2) improved actions, which, to tree-level, are
parameterised by xp as follows:

c0 = 5/3 − 24xp, c1 = −1/12 + xp,
c2 = xp, c3 = 0.

(66)

Expanding the action classically, the free parameter xp is
seen to multiply the counterterm O3. The counterterm O3

is thus redundant for the improvement of standard observ-
ables. In principle one may thus tune the coefficients (66)
to achieve O(a2) improvement of both standard and gradi-
ent flow observables. In practice, however, these coefficients
define the gauge action used in the Monte-Carlo simulation
and the corresponding effective coefficient of O3 should be
regarded as fixed. Therefore we choose O1,2,4 as our basis
of counterterms (cf. Sect. 3.6).

Finally, we remark that the use of the field equation (64) in
the counterterm basis holds for counterterm insertions only
up to contact terms, namely whenever the counterterm argu-
ment coincides with the location of some field in the cor-
relation function under study. Such contact terms are thus
absent for gradient flow observables localised at strictly pos-
itive flow times. However, we expect these relations to hold
more generally, i.e. even if some fields in the correlation func-
tions are defined at zero flow time. In this case we expect that
the contact terms which make the difference are of the same
form as theO(a2) counterterms to the fields in the correlation
function and therefore just redefine these counterterm coef-
ficients. This parallels the discussion in Ref. [26] of on-shell
O(a) improvement in lattice QCD with Wilson quarks.

3.6 Summary of Section 3 and some practical
considerations

Section 3 contains the main results of this paper and may
appear rather technical. We therefore provide a short sum-
mary and comment on the practical implementation of the
lattice counterterm O4.

6 While the continuum derivation may seem rather formal we note that
a lattice version of this equation can be derived directly from the ε-
regularised 4 + 1-dimensional lattice action by a variation with respect
to the link field Uμ(x), followed by the limit ε → 0.

There is a natural way of interpreting the gradient flow
as a 4 + 1-dimensional local quantum field theory. The flow
time t plays the role of the coordinate in the fifth dimen-
sion, which only takes on non-negative values (t ≥ 0). The
dynamics of the theory in the bulk (t > 0) is completely
fixed by the deterministic flow equation. The classical nature
of the theory for t > 0 allows one to implement the Symanzik
improvement programme in a rather simple way: all O(a2)

cutoff effects produced by integrating the flow equation can
be eliminated via a suitable discretisation of the flow equa-
tion, which can be determined by the classical expansion to
O(a2). Similar considerations allow one to define discretised
flow observables that are free from O(a2) lattice artefacts.
The only remainingO(a2) effects are generated by the action
at the boundary t = 0, and are genuine quantum effects. They
correspond to the usual O(a2) counterterms (55)–(57) in the
4-dimensional action affecting all lattice observables.

To implement an O(a2) improved lattice action one first
has to choose anO(a2) improved 4-dimensional lattice gauge
action which amounts to choosing coefficients c0−3 in Eq. (6)
appropriately. It is well known how O(a2) improvement can
be implemented at tree-level, and also to order g2

0 in the case
of the pure gauge theory [20]. In addition one needs to incor-
porate a lattice version of O4 such as to cancel the insertion
of O3 on observables without changing the coefficients c0−3.

To achieve this we remind the reader that the 4 + 1-
dimensional set-up is used only for the theoretical analysis,
whereas in practice one integrates the gradient flow equation
numerically and evaluates any observable such as E(t, x)
along the flow. It turns out that the insertion of O4 can be
realised by a change in the initial condition at t = 0 for the
gradient flow equation. Since in this case Aμ(x) and Bμ(0, x)
are not the same we need to fix the integration variables in
the 4 + 1-dimensional field theory. We choose to integrate
over the fundamental gauge field Aμ(x) and the flow field
Bμ(t, x) for t > 0. Therefore on the lattice we choose to
integrate over Uμ(x) and Vμ(t, x) for t > 0. A shift in the
initial condition can be implemented via

Vμ(t, x)|t=0 = ecbg
2
0∂x,μSg[U ]Uμ(x), (67)

where cb is the free improvement coefficient, and Sg[U ] any
4-dimensional lattice action. In the 4 + 1-dimensional for-
mulation with ε-discretised flow time, the fields Vμ(0, x) and
Uμ(x) only enter in the terms

Sg[U ]−2a4
∑

x,μ

tr{Lμ(0, x)[a−1(Vμ(ε, x)Vμ(0, x)†−1)

−εXμ(0, x)]},
where Xμ(t, x) is, up to terms of O(ε), the RHS of the flow
equation. Now we can trade all references to Vμ(0, x) into
Uμ(x), that is our path integral variable. Using Eq. (67) we
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can write

Vμ(ε, x)Vμ(0, x)† = Vμ(ε, x)Uμ(x)†

− cbg2
0∂x,μSg[U ] + · · · (68)

where the dots represent higher order terms in the lattice
spacing. Therefore the shift in the initial condition is equiv-
alent (up to higher order corrections in a) to the insertion of
the counterterm

2cba
6
∑

x

Ô4(x)=−2cba
3
∑

x,μ

tr{Lμ(0, x)(g2
0∂x,μSg[U ])}.

This can be reinterpreted as the previous situation with
standard boundary conditions, Vμ(0, x) = Uμ(x), except
for the extra Ô4 term in the action. Hence we have success-
fully traded the modified boundary conditions for the flow
equation for the O4 term in the lattice action. In the next
section we will determine its coefficient cb at tree-level of
perturbation theory.

4 Perturbative analysis

In this section we will study the Symanzik O(a2) improve-
ment of the gradient flow in perturbation theory. This will
allow us first to determine the improvement coefficient cb
to tree-level. Second, the study of the Zeuthen flow both in
small volumes and for different observables will allow us to
check explicitly that the use of a tree-level improved action
for the simulation together with the tree-level value7 of cb,
the Zeuthen flow and a classically improved definition of the
observable yields expectation values that are free fromO(a2)

effects at tree level. As observable we choose first E(t, x).
The contributions by the action, flow and observable to the
cutoff effects of 〈E(t, x)〉 at tree level have been computed
recently [22,27]. Here we will show that theO(a2) tree-level
cutoff effects are absent not only in infinite volume, but also in
a finite volume with twisted periodic boundary conditions,
where the additional scale L leads to more stringent tests.
Second we will consider the connected correlation function
for E(t, x)E(s, y) and show that O(a2) improvement by the
Zeuthen flow is also obtained in this case.

4.1 Gauge fixing

In perturbation theory one parametrises the links in a neigh-
bourhood of a classical configuration as follows:

Uμ(x) = exp(ag0Aμ(x)),
Vμ(t, x) = exp(ag0Bμ(t, x)).

(69)

7 Note that all the improvement coefficients ci and cb have a perturba-
tive expansion of the form c(g2

0) = c(0)+g2
0c

(1)+· · · . Since we are only
concerned with tree-level improvement we will omit the superscript (0)

in all improvement coefficients.

Note that this standard convention implies a re-scaling of the
fields,

Aμ −→ g0Aμ, Bμ −→ g0Bμ, (70)

compared to the preceding sections. In perturbation theory
it is convenient to use gauge symmetry to simplify explicit
computations. In the context of the gradient flow, gauge fixing
is performed by studying the generalised flow equation

∂t B
(α)
μ (t, x) = D(α)

ν G(α)
νμ (t, x) + αD(α)

μ ∂νB
(α)
ν (t, x),

B(α)
μ (0, x) = Aμ(x).

The superscript (α) serves as a reminder that covariant
derivatives and field strength are made of the modified flow
field B(α)

μ (t, x), i.e. the solution of the above equation. Note
that the original flow equation is recovered by setting α = 0.
The key observation is that gauge invariant observables are
independent of α [1,3,24]. In order to see this, one only has
to check that the gauge transformation

Bμ = �B(α)
μ �−1 + 1/g2

0�∂μ�−1, (71)

where

∂t� = αg0�∂μBμ; �
∣∣
t=0 = 1, (72)

transforms a solution of the flow equation with arbitrary α

into one with α = 0.
On the lattice the procedure is completely analogous. We

consider the generalised flow equation

a2∂t V�
μ (t, x) = {−g2

0∂x,μSg(V�)

+ a3∇�
μ [�(t, x)†∂t�(t, x)]}V�

μ (t, x),
(73)

or, for the case of the Zeuthen flow,

a2∂t V�
μ (t, x) =

{
− g2

0

(
1 + a2

12∇�∗
μ ∇�

μ

)
∂x,μSLW(V�)

+ a3∇�
μ [�(t, x)†∂t�(t, x)]

}
V�

μ (t, x),

with initial condition V�
μ (0, x) = Uμ(x). One then easily

verifies that the gauge transformation

Vμ(t, x) = �(t, x)V�
μ (t, x)�(t, x + aμ̂)†, (74)

transforms a solution with an arbitrary function �(t, x) into
one with � = 1. A natural choice for the function �(t, x)
then is given as the solution of the equation,

�(t, x)†∂t�(t, x) = αg0∂
∗
μBμ(t, x), �

∣∣
t=0 = 1. (75)

Note that this is a particular application of the 4 + 1-
dimensional gauge transformations described in Sect. 2.3
and it is thus clear that gauge invariant observables remain
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unaffected by the choice of α. This can be turned around
to provide checks on the correctness of a given calculation.
In the following we drop the indices (α) (or �) from the
fields and we will quote any intermediate results in Feynman
gauge (α = 1). Some elements used for our checks of gauge
parameter independence are given in Appendix C.

4.2 Determination of cb to tree level

We first assume that the lattice is infinitely extended and
expand the general class of actions, Eq. (6), to leading order
in the coupling,8

Sg[U ; {c(a)
i }] = 1

2

∑

μ,ν

∫

p
Ãa

μ(−p)K (a)
μν (p; λ) Ãa

ν(p)

+O(g0), (76)

where λ is a gauge fixing parameter and explicit expressions
for the lattice kernels, K (a)

μν (p; λ), are given in Appendix A.
Similarly, the flow equation contains the gradient of a lat-

tice action which, to leading order in the coupling, is parame-
terised by another action kernel, K ( f )

μν (p;α). The flow equa-
tion to this order then takes the form of the heat equation,

∂t B̃
a
μ(t, p) = −

∑

ν

K ( f )
μν (p;α)B̃a

ν (t, p). (77)

The initial condition for the flow equation Eq. (67) reads
to leading order in the fields,9

B̃μ(0, p) =
∑

ν

[δμν + a2cbK
(i)
μν(p; 0)] Ãν(p),

where K (i)
μν is yet another action kernel. No gauge fixing term

is required here, so that the gauge parameter is set to zero.
The linearised flow equation (77) can now be solved easily

B̃a
μ(t, p) =

∑

ν,ρ

Hμν(t, p;α)[δνρ + a2cbK
(i)
νρ (p; 0)] Ãa

ρ(p),

(78)

where Hμν is the heat kernel given by

Hμν(t, p;α) = exp(−t K ( f )(p;α))μν. (79)

Note that we have used here K ( f )(p;α) as a matrix with
respect to the Lorentz indices and the exponential has to be
taken of that matrix. In the following we will often make use
of such a matrix notation, in order to avoid an abundance of
Lorentz indices.

8 See Appendix A for a summary of our notation and conventions.
9 Note that higher orders in the fields imply higher order in the coupling,
too, cf. Eq. (69).

Finally, the observable E(t, x), being an action density,
can be parameterised by a further lattice action kernel,
K (o)(p, 0), with gauge fixing parameter set to zero. To this
order we then obtain for the expectation value

〈E(t, x)〉 = N 2 − 1

2
g2

0

∫

p
Tr{K (o)(p; 0) D̄(p, t, t;α, λ) }

+O(g4
0),

where the trace is over Lorentz indices only and the gauge
field propagator at positive flow time is defined by

〈B̃a
μ(s, p)B̃b

ν (t, q)〉=(2π)4δ(4)(p+q)δab D̄μν(p, s, t;α, λ).

Due to the relation (78), this propagator depends implicitly
on both gauge parameters, α and λ, of the flow equation
and of the action, respectively. Introducing the standard 4-
dimensional gauge field propagator

〈 Ãa
μ(p) Ãb

ν(q)〉 = (2π)4δ(4)(p + q)δabDμν(p; λ), (80)

this propagator is the matrix inverse of the action kernel,

K (a)(p, λ)D(p, λ) = 1l, (81)

and the gauge fixing parameter λ must be non-zero for the
inverse to exist. Using these ingredients, the gauge field prop-
agator at positive flow time can now be written as follows:

D̄ (p, s, t;α, λ) = H(s, p;α)[1l + a2cbK (i)(p; 0)]
×D(a)(p, λ)[1l + a2cbK (i)(−p; 0)]T

×H(t,−p;α)T. (82)

where we have denoted the matrix transpose by the super-
script T.

In summary, the choices of action, flow and observable
discretisation correspond to the choice of three action ker-
nels. Finally the shift in the initial condition is encoded in a
fourth choice of kernel. Explicit expressions for some popu-
lar choices of kernels are given in Appendix C.

In order to obtain the leading order cutoff effects we now
expand the kernels as follows:

K (p; λ) = K cont(p; λ) + a2R(p; λ) + O(a4), (83)

where the continuum kernel is given by

K cont
μν (p; λ) = p2δμν − (1 − λ)pμ pν . (84)

Using the continuum kernel only and neglecting cutoff effects
we thus obtain the well-known continuum result in infinite
volume,

〈E(t, x)〉 = g2
0Econt

0 (t) + O(g4
0, a2),

Econt
0 (t) = 3(N2−1)

128π2t2
.

(85)
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Explicit expressions for the correction terms Rμν(p; λ)

are given in Appendix C. In order to compute the leading
correction to the propagator Dμν(p; λ) and to the heat kernel
Hμν(t, p;α) it is convenient to work in Feynman gauge (λ =
α = 1), since in this case K cont

μν (p; 1) is proportional to
δμν . Working in a general gauge is, however, not much more
difficult and serves as a check that the gauge dependence
actually cancels in the final evaluation of the observable. A
few technical details pertaining to such a check are given in
Appendix C.

In the following we will use Feynman gauge and remove
the gauge parameters as arguments of the action and flow
kernels. We will also omit them in the kernels for the observ-
able and initial conditions however, with the understanding
that they must be set to zero in these cases. In Feynman gauge
(λ = α = 1) it is straightforward to check that

Dμν(p) = 1

p2

[
δμν − a2

p2 Rμν(p)

]
+ O(a4) (86a)

Hμν(t, p) = e−tp2
[
δμν − a2t Rμν(p)

]
+ O(a4), (86b)

and finally, putting all the pieces together and after some
algebra, we get

E0(t) = Econt
0 (t)

{
1 + a2

t

[
(d(o)

1 − d(a)
1 )J4,−2

+ (d(o)
2 − d(a)

2 + 2cb)J2,0

− 2d( f )
1 J4,0 − 2d( f )

2 J2,2

]}

+O(a4), (87)

where the constants Jn,m are defined by

Jn,m = t (n+m)/2

∫ ∞
−∞ d4 pe−2tp2

(pn)(pm)
∫ ∞
−∞ d4 pe−2tp2 , (88)

and

pn =
{∑

μ(pμ)n n > 0[∑
μ(pμ)|n|

]−1
n < 0

. (89)

In fact it is straightforward to evaluate the integrals, with
the result

J4,−2 = 1/2, J2,0 = 1,

J4,0 = 3/4, J2,2 = 3/2.
(90)

The coefficients d(a,o, f )
1,2 must be independent of the gauge

parameters α and λ and we have checked this explicitly. Their
values depend on the choices made for the various kernels.
For example, for a general action of the form Eq. (6) we have

d1 = − 1

12
− 2

3
c1 + 2

3
c2 + 2

3
c3, (91a)

d2 = −1

3
c1 − 2

3
c2 − 2

3
c3. (91b)

Table 1 Values of the coefficients in the O(a2) terms of t2〈E(t, x)〉
in infinite volume. The one-parameter family of tree-level improved
actions corresponds to the choice of coefficients Eq. (66), the Lüscher–
Weisz tree-level improved action being the particular choice with xp =
0

Discretisation d1 d2

Plaquette −1/12 0

Lüscher–Weisz −1/36 1/36
4
3 Plaquette − 1

3 Clover −1/36 1/36

One-parameter tree-level improved −1/36 1/36 − xp

Clover −1/4 −1/12

Zeuthen 0 0

Table 1 summarises the values of the coefficients d(a,o, f )
1,2

for the most common choices. It is easy to see that the use
of the Zeuthen flow together with the tree-level improved
Lüscher–Weisz action and any classically improved discreti-
sation for the observable (see Sect. 3.4) has no tree-level
O(a2) cutoff effects as long as cb = 0. Therefore, to tree-
level, the Lüscher–Weisz action (c1 = −1/12, c2 = 0) pro-
duces tree-level improved results for gradient flow observ-
ables. For the case of a generalised tree-level improved action
Eq. (66) we have to choose

cb = −1

2
xp, (92)

in order to obtain tree-level improvement.
As the reader can see, besides the Zeuthen flow there seem

to be many ways to cancel the tree-level O(a2) effects (see
also [22]), as these are encoded in a single term, once the
numerical values of (90) and for d1,2 (cf. Table 1) are inserted
into Eq. (87). We are thus led to look for more stringent tests
of O(a2) improvement by looking at a variety of observables
and/or kinematics. After all, rather than improving a particu-
lar observable in a specific situation (e.g. in infinite volume),
Symanzik improvement is designed to work for any observ-
able in both finite and infinite volume.

4.3 Twisted periodic boundary conditions

A stringent test of our computations can be made when
studying t2〈E(t, x)〉 in a finite volume. Due to the pres-
ence of a new scale L , the cutoff effects will in general
depend on the dimensionless ratio c = √

8t/L . Improve-
ment requires that the tree-level cutoff effects vanish for all
values of c = √

8t/L .
As a finite volume renormalisation scheme, we will use

twisted boundary conditions for our gauge field. In this set-
up, the gauge field changes by a gauge transformation when
displaced by a period. Gauge invariant quantities are still
periodic, and the absence of zero-modes turns out to be very
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convenient for perturbative computations. The gradient flow
has already been studied in this set-up, and we will not give
many details here but refer the interested reader to Ref. [15]
and the references cited therein.

We will only need the perturbative expression of 〈E(t, x)〉
to leading order, given by

〈E(t, x)〉 = g2
0E0(t, c) + O(g4

0) (93a)

with

E0 (t, c) = c4

128t2× ∑′
P Tr{H ( f )(t, P)[1l + a2cbK (i)(P)]

×D(a)(P)[1l + a2cbK (i)(−P)]T

× H ( f )(t,−P)TK (o)(P)} (93b)

Note that the expression is almost identical to the infinite
volume one, except that the momentum integral has been
substituted by a sum (hardly a surprise). The particularities
of the twisted boundary conditions are hidden in the sum and
momentum symbols. First notice that the momentum (with
capital letters Pμ) can be uniquely decomposed as

Pμ = 2πnμ

L
+ 2π ñμ

NL
, (94)

with nμ = 0, . . . , L/a − 1 and

ñμ =
{

0, if μ = 0, 3,

0, . . . , N − 1, if μ = 1, 2,
(95)

i.e. there is the usual space-momentum, but in the directions
of the twisted plane x1 − x2 the momentum Pμ lives in an
apparently larger lattice of physical extent NL . Finally the
sum symbol

∑′
P means sum both overnμ and ñμ, but without

the terms with ñ1 = ñ2 = 0. In particular the sum has no
term with a zero total momentum. Notice that the colour
factor N 2 − 1 is produced by the sum over ñμ.

The algebra is very similar to the one of the previous sec-
tion, with the important difference that now the sums actually
depend on the dimensionless ratio c = √

8t/L . In fact fixing
the flow time in units of the volume in this way we get

E0(t, c) = Econt
0 (t, c)

×
{

1 + a2

t2
[(d(o)

1 − d(a)
1 )J4,−2(c)

+(d(o)
2 − d(a)

2 + 2cb)J2,0(c)

−2d( f )
1 J4,0(c) − 2d( f )

2 J2,2(c)]
}

+O(a4), (96)

where

Econt
0 (t, c) = 3c4

128t2
ϑ2

3 (0|ıπc2)

×[ϑ2
3 (0|ıπc2/N 2) − ϑ2

3 (0|ıπc2)], (97)
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Fig. 2 Ratio of the finite volume functions Ji, j (c) (Eq. 90) over the
infinite volume predictions Ji, j (Eq. 99). When c > 0.2 there are sig-
nificant differences between them. Moreover, the different functions
Ji, j (c) are in general linearly independent

and the third Jacobi theta function reads

ϑ3 (z|τ) =
∑

n

eıπτn2
e2ınz . (98)

Finally the functions Ji, j (c) are given by10

Ji, j (c) =
(
cπ√

2

)i+ j

×
∑′

n e−c2π2(n+ñ/N )2
(n + ñ/N )i (n + ñ/N ) j

ϑ2
3 (0|ıπc2)[ϑ2

3 (0|ıπc2/N 2) − ϑ2
3 (0|ıπc2)] .

(99)

In the limit c = √
8t/L → 0, we recover the expressions

of the infinite volume, in particular

lim
c→0

Ji, j (c) = Ji, j , (100)

but for non-zero c the functionsJi, j (c) are in general linearly

independent (see Fig. 2). The coefficients d(a,o, f )
1,2 are still the

same, and the reader can check that the tree-level O(a2) cut-
off effects given by expression Eq. (96) vanish for all values
of c when one uses our improved set-up (i.e. Lüscher–Weisz
action, Zeuthen flow and Lüscher–Weisz observable). Any
other choice of improved action together with the appropri-
ate choice of cb also does the work. For this to happen it is
crucial that the flow coefficients d( f )

1,2 are both zero, since the
functions J4,0(c) and J2,2(c) are linearly independent. In
particular it is easy now to check that the so called Symanzik
flow in the literature [28] or any set of coefficients in [22]
does not remove the tree-level cutoff effects in finite volume.

10 Negative powers ( j < 0) have to be understood as in the infinite
volume, Eq. (89).

123



Eur. Phys. J. C (2016) 76 :15 Page 15 of 21 15

For the Zeuthen flow both coefficients do identically van-
ish, so that O(a2) effects are indeed removed as expected on
theoretical grounds.

4.4 The connected 2-point function of E(t, x)

Further tests of the Zeuthen flow can be obtained by consider-
ing different operators at positive flow time. In particular, we
now consider the 2-point function of E(t, x) in a periodic box
of size L with twisted periodic boundary conditions (i.e. the
same set-up as above),

〈E(t, x)E(s, 0)〉c = 〈E(t, x)E(s, 0)〉 − 〈E(t, x)〉〈E(s, 0)〉.
(101)

Introducing the two dimensionless parameters

c =
√

8t

L
; d =

√
8s

L
, (102)

we write the leading order result in the form

〈E(t, x)E(s, 0)〉c = g4
0M(t, s, c, d; x) + O(g6

0), (103)

with

M(t, s, c, d; x) = c4d4

1024t2s2

×∑
P,Q eı(P+Q)x Tr{K (P, Q)H(t, P)

×D(P)H(s,−P)TK (Q, P)

×H(t,−Q)TD(Q)TH(s, Q)}. (104)

The generalised kernel K (P, Q) encodes the discretisa-
tion of the observable. Up to terms of O(a2) it is given by

Kμν(P, Q) = K cont
μν (P, Q) + O(a2), (105)

with the continuum kernel given by

K cont
μν (P, Q) =

∑

ρ

PρQρδμν − PμQν. (106)

The finite volume calculation for 〈E(t, x)〉 has taught us
that the O(a2) contributions of the flow have to cancel by
themselves, i.e. a cancellation with other O(a2) contribu-
tions by the action or the observable is not possible, due to
the linear independence of the momentum sums. In order to
assess the improvement of the Zeuthen flow it is therefore
enough to focus on these O(a2) contributions. Using again
the Feynman gauge for flow and action, we obtain O(a2)

terms from the flow of the form

−a2 c4d4

1024t2s2

∑

P,Q

eı(P+Q)xe−(t+s)
(
P2+Q2

) 1

P2Q2

× Tr{K cont(P, Q)(t R(P) + sR(P)T)

×K cont(Q, P)},

and a second term with a similar structure. In both cases it is
useful to note the property of the kernel that

K cont(P, Q) = T (Q)K cont(P, Q)T (P), (107)

where T (P) is the transverse projector,

Tμν(P) = δμν − PμPν

P2 . (108)

The O(a2) correction to the Zeuthen flow kernel, RZ (P),
has the nice property that

T (P)RZ (P)T (P) = 0. (109)

Hence we can conclude that the Zeuthen flow does not
contribute any O(a2) effects to this 2-point function either.
Due to the different Lorentz index structure of this case com-
pared to the simpler case of E(t, x), and to the fact that now,
in general, the cutoff effects are functions of two variables
(c, d), this test imposes further constraints on the possible
improvement solutions. In particular, the so called chair flow
in [27], which happens to also cancel the O(a2) effects of
〈E(t, x)〉 in a finite volume, can be shown to produce O(a2)

contributions to the 2-point function considered here.

5 Conclusions and outlook

We have systematically investigated the structure of O(a2)

effects in flow quantities using Symanzik’s approach applied
to the 4 + 1-dimensional local formulation of the theory.
Improvement to O(a2) for gradient flow quantities appears
to be easier than one might have thought, mainly due to the
classical nature of the gradient flow equation. In particular
the classical a-expansion is sufficient to obtain the countert-
erms for both local composite operators at positive flow time
and the action in the 4 + 1-dimensional bulk (i.e. due to the
absence of loops in the bulk, no new counterterms are gen-
erated).

Our main results are summarised in the Zeuthen flow equa-
tion (5) and the improved lattice definitions of the observable
E(t, x), either as linear combination of clover and plaque-
tte definitions (54) or as the action density of the tree-level
improved Lüscher–Weisz action. We have shown that the
integration of this Zeuthen flow equation and the evalua-
tion of classically improved observables do not produce any
O(a2) effects to any order in the coupling or, indeed, non-
perturbatively. At this point it is important to remark that
although the analysis has been performed in the context of
pure gauge theories, due to the classical nature of the flow
equation, the aforementioned results are still valid in QCD
or if any number of fermions in any representations are cou-
pled to our gauge field. In the particular case of the pure
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gauge theory the only O(a2) effects originate either from
the 4-dimensional lattice action or from the additional coun-
terterm parameterised by cb in the modified initial condi-
tion (67). Tree-level O(a2) improvement is achieved with
the Lüscher–Weisz gauge action and cb = 0.

We have explicitly checked that the proposed Zeuthen flow
equation does not generate any O(a2) contribution to tree
level for a variety of gluonic observables (different observ-
ables in arbitrary volumes). In doing so, we have shown that
other proposals of the literature to improve the gradient flow
(i.e. the τ -shift in [21], the coefficients in [22] or the chair
flow in [27]) in fact do produce O(a2) effects in some of the
considered observables. In this sense, these proposals only
produce vanishing O(a2) cutoff effects in some particular
situations (i.e. 〈E(t, x)〉 in infinite volume), and this cancel-
lation should be regarded as accidental, and not as improve-
ment.

Our results can be extended in various directions. First, it
appears straightforward to extend the classical a-expansion
to further observables, for example the energy-momentum
tensor. When considering n-point correlation functions of
such observables with n > 1 or if boundary conditions do
not respect translation invariance in some directions (as is
the case with SF and open boundary conditions), some addi-
tional work is required to also eliminate total derivative terms
which may contribute at any order in a. We also note that the
improvement of observables and the flow equation are con-
ceptually separate from theO(a2) effects at t = 0. It is there-
fore conceivable to push the expansion further, in order to also
cancel terms at O(a4). It is not clear how complicated this
would be for the flow equation, but it is certainly an option for
observables. However, one should be aware that higher order
improvement would typically render these observables less
local in lattice units. Another natural generalisation would
be the extension of our work to include fermions and the
fermionic flow equation, introduced in Ref. [4].

Acknowledgments The authors would like to express their special
gratitude to R. Sommer for his help and advice in many steps of
this work. We have benefited from discussions with M. García Perez,
A. González-Arroyo, M. Lüscher, A. Patella, S. Schaefer and our col-
leagues in the ALPHA-collaboration. S.S. is grateful for the hospitality
extended to him at DESY-Zeuthen where this project has been initiated,
and to both the CERN theory group and the Yukawa Institute for The-
oretical Physics (programme YITP-T-14-03), where essential progress
was made. The authors want to thank the organisers of the workshop
“High-precision QCD at low energy” and the staff of the “Centro de
ciencias Pedro Pascual” in Benasque for the nice atmosphere that we
needed to finish this work. We warmly thank A. Portelli for providing
beers in the very last stage of this work. S.S. is partially supported by
Science Foundation Ireland under grant 11/RFP/PHY3218.

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.
Funded by SCOAP3.

A Conventions and notation

We will use the summation convention for colour indices

a, b, . . . = 1, . . . , N 2 − 1, (110)

but not for space-time indices μ, ν, . . ., as this may lead to
confusion in the discussion of lattice artefacts. Trace over
colour indices will be denoted by tr (lower case), while trace
over Lorentz indices will be denoted with the symbol Tr
(upper case).

SU (N ) gauge fields live in the Lie algebra su(N ) and are
traceless antihermitian N × N matrices. Any element X ∈
su(N ) of this algebra can be written as X = XaT a where
the components Xa are real numbers and the generators T a

are themselves antihermitian N ×N matrices chosen to obey
the normalisation

tr(T aT b) = −1

2
δab. (111)

On the lattice the links Uμ(x) belong to the gauge group
SU (N ). For an arbitrary function of the link variables
f (Uμ(x)), the Lie-algebra valued derivative is given by

∂x,μ f (Uμ(x))=Ta∂ax,μ f (Uμ(x))=Ta d

dε
f (eεT a

Uμ(x))

∣∣∣∣
ε=0

.

Fourier transformations on an infinite lattice with lattice
spacing a are defined as

Aμ(x) =
∫

p
eı px+ı pμa/2 Ãμ(p), (112)

where

∫

p
=

∫ π/a

−π/a

d4 p

(2π)4 . (113)

On a hypercubic lattice of volume L4 we define

Aμ(x) = 1

L4

∑

n

eı px+ı pμa/2 Ãμ(p), (114)

with pμ = 2πnμ/L and nμ = 0, . . . , L/a − 1. It is conve-
nient to introduce the lattice derivatives

∂μφ(x) = φ(x + aμ̂) − φ(x)

a
, (115)

∂∗
μφ(x) = φ(x) − φ(x − aμ̂)

a
, (116)
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and also the covariant derivatives given by

a∇μ f (x) = Uμ(x) f (x + aμ̂)Uμ(x)† − f (x), (117)

a∇∗
μ f (x) = f (x) −Uμ(x − aμ̂)† f (x − aμ̂)Uμ(x − aμ̂).

(118)

Along the work we use the following definitions of the
lattice momenta:

p̂μ = 2

a
sin(apμ/2), (119)

p̊μ = 1

a
sin(apμ), (120)

ĉμ = cos(apμ/2). (121)

B Absence of odd powers of a in the classical expansion
of Sfl[V ]

In this appendix we demonstrate that the apparent presence of
odd powers of a in the classical expansion (44) is an artefact
of the way the expansion was set up. In particular, we will
show that Symanzik’s effective action for the flow action only
contains terms which are even powers of a.

B.1 Re-expanding around the midpoint of the link

Indeed, the expansion about x does not account for the fact
that the equation is derived for a given link variable Vμ(t, x),
relating the lattice points x and x + aμ̂. Odd powers of a
in the expansion are due to this asymmetric treatment, as
can be shown explicity to all orders in a for the LHS of the
flow equation, Eq. (40). First, we define the unitary matrices
�μ(t, x) as the parallel transporters along the half link from
x to the midpoint x̃ = x + 1

2aμ̂,

�μ(t, x) = P exp

{
a

∫ 1

1
2

du Bμ (t, z(u))

}
, (122)

i.e. compared to the path-ordered exponential Vμ(t, x) (30)
we here only integrate over second half of the path parame-
terising the link. Now we can perform the parallel transport
to the midpoint x̃ , defining

Fμ(t, x) = �μ(t, x)F̃μ(t, x̃)�μ(t, x)−1, (123)

and, analogously, L̃(t, x̃), such that the term in the lattice
flow action density,

L(μ) = tr{Lμ(t, x)Fμ(t, x)} = tr{L̃μ(t, x̃)F̃μ(t, x̃)}, (124)

can be expressed in terms of fields defined at the midpoint. To
obtain the expansion in powers of a about x̃ one may simply
re-expand the expansion about x obtained previously. The
parallel transporters �μ(t, x) then merely render the Taylor

expansion covariant. Proceeding in this way yields, for the
first term of F̃μ(t, x̃),

a−1�μ(t, x)†[∂t Vμ(t, x)]Vμ(t, x)†�μ(t, x)

=
∞∑

n=0

1

(2n + 1)!
(a

2
Dμ

)2n
∂t Bμ(t, x̃), (125)

which explicitly contains even powers of a only. For the gra-
dient force term in Fμ(t, x) we have only worked out the
first few orders of the a-expansion explicitly. Therefore, the
re-expansion cannot be carried out to all orders in a and it
is thus advisable to resort to some more general argument
based on symmetries.

B.2 Reflection symmetries

We now consider the flow action in Eq. (41), but restricted
to plaquette and rectangle terms, as this is sufficient to dis-
cuss the case of the Zeuthen flow. We consider a coordinate
reflection Rα in direction α. The point with coordinates xμ

transforms into x ′
μ with

Rα : xμ −→ x ′
μ =

{
−xα, if μ = α,

xμ, if μ �= α,
(126a)

The gauge field transforms under Rα

Vμ(t, x) −→
{
Vα(t, x ′ − aα̂)†, if μ = α,

Vμ(t, x ′), if μ �= α,
(126b)

One may then show that the gradient force terms (the RHS
of the flow equation), transform for plaquette and rectangle
terms, as follows:

(μ = α) : Xμ(t, x) →
−Vα(t, x ′ − aα̂)†Xα(t, x ′ − aα̂)Vα(t, x ′ − aα̂)

(μ �= α) : Xμ(t, x) → Xμ(t, x ′) (126c)

In fact, the same transformation behaviour is found for
the left hand side of the flow equation, so that Eq. (126c)
equally holds for Fμ(t, x) of Eq. (10). Hence, if the same
transformation behaviour (126c) is imposed on the Lagrange
multiplier field, Lμ(t, x), we obtain for the different parts of
the action density,

(μ = α) : tr(Lμ(t, x)Fμ(t, x)) →
tr(Lα(t, x − aα̂)Fα(t, x ′ − aα̂))

(μ �= α) : tr(Lμ(t, x)Fμ(t, x)) →
tr(Lμ(t, x ′)Fμ(t, x ′))

(127)
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In particular, the action is invariant under such a reflection,
as the only effect consists in a re-ordering of the terms in the
sum over the xα-coordinate.11

B.3 Example: reflection Rα of the Wilson gradient force

It is instructive to derive Eq. (126c) for the case of the pla-
quette action in some detail. The gradient force in this case
has the form

Xμ(t, x) =
∑

ν

(Pμν(t, x) + Qμν(t, x)
†)AH, (128)

and we need to distinguish the two cases μ = α and μ �= α.
Starting with μ = α and setting y = x ′ − aα̂ we obtain the
transformation behaviour of these plaquettes:

Pαν(t, x) −→ Vα(t, y)†Pαν(t, y)
†Vα(t, y), (129a)

and, similarly,

Qαν(t, x)
† −→ Vα(t, y)†Qαν(t, y)Vα(t, y). (129b)

Summing both expressions and taking the antihermitian part
we thus obtain

(Pαν (t, x) + Qαν(t, x)†
)

AH −→
−Vα(t, y)†(Pαν(t, y) + Qαν(t, y)†)AHVα(t, y),

(130)

where we have used the relation (M†)AH = −(M)AH, valid
for any square matrix M .

Next we consider the case μ �= α. The transformations of
the plaquettes in this case read

Pμν(t, x) −→
{
Qμα(t, x ′)†, if ν = α,

Pμν(t, x ′), if ν �= α,
(131a)

and

Qμν(t, x)
† −→

{
Pμα(t, x ′), if ν = α,

Qμν(t, x ′)†, if ν �= α.
(131b)

Hence, Eq. (126c) follows and the part of the lattice flow
action containing the Wilson gradient force is indeed invari-
ant under a reflection Rα . We have also verified that this
remains true for any gradient force obtained from lattice
actions containing both plaquettes and rectangles, such as
the Lüscher–Weisz action.

11 One may think of the infinite lattice as a limiting case of finite lattices
with periodic boundary conditions where the sum over xα is finite and
the re-ordering of terms in the sum is unproblematic.

B.4 Lattice vs. continuum reflections

We now consider a total reflection, R = R0R1R2R3 of all
space-time coordinates, i.e.

R : x −→ x ′ = −x (132)

The part of the flow action density for fixed index μ then
transforms as follows:

tr{Lμ(t, x)Fμ(t, x)} −→ tr{Lμ(t, x ′ −aμ̂)Fμ(t, x ′ −aμ̂)}.
(133)

It is not difficult to see that the O(a) offset in this transforma-
tion is again an artefact of the asymmetric treatment of the
links. In fact, defining again the midpoint x̃ = x + 1

2aμ̂,
and using the transformation of the “half link variables”,
�(t, x) (122),

R : �μ(t, x) −→ �μ

(
t, x ′ − a

2 μ̂
)†

, (134)

we find that the transformation behaviour of the fields at the
midpoint is given by

L̃μ(t, x̃) −→ −L̃μ(t,−x̃), (135)

F̃μ(t, x̃) −→ −F̃μ(t,−x̃), (136)

i.e. the reflection R, once expressed in terms of the fields at
the midpoint x̃ takes the same form as its continuum coun-
terpart. Therefore, the a-expansion of the corresponding part
of the lattice flow action cannot generate terms that are odd
under R. A generic term transforms as follows:

Tμ1μ2...μn (t, x̃) −→ (−1)nTμ1μ2...μn (t,−x̃), (137)

so that terms with an odd number n of Lorentz indices can be
excluded. This together with the observation that all Lorentz
vectors (Dμ, Lμ, ∂t Lμ,…) have odd canonical dimension,
implies that any term containing an even number of them
must be even dimensional and thus be accompanied by an
even power of a.

Treating the parts of the lattice flow action density with
other values of μ in the same way, no odd powers of a can be
generated in the expansions about the respective midpoints
of the links relating x + aμ̂ and x . As these midpoints coa-
lesce to a single point in the continuum limit this establishes
this property for the a-expansion of the complete lattice flow
action, for gradient force terms containing plaquette and rect-
angle terms.

For these considerations to extend to the Zeuthen flow we
only need to check that the correction term,

∇∗
μ∇μXμ(t, x), (138)
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transforms like Xμ(t, x) itself under the reflection R. This
is indeed the case, so that the absence of odd powers of a is
confirmed for the Zeuthen flow, too. Finally, while it is plau-
sible that these considerations extend to gradient force terms
derived from lattice gauge actions containing the “chairs” and
“parallelograms”, we did not check this explicitly, as it is not
needed for the discussion of the O(a2) improved Zeuthen
flow.

C Action and heat kernels to O(a2)

C.1 Free lattice actions and their kernels

The choice of observable, action and flow at tree level can be
parameterised by the kernels of free lattice actions, i.e. the
gauge action expanded to second order in the gluon fields,
possibly supplemented by a gauge fixing term. If a generic
lattice action with Wilson loops of length 4 and 6 is chosen
then these are parameterised by a set of coefficients ci , i =
0, 1, 2, 3. An alternative is provided by directly inserting the
clover leaf definition of the gluon field strength tensor into
a continuum like action density. In momentum space any of
these actions is written

Sg[U ] = 1

2

∫

p
Aa

μ(−p)Kμν(p; λ)Aa
ν(p) + O(g0). (139)

Note that for the case of a finite volume with twisted bound-
ary conditions, the expressions of the kernels Kμν(p; λ) are
unchanged, but the integrals over momenta have to be sub-
stituted by sums and the momentum has to be interpreted as
the sum of the space and colour momenta (see Eq. (95) and
the subsequent discussion). Gauge fixing is performed in any
kernel by adding the usual gauge fixing term

Kμν(p; λ) = Kμν(p; 0) + λ p̂μ p̂ν. (140)

Expanding the kernels to O(a2) around their common
continuum limit,

K (p; λ) = K cont(p; λ) + a2R(p, λ) + O(a4), (141)

with

K cont
μν (p; λ) = p2δμν + (λ − 1)pμ pν, (142)

the leading cutoff effects are encoded in the structure of
Rμν(p; λ). For example for a generic action made of an arbi-
trary linear combination of loops of four and six links Eq. (6)

we have

K (G)
μν (p; λ) = p̂2δμν − (1 − λ) p̂μ p̂ν

−a2(c1 − c2 − c3)[( p̂4 + p̂2 p̂2
μ)δμν

− p̂μ p̂ν( p̂2
μ + p̂2

ν)],
(143)

and

R(G)
μν (p; λ) = −

[ ( 1
12 + c1 − c2 − c3

)
p4

+(c1 − c2 − c3)p2 p2
μ

+(c2 + c3)(p2)2
]
δμν

+pμ pν

[ ( 1−λ
24 + c1 − c2 − c3

)
(p2

μ + p2
ν)

+(c2 + c3)p2
]
.

(144)

The expressions for Kμν and Rμν for the other common
choices of discretisations are written in Table 2. Note that
the Zeuthen flow equation, even if it is not derived from the
gradient of an action, can also be parametrised to tree level
by a kernel. The main difference is that the property

Kμν(p; λ) = Kνμ(p; λ), (145)

which is obeyed by any kernel derived from the gradient of
an action (i.e. a consequence of the action being real), does
not hold for the Zeuthen flow.

C.2 Heat kernels and propagators to O(a2)

Given a kernel K with arbitrary value of the gauge parameter
λ (or α in the case of the flow kernel), we would like to obtain
the a2 correction term to either the propagator, i.e. the inverse
of K ,

D(p; λ) = K (p; λ)−1, (146)

or the heat kernel

H(t, p;α) = exp (−t K (p;α)) , (147)

given the expansion of the kernel Eq. (141).
Starting with the propagator, we can formally invert,

D = [K cont + a2R + O(a4)]−1

= [1l + a2DcontR + O(a4)]−1Dcont,
(148)

and then expand in a2 to obtain

D(p; λ) = Dcont(p; λ)−a2Dcont(p; λ)R(p; λ)Dcont(p; λ)

+O(a4).
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Table 2 Kernels Kμν corresponding to different choices of discretisation, and discretisation effect corrections Rμν for some of the most popular
choices. See Appendix A for any unexplained notation

Discretisation Kμν(p; λ)

Plaquette p̂2δμν − (1 − λ) p̂μ p̂ν

Lüscher–Weisz p̂2δμν − (1 − λ) p̂μ p̂ν + a2

12 [( p̂4 + p̂2 p̂2
μ)δμν − p̂μ p̂ν( p̂2

μ + p̂2
ν )]

Clover p̊2ĉ2
μδμν − p̊μĉμ p̊ν ĉν

Zeuthen (1 − a2 p̂2
μ/12)

{
p̂2δμν − p̂μ p̂ν + a2

12 [( p̂4 + p̂2 p̂2
μ)δμν − p̂μ p̂ν( p̂2

μ + p̂2
ν )]

}
+ λ p̂μ p̂ν

Discretisation Rμν(p; λ)

Plaquette − 1
12

[
p4δμν − (1 − λ) 1

2 pμ pν(p2
μ + p2

ν )
]

Lüscher–Weisz 1
12 p

2 p2
μδμν − 1+λ

24 pμ pν(p2
μ + p2

ν )

Clover − ( 1
3 p

4 + 1
4 p

2 p2
μ

)
δμν + 7

24 pμ pν(p2
μ + p2

ν )

Zeuthen 1
24 pμ pν [(1 + λ)p2

μ − (1 − λ)p2
ν ]

To work out the O(a2) piece of the heat kernel we define
the transverse and longitudinal projectors

Tμν(p) = δμν − pμ pν

p2 , Lμν(p) = pμ pν

p2 , (149)

in terms of which

K cont
μν (p;α) = p2[Tμν(p) + αLμν(p)], (150)

and the heat kernel in the continuum is given by

H cont(t, p;α) = e−t K cont(p;α) = e−tp2
T (p) + e−αtp2

L(p).

Note that K cont(p;α) and R(p;α) do in general not com-
mute. Nevertheless, it is not difficult to work out the expan-
sion to O(a2) (i.e. to first order in R(p;α)). Inserting (141)
in the exponent one obtains

e−t K (p;α) = e−tp2
euL(p)+vR(p;α) + O(v2), (151)

with

u = (1 − α)p2t, v = −a2t. (152)

Then noting that, for n > 1,

(uL + vR)n = unL+un−1v{LR + (n − 2)LRL+RL}
+O(v2),

the exponential series can be resummed with the result

euL+vR = ∑∞
n=0

(uL+vR)n

n!
= T + eu L + v

[
R − R + eu−1

u (R̄ + uLRL)
]

+O(v2),

where

R̄ = LR + RL − 2LRL . (153)

The result for the heat kernel then is

H(t, p;α) = H cont(t, p, α) + a2te−tp2
{
R̄ − R

+ 1 − e(1−α)tp2

(1 − α)tp2 [R̄ + (1 − α)tp2LRL]
}

+O(a4), (154)

where we have left out the arguments for the sake of read-
ability. Note that the choice of Feynman gauge α = 1 for
the heat kernel is not a problem, as the apparent singularity
cancels, with the result

H(t, p, ; 1) = e−tp2{1 − a2t R(p; 1)} + O(a4). (155)
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