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Abstract For an exact quantitative description of spectral
properties of synchrotron radiation (SR), the concept of effec-
tive width of the spectrum is introduced. In the most inter-
esting case, which corresponds to the ultrarelativistic limit
of SR, the effective width of the spectrum is calculated for
the polarization components, and new physically important
quantitative information on the structure of spectral distribu-
tions is obtained. For the first time, the spectral distribution
for the circular polarization component of the SR for the
upper half-space is obtained within classical theory.

1 Introduction

The theory of synchrotron radiation (SR) is currently a quite
well-developed branch of theoretical physics. Its basic ele-
ments have been stated in books (e.g., [1-5]) and numerous
articles. As one of the most physically important features of
SR, one should mention a high polarization degree of radi-
ation and a unique structure of spectral distribution in the
ultrarelativistic limit. All the theoretically predicted proper-
ties of SR have been confirmed experimentally.

The development of the SR theory makes it possible not
only to predict qualitatively the peculiar features of radia-
tion, but also to propose exact quantitative characteristics of
physically important properties.

For instance, the high polarization degree of SR was pre-
dicted qualitatively by theory more than half a century ago
(see, e.g., [1]), and the linear polarization was given exact
quantitative characteristics; however, it was not until much
later that it proved to be possible to obtain exact quantitative
characteristics for circular polarization [6,7].
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In this paper, we propose new exact quantitative charac-
teristics of the SR spectral distribution, the effective width
of the spectrum. We demonstrate how to calculate this quan-
tity theoretically in the most interesting case, which corre-
sponds to the ultrarelativistic limit of SR, and what physi-
cally important information can be obtained using this quan-
tity. We demonstrate that for spectral distributions of SR the
well-known characteristics - the half-width of the spectrum is
less informative than the proposed effective width. We place
in the Appendix all necessary formulas for our purposes that
describe the spectral-angular distribution of the SR. Our con-
sideration is performed in the framework of the classical the-
ory of SR. It is well known that such a theory is valid with
high accuracy for accessible parameters of the electron beam
in modern accelerators and storage rings. However, for SR
in cosmic space quantum effects can be quite essential (see.
Ref. [8]) and thus can significantly change classical results
(which may be the subject of a separate study).

2 The effective width of the spectrum of SR polarization
components

Let us define the effective width of the spectrum A (8) as
the minimum spectral range that accounts for at least half of
the total radiated power of a given polarization component,

As(B) = v (B) — v () + 1. (1)

The harmonics vs( 1)(;3) and vs(z) (B) determine the beginning
and the end of this minimum spectral range and are deter-
mined as follows:

Let us introduce the quantities

e
O, (B vV, v =" FP(B: 1), 1<v®D <o < oo
v=p

@)
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It is obvious that the following relations hold true:
o (B) = dy(B; vV =1, v? = 00);
x® P (B) > o (B; vD > 1, 1@ < 0). (3)

Let us consider a set of such v, v@ (1 < v < V@ <
o0) that satisfy the inequality

B, (B: v, v > %d>§+)(ﬂ). @

Obviously, such vy @ do exist for any B (for instance,
the case v = 1 provides the existence of such a finite v®).
It is equally obvious that the condition (4) alone is generally
insufficient to determine such a pair of values v @ Let
us choose such vﬁl)(ﬁ), v§2) (B) that the fulfillment of (4)
implies that the difference vs(z) B) — vs(l) (B) is minimal, and
the following non-negative value is also minimal:

B8 B, v () — 50D (B) > 0. 5)

A definition equivalent to the above for the effective width
of the spectrum can be given using the concept of the partial
contribution Ps(8; v),

FPB; v

P (B; =
(i) oM (B)

(6)

of separate harmonics of the spectrum, introduced in [8].
Then (30 ) implies the property

> P(Biv) =1. %
v=1

Let us choose v‘gl)(ﬁ) and vs(z) (B) such that at the minimum
difference v§2> B)— vs(l) (B) the following non-negative quan-
tity is minimal:

v () !
2. PBv -5 >0 ®)
v=v"(B)

Introducing A () in accordance with (1), we arrive at the
following equivalent definition: the effective width of the
spectrum is the minimum spectral range at which the sum of
the partial contributions of separate harmonics is no less than
1/2.

From a practical point of view, the most interesting case
is presented by the ultrarelativistic limit (8 = 1, which is
equivalent to ¥ > 1) of SR. In this case, a big part of the
study of the effective width, as well as the study of other
physically interesting quantitative characteristics of the spec-
tral distribution of SR polarization components, can be done
analytically.

@ Springer

3 The ultrarelativistic case

At the higher energies of a charge (which implies the con-
dition ¥ > 1), we can use the well-known [1-5] approx-
imations of the Bessel functions by using the MacDonald
functions (Bessel functions of 2nd kind) and replacing the
summation over v by integration. As a result, the expres-
sions (30) for CIJEJ”) B=1 = <I>§+) can be written in the
following form

d) — = F(+)( )d — 2_1) 9)
s 0 s y)ay, y—3y3,

where the spectral densities F, s(+) (y) (32) take the form

93 o0
P = %y |:3K2/3(y) - /y K1/3<x>dx]

93 00
F3(+)(y) =377 |:K2/3()’) —/ K1/3(x)dx] ,
y
FP0) =FP o)+ F ), FP )

y K (3)- 10)

1
= §F5+><y> +

9
1672
Here, K1/3(x) and K3/3(x) are MacDonald functions (Bessel
functions of 2nd kind).

The functions £\ (y) are plotted in Fig. 1.
Let us also introduce the function <I>§+) y)

v
<1>§,+>(y)=/0 FP (xydx; P =M (y =00). (11)

The values of <I>§+), according to (33) and taking account of
(34), are known exactly:

0.3
F((‘+)
% 025
% / — \\ O
i 0.2
S k F
. 015
<9
g o1
% A F
2 o0 e
.
0 | —
0. 0.32 0.5 1. 1.5 2.
y values

Fig. 1 Spectral distribution for Fs(ﬂ(y)
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o _ 1 w1 + _ 1

q) = T, q> = T, q) ==
2 165 3 16> 0 2

o _ L4 Y3 L[0.7756644 _ [0,3878322
Ty T 2 10,2243356 ~ |0, 1121678 °

12)

In particular, it follows from (12), that, in the upper half-
space, 77.6 % of the radiated power is attributed to right
circular polarization and 22.4 % is attributed to left circular

polarization.
The functions <I>§+) (y) can be written down as follows:
2
+) 93
P = 3J J.
5 () = om [ 1) + L2(0) — 2\/-]
903
O (1) = o (3) + 2 o i),
o5 () = @5 () + 07 (7). o) ()
1 3 V3
(+)
~®, = + —, 13
=% O 3 (2) 4 (13)

where the following notations are used

J1(y) = %/O) Ki3(x)dx — yK1/3(y),
D(y) = (y—z - 4—1) /y Ki/3(x)dx + zy1(1/3(y)
2 9 ) 3
+ﬁ1<2 (
5 K3 y),
1) =35 [K30) = K3 300] = 2K 500 K23 ().

(14)

3.1 The effective width of the spectrum
in the ultrarelativistic limit

According to the given above definition, to determine the
effective width of the spectrum in the ultrarelativistic limit,
one has to find such y(l) and y(z) > ys(l) that

@

Vs 1
/ o B dy =0, (15)
Vs 2

yfl) Ag > 0 must be

and given this, the differences y§
minimal.

It is convenient to use Eq. (15) to determine first ys(Z) asa
function of ys(l) ,orequivalently, to determine A as a function

y‘gl). Let us write

b (50) = 50 + 4, (5).

This implies the following relation:

,o dn? (ys“)) dA, ( (”)
D=~ L _14A, Al=——_2 (16

Vs - 1 s s 1
dyt" dyt"

Taking (16) into account, we differentiate (15) with respect
to ys(l) to obtain

(1+ &) FO (3@) = 9 (30) =0, (17)

However, we need to find such ys(l) that A ( { )) is minimal,

which implies that A, = 0 at the required point. Finally, in
accordance with

(2)
Vs
[ FPouy =0 (5@) — 0 (40). as
Vs

we arrive at the following set of equations for the quantities
(1) and
}’v
1
2 1
o) (y§ )) e (y§ )) — zq)(Jr)

s El

F&O (3@) = FO (3), 3@ >y, (19)
which allows one to determine them uniquely. Since, in
accordance with (9), the relation 2v = 3yy3 holds true, we
obtain in the ultrarelativistic limit

(1)(,3) — a(l) 3 (2)(,3) — a(2) 3

3
As(B) = bsy?, by =a® —aV, a® = 2y§"> (20)

The distribution of the harmonics vy )(ﬁ ) and vy )(ﬂ) and
the quantities As(B) follows exactly the same order. The
effective width of the spectrum A (8) is different for differ-
ent polarizations, for instance, the ratio of the largest quantity
A _1(B) to the smallest quantity A3(8) is ~ 1, 76.

For each type of polarization (each s) the frequencies v <
(max)

Vg will be referred to as low, and the frequencies v >
vfmax) will be referred to as high. It is obvious that the portion

(1) of the effective width of the spectrum which corresponds

to the low frequencies is given by

! 1
W Us(mux)(’B) _ U‘g )(,3) B a‘gmax) ag )

: = 21
’ v (B) — v () by .

3.2 Another characteristics of spectral distributions
in the ultrarelativistic limit

The expressions (10) and (13) make it possible to obtain exact
quantitative data for interesting physical characteristics of
spectral distributions. These quantitative data are presented
in the following Table 1.

Calculating the location of the maximum points yy
of spectral distributions, one determines the frequencies that
correspond to the maxima:

(max)

3
S(max) _ (max) (22)

(max) (IB) _ a(max)y37 zys

@ Springer
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Table 1 Spectral emission characteristics in the ultra relativistic limit

0 2 3 -1 +1
yimax) 2.85812e—01 3.35524e—01 1.43921e—01 5.22405¢—01 2.48583e—01
f§+)(y§m”“) 2.84696e—01 2.35158e—01 5.39423e—02 5.12872e—02 2.37335e—01
¢§+)(¢m““) 7.17052e—02 6.90125e—02 6.90380e—03 2.26361e—02 5.21376e—02
pma) 1.43410e—01 1.57743e—01 1.10461e—01 2.01806e—01 1.34433e—01
y 3.49398¢—02 4.87043e—02 1.08505e—02 1.22065¢e—01 2.71081e—02
p§+)(y§”) 1.98326e—01 1.67772e—01 3.39459%—02 3.84141e—02 1.61750e—01
44+>(yy>) 5.36798e—03 6.31493e—03 2.84108e—04 3.52777e—03 3.39459%—03
i 1.0736e—02 1.44341e—02 4.54573¢—03 3.14508¢—02 8.75273e—03
y@ 1.02680e+00 1.08939¢+00 6.94023e—01 1.32370e+00 9.58312e—01
¢§+)(ﬁ”) 2.55368e—01 2.25065e—01 3.15341e—02 5.96117e—02 1.97311e—01
n? 5.10736e—01 5.14434e—01 5.04546e—01 5.31451e—01 5.08753e—01
y& 1.10709e—02 1.44604e—02 4.90942¢—03 3.59457e—02 9.26077e—03
¢§+)(y§“) 1.19916e—03 1.29074e—03 1.00954e—04 6.86800e—04 8.36754e—04
n® 2.39832¢—03 2.95025¢—03 1.61526e—03 6.12297¢—03 2.15752e—03
@ 1.47628e+00 1.59002e+00 9.06361e—01 1.95582e+00 1.35291e+00
q§+)(y§”) 3.31467e—01 2.96035¢—01 3.79763e—02 7.97257e—02 2.52321e—01
¥ 6.62933¢—01 6.76652e—01 6.07621e—01 7.10772e—01 6.50593e—01
alme) 4.28718e—01 5.03287e—01 2.15881e—01 7.83608e—01 3.72875e—01
alV 5.24096e—02 7.30564e—02 1.62757e—02 1.83097e—01 4.06621e—02
al? 1.54021e+00 1.63408e+00 1.04103e4-00 1.98555¢+00 1.43747e+00
al 1.66063e—02 2.16906e—02 7.36413e—03 5.39186e—02 1.38912e—02
a® 2.21442e+00 2.38502e-+00 1.35954e-+00 2.93372e+00 2.02936e-+00
by 1.4878¢+00 1.56103¢+00 1.02476¢-+00 1.80245¢-+00 1.39681e+00
dy 2.19781e+00 2.36333¢++00 1.35218¢-+00 2.87981e+00 2.01547¢+00
rD 2.52929e—01 2.75607e—01 1.94782e—01 3.33163e—01 2.37837e—01
r? 1.32674e—01 1.43309e—01 1.05915e—01 1.70355¢—01 1.25680e—01
r 6.60535e—01 6.73701e—01 6.06006e—01 7.04649e—01 6.48435e—01
The numerical values as(max) for s = 0,2,3 are already  imum part ~ 33.3 % for s = —1 to the minimum part ~

known, whereas those for s = =+1 are presented here for
the first time. The frequencies corresponding to the maxima
are distributed in the following order for all values of S:

v <" (B) < v (B) <1y (B) < v (B).
(23)

The quantity 100 rél) determines the percentage of the
effective width of the spectrum that is contributed by the low
frequencies for each polarization. As we can see, the quanti-
ties rs(l) are distributed in the order (23). It is quite interesting
that the low frequencies contribute to a significantly smaller

part of the effective width of the spectrum (from the max-

@ Springer

19.5 % for s = 3), and therefore, most of the effective width
of the spectrum is contributed by the high frequencies.
Let us introduce the quantities

k
) _ o (y")
$ cI>§+)

that determine, for each s-component of SR polarization, the
portion of power radiated by the interval of frequencies 0 <
V< vs(k) from the total power emitted at this polarization. It is
obvious that the quantity 100 nik) accordingly determines the
percentage of power radiated at the spectral region 0 < v <
v The order of distribution of " is identical with (23).
The numerical values """ provide convincing evidence
of the fact that a substantially larger part of the radiated power

; (24)
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ateach component of polarization is contributed by the region
of high frequencies (the maximum percentage of radiated
power at low frequencies is ~20.2 % for s = —1 and the
minimum is ~11.0 % for s = 3, and therefore from ~80 %
to ~90 % of the radiated power is contributed by the high
frequencies).

The numerical values nfvl) represent the portion of radiated
power in the frequency range up to the beginning of the effec-
tive width of the spectrum. This portion is quite insignificant

(the maximum percentage being ~3.15 % for s = —1 and
the minimum being ~0.45 % for s = 3).
The values rs(z) = n§max) — ns(l) determine the portion

of radiated power at low frequencies that corresponds to the
effective width of the spectrum (here, the maximum percent-
age of power radiated at low frequencies is ~17.0 % for
s = —1 and the minimum percentage is ~10.6 % for s = 3;
there is an approximation rx(l) ~ 2rs(2), which is physically
quite justified, since the radiated powers are approximately
proportional to the frequency ranges).

In optics one characterizes the profiles of spectral distri-
butions by introducing the concept of the half-width of the
spectrum. Such a quantity can also be introduced in the case
under consideration.

Let us find some pairs of points y§3), y§4) related by
FOG®) = FO @) = % FO 30 @ (o5
and calculate for these quantities characteristics similar to
those considered above. In particular, the half-width of the
spectrum A;/ 2 (B) is determined by

3
A =diy ds =al® a0 = 50 o)

and the portion of radiated power that is attributed to the
half-width is determined by the parameter rs(3) = n§4) — n?).

As we can see from the table, the half-width is attributed
to the range from ~60 to ~70 % of radiated power, and the
remaining part is radiated in the region of high frequencies
(up to the beginning of the half-width, the radiated power
is merely in the range of ~0.16 to ~0.61 %. Consequently,
for spectral distributions of SR the concept of the half-width
of the spectrum is less informative than the concept of the
effective width of the spectrum that we have proposed in this
article.

4 Brief summary

We give a new definition of the effective width for the SR
spectrum and calculate the effective width for all polarization
components of the SR in the ultra-relativistic limit. For the
first time, the spectral distribution for the circular polariza-
tion component of the SR for the upper half-plane is obtained
within classical theory. In addition, the relative radiation

power emitted in some physically interesting spectral ranges
is found.
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5 Relevant equations of the synchrotron radiation
theory

We present here some well-known in classical theory equa-
tions that describe the physical characteristics of synchrotron
radiation (SR), see for example, the books [1-5].

The spectral-angular distribution of the radiation power
of SR polarization components can be presented in the form

W, = WZ/n f(B: v, 6)sin0do. Q27
0

v=1

Here, 6 is the angle between the direction of the magnetic
field and the momentum of the field of radiation; v is the
number of emitted harmonics; the velocity of the charge in
orbit is v = ¢p , where c is the speed of light; W is the
total radiated power of unpolarized radiation, which can be
written down in the form

2 ce?

2e4H2(y2 — 1 1
W= 2¢'H (y" = 1)

2 2
S = L y= :
s T =) mjc3 Y 1-p2

(28)

where e is the charge of the particle; R is the radius of the
orbit; H is the strength of the magnetic field; mq is the rest
mass of the charged particle; y is the relativistic factor. The
index s serves to number the polarization components: s = 2
corresponds to the o -component of linear polarization; s = 3
corresponds to the T -component of linear polarization; s = 1
stands for the right circular polarization; s = —1 stands for
the left circular polarization; s = 0 corresponds to the power
of unpolarized radiation. The functions f;(8; v, 0) have the
form

32
H(B: v, 0) = mlﬂ(x);

312 cos?o

——sz;
2y* B2sin% 0 12

B v, 0) =

@ Springer
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2 2
fe1(B; v, 0) = [J( )*e J (X)}
,BS
x =vBsinf; ¢ = —i
le|’
So(B: v, 0) = fa(B: v, 0) + f3(B; v, 0)
=fiB; v, )+ fL1(B; v, 6), (29)

where, J, (x) are the Bessel functions. The case of an electron
corresponds to ¢ = 1.

It is well known that in the region 0 < 6 < /2 (this
region will be called the upper half-space) the right circular
polarization is dominant, whereas in the region 7/2 < 6 <
7 (this region will be called the lower half-space) it is the
left circular polarization that is dominant (exact quantitative
characteristics of this property of SR were first obtained in [6,
7]). However, if in expression (27) one integrates over 6 (0 <
0 < m) then the differences in the spectral distribution of
the right and left circular polarizations disappear. To identify
these differences, we present the expressions (27) in the form

Wo=w[eH () + o)

oM (g) =D FP(B; v,
v=1

O (B) =D F (B v
v=1

/2
FP B v) = / f5(B; v, 6)sin0do,
0

FOB; v) =/n fs(B: v, 0)sin0do, (30)
/2

and, besides, it is sufficient to study the properties of the func-
tions Fs(+) (B; v) (respectively, the properties of the functions
+ (B)), since there exist the obvious relations

FOB: v) = FPBv), @)= (B), s=0,2,3;
FOB: vy = FD B vy, o7 =07,
FO B v) = FPB; ), 58 =P (p). (31)

Integration over 6 in the upper half-space 0 < 6 < 7/2 in
(30) can be carried out exactly, which leads to the following
expressions:

BV = 4ﬂ3 [m J3,QvP) + B / oy (x)dx

2vB
_21),3/ 2 (x)dx} :
0 X

@ Springer

3 2vB Doy
BV = [w /0 %w

2vB
- / Jzu(X)dx} :
0

FP B v = BEP B v) + FP 8 v)

3y
=5 |:2,8 75, (2vB)

PR 2vB
(1 ﬂ) 0 sz(x)d-x ’

3vJ 2(vB)

4y4p?
The sums over the harmonics v in (30) can also be calculated
exactly, which leads to the expressions

FB; v = ;Fé“(ﬂ; v) £ (32)

6+ p° - B
<I>§+)(ﬂ>=—6ﬁ, d>§+)(ﬁ)=1—6ﬁ,

1 3
<I>é+>(ﬂ)=5, oM (p) = [H: xl(m} (33)

The function x1(B8) introduced here has been defined and
studied in [7]. In particular, the study of [7] demonstrated
that in the segment 0 < B < 1 the function x;(B) is finite
and decreases monotonously; at the ends of this segment, it
takes the following values:

4
xi(h) = ——. (34)

0) =1,
x1(0) T3
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