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Abstract We discuss unimodular gravity at a classical
level, and in terms of its extension into the UV through an
appropriate path integral representation. Classically, unimod-
ular gravity is locally a gauge fixed version of general relativ-
ity (GR), and as such it yields identical dynamics and phys-
ical predictions. We clarify this and explain why there is no
sense in which it can “bring a new perspective” to the cosmo-
logical constant problem. The quantum equivalence between
unimodular gravity and GR is more of a subtle question, but
we present an argument that suggests one can always main-
tain the equivalence up to arbitrarily high momenta. As a
corollary to this, we argue, whenever inequivalence is seen
at the quantum level, that just means we have defined two
different quantum theories that happen to share a classical
limit. We also present a number of alternative formulations
for a covariant unimodular action, some of which have not
appeared, to our knowledge, in the literature before.

1 Introduction

When Einstein laid down the foundations for GR [1], he
remarked that the laws of gravity sometimes took on a sim-
pler form in certain coordinate systems, and illustrated his
point by choosing so-called unimodular coordinates, where
det gμν = −1. Of course, this choice of coordinates yields
the same predictions as any other in a diffeomorphism invari-
ant theory – a seemingly obvious fact that is at the heart of the
equivalence between classical GR and so-called unimodular
gravity.

Unimodular gravity is obtained from a restricted varia-
tion of the Einstein–Hilbert action, in which the condition
det gμν = −1 is imposed from the beginning. The resulting
field equations correspond to the traceless Einstein equations,
and can easily be shown to be equivalent to the full Einstein
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equations with a cosmological constant term, �, entering
as an integration constant. Thus the equivalence to classical
GR is made manifest, and there can be no sense in which
unimodular gravity can say anything more or less than GR
about anything to do with classical gravity. This includes the
cosmological constant problem which is sometimes used as
motivation for studying unimodular gravity [2–4] (see also
e.g. [5–7]). One of the purposes of this paper is to make this
point abundantly clear in a self-contained presentation, in the
hope of addressing certain misconceptions that continue to
appear in the literature.

Beyond classical gravity, however, the equivalence bet-
ween GR and unimodular gravity is more subtle, with lit-
tle consensus. For example, in Ref. [8] it was claimed that
the two theories are equivalent at the perturbative level for
asymptotically flat space times, but inequivalence was found
for semi-classical non-perturbative quantities around particu-
lar backgrounds. In the canonical approach to quantum grav-
ity, it has been suggested that unimodular gravity can help
address the problem of time [9,10], although such a claim has
been strongly refuted [11]. We will present an argument sug-
gesting that both theories can be extended into the quantum
realm in such a way as to preserve their equivalence.

Intuitively, it is straightforward to see how the equiva-
lence can be preserved. In the path integral formalism one
must always divide out the symmetry group of the theory.
For GR, the symmetry group is the diffeomorphism group
(Diff), δgμν = ∇μξν+∇νξμ, whereas for unimodular gravity
the unimodularity condition breaks this down to transverse
diffeomorphisms (TDiff), satisfying ∇μξμ = 0. One might
imagine taking the path integral for GR and first dividing
out the longitudinal diffeomorphsims satisfying ∇μξμ �= 0,
such as to give us the path integral for unimodular gravity.
This is essentially the spirit behind the claims made in Ref.
[8], and we are certainly sympathetic to their approach.

Alternatively, we can always break the quantum equiva-
lence between GR and unimodular gravity by force by defin-
ing them to be different from the beginning. For example, one
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can write unimodular gravity as a manifestly Diff (rather than
TDiff) invariant theory by introducing extra (Stückelberg)
fields [11,12]. If the extra fields are source-free the equiv-
alence to GR remains (at least classically), but if they are
sourced, it is broken. This means that the equivalence can
always be broken at the quantum level by allowing the addi-
tional fields to exist as external legs in Feynman diagrams.

2 Classical unimodular gravity

Unimodular gravity is obtained from the Einstein–Hilbert
action under a restricted variation that preserves the metric
determinant, δ

δgμν

√−g = 0. where g ≡ det gμν . To under-
stand the implications of the unimodularity condition (UMC)
for the gauge symmetries of the theory, recall that GR is
invariant under diffeomorphism transformations, infinitesi-
mally described by δgμν(x) = ∇μξν + ∇νξμ.

If we think of the metric variation in the UMC as an
infinitesimal, gauge transformation, one can see that the
gauge vectors ξμ are forced to satisfy the transversality con-
dition 1

2
√−ggαβδgαβ = ∇μξμ = 0, restricting the set of

allowed transformations to the subset of the transverse ones
(TDiff).

The classical equivalence between GR and unimodular
gravity stems from the fact that in GR one can always
choose coordinates that are unimodular, at least locally. Glob-
ally the situation is more subtle: if coordinates are fixed on
the boundary, or there is no boundary, the global average

〈√−g〉 =
∫ √−gd4x∫

d4x
is gauge invariant.1 Otherwise we can

even fix the coordinate system globally and set 〈√−g〉 = 1.
The restricted variation is most conveniently imposed

using a scalar Lagrange multiplier λ(x), so that the action
is given by [3,4]

S =
∫

d4x

[√−g
R[g]

16πG
− λ(x)(

√−g − ε0)

]

+ Sm (1)

where Sm denotes the effective action for the (quantum)
matter fields coupled to the (classical) metric, and ε0 is
a non-dynamical volume element that explicitly breaks
Diff down to TDiff. The resulting field equations yield
Gμν = 8πGTμν − λ(x)

2 gμν , and
√−g = ε0, where Tμν =

− 2√−g
δSm
δgμν is the effective energy-momentum tensor describ-

ing the matter fields. Taking the trace of the Einstein equa-
tions yields λ(x) = 1

2 (R+8πGT ), and the traceless Einstein
equations follow, as expected. Furthermore, if we assume that
the effective matter action is invariant under Diff, we have
energy-momentum conservation, and taking the divergence
of the Einstein equations yields ∂μλ = 0. This fixes the
Lagrange multiplier to be a constant λ0, so that the dynam-

1 We thank Kurt Hinterbichler for reminding us about this.

ics is equivalent to that of GR with a cosmological constant,
λ0/2. Because the cosmological constant enters as an inte-
gration constant, rather than a parameter in the action, it is
often said that this brings a new perspective to the cosmolog-
ical constant problem. Such statements are wholly nugatory,
and fail to appreciate the true nature of the problem which is
one of radiative instability within effective-field theory. As
a result, we will focus on an effective-field theory frame-
work, with quantum matter fields coupled to classical grav-
ity, reflecting the regime in which the cosmological constant
problem is most clearly posed. Note that the details of the
(unknown) full UV description of gravity are not relevant to
the discussion, at least not if we wish to retain our faith in
effective-field theory.

The cosmological constant problem is usually described
as follows: why is the observed value of Einstein’s cosmo-
logical constant at least 60 orders of magnitude less than
that expected from vacuum energy contributions? In quantum
field theory, the vacuum is well known to carry a non-trivial
energy density, and a standard calculation reveals this to be
at least ρvac � (TeV)4. In the absence of gravity, one can
simply define this as the zero point energy, and then ignore
it as it does not enter the dynamics. When gravity is turned
on, a combination of general covariance and the equivalence
principle requires that this vacuum energy should, like any
other form of energy, gravitate. However, unlike more famil-
iar sources of matter such as dust or radiation, the energy
density of the vacuum stays constant in time and does not
dilute with the expansion of the universe. In GR, the vacuum
energy is combined with the bare cosmological constant �,
so that it is the combination, �

8πG + ρvac, that actually gravi-
tates. This combination should not exceed the critical density
of the universe today, �

8πG + ρvac � (meV)4, requiring � to
be fine-tuned to at least 60 decimal places.

The cosmological constant problem, as described above,
is somewhat wrongly stated. As mention above and discussed
in some detail in [13], the issue is not so much one of fine-
tuning, but of radiative instability. In quantum field theory,
one regularly cancels off divergences in physical parameters
before fixing any finite remainder empirically using obser-
vation. Indeed from the Wilsonian Renormalisation Group
(RG) we know that the UV sensitivity of relevant operators
renders them incalculable – they should bemeasured instead.
This is just renormalisation in action – one picks the (scale
dependent) finite part of your counterterms to fit the observa-
tion. In a Wilsonian context, the latter defines the running of
the corresponding operator with energy, supplemented with
an appropriate renormalisation condition from observations.
The real concern is when this renormalisation procedure
becomes unstable against changes in the effective descrip-
tion, e.g. against additional loop corrections, or under chang-
ing the renormalisation group scale in the Wilsonian effec-
tive action, a way of efficiently taking into account different
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quantum degrees of freedom relevant at different energies. In
other words, by adding, say, additional loops, does one need
to drastically retune the finite part of the appropriate counter
term (in this case, the bare cosmological constant)? In the
Standard Model of Particle Physics, one typically finds that
each additional loop correction adjusts the vacuum energy
density by an amount 
ρvac � (TeV)4, requiring the bare
value of the cosmological constant to be retuned to the same
level of precision. Similarly, in the Wilsonian action, the vac-
uum energy jumps by an amount 
ρvac � m4 whenever the
cut-off passes through a threshold of mass, m, at least up to
the TeV scale (for a nice discussion, see also [14]). Again
this requires the bare cosmological constant to be retuned to
considerable precision.

Now, whether we are working with the bare parameter
� from GR, or the integration constant λ0 from unimodular
gravity, the essence of the cosmological constant problem
remains the same. To see this, imagine we define the effec-
tive action for matter (e.g. by specifying the order in (matter)
loops in a perturbative description, or else up to some cut-off
in the exact Wilsonian description) and compute the vacuum
energy accordingly. We then tune � or λ0 to some high degree
of precision. But what happens when the effective descrip-
tion is altered slightly (e.g., by changing the loop order in
the perturbative case, or the location of the cut-off beyond
a new mass threshold in the non-perturbative case)? A new
computation of the vacuum energy yields a completely new
value, and we are required to readjust � or λ0. In other words,
a choice of � in GR, or λ0 in unimodular gravity is unsta-
ble against changing the effective-field theory description of
matter. Unimodular gravity does not bring any new perspec-
tive to the cosmological constant problem in comparison to
GR.2

The simplest way to understand the cosmological constant
problem is in the framework of classical gravity sourced by
quantum matter fields, therefore the above discussion made
at the level of the semi-classical gravity equations should
be enough to convince the reader of the main argument.3

However, one might still wonder how this manifests itself at
the level of the action where one might argue that if

√−g is
fixed, the cosmological constant is not a coupling of a dynam-
ical operator in the action, and so no quantum fluctuations
of any field can affect its value. However, the point is that
the restriction on det g ought to be carefully implemented,
and this is most efficiently achieved via a Lagrange multi-
plier. Once this is done properly radiative corrections from
the quantum matter Lagrangian shift this Lagrange multiplier

2 AP is indebted to Nemanja Kaloper for extensive discussions on this
point.
3 It is not hard to see that in the case where gravity is also treated
quantum–mechanically the problem persists, and the discussion above
can be generalised straightforwardly for that case.

by an overall constant, rendering its boundary value radia-
tively unstable. It turns out that the cosmological constant is
precisely this (constant) boundary value, and so indeed the
cosmological constant problem is seen to emerge just as it
does in GR. See, for example, [4].

Another way to implement the constraint | det g| = 1 is
to write the constrained metric, gμν in terms of an uncon-

strained metric, fμν , where gμν = fμν

| det f |1/4 . The renor-
malised cosmological constant now enters the action as
(constant)×∫

d4x , which one might erroneously interpret as
non-dynamical. However, by a simple change of coordinates
we see that this does give dynamics because, in the absence
of full diffeomorphism invariance, it depends explicitly on a
dynamical Jacobian.4

Let us conclude this section by presenting some alternative
formulations of unimodular gravity, all of which are classi-
cally equivalent. The first of these involves restoring the full
diffeomorphism invariance in the action (1) by means of a
Stückelbergtrick. To this end we introduce four Stückelberg
fields φα(x), as if we were performing a general coordinate
transformation, and let xα → φα(x). The gravitational part
of the action becomes [11],

Sstuck =
∫

d4x

[√−g
R

16πG
− λ

(√−g − ε0
∣
∣Jα

β

∣
∣)

]

,

(2)

where we have defined the determinant of the Jacobian matrix
Jα

β ≡ ∂φα(x)
∂xβ as

∣
∣Jα

β

∣
∣ = 4!δ[α

μ δ
β
ν δ

γ
κ δ

δ]
λ Jμ

α J ν
β J κ

γ Jλ
δ.

This is now explicitly invariant under diffeomorphisms
xμ → x ′μ(xν), provided the Stückelbergfields, φα , trans-
form as scalars.5 Furthermore, if we note that

∣
∣Jα

β

∣
∣ =

∂α

[
4!δ[α

μ δ
β
ν δ

γ
κ δ

δ]
λ φμ J ν

β J κ
γ Jλ

δ

]
we see that the Stückel-

berg action is a special case of the Henneaux–
Teitelboim action [12],

SHT =
∫

d4x

[√−g
R

16πG
− λ

(√−g − ∂μτμ
)
]

, (3)

where τμ is a vector density. This action can be further gen-
eralised to

SgenHT

=
∫

d4x
√−g

[
R

16πG
− λ f

(
∂μτμ

√−g

)

− q

(
∂μτμ

√−g

)]

.

(4)

Assuming matter only couples directly to the metric, the
generalised action (4) gives rise to the following field equa-
tions:

4 Let xμ → Xμ(x), then
∫
d4x → ∫

d4x
∣
∣ ∂X

∂x

∣
∣, and δ

δXμ

∫
d4x

∣
∣ ∂X

∂x

∣
∣ �=

0 (see [11]).
5 Actually, the action (2) is invariant under Diff as long as φα(x) →
�α(φ(x ′)), where

∣
∣
∣ ∂�α

∂φβ

∣
∣
∣ = 1.
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Gμν = 8πG
[
Tμν + gμν (λV (ψ) +U (ψ))

]
, (5)

f (ψ) = 0, ∂α

(
λ f ′(ψ) + q ′(ψ)

) = 0, (6)

where ψ = ∂μτμ

√−g
, V (ψ) ≡ ψ f ′(ψ) − f (ψ), U (ψ) ≡

ψq ′(ψ)−q(ψ). Equation (6) are constraint equations yield-
ing some constant solution for ψ = ψ0, and an arbitrary
Lagrange multiplier λ0 = constant. When plugged into Ein-
stein’s equations (5) this gives a constant, but arbitrary cos-
mological constant type term λV (ψ) + U (ψ) on the RHS.
Thus we recover the field equations of GR with a cosmo-
logical constant, as anticipated, provided that the constraint
equations in (6) remain non-trivial. The latter is ensured pro-
vided the functions f and q do not fall into any of the fol-
lowing categories: (i) f has no real zeroes (ensures that the
first constraint equation in (6) has a solution for ψ); (ii) the
isolated zeroes of f and f ′ coincide (ensures that the term
λV (ψ) on the r.h.s. of (5) does not vanish); (iii) f is identi-
cally zero and q is linear (ensures that the second cosntraint
in (6) does not vanish identically). Provided the above condi-
tions are satisfied, the classical dynamics for this generalised
action remains equivalent to that of GR with the cosmological
constant entering as an integration constant. To our knowl-
edge this generalised form of the unimodular action has not
appeared in the literature before.

3 Quantum unimodular gravity

In this section, we will provide a (less than rigorous) argu-
ment that unimodular gravity and GR can be extended into the
quantum realm in such a way as to preserve their equivalence.
To this end we start by defining the generating functional,

Z [J ] =
∫

DgμνDλDτμei SHT[g,τ,λ]+i Sext[g,J ] (7)

where SHT denotes the Henneaux–Teitelboim action (3) and
Sext the coupling to external sources. This should be under-
stood as a path integral with a cut-off taken to lie somewhere
below the Planck scale. We only include the leading order
contributions from heavy modes to the low energy effective
action, which is assumed to be invariant under Diffs, as is the
low energy functional measure.6 Crucially, we have assumed
that it is only the metric that couples to external sources and
not the vector density, τμ or the scalar, λ.7 Furthermore,

6 Our argument is not sensitive to the details of how we define Dgμν so
we will not dwell on any of subtleties associated with the path integral
approach to quantum GR.
7 What we really mean here is that τμ and λ should really be thought of
as auxiliary fields, and do not correspond to asymptotic states. It does
not, therefore, make sense to speak of n point functions of these fields
since they can only ever appear as internal lines in Feynman diagrams.
This is consistent with the statement that the matter Lagrangian is Diff
invariant, although it is a somewhat stronger statement. If the matter

the Henneaux–Teitelboim action has been endowed with a
boundary term [8],

∫
∂V d3x

√−γ
[ 1

8πG K − nμλτμ
]

where
γ ≡ det γμν with γμν the induced metric on the boundary,
nμ is the outward normal, and K ≡ Kμ

μ is the trace of the
extrinsic curvature. After integration by parts it is easy to see
that τμ reduces to a Lagrange multiplier whose purpose is
merely to fix δμλ = 0. For a suitably chosen measure, the
functional integration over τμ should yield

Z [J ] =
∫

DgμνDλδ
[
δμλ

]
ei S̄HT[[g,λ]+i Sext[g,J ] (8)

where

S̄HT[g, λ] =
∫

V
d4x

√−g

[
R

16πG
− λ(x)

]

+
∫

∂V
d3x

√−γ
1

8πG
K . (9)

In [8], it is argued that a physical boundary condition
would be to impose no variation of λ at the boundary.8 This,
along with the delta function, allows us to completely do the
functional integration over λ, yielding

Z [J ] =
∫

Dgμνe
i S̄GR [g;λ0)+i Sext[g,J ] (10)

where

S̄GR[g; λ0) =
∫

V
d4x

√−g

[
R

16πG
− λ0

]

+
∫

∂V
d3x

√−γ
1

8πG
K (11)

and λ0 is the arbitrary fixed boundary value of λ. Thus we
arrive at the generating functional for GR with a cosmologi-
cal constant λ0/2. Again, this path integral should be under-
stood as being cut off, keeping only the leading order con-
tributions to the effective action from integrating out heavy
modes above the cut-off. Our somewhat schematic argument
strongly suggests that there is a clear way in which we can
extend unimodular gravity to the UV so that it maintains its
equivalence to GR.

What if we do not fix λ on the boundary? Then the delta
function in Eq. (8) does not allow us to completely do the
functional integration over λ. In particular we are left with
an ordinary integration over space-time constants λ0,

Z [J ] =
∫

Dgμν

∫
dλ0 f (λ0)e

i S̄GR [g;λ0)+i Sext[g,J ] (12)

where we have included a possible non-trivial contribution,
f (λ0), to the measure for completeness. Classically this sug-

Footnote 7 continued
Lagrangian were not Diff invariant one could argue that matter fields
sourced the Stückelberg fields, which could in principle be identified
with τμ.
8 This follows from the observation that λ is an observable, while τμ

is not. We refer the reader to [8] for more details as regards this point.
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gests a theory which is locally equivalent to GR but with an
additional global constraint coming from variation over a
global parameter – the bare cosmological constant (in this
case, λ0/2). The two subtly different possibilities we have
just described are obviously related to whether or not one is
able to fix the unimodular gauge globally in GR, as discussed
in the previous section.

We expect to break above equivalence the moment we
switch on corresponding sources, or in other words, we allow
λ(x) and τμ(x) to lie on the external legs of Feynman dia-
grams. However, we emphasise that by doing this we are
breaking the quantum equivalence by hand.

4 Discussion and conclusions

There are three messages we would like the reader to take
away from this paper:

1. Classical unimodular gravity = classical GR, so any sug-
gestion that the former can shed new light on any prob-
lems faced by the latter are entirely nugatory.

2. Quantum unimodular gravity = quantum GR provided
we make certain assumptions about how we extend into
the UV.

3. Quantum unimodular gravity �= quantum GR if we break
those assumptions, but that is our choice, and amounts to
defining the theories to differ in the UV.

The classical equivalence and its implications are spec-
tacularly obvious, but confusion continues to reign in the
literature. The quantum equivalence between the two theo-
ries is more of a subtle issue. We have presented a schematic
argument based on the path integral approach to quantum
gravity that suggests one can always maintain equivalence
up to arbitrarily high momenta. The argument uses covariant
descriptions of unimodular gravity [11,12], where additional
fields can be rendered purely auxiliary such that they may be
integrated out in the path integral leaving us with the path
integral for GR, with appropriate boundary conditions.

Whenever the quantum equivalence is seen to fail, we
would argue that this says more about how one chose to go
about extending the theories into the UV, than some inevitable
inequivalence at the quantum level. Indeed, that choice
amounts to defining the quantum theories to be inequivalent.

To sum up then: classical unimodular gravity and classical
GR are the same thing, and they can be extended into the UV
such that the equivalence is maintained. Whenever inequiv-
alence is seen at the quantum level, that just we means we

have defined two different quantum theories that happen to
share a classical limit. An example of the latter is given by
[11,15] with the Stückelbergfields and Lagrange multiplier
allowed to lie on external legs.
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