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Abstract We study the localized direct CP violation in the
hadronic decays B± → ρ0(ω)π± → π+π−π±, including
the effect caused by an interesting mechanism involving the
charge symmetry violating mixing between ρ0 and ω. We cal-
culate the localized integrated direct CP violation when the
low invariant mass of π+π− [m(π+π−)low] is near ρ0(770).
For the five models of form factors investigated, we find
that the localized integrated direct CP violation varies from
−0.0752 to −0.0290 in the ranges of parameters in our model
when 0.750 < m(π+π−)low < 0.800 GeV. This result,
especially the sign, agrees with the experimental data and is
independent of the form factor models. The new experimen-
tal data shows that the signs of the localized integrated CP
asymmetries in the regions 0.470 < m(π+π−)low < 0.770
and 0.770 < m(π+π−)low < 0.920 GeV are positive and
negative, respectively. We find that ρ–ω mixing makes the
localized integrated CP asymmetry move toward the nega-
tive direction, and therefore contributes to the sign change in
those two regions. This behavior is also independent of the
form factor models. We also calculate the localized integrated
direct CP violating asymmetries in the regions 0.470 <

m(π+π−)low < 0.770, 0.770 < m(π+π−)low < 0.920
and the whole region 0.470 < m(π+π−)low < 0.920 GeV
and find that they agree with the experimental data in some
models of the form factors.

1 Introduction

CP violation is one of the most fundamental and important
properties of weak interactions. Even though it has been
known since 1964 [1], we still do not know the source of CP
violation completely. In the Standard Model, CP violation
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originates from the weak phase in the Cabibbo–Kobayashi–
Maskawa (CKM) matrix [2,3]. Besides the weak phase, a
large strong phase is also needed for direct CP violation to
occur in decay processes. Usually, this large phase is provided
by QCD loop corrections and some phenomenological mech-
anisms. In the past few years, numerous theoretical studies
have been conducted on CP violation. However, we need a lot
of data to test these approaches because there are many theo-
retical uncertainties such as CKM matrix elements, hadronic
matrix elements, and nonfactorizable effects. These uncer-
tainties would be reduced by the increase of experimental
data in the future and the improvement of theoretical meth-
ods.

Recently, the LHCb Collaboration focused on three-body
final states in the decays of B and D mesons and a novel
strategy to probe CP asymmetry in their Dalitz plots [4–6].
The local asymmetries in specific regions of the phase space
of charmless three-body decays of bottom mesons, such as
B± → π±π+π− and B± → K±π+π−, were measured.
It was shown that the local asymmetry distributions in the
Dalitz plots reveal rich structures and are not uniform [4–6].
These intriguing discoveries offer opportunities to search for
different sources of CP violation, through the study of the sig-
natures of these sources in certain phase spaces of the Dalitz
plots. In fact, several theoretical studies have been made to
explain these distributions, such as the interference between
intermediate states [7–9] and final-state rescatterings [6,10–
12]. One can confirm that these complex structures originate
from more than one source [6].

Charge symmetry is broken at the most fundamental level
in strong interaction physics through the small mass differ-
ence between up and down quarks in the QCD Lagrangian.
As a consequence the physical ρ0 and ω mesons are not
eigenstates of isospin but, for example, the physical ρ0 con-
tains a small admixture of an I = 0 state [13]. In previous
works, this phenomenon, known as ρ–ω mixing, was con-
sidered to obtain a large strong phase in B decays [14–17]
and it was found that such a mixing can lead to a peak of
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CP violation when the invariant mass of π+π− is near ω.
The differential CP asymmetry was studied in the decays
B± → ρ0(ω)π± → π+π−π± before [18–20]. ρ–ω mix-
ing provides additional complex terms to the amplitudes [21]
and the strong phase passes through 90◦ at the ω resonance
[15–20,22]. In our previous work, we found that it is more
useful to investigate the localized integrated CP asymme-
try and studied the localized integrated CP asymmetry in
hadronic τ decays with this mechanism [21]. The newest
LHCb experiments showed that the resonances are ρ0(770)
when m2(π+π−)low < 1GeV2/c4 for B± → π+π−π±
decays [m(π+π−)low is the low invariance mass of π+π−]
[6]. It was claimed that the CP asymmetry in these decays
changes sign around the ρ0(770) peak of m2(π+π−)low [6],
which contains the significant region of ρ–ω mixing. In the
present paper, we aim at studying the localized integrated
CP asymmetry in B± → π+π−π± decays involving ρ–ω

mixing and comparing it with the results obtained from the
LHCb Collaboration.

In this paper, we will investigate the localized integrated
CP violation with five phenomenological models of weak
form factors for B± → ρ0(ω)π± → π−π+π± with and
without ρ–ω mixing. We will determine the allowed range
of Nc, which is the effective color number describing nonfac-
torizable contributions. The model dependence of our results
will be discussed in detail. We will see that for five mod-
els of the form factors, our result for the localized inte-
grated CP asymmetry varies from −0.0752 (−0.0626) to
−0.0403 (−0.0290) in the ranges of Nc, 2.07(2.09) < Nc <

4.54(4.65) corresponding to q2/m2
b = 0.3(0.5) (q is the typ-

ical momentum transfer of the gluon or photon in the penguin
diagrams) when 0.750 < m(π+π−)low < 0.800 GeV. From
Fig. 4 of Ref. [6], we can see the localized integrated CP
asymmetries have different signs in cos θ > 0 and cos θ < 0
regions when 0.750 < m(π+π−)low < 0.800 GeV (θ is the
angle between the momenta of the unpaired π+(−) and the
ρ0 decay product with the same-sign charge). If one adds
the events in these two experimental regions together, the
total localized integrated CP asymmetry will be −0.0294 ±
0.0285. Our results agree with this experimental data. The
experimental values of the localized integrated CP asymme-
tries in the regions 0.470 < m(π+π−)low < 0.770 GeV and
0.770 < m(π+π−)low < 0.920 GeV are 0.0508 ± 0.0171
and −0.0256 ± 0.0202, respectively, with opposite signs
[6]. We will find that ρ–ω mixing can make the localized
integrated CP asymmetry move toward the negative direc-
tion, and therefore it will contribute to the sign change
from the region 0.470 < m(π+π−)low < 0.770 GeV to
0.770 < m(π+π−)low < 0.920 GeV. This behavior is inde-
pendent of the form factor models. Furthermore, we will find
that our results in these two regions and the whole region of
them are consistent with the experimental data for several
models of form factors.

The remainder of this paper is organized as follows. In
Sect. 2, we present the form of the effective Hamiltonian
and the values of Wilson coefficients and give the formalism
for the CP violating asymmetry in B± → ρ0(ω)π± →
π+π−π±. Then we show numerical results with several
models of the form factors in this section. In Sect. 3, we cal-
culate branching ratios for B+ → ρ0π+ and B0 → ρ+π−
and present numerical results for the range of Nc allowed
by the experimental data. In the last section, we give some
discussions and summarize our results.

2 CP violation in B± → ρ0(ω)π± → π+π−π±

The amplitude of a decay process described by some ampli-
tudes may have CP-even and -odd relative phases. Within
the Standard Model, the CP-odd relative phase is always a
weak phase difference which is directly determined by the
CKM matrix. On the other hand, CP-even phases, which are
called strong phases, usually originate from nonperturbative
effects of strong interactions and are hard to handle. We con-
sider a B meson weak decay process, B → M1M2M3, where
Mi (i = 1, 2, 3) is a light pseudoscalar meson. For a weak
decay process of a heavy meson, a typical form of the decay
amplitude A and its CP conjugate one Ā are

A = g1r1eiφ1 + g2r2eiφ2 , (1)

Ā = g∗
1r1eiφ1 + g∗

2r2eiφ2 , (2)

where g1 and g2 represent CP-odd complex terms which
involve CKM matrix elements, r1eiφ1 and r2eiφ2 terms are
even under the CP transformation. Then one has

|A|2 − | Ā|2 = 4r1r2 Im(g∗
1g2) sin(φ1 − φ2)

=4r1r2|g1||g2| sin[ Arg(g2/g1)] sin(φ1 − φ2),

(3)

from which we can see explicitly that both the CP-odd phase
difference Arg(g2/g1) and the CP-even phase difference φ1−
φ2 are needed to produce CP violation.

2.1 The effective Hamiltonian

In order to calculate the direct CP violating asymmetry in
hadronic decays, one can use the following effective weak
Hamiltonian, based on the Operator Product Expansion [23–
27]:

H = GF√
2

[
VubV

∗
ud(c1O

u
1 +c2O

u
2 )−VtbV

∗
td

10∑
i=3

ci Oi

]
+H.c.,

(4)

where Vub, Vud , Vtb, and Vtd are CKM matrix elements, and
ci (i = 1, 2, . . . , 10) are the Wilson coefficients, which are
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calculable in the renormalization group improved perturba-
tion theory and are scale dependent. In the present case, we
work with the renormalization scheme independent Wilson
coefficients and use the values of the Wilson coefficients at
the renormalization scale μ ≈ mb. The operators Oi have
the following forms:

Ou
1 = dαγμ(1 − γ5)uβuβγ μ(1 − γ5)bα,

Ou
2 = dγμ(1 − γ5)uuγ μ(1 − γ5)b,

O3 = dγμ(1 − γ5)b
∑
q ′

q ′γ μ(1 − γ5)q
′,

O4 = dαγμ(1 − γ5)bβ

∑
q ′

q ′
βγ μ(1 − γ5)q

′
α,

O5 = dγμ(1 − γ5)b
∑
q ′

q ′γ μ(1 + γ5)q
′,

O6 = dαγμ(1 − γ5)bβ

∑
q ′

q ′
βγ μ(1 + γ5)q

′
α,

O7 = 3

2
dγμ(1 − γ5)b

∑
q ′

eq ′q ′γ μ(1 + γ5)q
′,

O8 = 3

2
dαγμ(1 − γ5)bβ

∑
q ′

eq ′q ′
βγ μ(1 + γ5)q

′
α,

O9 = 3

2
dγμ(1 − γ5)b

∑
q ′

eq ′q ′γ μ(1 − γ5)q
′,

O10 = 3

2
dαγμ(1 − γ5)bβ

∑
q ′

eq ′q ′
βγ μ(1 − γ5)q

′
α, (5)

where α and β are color indices, and q ′ = u, d or s quark. In
Eq. (5), Ou

1 and Ou
2 are the tree level operators, O3–O6 are

QCD penguin operators, and O7–O10 arise from electroweak
penguin diagrams.

The Wilson coefficients, ci , which are known to the next-
to-leading logarithmic order, take the following values [28–
31]:

c1 = −0.3125, c2 = 1.1502,

c3 = 0.0174, c4 = −0.0373,

c5 = 0.0104, c6 = −0.0459,

c7 = −1.050 × 10−5, c8 = 3.839 × 10−4,

c9 = −0.0101, c10 = 1.959 × 10−3, (6)

at the scale μ = mb = 5 GeV.
To be consistent, the matrix elements of the operators

Oi should also be renormalized to the one-loop order. This
results in the effective Wilson coefficients, c′

i , which satisfy
the constraint

ci (mb)〈Oi (mb)〉 = c′
i 〈Oi 〉tree, (7)

where 〈Oi 〉tree is the matrix element at the tree level, which
will be evaluated in the factorization approach. From Eq. (7),

the relations between c′
i and ci are [28–31]

c′
1 = c1, c′

2 = c2,

c′
3 = c3 − Ps/3, c′

4 = c4 + Ps,

c′
5 = c5 − Ps/3, c′

6 = c6 + Ps,

c′
7 = c7 + Pe, c′

8 = c8,

c′
9 = c9 + Pe, c′

10 = c10,

(8)

where

Ps = (αs/8π)c2[10/9 + G(mc, μ, q2)],
Pe = (αem/9π)(3c1 + c2)[10/9 + G(mc, μ, q2)],
with

G(mc, μ, q2) = 4
∫ 1

0
dxx(x − 1)ln

m2
c − x(1 − x)q2

μ2 .

G(mc, μ, q2) has the following explicit expression [32]:

ReG = 2

3

⎡
⎢⎢⎣ln

m2
c

μ2 − 5

3
− 4

m2
c

q2

+
(

1 + 2
m2

c

q2

)√
1 − 4

m2
c

q2 ln
1 +

√
1 − 4m2

c
q2

1 −
√

1 − 4m2
c

q2

⎤
⎥⎥⎦ ,

ImG = −2

3

(
1 + 2

m2
c

q2

)√
1 − 4

m2
c

q2 . (9)

Based on simple arguments at the quark level, the value of
q2 is chosen to be in the range 0.3 < q2/m2

b < 0.5 [14].
From Eqs. (8) and (9) we can obtain numerical values for c′

i .
When q2/m2

b = 0.3,

c′
1 = −0.3125, c′

2 = 1.1502,

c′
3 = 2.433 × 10−2 + 1.543 × 10−3i,

c′
4 = −5.808 × 10−2 − 4.628 × 10−3i,

c′
5 = 1.733 × 10−2 + 1.543 ×−3 i,

c′
6 = −6.668 × 10−2 − 4.628 ×−3 i,

c′
7 = −1.435 × 10−4 − 2.963 ×−5 i,

c′
8 = 3.839 × 10−4,

c′
9 = −1.023 × 10−2 − 2.963 ×−5 i,

c′
10 = 1.959 × 10−3,

(10)

and when q2/m2
b = 0.5, one has

c′
1 = −0.3125, c′

2 = 1.1502,

c′
3 = 2.120 × 10−2 + 2.174 × 10−3i,

c′
4 = −4.869 × 10−2 − 1.552 × 10−3i,

c′
5 = 1.420 × 10−2 + 5.174 ×−3 i,

c′
6 = −5.729 × 10−2 − 1.552 ×−2 i, (11)
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c′
7 = −8.340 × 10−5 − 9.938 ×−5 i,

c′
8 = 3.839 × 10−4,

c′
9 = −1.017 × 10−2 − 9.938 ×−5 i,

c′
10 = 1.959 × 10−3,

where we have taken αs(mZ ) = 0.112, αem(mb) = 1/132.2,
mb = 5 GeV, and mc = 1.35 GeV.

2.2 Formalism

For the B− → ρ0π− process, the amplitude can be written as
Mλ

B−→ρ0π− = αpB ·ε∗(λ), where ε is the polarization vector

of ρ0 and λ is its polarization, pB is the momenta of B−
meson, and α is independent of λ. The amplitude for ρ0 →
π+π− is Mλ

ρ0→π+π− = gρε(λ)(p1 − p2), where p1 and p2

are the momenta of π+ and π− produced by ρ0, respectively,
and gρ is the effective coupling constant for ρ0 → π+π−.
Then, for the sequential decay B− → ρ0π− → π+π−π−,
the amplitude is [8,9]:

A = αpμ
B

∑
λ ε∗

μ(λ)εν(λ)

sρ
gρ(p1 − p2)

ν

= gρα

sρ
· pμ

B

[
gμν − (p1 + p2)μ(p1 + p2)ν

s

]
(p1 − p2)

ν

= gρ

sρ
·
Mλ

B+→ρ0π+

pB · ε∗ · (� − s′)

= (� − s′) · M, (12)

where
√
s′ is the high invariance mass of the π+π− pair,

� = 1
2 (s′

max + s′
min) with s′

max and s′
min being the maximum

and minimum values of s′ for a fixed s, respectively, and
√
s

is the low invariant mass of the π+π− pair [m(π+π−)low]
and sV is from the inverse propagator of the vector meson
V , sV = s − m2

V + imV�V . The factor � − s′ is equal
to −2|p2||p3| cos θ in Ref. [33], which accounts for angular
momentum conservation for the spin-1 resonance. M will
be calculated in the following. According to the effective
Hamiltonian, A can be divided into two parts [18]:

A = 〈π+π−π−|HT |B−〉 + 〈π+π−π−|HP |B−〉, (13)

where HT and HP are the Hamiltonians for the tree and
penguin operators, respectively.

In order to obtain a large signal for direct CP violation, we
need to appeal to some phenomenological mechanisms. ρ–ω

mixing has the dual advantages that the strong phase differ-
ence is large (passes through 90◦ at the ω resonance) and
well known [15–17]. With this mechanism, to the first order
in isospin violation, the amplitude for B− → ρ0(ω)π− →
π+π−π− takes the following form at a value of

√
s close to

the ω resonance mass [18]:

〈π+π−π−|HT |B−〉 = (� − s′)

×
(

gρ

sρsω
�̃ρωtω + gρ

sρ
tρ

)
, (14)

〈π+π−π−|HP |B−〉 = (� − s′)

×
(

gρ

sρsω
�̃ρω pω + gρ

sρ
pρ

)
, (15)

where tV (V = ρ0 or ω) is the tree amplitude and pV is
the penguin amplitude for producing an intermediate vector
meson V , �̃ρω is the effective ρ–ω mixing amplitude. From
Eqs. (14) and (15), we note that ρ–ω mixing provides an
additional complex term for the tree and penguin amplitudes
(the first term in each equation), respectively. These complex
terms will enlarge the CP-even phase and lead to a peak of CP
asymmetry as mentioned before. We will show the difference
between the CP asymmetries with and without ρ–ω mixing
later. Here, we assume that the B± → π+π−π± process is
dominated by the resonance ρ0 in certain region of its Dalitz
plot.

We stress that the direct coupling ω → π+π− is effec-
tively absorbed into �̃ρω [34,35], leading to the explicit
s dependence of �̃ρω. Making the expansion �̃ρω(s) =
�̃ρω(m2

ω) + (s − m2
ω)�̃′

ρω(m2
ω), the ρ–ω mixing parame-

ters were determined in the fit of Gardner and O’Connell
[36]:

Re�̃ρω(m2
ω) = − 3500 ± 300 MeV2,

Im�̃ρω(m2
ω) = − 300 ± 300 MeV2, (16)

�̃′
ρω(m2

ω) = 0.03 ± 0.04.

In practice, the effect of the derivative term is negligible.
In this work, we only consider ρ0 and ω resonances. Then,

for a fixed s, the differential CP asymmetry parameter can
be defined as

ACP = |M|2 − |M̄|2
|M|2 + |M̄|2 . (17)

By integrating the denominator and numerator of ACP,
respectively, in the region � (s1 < s < s2, s′

1 < s′ < s′
2), we

obtain the localized integrated CP asymmetry, which can be
measured by experiments and takes the following form:

A�
CP =

∫ s2
s1

ds
∫ s′2
s′1

ds′(� − s′)2(|M|2 − ¯|M|2)
∫ s2
s1

ds
∫ s′2
s′1

ds′(� − s′)2(|M|2 + ¯|M|2)
. (18)

According to kinematics of the three-body decay, �[=
1
2 (s′

max + s′
min)] is related to s. In our calculations, s varies

in a small region, and therefore � can be treated as a con-

stant approximately [6]. Then the terms
∫ s′2
s′1

ds′(� − s′)2 are

canceled, and A�
CP becomes independent of the high invari-

ance mass of π+π−. In practice, to be more precise, we take
into account the s-dependence of s′

max and s′
min in our cal-

culations. We choose s′
min < s′ < s′

max as the integration
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interval of the high invariance mass of π+π− and regard∫ s′max
s′min

ds′(� − s′)2 as a factor which is dependent on s.

2.3 Calculational details

With the Hamiltonian given in Eq. (4), we are ready to eval-
uate the matrix elements for B− → ρ0(ω)π−. According
to the theory of QCD factorization, the naive factorization
approach has been shown to be the leading order result in the
framework of QCD factorization when the radiative QCD
corrections of order O(αs(mb)) and the O(1/mb) correc-
tions in the heavy quark effective theory are neglected [24–
27]. Since the b quark is very heavy and B meson decays
are very energetic, so the quark–antiquark pair in a meson
in the final state moves very fast away from the weak inter-
action point. The hadronization of the quark–antiquark pair
occurs far away from the remaining quarks. Then the meson
can be factorized out and the interaction between the quark
pair in the meson and the remaining quark is tiny [37,38].
The deviation of the value of Nc from the color number,
3, measures the nonfactorizable effects in the naive factor-
ization scheme [16–18]. In the factorization approximation,
either ρ0(ω) or π− is generated by one current which has
appropriate quantum numbers in the Hamiltonian. For this
decay process, two kinds of matrix element products are
involved after factorization: 〈ρ0(ω)|Jμ|0〉〈π−|Jμ|B−〉 and
〈π−|Jμ|0〉〈ρ0(ω)|Jμ|B−〉. We will calculate them in some
phenomenological quark models.

The matrix elements for B → P and B → V (where P
and V denote pseudoscalar and vector mesons, respectively)
can be decomposed as [39]

〈P|Jμ|B〉 =
(
pB + pP − m2

B − m2
P

k2

)
μ

FBP
1 (k2)

+ m2
B − m2

P

k2 kμF
BP

0 (k2), (19)

〈V |Jμ|B〉 = 2

mB + mV
εμνρσ ε∗ν pρ

B p
σ
V V

BV (k2)

+ i

{
ε∗
μ(mB + mV )ABV

1 (k2)

− ε∗ · k
mB + mV

(pB + pV )μA
BV
2 (k2)

−ε∗ · k
k2 2mV · kμA

BV
3 (k2)

}

+ i
ε∗ · k
k2 2mV · kμA

BV
0 (k2), (20)

where Jμ is the weak current [Jμ = ūγμ(1−γ5)b or d̄γμ(1−
γ5)b], k = pB − pP(V ), and εμ is the polarization vector
of V . The form factors included in our calculations satisfy
FBP

1 (0) = FBP
0 (0), ABV

3 (0) = ABV
0 (0), and ABV

3 (k2) =
[(mB +mV )/2mV ]ABV

1 (k2)−[(mB −mV )/2mV ]ABV
2 (k2).

We define the notation X for matrix elements. For example,
X (B−ρ0,π−) is defined as 〈π−|d̄γ μ(1 − γ5)u|0〉〈ρ0|ūγμ(1 −
γ5)b|B−〉. These matrix elements can be parameterized as the
products of decay constants and form factors. Therefore, the
factorized terms X (BM1,M2) have the following expressions
[40]:

X (BP,V ) = 〈V |q̄2γ
μ(1 − γ5)q3|0〉〈P|q̄1γμ(1 − γ5)b|B〉

= 2 fV mV F
BP

1 (m2
V )(ε∗ · pB), (21)

X (BV,P) = 〈P|q̄2γ
μ(1 − γ5)q3|0〉〈V |q̄1γμ(1 − γ5)b|B〉

= 2 fPmV ABV
0 (m2

P )(ε∗ · pB), (22)

where fV and fP are the decay constants of vector and pseu-
doscalar mesons, respectively. Using the decomposition in
Eqs. (19)–(22), one has

tρ = VubV
∗
ud

(
a1

X (B−ρ0,π−)

ε∗ · pB + a2
X (B−π−,ρ0)

ε∗ · pB
)

, (23)

tω = VubV
∗
ud

(
a1

X (B−ω,π−)

ε∗ · pB + a2
X (B−π−,ω)

ε∗ · pB
)

, (24)

where all the ai are built up from the effective Wilson coef-
ficients c′

i ’s, and take the form ai = c′
i + c′

i+1/Nc for odd
i and ai = c′

i + c′
i−1/Nc for even i . It is noted that in the

factorization approach Nc includes nonfactorizable contribu-
tions effectively, and the value of Nc should be determined by
experiments since we cannot evaluate nonfactorizable con-
tributions. In the same way, we obtain the penguin operator
contributions:

pρ = −VtbV
∗
td

{[
− a4 + 3

2
a7 + 3

2
a9 + 1

2
a10

]
X (B−π−,ρ0)

ε∗ · pB
+

[
a4 + a10 − 2(a6 + a8)

m2
π

(md + mu)(mb + mu)

]

× X (B−ρ0,π−)

ε∗ · pB
}
, (25)

pω = −VtbV
∗
td

{[
2a3 + a4 + 2a5 + 1

2
(a7 + a9 − a10)

]

× X (B−π−,ω)

ε∗ · pB
+

[
a4 + a10 − 2(a6 + a8)

m2
π

(md + mu)(mb + mu)

]

× X (B−ω,π−)

ε∗ · pB
}
. (26)

We adopt the same decay constants and form factors for
the matrix elements producing ρ0 and ω mesons. Then we
have X (B−ρ0,π−) = X (B−ω,π−) = 2 fπmρ A0(m2

π )(ε∗ · pB)

and X (B−π−,ρ0) = X (B−π−,ω) = √
2 fρmρF1(m2

ρ)(ε∗ · pB),

where 〈ρ0(ω)|Jμ|0〉 = 1/
√

2 fρmρε∗μ and 〈π−|Jμ|0〉 =
i fπ pμ
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Fig. 1 The differential asymmetry, ACP, in Model 1. a For q2/m2
b =

0.3: solid and dot lines correspond Nc = 2.78 and Nc = 9.68 with max-
imum CKM matrix elements, respectively. Dot-dashed and dashed line

correspond Nc = 2.78 and Nc = 9.68 with minimum CKM matrix ele-
ments, respectively,b the same as a but for q2/m2

b = 0.5 and Nc = 2.85
and 9.02

2.4 Numerical results

In our numerical calculations we have several parameters:
q2, Nc, and the CKM matrix elements in the Wolfenstein
parametrization. As mentioned in Sect. 2.1, the value of q2

is conventionally chosen to be in the range 0.3 < q2/m2
b <

0.5. The CKM matrix, which should be determined from the
experimental data, has the following form in terms of the
Wolfenstein parameters, A, λ, ρ, and η [41]:

⎛
⎝ 1 − 1

2λ2 λ Aλ3(ρ − iη)

−λ 1 − 1
2λ2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞
⎠ , (27)

where O(λ4) corrections are neglected. Since λ and A are
well determined and the uncertainties due to the CKM matrix
elements are mostly from ρ and η, we take the central values
of λ(= 0.225) and A(= 0.814) in the following. The ranges
for ρ and η are

ρ̄ = 0.117 ± 0.021, η̄| = 0.353 ± 0.013, (28)

with

ρ̄ = ρ

(
1 − λ2

2

)
, η̄ = η

(
1 − λ2

2

)
.

The form factors F1(m2
ρ) and A0(m2

π ) depend on the inner
structure of the hadrons. Under the nearest pole dominance
assumption, we take the following k2 dependence of the form
factors: for Model 1(2) [42–47]:

F1(k
2) = h1

1 − k2

m2
1

, A0(k
2) = hA0

1 − k2

m2
A0

, (29)

where h1 = 0.25(0.292), hA0 = 0.30(0.366), m1 =
5.32 GeV, and mA0 = 5.27 GeV; for Model 3(4) [43–48]:

F1(k
2) = h1(

1 − k2

m2
1

)2 , A0(k
2) = hA0(

1 − k2

m2
A0

)2 , (30)

where h1 = 0.25(0.292), hA0 = 0.30(0.366), m1 =
5.32 GeV, and mA0 = 5.27 GeV; for Model 5 [49,50]:

F1(k
2) = h1

1 − x1
k2

m2
1

+ y1

(
k2

m2
1

)2 ,

A0(k
2) = hA0

1 − x0
k2

m2
A0

+ y0

(
k2

m2
A0

)2 ,

(31)

where h1 = 0.261, hA0 = 0.302, x1 = 2.03, y1 = 1.29,
x0 = −1.49, y0 = 6.61, m1 = 5.32 GeV, and mA0 =
5.27 GeV. The decay constants used in our calculations are
fρ = 216 MeV and fπ = 132 MeV [47].

In the numerical calculations, it is found that for a fixed
Nc, there is a maximum value for the differential CP violating
parameter, when the low invariant mass of the π+π− pair is
in the vicinity of the ω resonance, 0.780 − 0.785 GeV. Five
models with different form factors were investigated to study
the model dependence of ACP in Ref. [18]. To be more spe-
cific, in Fig. 1a, b we display the results for the form factors in
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Model 1. These results show explicitly the dependence of the
CP violating asymmetry on q2/m2

b, CKM matrix elements
and the effective parameter Nc. The dependence on Nc comes
form the fact that Nc is related to the hadronization effects,
and consequently, we cannot exactly determine Nc in our cal-
culations. Therefore, we treat Nc as a free effective parameter
and take it in the range 2.07(2.09) < Nc < 4.54(4.65) when
q2/m2

b = 0.3(0.5) for reasons which will be explained later
(Sect. 3).

Then we calculate the localized integrated CP asymme-
tries. According to Eq. (18), we integrate ACP over the low
invariant mass of π+π− (

√
s) and obtain the localized inte-

grated asymmetries A�
CP. Considering the significant region

of ρ–ω mixing, we choose the integration interval of
√
s to be

from 0.750 to 0.800 GeV. In order to compare with the newest
result of the LHCb experiments, we also calculate A�

CP when√
s is in the low-mass region (0.470 <

√
s < 0.770 GeV),

the high-mass region (0.770 <
√
s < 0.920 GeV) and the

whole region (0.470 <
√
s < 0.920 GeV) near the ρ0 res-

onance [6]. The numerical results are displayed in Table 1.
We also display A�

CP with and without ρ–ω mixing when
0.750 <

√
s < 0.800 and 0.470 <

√
s < 0.920 GeV in

Table 1.
Table 1 shows that the values of A�

CP in our calculations
vary from −0.0752(−0.0626) to −0.0403(−0.0290) corre-
sponding to q2/m2

b = 0.3(0.5), in the regions of Nc, the
CKM matrix elements, and the form factors in five models
when 0.750 <

√
s < 0.800 GeV. From Fig. 4 of Ref. [6],

we can see the localized integrated CP asymmetries have
different signs in cos θ > 0 and cos θ < 0 regions when
0.750 < m(π+π−)low < 0.800 GeV. If one adds the events
in these two experimental regions together, the total local-
ized integrated CP asymmetry obtained from experiment
becomes −0.0294 ± 0.0285 when 0.750 < m(π+π−)low <

0.800 GeV. The values in our calculations agree with this
experimental data. We stress that A�

CP in our calculations is
always negative in this integration region and its sign is inde-
pendent of the form factor models. We note that the signs of
A�

CP are positive when ρ–ω mixing is not considered in this
region. This indicates that ρ–ω mixing is vital for A�

CP to be
negative in this region.

From Table 1, we can see ρ–ω mixing changes the sign of
A�

CP from positive to negative. Figure 1a, b show that the peak
of the differential asymmetry ACP involving ρ–ω mixing is
on the right of 0.770 GeV. Therefore, comparing with A�

CP in
the range 0.470 <

√
s < 0.770 GeV, the localized integrated

CP asymmetries move toward the negative direction when
0.770 <

√
s < 0.920 GeV due to ρ–ω mixing. This behavior

is also independent of the form factor models. In fact, in our
calculations the difference between the localized integrated
CP asymmetries in the regions 0.470 <

√
s < 0.770 and

0.770 <
√
s < 0.920 GeV varies from 0.0076 to 0.0387. We

add the experimental events for positive and negative cos θ

in the regions 0.470 < m(π+π−)low < 0.770 and 0.770 <√
s < 0.920 GeV and obtain A�

CP as 0.0508 ± 0.0171 and
−0.0256 ± 0.0202, respectively, from the data in Table IV
of Ref. [6]. We can see they have opposite signs. After we
combine these two regions together, A�

CP in the whole region
0.470 < m(π+π−)low < 0.920 GeV is 0.0173 ± 0.0130
[6]. The values of A�

CP with ρ–ω mixing shown in Table 1
differ a lot between Model 1 (or 2, 3, 4) and Model 5. A�

CP is
also sensitive to the choice of q2/m2

b. When 0.470 <
√
s <

0.770 GeV, it appears that A�
CP varies from 0.0278 to 0.0353

in Models 1, 2, 3 and 4 for q2/m2
b = 0.5 and Nc = 4.65.

This result is consistent with the experimental data. When
0.770 <

√
s < 0.920 GeV, except for q2/m2

b = 0.5 and
Nc = 4.65 in Models 1, 2, 3 and 4, A�

CP varies from −0.0408
to −0.0110. This result is consistent with the experimental
data. In the whole region of 0.470 <

√
s < 0.920 GeV, A�

CP
varies from 0.0096 to 0.0146 in Models 1, 2, 3, and 4 for
q2/m2

b = 0.5 and Nc = 4.65. This result is also consistent
with the experimental data.

From above discussions, we can see A�
CP with ρ–ω mix-

ing, especially the signs, agree with the experimental result
when 0.750 <

√
s < 0.800 GeV. We also find that the local-

ized integrated CP asymmetries move toward the negative
direction due to ρ–ω mixing. A�

CP in the region 0.770 <√
s < 0.920 GeV contains the contribution of ρ–ω mixing,

while that in the region 0.470 <
√
s < 0.770 GeV does not.

Therefore, ρ–ω mixing contributes to the sign change of CP
asymmetry around the ρ0(770) peak of m(π+π−)low. Our
results in these two regions and the whole region are consis-
tent with the experimental data for several choices of q2/m2

and models of the form factors. One should take the effect
of ρ–ω mixing into account in order to answer the question
why the sign of CP asymmetry changes around the ρ0(770)

peak of m(π+π−)low.

3 Extraction of Nc from data of branching ratios

3.1 Formalism

As mentioned before, Nc includes nonfactorizable effects
which are difficult to deal with at present. Therefore, we treat
Nc as an effective parameter to be determined by the exper-
imental data. With the factorized decay amplitudes, we can
calculate the decay rates by using the following expression
[40]:

�(B → V P) = |pρ |3
8πm2

V

∣∣∣∣ A(B → V P)

ε∗ · pB
∣∣∣∣
2

, (32)

where

|pρ | =
√

[m2
B − (mV + mP )2][m2

B − (mV − mP )2]
2mB

(33)

123



536 Page 8 of 11 Eur. Phys. J. C (2015) 75 :536

Table 1 The localized integrated asymmetries A�
CP when q2/m2

b =
0.3(0.5). The first and second lines of each model corresponds to A�

CP
with and without ρ–ω mixing in the region 0.750 <

√
s < 0.800 GeV,

respectively. The third and fourth lines of each model correspond
to the low-mass region (0.470 <

√
s < 0.770 GeV) and the high-

mass region (0.770 <
√
s < 0.920 GeV) near the resonance mass,

respectively. The fifth and sixth lines of each model corresponds to

A�
CP with and without ρ–ω mixing in the region 0.470 <

√
s <

0.920 GeV, respectively. The second and third columns correspond
to Nc = 2.07(2.09). The fourth and fifth columns correspond to
Nc = 4.54(4.65). The second and fourth columns correspond to
lower limiting values of the CKM matrix elements. The third and
fifth columns correspond to upper limiting values of the CKM matrix
elements

Nc 2.07 (2.09) 4.54 (4.65)

ρ, η Min Max Min Max

Model 1

0.750 <
√
s < 0.800 GeV −0.0647 (−0.0520) −0.0736 (−0.0591) −0.0455 (−0.0300) −0.0517 (−0.0341)

0.0054 (0.0204) 0.0062 (0.0232) 0.0079 (0.0281) 0.0090 (0.0319)

0.470 <
√
s < 0.770 GeV −0.0024 (0.0061) −0.0027 (0.0070) 0.0017 (0.0278) 0.0019 (0.0290)

0.770 <
√
s < 0.920 GeV −0.0352 (−0.0128) −0.0400 (−0.0145) −0.0239 (0.0014) −0.0272 (0.0016)

0.470 <
√
s < 0.920 GeV −0.0167 (−0.0021) −0.0189 (−0.0023) −0.0093 (0.0096) −0.0106 (0.0109)

0.0054 (0.0204) 0.0062 (0.0232) 0.0079 (0.0281) 0.0090 (0.0319)

Model 2

0.750 <
√
s < 0.800 GeV −0.0661 (−0.0516) −0.0752 (−0.0587) −0.0469 (−0.0290) −0.0533 (−0.0330)

0.0062 (0.0234) 0.0071 (0.0267) 0.0092 (0.0327) 0.0105 (0.0371)

0.470 <
√
s < 0.770 GeV −0.0019 (0.0086) −0.0021 (0.0098) 0.0026 (0.0306) 0.0030 (0.0353)

0.770 <
√
s < 0.920 GeV −0.0359 (−0.0112) −0.0408 (−0.0127) −0.0247 (0.0038) −0.0280 (0.0043)

0.470 <
√
s < 0.920 GeV −0.0166 (0.00004) −0.0189 (0.00004) −0.0091 (0.0129) −0.0103 (0.0146)

0.0062 (0.0234) 0.0071 (0.0267) 0.0092 (0.0327) 0.0105 (0.0371)

Model 3

0.750 <
√
s < 0.800 GeV −0.0647 (−0.0520) −0.0737 (−0.0592) −0.0455 (−0.0300) −0.0515 (−0.0341)

0.0054 (0.0204) 0.0062 (0.0232) 0.0079 (0.0281) 0.0090 (0.0320)

0.470 <
√
s < 0.770 GeV −0.0024 (0.0061) −0.0028 (0.0069) 0.0017 (0.0278) 0.0019 (0.0292)

0.770 <
√
s < 0.920 GeV −0.0350 (−0.0125) −0.0398 (−0.0142) −0.0238 (0.0016) −0.0270 (0.0016)

0.470 <
√
s < 0.920 GeV −0.0167 (−0.0021) −0.0190 (−0.0023) −0.0094 (0.0097) −0.0106 (0.0110)

0.0054 (0.0204) 0.0062 (0.0232) 0.0079 (0.0281) 0.0090 (0.0320)

Model 4

0.750 <
√
s < 0.800 GeV −0.0661 (−0.0517) −0.0752 (−0.0587) −0.0469 (−0.0290) −0.0534 (−0.0330)

0.0062 (0.0235) 0.0071 (0.0267) 0.0092 (0.0327) 0.0105 (0.0372)

0.470 <
√
s < 0.770 GeV −0.0019 (0.0086) −0.0022 (0.0098) 0.0026 (0.0306) 0.0030 (0.0353)

0.770 <
√
s < 0.920 GeV −0.0357 (−0.0110) −0.0405 (−0.0125) −0.0245 (0.0040) −0.0278 (0.0046)

0.470 <
√
s < 0.920 GeV −0.0167 (0.00005) −0.0190 (0.00005) −0.0091 (0.0129) −0.0104 (0.0146)

0.0062 (0.0235) 0.0071 (0.0267) 0.0092 (0.0327) 0.0105 (0.0372)

Model 5

0.750 <
√
s < 0.800 GeV −0.0577 (−0.0550) −0.0658 (−0.0626) −0.0403 (−0.0375) −0.0459 (−0.0427)

0.0011 (0.0041) 0.0012 (0.0047) 0.0015 (0.0055) 0.0017 (0.0062)

0.470 <
√
s < 0.770 GeV −0.0055 (−0.0083) −0.0063 (−0.0094) −0.0034 (−0.0046) −0.0039 (−0.0053)

0.770 <
√
s < 0.920 GeV −0.0322 (−0.0216) −0.0366 (−0.0245) −0.0222 (−0.122) −0.0252 (−0.0139)

0.470 <
√
s < 0.920 GeV −0.0170 (−0.0140) −0.0194 (−0.0160) −0.0114 (−0.0079) −0.0130 (−0.0090)

0.0010 (0.0039) 0.0012 (0.0044) 0.0015 (0.0052) 0.0017 (0.0059)

is the c.m. momentum of the decay particles, and A(B →
V P) is the decay amplitude. In our case, to be consistent, we
should also take into account the ρ–ω mixing contribution
when we calculate the branching ratio since we are working
to the first order of isospin violation. Explicitly, for B+ →

ρ0π+, we obtain

BR(B+ → ρ0π+)

= G2
F |pρ |3

16πm2
ρ�B+

∣∣∣∣[VudV ∗
ub A

T
ρ0 − VtdV

∗
tb A

P
ρ0 ]/(ε∗ · pB)
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Fig. 2 The branching ratio for B+ → ρ0π+ in Model 2. Solid (dashed) line stands for q2/m2
b = 0.3 and maximum (maximum) CKM matrix

elements. Dot (dot-dashed) line stands for k2/m2
b = 0.5 and maximum (minimum) CKM matrix elements

+[VudV ∗
ub A

T
ω − VtdV

∗
tb A

P
ω ]/(ε∗ · pB)

× �̃ρω

(sρ − m2
ω) + imω�ω

∣∣∣∣
2

, (34)

where the tree and penguin amplitudes are

AT
ρ0 = a1X

(B+ρ0,π+) + a2X
(B+π+,ρ0),

AP
ρ0 =

(
− a4 + 3

2
a7 + 3

2
a9 + 1

2
a10

)
X (B+π+,ρ0)

+
[
a4 + a10 − 2(a6 + a8)

m2
π

(mu + md)(mb + mu)

]

× X (B+ρ0,π+),

AT
ω = a1X

(B+ω,π+) + a2X
(B+π+,ω),

AP
ω =

[
2a3 + a4 + 2a5 + 1

2
(a7 + a9 − a10)

]
X (B+π+,ω)

+
[
a4 + a10 − 2(a6 + a8)

m2
π

(mu + md)(mb + mu)

]

×X (B+ω,π+). (35)

For B0 → ρ+π−, we obtain

BR(B0 → ρ+π−) = G2
F |pρ |3

16πm2
ρ�B0

×|(VubV ∗
ud A

T
ρ+ − VtbV

∗
td A

P
ρ+)/(ε∗ · pB)|2, (36)

where

AT
ρ+ = a1X

(B0π+,ρ−),

AP
ρ+ = (a4 + a10)X

(B0ρ−,π+), (37)

where X (B0ρ+,π−) =2 fπmρ A0(m2
π )(ε∗·pB) and X (B0π−,ρ+)

= √
2 fρmρF1(m2

ρ)(ε∗ · pB).

3.2 Numerical results

The latest experimental data of branching ratios of B+ →
ρ0π+ and B0 → ρ+π− from the Particle Data Group (PDG)
are [41]

BR(B+ → ρ0π+) = (8.3 ± 1.2) × 10−6,

BR(B0 → ρ+π−) = (2.3 ± 0.23) × 10−5.

We can determine the range of Nc by comparing the theo-
retical values of the branching ratios with those of two-body
decay channels. We calculate the branching ratios with the
formula given in Eqs. (32), (34), and (36) in five models for
the weak form factors which are mentioned in the previous
subsection. In Fig. 2, we show the results for B+ → ρ0π+
in Model 1 as an example. The numerical results are sen-
sitive to uncertainties coming from the experimental data.
In addition, the branching ratio also depends on the CKM
matrix elements which are parameterized by λ, A, ρ, and η.
In the allowed ranges for the parameters ρ and η, we obtain
the range of Nc. We summarize the allowed range of Nc in
Table 2. It is found that the experimental data constrain the
value of Nc into two regions. We note that if Nc approaches
to zero, nonperturbative effects would be very large. Con-
sidering this, we drop the range Nc < 1. Therefore, Nc

could be in the range 2.07(2.09) < Nc < 4.54(4.65) for
q2/m2

b = 0.3(0.5). These values have been used in Sect. 2.
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Table 2 Summary of the ranges of Nc which are determined from the
experimental data for various models and input parameters [numbers
outside (inside) brackets are forq2/m2

b = 0.3(0.5)]. The notation (num-
ber, number) means the lower and upper limits for Nc. (−,−) means
that there is no range of Nc which is consistent with the experimental
data

B+ B0

Model 1

ρmax, ηmax (2.70, 4.09) [(2.76, 4.22)] (−,−) [(−,−)]
ρmin, ηmin (2.14, 3.05) [(2.18, 3.13)] (−,−) [(−,−)]

Model 2

ρmax, ηmax (−,−) [(−,−)] (−,−) [(−,−)]
ρmin, ηmin (−,−) [(−,−)] (−,−) [(−,−)]

Model 3

ρmax, ηmax (2.24, 3.23) [(2.28, 3.32)] (0.05, 0.07) [(0.10, 0.14)]

ρmin, ηmin (2.85, 4.40) [(2.92, 4.55)] (0.06, 0.13) [(0.12, 0.15)]

Model 4

ρmax, ηmax (−,−) [(−,−)] (−,−) [(−,−)]
ρmin, ηmin (−,−) [(−,−)] (−,−) [(−,−)]

Model 5

ρmax, ηmax (2.71, 4.54) [(2.76, 4.65)] (0.11, 0.12) [(0.11, 0.12)]
ρmin, ηmin (2.07, 3.13) [(2.09, 3.18)] (0.10, 0.11) [(0.10, 0.11)]

4 Conclusion and discussion

The first aim of the present work is to study the localized
integrated CP asymmetry for the decays B± → ρ0(ω)π± →
π+π−π± with the inclusion of ρ–ω mixing. The second aim
is to study the sign change caused by ρ–ω mixing.

In the calculation of CP violating asymmetry parameters,
we need the Wilson coefficients for the tree and penguin
operators at the scale mb. We worked with the renormal-
ization scheme independent Wilson coefficients. One of the
major uncertainties in our calculations is due to the fact that
hadronic matrix elements of both tree and penguin oper-
ators involve nonperturbative QCD effects. We worked in
the factorization approximation, with Nc being treated as
an effective parameter to include nonfactorizable contribu-
tions. We compared our theoretical results with the latest
experimental data from PDG to determine the range of Nc

as 2.07(2.09) < Nc < 4.54(4.65) for q2/m2
b = 0.3(0.5). It

has been pointed out that the factorization approach is quite
reliable in energetic weak decays [51–53].

We explicitly showed that the CP violating asymmetry
is very sensitive to Nc, the CKM matrix elements and the
form factors. There is a maximum value for the differen-
tial CP violating parameter when the low invariant mass
of the π+π− pair is near the vicinity of the ω resonance,
0.780 − 785 GeV. We determined the range of the localized
integrated CP asymmetry with and without ρ–ω mixing in
the ranges of Nc, the CKM matrix elements, and q2/m2

b.

For all the models investigated, we found that the localized
integrated CP violating asymmetry with ρ–ω mixing varies
from −0.0403(−0.0290) to −0.0752(−0.0626) correspond-
ing to q2/m2

b = 0.3(0.5) when 0.750 < m(π+π−)low <

0.800 GeV. If one adds the events in the cos θ < 0 and
cos θ > 0 experimental regions together when 0.750 <

m(π+π−)low < 0.800 GeV, the total localized integrated
CP asymmetry is −0.0294 ± 0.0285. Our results, espe-
cially the signs, agree with the experimental data when
0.750 < m(π+π−)low < 0.800 GeV. We note that the
signs are positive in this region when ρ–ω mixing is not
considered. This indicates that ρ–ω mixing is vital for A�

CP
to be negative in this region. It was shown that the maximum
localized integrated asymmetry in the range 0.750 <

√
s <

0.800 GeV can reach −0.0752. We also found that ρ–ω mix-
ing can make the localized integrated CP asymmetries move
toward the negative direction, and therefore contributes to
the sign change around the ρ0(770) peak of m(π+π−)low.
This behavior is independent of the form factor models. In
our calculations, the difference between the localized inte-
grated CP asymmetries in the regions 0.470 <

√
s < 0.770

and 0.770 <
√
s < 0.920 GeV varies from 0.0076 to 0.0387.

Our results by including the ρ–ω mixing mechanism in these
two regions and the whole region around the ρ0(770) peak
are consistent with the experimental results for some models
of the form factors.

At this stage, we cannot explain the LHCb experimental
data in the regions of positive and negative cos θ individ-
ually. This is because three-body decays of heavy mesons
are more complicated than two-body decays as they receive
more contributions from different mechanisms, for exam-
ple, nonresonants [54], the interference between intermedi-
ate resonances and final-state KK ←→ ππ rescattering.
We will investigate the angle distribution of A�

CP when con-
sidering both the ρ–ω mixing mechanism and the interfer-
ence between different spin intermediate resonances [8]. We
will also apply more accurate data in the future to further
decrease the uncertainties in the calculations. With parame-
ters with smaller uncertainties, we expect to be able to obtain
the effects of ρ–ω mixing more precisely. This is important
to interpret the angle distribution and the sign change of the
CP asymmetry around the ρ0(770) peak of m2(π+π−)low

more accurately.
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