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Abstract We investigate dijet production from proton-
nucleus collisions at the Large Hadron Collider (LHC) as a
means for observing superfast quarks in nuclei with Bjorken
x > 1. Kinematically, superfast quarks can be identified
through directly measurable jet kinematics. Dynamically,
their description requires understanding several elusive prop-
erties of nuclear QCD, such as nuclear forces at very short
distances, as well as medium modification of parton distribu-
tions in nuclei. In the present work, we develop a model for
nuclear parton distributions at large x in which the nuclear
dynamics at short distance scales are described by two- and
three-nucleon short range correlations (SRCs). Nuclear mod-
ifications are accounted for using the color screening model,
and an improved description of the EMC effect is reached
by using a structure function parametrization that includes
higher-twist contributions. We apply QCD evolution at the
leading order to obtain nuclear parton distributions in the
kinematic regime of the LHC, and based on the obtained dis-
tributions calculate the cross section for dijet production. We
find that the rates of the dijet production in pA collisions
at kinematics accessible by ATLAS and CMS are sufficient
not only to observe superfast quarks but also to get informa-
tion about the practically unexplored three-nucleon SRCs in
nuclei. Additionally, the LHC can extend our knowledge of
the EMC effect to large Q2 where higher-twist effects are
negligible.

1 Introduction

The dynamics of quantum chromodynamics (QCD) in the
nuclear medium is one of the most interesting areas of modern
nuclear physics. Many aspects of it are currently being inves-
tigated, including the formation of collective quark-gluon
states such as quark-gluon plasma, the shadowing of the small
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x parton densities in nuclei, the hadronization of quarks and
gluons within the nucleus, and the medium modification of
partonic distribution functions in nuclei.

Another interesting aspect of nuclear QCD is the possibil-
ity for quarks to carry a light cone momentum fraction higher
than that of a free nucleon at rest. Deep inelastic scattering
(DIS) from such a parton will correspond to Bjorken x > 1
(where x is normalized to run from 0 to the nuclear mass
number A), and we will hereafter refer to quarks with such
a light cone momentum fraction as superfast quarks.

Due to the short-range nature of strong interactions,
detecting a superfast quark in a nucleus requires probing the
nucleus at extremely short distance scales. The character-
istic space-time distances in nuclei become shorter with an
increase in Q2 for fixed x owing to a property of QCD evolu-
tion, namely that a probed parton at high Q2 will have come
from a parent quark with a higher light cone momentum
fraction. Thus, the theoretical expectation is that superfast
quarks at large Q2 will allow one to probe unprecedented
small space-time distances in nuclei, on the order of 1/xmN

[1,2].
Our current understanding of the dynamics of nuclei at

short distances is extremely limited. Due to the short range
nature of the strong interaction, one expects that they will be
dominated by multi-nucleon short range correlations (SRCs)
[3], which may include non-nucleonic degrees of freedom
(such as �� and NN∗ components), followed by the transi-
tion from baryonic to quark-gluon degrees of freedom.

There has been considerable progress recently made in
studies of two-nucleon SRCs in inclusive and semi-inclusive
nuclear processes, which have been dominated by quasi-
elastic (QE) scattering of a high-energy probe (either an
electron or a proton) off of a nucleon in the SRC [4–16].
These studies unambiguously established the existence of
two-nucleon SRCs and measured the probability of a nucleon
existing in one for the given nuclei. Due to the quasi-elastic
nature of the scattering processes, however, it is much more
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difficult to reach kinematics dominated by three-nucleon
SRCs [7]. Moreover, probing the transition to quark and
gluon degrees of freedom has so far remained elusive.

The possibility of probing superfast quarks in hard nuclear
processes provides a new venue in studies of SRCs. From the
theoretical point of view, as was mentioned above, the QCD
evolution of quark distributions gives an additional handle
on the ability to probe exceedingly small space-time dis-
tances through an increase in Q2 (at the scale of Ioffe time
1/mN xB). From the experimental point of view, deep inelas-
tic processes do not restrict the phase space of the final states
(as is the case for quasielastic processes), and hence one can
use closure to express the cross section through the parton
distribution functions of the nucleus. Measurement of nuclear
parton distributions at x ≥ 1 allows one to explore different
aspects of nuclear short-range phenomena.

One of the conventional methods for probing superfast
quarks in nuclei is deep inelastic scattering (DIS) from nuclei
at Bjorken x > 1. A number of attempts have been made
over the years. The attempts to measure quarks at x � 1
were undertaken at CERN using a muon beam [17] and at
FNAL using a neutrino beam [18], with mutually contradic-
tory results. Measurements using electron beams were taken
for x ∼ 1 at SLAC [19] with Q2 ≤ 10 GeV2 and at Jefferson
Lab for x > 1 and Q2 = 7 GeV2 [20]. However, this x range
gets a significant contribution from higher-twist quasieleas-
tic scattering up to fairly large Q2 (∼15 GeV2). For example,
the nucleus/deuteron cross section ratio is reduced for x = 1
and Q2 = 10 GeV2 by a factor of 2–2.5 due to QE contribu-
tions [4]. The only way to avoid this is to probe larger values
of Q2 ≥ 30 GeV2, for which the quasieleastic contribution
will be a small correction [2]. Such experiments are currently
included in the physics program for the 12 GeV upgrade of
Jefferson Lab [21], and the first experimental data will be
available within the next few years [22].

In this work, we propose a new approach for probing
superfast quarks by considering dijet production in proton-
nucleus collisions at LHC kinematics. This approach is
based on the possibility of relating the light cone momen-
tum fractions of the initial partons to the measured kine-
matics of dijets; by selecting transverse jet momenta and
pseudo-rapidities, one can isolate scattering off the superfast
quarks within the nucleus. We develop a theoretical frame-
work for calculating this reaction, which requires addressing
several issues, such as modeling the high-momentum (short
range) properties of the nuclear wave function, and calculat-
ing the medium modification of parton distributions within
the nucleus and evolving this modification to the large Q2 val-
ues relevant to the LHC. Within the framework we develop,
we calculate the absolute cross section for the reaction and
study its sensitivity to two- and three-nucleon SRCs in nuclei.

The article is organized as follows: In Sect. 2 we review the
formalism of the dijet production reaction, including its kine-

matics and the cross section formula. The cross section for
dijet production depends on the nuclear parton distribution
functions (PDFs), which are discussed in Sect. 3. Section 3
also discusses short range correlations and medium mod-
ifications, and how they factor into and affect the nuclear
PDFs. This section contains a description of the structure of
the elusive three-nucleon SRCs, and provides a good fit of
EMC effect data using the color screening model of medium
modifications. Section 4 discusses the hard subprocesses that
contribute to dijet production and justifies the use of the lead-
ing order of QCD in calculating them. In Sect. 5, we present
numerical estimates for the cross section, and find that at a
characteristic pA luminosity reached at the LHC, rates are
high enough to measure x ≥ 1. Additionally, we find high
rates for kinematics corresponding to the EMC effect, which
at LHC energies allows the EMC effect to be studied with
negligible higher-twist contributions. In this section we also
discuss potential issues related to the accuracy of jet recon-
struction. Conclusions and outlook are given in Sect. 6. The
Appendix gives detailed derivations of the factorization for-
mula and the SRC parts of the nuclear light cone fraction
distributions.

2 Basic formalism

The reaction we consider is the production of a dijet from a
proton-nucleus collision,

p + A → dijet + X, (1)

where the kinematics of the two outgoing jets are fully deter-
mined. The reaction is treated at the leading order (LO) in
perturbative QCD (pQCD), meaning that the jets are pro-
duced by a two-body parton-parton scattering process, in
which one parton originates in the proton and the other in
the nucleus. In our derivation, we consider the nuclear par-
ton to have originated within a bound nucleon. This scenario
is presented in Fig. 1, where we also define the kinematic
variables of the reaction (1).

2.1 Jet kinematics

We consider a reference frame where the incoming proton
moves in the +z direction and the heavy nucleus, with charge
number Z and mass number A, moves in the −z direction.
The four-momenta are described using light cone coordi-
nates, namely

pμ ≡ (p+, p−,pT ), (2)

where p± = E± pz and pT is the two-component transverse
momentum. Using the on-mass shell condition and the fact
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Fig. 1 Diagram of reaction

that the energies of the proton and nucleus greatly exceed
their masses, in the collider reference frame one has
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where E0 is the beam energy per proton in the same refer-
ence frame, and savg.

NN = 4 Z
A E

2
0 is the square of the average

center-of-mass energy per nucleon. As an example, a lead-
proton collision with a beam energy of 4 TeV per proton
would have an average center-of-mass energy per nucleon

of
√
savg.

NN ≈ 5.02 TeV. However, since the motion of the
bound nucleon inside the nucleus will in general be variable,
the actual center-of-mass energy per nucleon

√
sNN is not a

fixed parameter, though it will be equal to
√
savg.

NN in the limit
where the nucleons do not interact and all move forward with
equal momenta.

At leading order, the collision results in an interaction
between two partons, one each from the proton and the
nucleus. Their respective four-momenta are labeled p1 and
p2. We use a collinear approximation, in which the initial par-
tons are treated as having zero transverse momentum. More-
over, they are treated as massless and on-shell, so

p1 = (
p+

1 , 0; 0)
p2 = (

0, p−
2 ; 0) .

The light cone momentum fractions are defined for each par-
ton as

xp = p+
1

p+
p

=
√

Z

A

p+
1√
savg.

NN

(5)

xA = A
p−

2

p−
A

=
√

A

Z

p−
2√
savg.

NN

. (6)

Note that xA is scaled by a factor of A. The rationale behind
this is that the parton from the nucleus is found within one
of its nucleons, and in a limiting case where the nucleons are
all non-interacting and carry equal momenta, their light cone

momentum is equal to p−
N ,avg = p−

A
A , meaning xA ≤ 1 in this

case.
In reality, however, the bound nucleons do interact and it is

possible that p−
2 > p−

N ,avg. In this situation, the nuclear par-
ton originates from a nucleon which has a larger-than-average
momentum (p−

N > p−
N ,avg). This indicates that finding an

exceedingly large xA > 1 will identify a bound nucleon with
momentum significantly larger than average.

The parton momentum fractions cannot be directly mea-
sured. However, they can be related to the kinematic param-
eters of the jets. The jets from the proton and the nucleus
are respectively ascribed four-momenta p3 and p4. At lead-
ing order, they come from the fragmentation of two partons
(with the same momenta), which are treated as massless and
on-shell. From energy-momentum conservation, it follows
that

p1 + p2 = p3 + p4, (7)

and due to the assumed collinear approximation, p3T =
−p4T ≡ pT . Using this relation, and neglecting the masses
of the produced jets, we obtain:

p+
3 p−

3 = p+
4 p−

4 = p2
T . (8)

To proceed, we define the rapidity η as

η = 1

2
log

(
p+

p−

)
, (9)

and use this, with the massless limit (in which p+ p− = p2
T )

to obtain

p± = pT e
±η. (10)

Applied to the jets of reaction (1), this results in p±
3 =

pT e±η3 and p±
4 = pT e±η4 . Using these relations, and

energy momentum conservation, viz. Eq. (7), the light cone
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Fig. 2 Dependence of xA on rapidity η4 of parton from nucleus, for

several transverse jet momenta. η3 = 0 and
√
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NN = 5.02 TeV in this
plot

momenta of the initial partons can be expressed through jet
kinematics in the following form:

p+
1 = p+

3 + p+
4 = pT

(
eη3 + eη4

)
p−

2 = p−
3 + p−

4 = pT
(
e−η3 + e−η4

)
.

These relations can be used to express the momentum frac-
tions xp and xA in terms of jet observables, namely1

xp =
√

Z

A

pT√
savg.

NN

(
eη3 + eη4

)
(11)

xA =
√

A

Z

pT√
savg.

NN

(
e−η3 + e−η4

)
. (12)

The main question that concerns us is whether partons
with xA > 1 can be seen in proton-nucleus collisions at the
LHC. Equation (12) suggests that we should look for three
conditions: large pT , small (or somewhat negative) η3, and
small (or highly negative) η4. Negative η3 will require that
the parton originating from the proton reverse its direction
before fragmenting into a jet, which is highly unlikely owing
to the large momentum transfer necessary to effect this. Thus,
for a given pT , the most plausible scenario is to keep η3 small
(∼ 0), and to look for jets with high rapidity in the nucleus
beam direction. Such a situation is presented in Fig. 2, where
the dependence of xA on η4 is given at η3 = 0 for different
values of pT . More practically, as will be discussed in Sect. 5,

1 Note that for the forward kinematics we are interested in, the mea-
surement of the emission angle and energy of the forward jet already
provides accurate determination of x for large-x partons. See the dis-
cussion in Sect. 5.4.

one can integrate over an η3 range centered around η3 = 0
in order to increase the cross section.

In addition to the momentum fractions, we introduce
a characteristic “hardness” scale Q2, defined through the
invariant momentum transfer:

Q2 ≡ −t = −(p1 − p3)
2 = 2(p1 · p3) = p+

1 p−
3

= p2
T

(
1 + e−y3+y4

) ≈ p2
T .

This scale is used as both a renormalization and factorization
scale.

2.2 Dijet cross section

The factorization formula for the hadronic cross section can
be presented in terms of the partonic cross section as follows:

σpA=
∑
i j

∫ 1

0
dxp

∫ A

0
dxA fi/p(xp, Q

2) f j/A(xA, Q2)σhard,

(13)

where fi/p(xp, Q2) and f j/A(xA, Q2) are parton distribution
functions (PDFs) for the proton and nucleus, respectively.
This is similar in form to the standard factorization formula
for pp collisions [23,24], and in fact reduces to it in the free
nucleon limit.

Since, at leading order, the momenta of the outgoing par-
tons coincide with the jet momenta, we can integrate out
the transverse momentum of one of the jets and express
differentials through the rapidities of the outgoing jets. For
this purpose, we present the differential form of Eq. (13)
as

dσpA =
∑
i jkl

fi/p(xp, Q
2) f j/A(xA, Q2)

1

4(p1 · p2)

×
∣∣Mi j→kl

∣∣2
1+δkl

(2π)42δ(1)(p+
1 − p+

3 − p+
4 )

× δ(1)(p−
2 − p−

3 − p−
4 )δ(2)(p3T + p4T )

× d3p3

2E3(2π)3

d3p4

2E4(2π)3 dxpdxA, (14)

where we have expressed four-momentum conservation
through the light cone momenta. Here, the indices i , j , k,
and l indicate parton types, and Mi j→kl is the invariant
Feynman amplitude for the hard partonic scattering pro-
cess.

Using the definitions of the light cone momenta fractions
in Eqs. (5, 6), we can express the delta functions for p±
conservation as:
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2δ(1)(p+
1 − p+

3 − p+
4 )δ(1)(p−

2 − p−
3 − p−

4 ) = 2A

p+
p p

−
A

× δ(1)

(
xp − p+

3 + p+
4

p+
p

)
δ(1)

(
xA − A

p−
3 + p−

4

p−
A

)
.

(15)

Inserting this relation into Eq. (14), one can integrate outp4T ,
xp and xA, resulting in

dσpA =
∑
i jkl

A

16π

1
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p p

−
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1
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T .

The pz elements can be rewritten as rapidities, since dη =
dpz
E . In addition, as 2(p1 · p2) = xpxA

A p+
p p

−
A , we have

dσpA =
∑
i jkl

1

16π

(
A

p+
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A

)2
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T .

Since the square of the average center-of-mass energy per
nucleon is

savg.

NN = p+
p p

−
A

A
, (16)

the differential cross section can be written in the standard
form:

d3σ

dη3dη4dp2
T

=
∑
i jkl

1

16π(savg.

NN )2

fi/p(xp, Q2)

xp

f j/A(xA, Q2)

xA

×
∣∣Mi j→kl

∣∣2
1 + δkl

. (17)

3 Nuclear PDFs

The main theoretical issue to be worked out is the nuclear
PDFs f j/A(xA, Q2). Currently, there is a lack of strong
experimental constraints on nuclear PDFs. Phenomenologi-
cal parametrizations exist for several nuclei, and are based on
experimental measurements of the nuclear structure function
F (A)

2 (x, Q2) in deep inelastic scattering (DIS) experiments
in a restricted range of x and Q2. (cf. e.g. Refs. [25–30].)
Most treatments of the nuclear PDF parametrize the ratio
between the nucleus and the nucleon, which only makes sense
for treating xA up to 1. Reference [26] instead relates the
nuclear and nucleonic PDFs though a Mellin convolution,

and parametrizes the function that is convoluted with the
nucleonic PDF. This approach has the possibility of account-
ing for xA > 1, but owing to a lack of experimental constraint,
Ref. [26] did not treat this region.

In order to describe xA > 1 in the absence of robust empir-
ical parametrizations of the nuclear PDFs, we must account
for them in terms of the nucleonic PDF theoretically. To this
end, we must look at the theoretical relationship between the
nuclear and nucleonic parton distributions.

Treating the nucleus strictly as a collection of unmodi-
fied nucleons with a light cone distribution normalized by
the baryon sum rule leads to a contradiction with experimen-
tal data—in particular for the ratio of nuclear and deuteron
DIS cross sections. (See Sect. 3.2 for details.) However, the
introduction of a priori unknown bound nucleon PDFs f (b)

j/N
allows for the nuclear PDF to be expressed as a convolu-
tion between these PDFs and the nuclear light cone fraction
distribution [1,31,32]. In the Bjorken limit, where the pho-
ton virtuality Q2 and energy q0 both go to infinity at a fixed

xA = AQ2

2MAq0
, the convolution formula takes the following

form:

fi/A(xA, Q2) =
∑
N

∫ A

x

dα

α

∫
d2pT fN/A(α,pT )

× f (b)
i/N

( xA
α

, α,pT , Q2
)

, (18)

which can be derived as an impulse approximation (see
Appendix A for details). Here, fN/A(α,pT ) is the light
cone fraction distribution of a nucleon N in the nucleus A,
described in Sect. 3.1; α is a scaled light cone momentum
fraction given in Eq. (20) of the same section, and pT is the
transverse momentum of the nucleon. The (b) in the super-
script of f (b)

i/N

( xA
α

, α,pT , Q2
)

signifies that this is an bound
nucleonic PDF, which differs from the free nucleon PDF
owing to modifications from the nuclear medium. In partic-
ular, it is a function of α and pT in addition to xN = xA

α
and

the factorization scale Q2 because of medium modifications.
Equation (18) indicates that to construct nuclear PDFs,

one needs to address two theoretical issues: the nuclear light
cone fraction distribution fN/A(α,pT ), and possible medium
modification effects on the bound nucleon PDFs.

3.1 Light cone distribution and SRCs

We formally define the light cone fraction distribution in
terms of the nuclear wave function as:

fN/A(α,pT )=
∫ A∏

j=1

dα jd2p j,T

α j
ψ† (α1,pT 1, . . . , αA,pT A)

× ψ (α1,pT 1, . . . , αA,pT A)
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× δ(1)

(
A −

A∑
i=1

αi

)
δ(2)

(
A∑

i=1

piT

)

×
{

A∑
i=1

δ(1)(α − αi )δ
(2)(pT − piT )

}
(19)

where the (scaled) light cone momentum fraction α given by

α = A
p+
N

p+
A

, (20)

and pT is the transverse momentum of the nucleon. The light
cone fraction distribution is normalized to obey two sum
rules, namely, the baryon number and momentum sum rules:

∫ A

0
dα

∫
d2pT fN/A(α,pT ) = 1 (21)

∫ A

0
dα

∫
d2pTα fN/A(α,pT ) = 1. (22)

The light cone distribution thus defined can be related to the
nuclear light cone density matrix ρN/A(α,pT ) (cf. e.g. [1,3,
33]) in the following way:

fN/A(α,pT ) = 1

α
ρN/A(α,pT ). (23)

We employ the light cone fraction distribution fN/A(α,pT ),
however, because it represents a direct analogy to PDFs,
although for the distribution of nucleons in nuclei rather than
of partons in hadrons.

For our calculations, we expand the light cone fraction
distribution as a sum of contributions from the nuclear mean
field and multi-nucleon short range correlations (SRCs). The
decomposition takes the form:

fN/A(α,pT ) = f (MF)
N/A (α,pT ) +

A∑
j=2

f ( j)
N/A(α,pT ), (24)

where f (MF)
N/A (α,pT ) is the mean field part, and f ( j)

N/A(α,pT )

is the distribution of j-nucleon SRCs.

3.1.1 Mean field distribution

The mean field part of the light cone fraction distribution
describes how the nucleons in the nucleus would be dis-
tributed if they were only acted upon the mean field generated
by the (A − 1) other nucleons. The mean field distribution
can be related to the wave function of the nucleus, which
is calculated in the non-relativistic limit since the relevant
momenta are smaller than the typical Fermi momentum of
heavy nuclei. The simplest mean field model considers the

heavy nucleus as a degenerate Fermi gas, and the typical
Fermi momentum is around 250 MeV/c [34]. More sophis-
ticated momentum distributions (calculated based on, for
example, Hartree-Fock approximations) still fall off sharply
above the Fermi momentum, so the leading order relativis-
tic corrections are at most on the order of the mean field
momentum distribution strength above kF , which <1 % in
magnitude.

The mean field distribution is related to the non-relativistic
momentum-space wave function using the sum rules of
Eqs. (21, 22). If short range correlations are neglected, the
mean field distribution obeys Eqs. (21, 22) by itself. The
momentum-space wave function 


(N )
MF (p) (which carries an

index of (N ) for isospin since the wave function will in gen-
eral be different for protons and neutrons) is likewise nor-
malized to unity, so we equate

∣∣∣
(N )
MF (p)

∣∣∣2 d3p = f (MF)
N/A (α,pT )dαd2pT .

In the non-relativistic limit, we can write, in the nuclear center
of mass frame,

α = A
E + pz
mA

≈ A
mN + pz

mA

pz ≈ mA

A
α − mN

dpz ≈ mA

A
dα.

Consequently, we can identify

f (MF)
N/A (α,pT ) = mA

A

∣∣∣
(N )
MF (p)

∣∣∣2 . (25)

One modification must be made when accounting for
SRCs. It is not the mean field part of the light cone dis-
tribution, but the light cone distribution taken as a whole
that is normalized to satisfy the sum rules of Eqs. (21, 22).
Therefore, f (MF)

N/A (α,pT ) must be scaled down by a factor of

a(N )
1 (A), which is defined as

a(N )
1 (A) = 1 −

A∑
j=2

∫
dαd2pT f ( j)

N/A(α,pT ), (26)

i.e. it subtracts off the probability that the nucleon is in a
short range correlation. For instance, if a nucleon is in a short
range correlation 25 % of the time, then a(N )

1 (A) will be 0.75.

In general, however, a(N )
1 will be different for protons and

neutrons.
For numerical estimates, we will use the momentum dis-

tributions calculated in Ref. [35] for the mean field.
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3.1.2 Two-nucleon correlations

Around 25 % of the time, a nucleon in a heavy nucleus is
in a two-nucleon short range correlation [4]. A short range
correlation occurs when two nucleons are separated by a dis-
tance on the order of 1 fm and consequently have a relative
momentum larger than kF . The analysis of recent experi-
ments indicates [12] that in the momentum range from kF to
∼ 650 MeV/c, the nucleus is well-described by two-nucleon
SRCs. Due to the short distance between the nucleons, the
dynamics of the nucleons are primarily influenced by their
mutual interaction rather than by the mean field. The most
immediate consequences of two-nucleon SRCs are a large tail
in the momentum distribution above the Fermi momentum,
and large excitation energies of the residual system produced
by the removal of the fast nucleons, which are not reproduced
by mean field models [14].

Within the last decade, there has been considerable
experimental and theoretical effort put into studying two-
nucleon SRCs and their properties. There are a fair number
of triple-coincidence experiments demonstrating their exis-
tence [10,11,16] and demonstrating that two-nucleon SRCs
primarily form between a proton and a neutron [9–11]. The
fact that most two-nucleon SRCs are predominantly pn pairs
has an important implication for momentum distributions
(and thus for the 2N light cone fraction distribution): for
neutron rich nuclei, a given proton is more likely to be in a
short range correlation than a given neutron [36–39]. This
means that f (2)

p/A(α,pT ) > f (2)
n/A(α,pT ), and consequently

(for the sum rules Eqs. (21, 22) to be satisfied), a(p)
1 < a(n)

1 .
Another important aspect of two-nucleon SRCs is the uni-

versal high-momentum tail that they introduce to the momen-
tum distribution of nuclei [1,37,40,41]. Most significantly,
because of the dominance of spin-one, isosinglet SRCs, the
high-momentum tail behaves to a good approximation like
a scaled version of the high-momentum tail in the deuteron
momentum distribution.

Based on the arguments discussed above, a model of
the two-nucleon SRC contribution to the nuclear light cone
fraction distribution should incorporate two main proper-
ties: first, the universality of the form of the high momen-
tum tail and its proportionality to the deuteron momen-
tum distribution, and second, different high-momentum shar-
ing between protons and neutrons in asymmetric nuclei. To
account for universality, we use the light cone approximation
of Refs. [1,3,33], which uses the requirement of rotational
invariance to relate the light cone deuteron wave function to
the non-relativistic wave function by using the internal pn
light cone momentum

k =
√
m2(α − 1)2 + p2

T

α(2 − α)
, (27)

which is obtained by the definitions kT = pT and

α = 1 + kz√
m2 + k2

, (28)

and which also uses high momentum scaling to relate
fN/d(α,pT ) to f (2)

N/A(α,pT ). To account for isopsin-singlet
dominance, we use the model of Ref. [38,42], in which the
high-momentum part of the nuclear momentum distribution
is inversely proportional to the relative fraction of protons or
neutrons. The model additionally includes a scaling factor
a2(A), which is extracted from SRC studies in inclusive eA
processes [4,7,8].

Accounting for these two effects leads to the two-nucleon
SRC light cone fraction distribution:

f (2)
N/A(α,pT ) = a2(A)

2χN

|ψd(k)|2
α(2 − α)

�(k − kF ), (29)

where the extra factor of α(2 −α) is from the phase space of
the struck and spectator nucleons. The details of the deriva-
tion of Eq. (29) can be found in Appendix B1. Here, ψd(k)
is the relativistic, light-cone deuteron wave function, related
to the non-relativistic wave function by

|ψd(k)|2 =
√
m2 + k2 |ψN R(k)|2 , (30)

and χN is the relative abundance of nucleons of type N in
the nucleus, i.e. χp = Z

A and χn = A−Z
A . The factor of χN

is present in Eq. (29) results in the equality

∑
p

f (2)
p/A(α,pT ) =

∑
n

f (2)
n/A(α,pT ).

This relation is confirmed by quantum Monte-Carlo calcula-
tions for light nuclei up to A = 12, and for medium to heavy
nuclei it was confirmed using a correlated basis calculation
of the nuclear momentum distributions in a non-relativistic
approach [43]. Such a relation is also in agreement with the
recent analysis of momentum sharing in heavy nuclei [39].

In the present model we neglect by center of mass motion
of the SRC.2 As a result, the two-nucleon SRC contribution to
the nuclear light cone distribution sets in as soon as k > kF ,
which is signified by the step function �(k−kF ) in Eq. (29).

The remaining factor in Eq. (29), a2(A), is a scaling
factor that describes how large the high-momentum tail
of the nucleus is relative to the high-momentum tail of
the deuteron. It is determined experimentally by examining

2 Inclusion of the center-of-mass motion leads to practically the same
light cone fraction distribution, but with a somewhat smaller a2. Since
we are interested in quantities sensitive to the light cone fraction distri-
bution, the difference in the recoil between two models due to center of
mass motion has no impact on our analysis.
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ratios of quasielasitc inclusive cross sections of A(e, e′X)

and 2H(e, e′X) reactions:

a2(A) = 2σeA(x, Q2)

Aσed(x, Q2)
at x�1.4 and Q2 �1.5 GeV2,

where a roughly flat plateau in the ratio of the quasi-elastic
cross sections is observed [4,7,8,13,15]. The values of a2(A)

for various nuclei are well-constrained by experiment [4,8,
13] and it is equal to roughly 5.6 for medium nuclei such as
iron-56. In this work, we will also use a2(

208Pb) = 5.6, as
no experimental data for this quantity exist for lead.

For numerical estimates, we use the Paris potential for
parameterizing the non-relativistic deuteron wave function
[44] in Eq. (30).

3.1.3 Three-nucleon correlations

When the light cone momentum fraction α > 2 (and prob-
ably already for α ∼ 1.6 or 1.7), one expects the nuclear
light cone distribution to be dominated by three-nucleon short
range correlations. We consider a three-nucleon SRC to occur
when the center of mass momentum of the 3N system is small,
and when the struck nucleon, as well as the other nucleons
in the SRC, have large (> kF ) internal momentum. Such a
configuration can naturally generate a light cone momentum
fraction exceeding 2.

There are two distinct mechanisms that could generate
three-nucleon correlations. The first is a sequence of short-
range two-nucleon interactions, and the second an irreducible
three-nucleon interaction. The second contributes a much
larger removal energy part to the nuclear spectral function
than the first mechanism [45]. Since the light cone momen-
tum distribution is an integral over removal energies, one
expects it to be dominated by the first mechanism, which
occurs at lower values of removal energies than the irre-
ducible 3N interaction. Therefore, neglecting the irreducible
3N interactions, we develop a model of three-nucleon SRCs
where the struck nucleon obtains its momentum from a
sequence of two-nucleon short range interactions. This model
is based on the collinear approximation of Ref. [3], where the
three nucleons in the SRC are moving collinearly prior to the
interactions that generate the SRC.

In the present work, we develop the model further using
the recently observed dominance of pn SRCs. This allows
us to express the three-nucleon SRC as occurring through a
sequence of pn interactions, and thus the expressing 3N SRC
part of the nuclear light cone fraction distribution as a convo-
lution of two 2N SRC light cone momentum distributions. A
full derivation of the three-nucleon SRC distribution is given

in Appendix B2, with the final result3:

f (3)
N/A(α,pT )={a2(A)}2 1

α

∫
dα3d2p3T

α3(3−α−α3)

{
3 − α3

2(2−α3)

}2

× |ψd(k12)|2 �(k12−kF )|ψd(k23)|2 �(k23−kF ). (31)

Here, k12 and k13 are relative light cone momenta between
pairs of nucleons in the three-nucleon SRC. Their functional
forms are given by Eqs. (B34, B26). α3 and p3T are, respec-
tively, the light cone momentum fraction and the transverse
momentum of one of the spectator nucleons in the three-
nucleon SRC. Since the three-nucleon SRC is generated
through a sequence of two short-range pn interactions, it
can only occur if the conditions under which the individual
pn interactions would occur are satisfied. For this reason, the
threshold for three-nucleon SRCs to appear is that the rela-
tive light cone momenta of the pairs should each satisfy the
threshold condition for which short range two-nucleon inter-
actions occur, namely they should both be above the Fermi
momentum kF . It is worth noting that k12 and k23 are both
functions of the light cone momentum fraction α3 of a spec-
tator nucleon, which is integrated over. (cf. Appendix B2
for details.) Because of this, the discontinuity of the �( )

function is smeared out and f (3)
N/A(α,pT ) is itself a smooth

function.
The factor {a2(A)}2 appearing in Eq. (31) is a consequence

of the fact that three-nucleon SRCs arise from a sequence of
short-range pn interactions. In such a scenario, for heavy
nuclei, the probability of having a three-nucleon correlation
should be proportional to the square of the probability of
having a two-nucleon correlation.

Equation (31) may also be written in terms of a scaling
factor a3(A), similar to a2(A) the scaling factor for two-
nucleon SRCs. If it is assumed that three-nucleon SRCs are
universal in their behavior, the parameter a3(A) would be
possible to extract in a similar way to a2(A) in the case of
2N SRCs. In particular, as is the case for a2(A), it should
be possible to extract a3(A) through the ratio of quasielastic
cross sections for eA and e3He processes at high x > 2 and
Q2, viz.

a3(A) = 3σeA(x, Q2)

Aσe3He(x, Q2)
: x � 2.4, (32)

provided that a 3N SRC plateau is actually observed in this
ratio. In principle, the observation of a3(A) may provide an
experimental test of the three-nucleon SRC model presented
in this work. By definition, a3(

3He) = 1, and for Eq. (31)

3 This is a large-A approximation, which is expected to have 1
A correc-

tions owing to surface effects, isospin asymmetry, and combinatorics
of selecting pn pairs.
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Fig. 3 The α dependence of the nuclear light cone distribution for 208Pb. a Compares the mean field by itself to the light cone distribution with
2N and 3N SRCs. b Compares our model to the model in Chapter 5 of Ref. [3]

and Eq. (32) to be consistent would require that a3(A) ∝(
a2(A)

a2(3He)

)2
. Consequently, we have

f (3)
N/A(α,pT ) =

{
a2(

3He)
}2 a3(A)

α

∫
dα3d2p3T

α3(3 − α − α3)

×
{

3 − α3

2(2 − α3)

}2

|ψd(k12)|2

× �(k12 − kF )|ψd(k23)|2 �(k23 − kF ). (33)

The experimental status of a three-nucleon scaling plateau
is, however, ambiguous. While observation of an x > 2
plateau was reported in Ref. [8] and in the analysis of SLAC
data [1], a later experiment at similar kinematics and better
resolution did not observe the plateau [13]. The discrepancy
may be due to a resolution issue, as argued in Ref. [46]. On
the theoretical side, one still needs to investigate whether
the kinematics covered by these experiments correspond to
high enough nucleon momentum that universality should be
expected to set in.

In lieu of experimental data for a3(A), we calculate
f (3)
N/A(α,pT ) in this work using Eq. (31), which requires

knowing only the experimentally known quantity a2(A). In
Fig. 3, we present a calculation of the nuclear light cone dis-
tribution for 208Pb. In Fig. 3a, we compare the light cone
distribution using Eq. (24), considering only the mean field,
and two-nucleon and three-nucleon correlations in addition.
As our calculations show, 3N SRCs dominate starting only
at α � 1.7.

In Fig. 3b, we have compared our model for the nuclear
light cone density to a model in Ref. [3]—in particular, in its
Eq. (5.11)—which we call the FS81 model. In this model,
the relative weight of j ≥ 3 SRCs was fixed based on a fit

of p + A → p + X data with 400 GeV protons [47]. Since
this model contains j ≥ 4-nucleon SRCs, it is expected to
exceed our model, as can be seen in Fig. 3b.

3.2 Medium modifications

Our next goal is to calculate PDFs for a bound nucleon,
f (b)
i/N

( x
α
, α,pT , Q2

)
, which enter into Eq. (18). In doing

so we should take into account that the nuclear medium is
strongly interacting, and each nucleon has a high probabil-
ity (20–30 %) of being in a short-range correlation where
the nucleons themselves overlap. As a result, it should be
expected that the parton distributions for nucleons immersed
in the nuclear medium should be modified in some way.

Deviations of the nuclear PDFs from expectations based
on describing the nucleus as a system of unmodified nucleons
was first observed by the European Muon Collaboration [48]
in measurements of the ratio of cross sections for deeply
inelastic muon scattering for nuclear and deuteron targets,
i.e. in

REMC(x, Q2) = 2

A

σeA

σed
≈ 2

A

F (A)
2 (x, Q2)

F (d)
2 (x, Q2)

. (34)

The ratio was measured in DIS kinematics which allowed
the cross sections to be related to the structure function
F2(x, Q2). It was originally expected that, except for smear-
ing from Fermi motion at high x , the structure functions
should just be the structure functions for free nucleons, and
thus the ratio should be 1. However, there is a dip below 1 in
the range 0.3 < x < 0.7 that cannot be reproduced by nucle-
onic motion alone [49,50]. This phenomenon is commonly
referred to as the EMC effect.
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Fig. 4 EMC ratios at Q2 = 10 GeV2, without medium modifications.
Data are from SLAC experiments: Stars (blue) are from [58]; circles
(red) are from [59]. The nucleon structure functions are computed with

the Bodek-Ritchie parametrization [60–62]. a EMC ratio for 56Fe. b
EMC ratio for 208Pb

This dip in the ratioREMC is ubiquitous throughout nuclei,
and roughly saturates for large A. Additionally, it is propor-
tional to the local density of the nucleus considered [51],
suggesting that it is an effect of the nuclear medium. Since
the structure function F2(x, Q2) is directly related to the par-
ton distribution functions, through

F2(x, Q
2) =

∑
i

e2
i x fi (x, Q

2), (35)

the EMC effect is commonly interpreted to be due to a modifi-
cation of the PDF of a bound nucleon in the nuclear medium.
Even though there is a consensus about this, the existing the-
oretical models based on modification of the bound nucleon
PDFs differ due to different assumptions made about the
nature of nuclear medium effects (for reviews of the EMC
effect see [52,53]). It was argued in Refs. [54–56] that the
EMC effect for the bound nucleon should be proportional to
the first approximation of its kinetic energy, or more precisely
to the off-shellness of the bound nucleon. This indicates that
more modification should occur in the high momentum part
of the nuclear wave function.

Since our goal is to study the effects of SRCs on the reac-
tion (1), and since SRCs dominate the high momentum part
of the nuclear wave function, it will be necessary to account
for the medium modifications that produce the EMC effect
when studying this reaction. In particular, the medium modi-
fication effects will be prominent in the nuclear parton distri-
bution fi/A(x, Q2) present in Eq. (17). Numerical estimates
of the EMC effect will be based on the color screening model
[1,54], which satisfactorily describes the phenomenology of
the EMC effect observed in inclusive DIS reactions. (See also
Ref. [57].)

Before proceeding with a specific medium modifica-
tion model, we present estimates of the ratio given in
Eq. (34) in the absence of medium modifications in order to
assess the extent of the modifications that must occur. Here,
F (A)

2 (x, Q2) is calculated using

F (A)
2 (x, Q2) =

∑
N

∫ A

x
dα

∫
d2pT fN/A(α,pT )

×F (N ,b)
2

( x
α

, α,pT , Q2
)

, (36)

which follows from Eq. (35) and the PDF convolution for-
mula Eq. (18), and a phenomenological parametrization for
free nucleons is used to estimate F (N ,b)

2

( x
α
, α,pT , Q2

)
.4 It

should be noted that, in the absence of medium modifica-
tions, the nucleonic structure function F (N ,free)

2

( x
α
, Q2

)
is

not a function of α (except through xN = x
α

) or pT . The
nuclear light cone distribution fN/A(α,pT ) in Eq. (36) is
calculated using the formalism of Sect. 3.1. As Fig. 4 shows,
there is a significant discrepancy between the calculation
and the data in the SRC-dominated region x > 0.6, indi-
cating that nucleons in SRCs are more strongly modified by
the nuclear medium than nucleons in the mean field. This
is consistent with our expectation that modification should
increase with nucleon virtuality, since SRCs occur at signif-
icantly larger momenta.

3.2.1 Correctly defining x

Up until now, data from DIS experiments have been plotted

against the kinematic Bjorken scaling variable xN = Q2

2mpν
,

4 Hereafter, for FN
2

( x
α
, Q2

)
of free nucleons we use phenomenological

parametrization of Refs. [60–62].
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Fig. 5 EMC ratios at Q2 = 10 GeV2, without medium modifica-
tions. 2N and 3N correlations are included in theory curves. The dotted
(magenta) lines compare structure functions as functions of the dynam-
ical QCD scaling variables xA and xd , while solid (black) lines compare

structure functions as functions of the kinematical variable xN . Data and
nucleonic structure function parametrizations are as in Fig. 4. a EMC
ratio for 56Fe. b EMC ratio for 208Pb

where mp is the mass of the proton. However, the Bjorken
scaling variable that enters into the dynamics of QCD, includ-
ing the convolution formulas of Eqs. (18, 36), is instead

xA = AQ2

2MAν
. Thus, it is as arguments of xA and xd rather

than of xN that the ratio of Eq. (34) should be presented in
order to see dynamical QCD effects. By contrast, presenting
data as a function of xN instead of xA/d artificially shifts the
arguments of the nuclear and deuteron structure functions
in Eq. (34) by different amounts, since xA = Amp

MA
xN and

xd = 2mp
Md

xN . Since the deuteron is a loosely bound system
with little binding energy, the arguments for the nuclear and
deuteron structure functions are shifted by substantially dif-
ferent amounts when the nucleus has a high binding energy.

It has been observed [30,63] that presenting structure
function ratios as an argument of xN rather than xA and xd
introduces an artificial dip in the ratio for xN � 0.5. In Fig. 5,
we present theoretical calculations for REMC(xA, xd) (as a
function of the dynamical QCD scaling variables xA/d ) and
REMC(xN ) (as a function of the kinematical Bjorken scaling
variable xN ) for both 56Fe and 208Pb. In these plots, the use
of xN as a variable produces an artificial dip, which partially
explains the EMC effect up to xN ∼ 0.5. However, there con-
tinues to be a discrepancy between theory and data, which
requires medium modification to explain.

3.2.2 Color screening model of the EMC effect

Any nucleon can be expected to spend some of its time in
a point-like configuration (PLC), in which its constituent
quarks are compressed into a volume that is much smaller
than the average volume of the nucleon. A PLC is largely

invisible to the color force, in analogy to neutrally charged
atoms in a gas whose van der Waals forces become weaker
if the atoms are compressed. Due to the color neutrality of
the nucleon, any color interaction between nucleons owes to
higher moments (dipole, quadrupole, etc.), which decrease
with distance between the color-charged constituents. More-
over, it can be shown by the renormalizability of QCD that
meson exchange between nucleons, one of which is in a PLC,
is suppressed [54].

Since nucleons in an average-sized configuration (ASC)
and a PLC will interact differently, the probability that the
nucleon can be found in either configuration should be modi-
fied by the immersion of a nucleon in the nuclear medium. In
particular, PLCs are expected to be suppressed compared to
ASCs since the bound nucleon will assume a configuration
that maximizes the binding energy and brings the nucleus to
a lower-energy ground state.

The change in probability can be estimated using non-
relativistic perturbation theory, as has been done in Refs. [1,
54]. Since the PLC components in the nucleon PDFs are
expected to dominate in the x ≥ 0.6 region, it was found
that in this region the bound nucleon PDFs should be mod-
ified by a factor δA(k2, xN ), which depends on the nucleon
momentum (or virtuality) as

δA(k2, xN � 0.6) = 1

(1 + z)2 (37)

z =
k2

mp
+ 2εA

�EA
, (38)

where εA is the nuclear biding energy and �EA characterizes
the nucleon excitation energy in the medium. In analogy with
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Fig. 6 EMC ratios with and without the color screening model of medium modifications. 2N and 3N correlations are included. Q2 = 10 GeV2,
and data and nucleonic structure function parametrizations are as in Fig. 4. a EMC ratio for 56Fe. b EMC ratio for 208Pb

electric charge screening, this is called the color screening
model of the EMC effect.

We shall use the color screening model as an example for
accounting for medium modifications in calculation of the
dijet cross section. For this, one should first fix the parame-
ter �EA as well as extrapolate the suppression factor δ to
the whole range of x . To do so we implement the color
screening model in calculating the nuclear structure func-
tion F (A)

2 (x, Q2) and compare it with the available lepton
DIS data. Such an implementation is done by substituting

F (N ,b)
2

( x
α

, α, pT , Q2
)

= F (N )
2

( x
α

, Q2
)

δ
(
k2(α,pT ),

x

α

)
(39)

in the convolution formula of Eq. (36) and using the phe-
nomenological parameterization mentioned above [60–62]
for the free nucleon structure function F (N )

2 (x, Q2). It is
worth emphasizing that this phenomenological parametriza-
tion also contains contributions from higher-twist effects, so
Eq. (39) implies that higher-twist effects are modified the
same way as partonic distributions. Justification for such an
approximation follows from the fact that no strong Q2 depen-
dence has been observed for the experimentally measured
range 2 GeV2 < Q2 < 200 GeV2 though errors for large Q2

are fairly large [52,64].
In comparing the color screening predictions of Eq. (36)

with the data, we assumed that no medium modification
occurs at xN � 0.45, and the region between 0.45 < xN <

0.6 is interpolated linearly5:

5 We neglect here a small effect of enhancement of the bound nucleon
PDF at smaller x , which is implied by the baryon charge sum rule.

δA(k2, 0.45 < xN < 0.6)

= 1 + xN − 0.45

0.15

{
δA(k2, xN � 0.6) − 1

}
. (40)

Since the nucleon excitation energy �EA is a dynam-
ical parameter depending on the spin-isopsin composition
of interacting nucleons, we fitted it separately for the mean
field and SRC domains of nucleon momenta. For a nucleon
in the mean field of a heavy nucleus, we expect the excita-
tion energy �EA to be in the range 300–500 MeV, namely
between the excitation energies of a � and an N∗ resonance.
The best fit to data appears to be �EA ≈ 500 MeV. For the
deuteron, as well as for a nucleon in a 2N SRC, we expect
the lowest excited state to be a �� configuration, giving
�Ed ≈ 600 MeV. We assumed the same �E = 600 MeV
excitation energy for a nucleon in a 3N SRC, since such a
correlation in our approach is generated through a sequence
of 2N correlations. We take εA to be the binding energy
per nucleon of the nucleus under consideration when in the
mean field and neglect it for a nucleon in an SRC, since it is
expected to be negligible compared to k2/m in an SRC.

The formula for k in terms of α and pT also depends on
whether the nucleon is in the mean field or a short range cor-
relation. The non-relativistic approximation is adequate for
describing a nucleon in the mean field, and for two-nucleon
SRCs Eq. (27) is valid. For three-nucleon SRCs,

k2 = 2
(α − 1)2m2 + p2

T

α(3 − α)
(41)

is a reasonable approximation if the relative momentum
between the spectator nucleons is small.

As can be seen in Fig. 6, using the parameters described
above results in reasonably good description of the EMC
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Fig. 7 Isospin-weighted ratio of the u quark distribution for 208Pb and
the free nucleon, both with and without the color screening model. 2N
and 3N correlations are included in the 208Pb distribution. Curves are
at Q2 = 10 GeV2. PDF parametrization is CT10 [65]

effect. After fixing the δ factor of Eq. (38) and its x-
dependence, the color screening model is now applied to
quark PDFs rather than structure functions in the following
form:

fi/A(x, Q2) =
3∑
j=1

∑
N

∫ A

x

dα

α
d2pT f ( j)

N/A(α,pT )

× fi/N
( x
α

, Q2
)

δ
( j)
A

(
k2(α,pT ),

x

α

)
. (42)

The sum over j here indicates the sum over the mean field
( j = 1) and j-nucleon SRC ( j = 2, 3) parts of the light cone
fraction distribution. δ

( j)
A

(
k2(α,pT ), x

α

)
has an index j here

to indicate that the color screening model affects the mean
field and SRCs differently.

To estimate the medium modification for gluon distribu-
tions we notice that the medium modifications occur pre-
dominantly at large x , where valence quarks dominate. Glu-
ons in this region would originate as radiation from quarks,
and would therefore inherit medium modifications from the
quarks. For this reason, we apply Eq. (42) to gluons as
well as quarks and anti-quarks.6 The result of applying the
color screening model to the nuclear PDF is demonstrated in
Fig. 7.

3.2.3 Evolution of medium modifications

The EMC effect has so far been observed in a restricted range
of Q2, around Q2 ∼ 2–200 GeV2, with the greatest modi-
fication at x � 0.6. The experimental errors, especially at

6 Anti-quark and gluon contributions are, however, negligible in the
region we are considering.

large Q2, do not allow the identification of any apprecia-
ble Q2 dependence of the EMC ratio. However, from the
point of view of QCD, one should expect at least logarith-
mic Q2 dependence, owing to the evolution of high-x , low-
Q2 partons into lower x with an increase of Q2. This will
be the case with evolution to the high Q2 ∼ 104 GeV2

relevant to the LHC. In our estimates of medium modifi-
cation in dijet production, we predict how the EMC effect
will manifest at Q2 = 104 GeV2 using DGLAP evolution
[66–68].

It is necessary when considering medium modifications to
use DGLAP evolution to evolve the nuclear PDFs obtained
at low Q2 to high Q2, rather than to apply the medium-
modified convolution formula Eq. (42) to a high-Q2 nucle-
onic PDF. The factors δ

( j)
A (k2, xN ) in the color screening

model, for instance, contain x dependence in the form of a
linear interpolation, preventing this term from being factored
out of a DGLAP integral. The x dependence in this factor is
particular to the model’s purpose of explaining DIS cross
section ratios at low Q2, so cannot a priori be expected to
have the same x dependence at large Q2. Eq. (42) cannot be
directly applied at high Q2 without evolving δ

( j)
A (k2, xN ),

which has unknown Q2 dependence. However, by apply-
ing DGLAP evolution to the medium-modified nuclear PDF
as a whole, which is obtained from Eq. (42) at low Q2,
the correct Q2 dependence of medium modification can be
obtained.

The standard DGLAP formula is modified to account for
the possibility of x > 1 inherent in dealing with nuclei; in
particular, we have

∂ fi/A(x, Q2)

∂ log(Q2)
= αs(Q2)

2π

∑
i j

∫ A

x

dy

y
Pi j

(
x

y

)
f j/A(y, Q2). (43)

Here, Pi j are the Alterelli-Parisi splitting functions[68].
In our calculation, we solved Eq. (43) numerically within
the leading order approximation, using the nuclear PDFs
obtained in the previous sections as input. (Next-to-leading
order corrections to the evolution of medium modifications
are expected to be negligible at the high x being con-
sidered here.) The results of this calculation are shown
in Fig. 8, which considers isospin-weighted ratios of the
nuclear u quark distribution to the free nucleonic u distri-
bution, since the effects of evolution are most easily seen
in ratios. Figure 8a in particular compares the effects of
evolution on nuclear PDFs with and without medium mod-
ification accounted for. Figure 8b shows how the mod-
ified PDFs, as functions of Q2, evolve at several fixed
values of x . At x ∼ 0.5, where the PDF ratio mostly
deviates from 1 due to medium modifications, the ratio
is roughly constant as Q2 increases, suggesting little evo-
lution of the medium modification itself. On the other
hand, the PDF ratio at x ∼ 0.7 is more strongly Q2-
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Fig. 8 Isospin-weighted ratio ofu quark distribution for 208Pb to that of
the free nucleon. 2N and 3N correlations are included in the 208Pb distri-
bution. a As a function of x . Unevolved lines are at Q2 = 10 GeV2, and
evolved at Q2 = 10,000 GeV2. b As a function of Q2, with the EMC

effect accounted for by the color screening model. The Q2 = 10 GeV2

PDFs are computed using the CT10 parametrization [65], as well as the
convolution formula Eq. (18)

dependent, showing that at high Q2, the enhancement of
the nuclear PDF relative to the nucleonic PDF due to Fermi
motion and SRCs becomes more important at lower x—
a fact that can also be seen in Fig. 8a, where the steep
increase in the ratio occurs at a lower x when Q2 is
increased.

The high-x enhancement of nuclear PDFs moves to the
left in Fig. 8a because, as a parton evolves, it radiates other
partons which carry off part of its forward light cone momen-
tum, causing its light cone momentum fraction x to decrease
as Q2 increases. Accordingly, a quark with a somewhat mod-
erate value of x which is probed at the high Q2 character-
istic of the LHC could have originated within a “primor-
dial,” low-Q2 quark with a higher momentum fraction x .
The extent to which lower-x , higher-Q2 partons can be con-
sidered as originating within higher-x , lower-Q2 partons is
quantified by the QCD evolution trajectory, which is detailed
in Ref. [69].

The QCD evolution trajectory starts at a point (x0, Q2
0)

in x-Q2 parameter space, and describes the evolution of a
particular parton flavor i . Another point (x, Q2) lies on the
evolution trajectory if half of the PDF fi/A(x, Q2) originated
from evolution of the portion of the Q2 = Q2

0 PDF at x ≥ x0,
i.e. if, given f̃i/A(x, Q2; x0, Q2

0) defined by

∂ f̃i/A(x, Q2; x0, Q2
0)

∂ log(Q2)
= αs(Q2)

2π

∑
i j

∫ A

x0

dy

y
Pi j

(
x

y

)

× f̃ j/A(y, Q2; x0, Q
2
0) (44)

f̃i/A(x, Q2
0; x0, Q

2
0) = fi/A(x, Q2

0)�(x − x0), (45)

then the x for a given Q2 on the trajectory is given by the
requirement

f̃i/A(x, Q2; x0, Q
2
0) = 1

2
f (x, Q2). (46)

Note that Eq. (45) defines an initial condition, which
ensures that when its argument x < x0, the function
f̃i/A(x, Q2; x0, Q2

0) comes from the evolution of partons
with x ≥ x0, and thus that Eq. (46) has the required interpre-
tation.

With these considerations in mind, several QCD evolution
trajectories for the nuclear u quark distribution in 208Pb are
presented in Fig. 9. Consistent with the findings of Ref. [69],
the trajectories do not move very far to the left for large
x0, so there is little hope of seeing primordially superfast
(x > 1) quarks at moderate x values; even the trajectory
which starts at (x0 = 1, Q2

0 = 10 GeV2) fails to reach x =
0.95 by the time Q2 = 40000 GeV2, corresponding to a
pT = 200 GeV/c jet.

4 Hard subprocesses

We have developed a model of nuclear PDFs at x > 0.1 that
accounts for both short range correlations and effects from
medium modification. In addition to a model for PDFs, how-
ever, we also need to calculate the squares of the invariant

matrix elements
∣∣Mi j

∣∣2 for the hard partonic subprocesses
that contribute to Eq. (17). We consider two partons, labeled
i and j , to exist in the initial state of the reaction—one from
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Q2 = 40,000 GeV2. 2N and 3N SRCs as well as color screening are
considered. The Q2 = 10 GeV2 PDFs are computed using the CT10
parametrization [65], and Eq. (18)

Table 1 Squared matrix element for hard partonic processes at leading
order, summed over final spins and averaged over initial spins, and
divided by g4

s . j �= k in subprocesses where both indices are present.
The table is from Ref. [70].

Subprocess |M|2
g4
s

q j + qk → q j + qk
4
9
s2+u2

t2

q j + q j → q j + q j
4
9

(
s2+u2

t2
+ s2+t2

u2

)
− 8

27
s2

ut

q j + q̄ j → qk + q̄k
4
9
t2+u2

s2

q j + q̄ j → q j + q̄ j
4
9

(
s2+u2

t2
+ t2+u2

s2

)
− 8

27
u2

st

q j + q̄ j → g + g 32
27

u2+t2
ut − 8

3
u2+t2

s2

g + g → q j + q̄ j
1
6
u2+t2
ut − 3

8
u2+t2

s2

q j + g → q j + g − 4
9
u2+s2

us + 8
3
u2+s2

t2

g + g → g + g 9
2

(
3 − ut

s2 − us
t2

− st
u2

)

each of the proton and the heavy nucleus participating in the
reaction (1). At leading order, a dijet is associated with two
partons in the final state, which we label k and l. Each parton
can in principle be a quark, an anti-quark, or a gluon, although
what partonic subprocesses are possible is limited by quark
flavor conservation. A list of the possible two-parton to two-
parton subprocesses and their squared matrix elements is pre-
sented in Table 1 (cf. [70]).

At next-to-leading order (NLO), a dijet can be associated
either with two or with three partons in the final state, pro-
vided two of the three partons have small enough differences
in both their rapidities and their azimuthal angles, so that
�φ2 + �η2 < R2, where R is the cone radius used for
defining jets. Additionally, three-parton dijets are needed to
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Fig. 10 Comparison of leading-order (LO) calculation of the two-fold
differential cross section using Eq. (C4) to experimental data from Ref.
[72]. Proton PDF used is CT10 [65]

cancel the infrared divergences in the NLO contributions to
the two-parton to two-parton matrix elements [71]. Finally,
identifying two partons as a single jet in the NLO contribution
alters the simple kinematical formula Eq. (6) for determining
xA through dijet kinematics.

These facts indicate that we should verify the adequacy of
the leading order approximation. To make this verification,
we perform a leading order calculation of the reaction (1)
for the case of A = 1, i.e. for dijet production from proton-
proton collisions, for which a fair amount of experimental
data in the kinematical regime of interest exist. We compare
the calculation within the leading order to experimental data
from Ref. [72]. The data, however, are given in terms of a
two-fold differential cross section d2σ/dmJ Jd|y∗|, where
m2

J J = (p3 + p4)
2 and y∗ is the rapidity of an individual

jet in the dijet center of mass frame. The relationship of this
two-fold differential cross section to the three-fold differen-
tial cross section of Eq. (17) is given in Appendix C, and a
calculation of the leading-order calculation with the data is
given in Fig. 10. As the comparison shows, we have a rea-
sonably good agreement with the data that validates the use
of leading order for calculating the hard subprocesses that
contribute to reaction (1).

5 Numerical estimates

In the previous sections, we have developed all the compo-
nents necessary to calculate the three-fold differential cross
section of Eq. (17) for the dijet production reaction (1). It is
our intention to use them to determine the sensitivity of the
dijet production reaction (1) to the presence of short range
correlations in the nucleus, as well as to medium modifi-
cation effects. Additionally, we will look at nuclear partons
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with xA > 1 in particular. Since xA can be related to measur-
able jet kinematics via Eq. (6), it is necessary to elaborate on
the kinematics we will consider. Once the kinematics con-
sidered are clarified, we will present numerical estimates of
the three-fold differential cross section of Eq. (17) at these
kinematics, and additionally we will estimate the partially
and fully integrated cross sections to find out if events corre-
sponding to xA > 1 are frequent enough to be measurable at
the LHC.

5.1 Kinematics considered

Since one of our goals is to probe xA > 1, we consider kine-
matics that maximize xA.7 According to Eq. (6), three vari-
ables are related to xA. The jet rapidities η3 and η4 should be
as small or highly negative as possible in order to maximize
xA. Additionally, the transverse jet momentum pT should be
as large as possible. On the other hand, non-central jets are
more difficult to detect and identify, and the jet cross section
for large pT is known to drop rapidly. It is necessary to find a
balance between kinematics that will increase xA and those
that will produce an appreciable yield.

Since central jets are easier to detect, and since we are
interested in superfast partons in the nucleus, we consider
dijets with one jet produced in the central rapidity region
where LHC detectors have the best resolution and the second
jet moving in the direction of the nucleus beam. In particular,
the rapidity ranges considered are −2.5 < η3 < 2.5 and
3 < −η4 < 5. We also consider a pT range from 40 to
200 GeV/c.

5.2 Three-fold differential cross section

Equation (17) can be used to obtain numerical estimates of
the three-fold differential cross section d3σ/dη3dη4dp2

T for
the dijet production reaction (1). Numerical estimates are
presented in Fig. 11, where estimates with and without short
range correlations are presented for comparison, and like-
wise estimates with and without medium modification are
presented. As can be seen in Fig. 11a, the presence of SRCs
increases the cross section for superfast (xA > 1) quarks con-
siderably. Figure 11b demonstrates the relative importance
of three-nucleon SRCs in particular at large xA. On the other
hand, medium modification decreases the cross section, espe-
cially at large x where highly-modified SRCs dominate the
cross section, as can be seen in Fig. 11c, d.

In addition to comparisons of the effects of SRCs and
medium modifications within the model for the nuclear light

7 We are also interested in the EMC effect region, since current DIS
data are either at low Q2 where higher-twist effects are significant, or
have poor accuracy for x � 0.65. The kinematics of interest here will
also cover such moderate x values.

cone density presented in this work, we compare in Fig. 12 the
prediction for the three-fold differential cross section using
our model to the one made using the FS81 model [3]. The
FS81 model uses exponential decay to model the large α part
of the nuclear light cone density, and likewise the nuclear
PDF calculated using this model exhibits exponential decay
for large xA. It is for this reason the curve for the FS81 model
appears as a straight line in the log plot of Fig. 12. Qualita-
tively, the model of this work can be distinguished experi-
mentally from the FS81 model by determining whether the
three-fold differential cross section of Eq. (17) falls expo-
nentially or faster than a simple exponential.

5.3 Partially integrated cross section

Next we study the sensitivity to SRCs and medium modifi-
cation effects of the one-fold differential cross section dσ

dpT
,

which is obtained by integrating Eq. (17) over the pseudo-
rapidities of the jets. The main goal in doing so is to maxi-
mize the absolute cross section while retaining highest possi-
ble sensitivity to short-range nuclear phenomena, namely the
x > 1 region. For this we choose the ranges of rapidity inte-
grations in order to maximally preserve the sensitivity from
the x > 1 domain. The ranges of η3 and η4 that are considered
have been discussed above, namely the jet originating from
the proton should be in the central region −2.5 < η3 < 2.5
and the jet originating from the nucleus should be forward
in the nucleus beam region, i.e. −5 < η4 < −3. Thus, the
one-fold differential cross section is:

dσ

dpT
=
∫ 2.5

−2.5
dη3

∫ −3

−5
dη4

2pT d3σ

dη3dη4dp2
T

. (47)

In order to verify the sensitivity of Eq. (47) to the kinematic
domain of superfast quarks (x > 1), we compare it with the
one-fold differential cross section over the same range of η3

and η4, but with x > 1 events selected for only, viz.

dσ(xA > 1)

dpT
=
∫ 2.5

−2.5
dη3

∫ −3

−5
dη4

2pT d3σ

dη3dη4dp2
T

�(xA − 1).

(48)

By comparing the differential cross sections of Eqs. (47) and
(48), we can determine the range of pT in which the results
are close, and accordingly identify the pT region that is sen-
sitive to short-range nuclear phenomena.

In Fig. 13 we present estimates of the differential cross sec-
tions of Eqs. (47, 48). Figure 13a compares the differential
cross section, in the absence of medium modifications, with-
out and with short-range correlations accounted for. Most
dijets with transverse momentum up to about 100 GeV/c can
be attributed to nucleons in the mean field. By contrast, dijets
with high pT � 150 GeV/c can be attributed predominantly
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Fig. 11 Three-fold differential cross section for p+208Pb→ dijet + X
according to Eq. (17). a and c are absolute cross sections. b and d are
ratios. b is the ratio of the three-fold differential cross section when 2N
and 3N SRCs are both considered to when only 2N SRCs are considered,
b is the ratio of the three-fold differential cross section with medium

modifications to without. η4 is constrained to the range (−5,−3), and
η3 = 0. Proton PDF used is CT10 [65]. a No medium modifications.
b No medium modifications. c All SRCs contribute. d All SRCs con-
tribute

to short range correlations. In addition, selecting only dijets
with kinematics corresponding to an initial state nuclear par-
ton with xA > 1 produces a differential cross section that
is at least an order of magnitude larger when SRCs are con-
sidered than for the mean field by itself. This confirms that
xA > 1 events can be attributed predominantly to the pres-
ence of SRCs in the nucleus, and also indicates that finding a
large yield for xA > 1 events can demonstrate the presence
of SRCs.

On the other hand, since SRCs are highly modified in the
nuclear medium, xA > 1 events in particular are suppressed
by the EMC effect, as can be seen in Fig. 13b. This means
the value of the one-fold differential cross section for xA > 1

dijet events experiences two effects that compete with one-
another: it is increased by the presence of SRCs, but it is at
the same time suppressed by medium modifications, which
most strongly affect SRCs.

In addition to one-fold differential cross sections, we also
present estimates for the total integrated cross section in
order to show that xA > 1 events should produce a mea-
surable yield. Since jet identification at low pT is difficult,
we consider the total cross section integrated from a mini-
mum pT value of 50 GeV/c. In Table 2 we present numer-
ical estimates for the total cross section for different bins
of x as indicated in the table. In addition to comparing the
integrated cross section with and without medium modifi-
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cations, we have compared the model of this work to the
FS81 model [1] (with medium modifications accounted for
by the color screening model). The FS81 model predicts a
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Fig. 12 The color screening model accounts for medium modifications
for both models. Calculation within our model considers 2N and 3N
SRCs to contribute

larger cross section than our model does at xA > 1, owing to
the different form of 3N correletions, as well as the implicit
inclusion of 4, 5, etc. nucleon correlations in their light cone
density.

As can be seen in Table 2, medium modifications sup-
press the integrated cross section, especially at high xA.
This is consistent with the expectation that medium modi-
fications affect SRCs especially strongly. However, despite
the suppression by medium modification, the cross sec-
tion remains large enough to be observable. In particular,
with an integrated luminosity of 35.5 nb−1 (achieved in the
2013 pA run of the LHC), the expected yield for xA > 1
events (with suppression from the color screening model
considered) is about 200 events. Additionally, the expected
yield for xA > 0.6—the classical kinematical region of
the EMC effect—is about 39,000 events, suggesting dijet
production from pA collisions could be used to study the
EMC effect at high Q2 where higher-twist effects are negli-
gible, but where existing experimental data have large error
bars.
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Fig. 13 Differential cross section for p+208Pb→ dijet + X , according to Eqs. (47, 48). Computed using CT10 for proton PDF [65]. a Without
medium modifications. b With and without color screening

Table 2 Estimates of integrated cross sections, for different bins of xA. Calculations include two- and three-nucleon SRCs.

Unmodified Modified (no SRCs) Modified (SRCs) FS81 (modified)

All xA 7.8 µb 6.8 µb 6.9 µb 6.9 µb

0.6 < xA < 0.7 0.94 µb 0.73 µb 0.72 µb 0.76 µb

0.7 < xA < 0.8 0.38 µb 0.25 µb 0.27 µb 0.28 µb

0.8 < xA < 0.9 0.17 µb 0.07 µb 0.08 µb 0.09 µb

0.9 < xA < 1 36 nb 14 nb 21 nb 23 nb

1 < xA 12 nb 2.3 nb 5.7 nb 7.3 nb
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5.4 Jet resolution

To use the leading order kinematic relations Eqs. (11, 12)
requires unambiguous identification of two jets with equal
pT , and neglects effects of jet fragmentation. There could be a
number of issues related to jet production and reconstruction
which may spoil these relations.

Experimental measurement of the cross section of jet (or
dijet) production involves using a particular algorithm for
extracting information about single (di-) jet production kine-
matics. Currently, the anti-kt jet clustering algorithm [73] is
widely used. For jets with pT ≥ 150 GeV/c, which we con-
sider here, a cone with R = 0.2-0.4 is usually used. Numer-
ical studies for the p + A → jet + X process with the jet
produced in the proton fragmentation region, performed in
[74] using anti-kt clustering algorithm and PYTHIA, find
that in the kinematics studied by ATLAS [75], the value
of y = (Ejet + pz,jet)/2Ep determined using anti-kt clus-
tering algorithm with R = 0.4 is very close to the xp of
the colliding proton for xp ≥ 0.2 up to xp ∼ 0.7 (higher
xp were not studied in Ref. [74] due to the lack of statis-
tics). This allows good tracking of x for the large x par-
ton.

In principle, fluctuations in the energy deposited in the
calorimeter could have affect such a determination for large
x where distribution drops very steeply, leading to a large

value of
∂ ln F (A)

2 (x,Q2)

∂x . However, it is easy to check that for

F (A)
2 (x, Q2) ∝ exp(−bx) with b ∼ 8, variation with x for

x > 0.6 is weaker in the nucleus case. Moreover, detection
of the central jet we envision should help to suppress the
effects of large fluctuations. The observation of the central
jets would additionally help to suppress contribution of mul-
tiparton interactions (MPI), in which production of two jets
with e.g. xA ∼ 0.5 could mimic production of one xA ∼ 1
jet.

Another potential problem is the subtraction of the con-
tributions of the underlying events for xA > 0.5. On one
hand, the underlying activity is higher in this case than in
pp collisions. On the other hand, for η ∼ −4 it is sig-
nificantly smaller than for the central rapidities. The anti-
kt algorithm is well suited for dealing with such prob-
lems.

Obviously further simulations are necessary, which would
be based on more detailed experimental information about
the underlying event fluctuations in the backward kinematics
than are available now. Simulations should also account for
energy and angular resolutions and the acceptances of the
detectors, as well as treating NLO effects like pT inbalance
between the two jets. Such a simulation would require a joint
effort of experimentalists and theorists, and is beyond the
scope of this paper.

6 Conclusions

In this work, we have shown that superfast partons inside a
heavy nucleus with x > 1 are experimentally accessible at
the LHC, and can be probed in dijet production reactions from
proton-nucleus collisions. The value of x can be related to jet
kinematics in the LHC rest frame in a straightforward way, so
it is possible to select events that correspond to x > 1. Partons
with x > 1 can predominantly be attributed to the presence of
short range correlations between nucleons within the nucleus.
Expected medium modifications suppress the cross section
appreciably, but the total x > 1 cross section remains on
the order of a few nanobarns, making measurement feasible.
Additionally, it is possible to to perform novel studies of the
EMC effect in the x < 1 region.

The observability of superfast partons in the nucleus owes
itself to the presence of short range correlations. This fact
tells us that it is inadequate to treat the nucleus as a collec-
tion of free nucleons, moving forward with equal light cone
momenta. The internal structure of the nucleus, and the rel-
ative momenta of its nucleons, are necessary to account for.
We observe that even in the one-fold differential cross sec-
tion for inclusive dijet production, looking at large transverse
jet momenta (pT ≥ 150 GeV/c) allows one to select events
originating from short range correlations in nuclei. Overall,
our conclusion is that even at such high energies as those at
the LHC, short range nuclear structure can be explored, and
it will dominate the rate of the events with large transverse
momenta and negative pseudo-rapidities in nuclear fragmen-
tation region.

We expect the formalism to have further applications
beyond dijet production in proton-nucleus collisions. In par-
ticular, short range nuclear structure and medium modifica-
tion can be checked in Drell-Yan processes both in proton-
nucleus and nucleus-nucleus collisions. Additionally, it will
prove necessary to account for multi-nucleon short range
correlations to correctly predict the high-x cross section in
inelastic nuclear DIS experiments at high energy. The Elec-
tron Ion Collider [76] in particular will be able to carry out
such experiments, where the formalism developed in this
work will prove necessary. In particular, the nuclear PDF
at high Q2 will need to be obtained through QCD evolution,
since the phenomenological models that exist to account for
nuclear modifications are constructed using lower-Q2 exper-
imental data.

Acknowledgments We are thankful to Alberto Accardi, Brian Cole,
Wim Cosyn, Leonid Frankfurt, Shunzo Kumano, and Gerald Miller
for many useful discussions. Our special thanks are to Matteo Cac-
ciari, Dennis Perepelitsa, Gavin Salam for discussion of the problems
of extraction of nuclear quark distributions at large xA from pA jet pro-
duction data. This work is supported by US Department of Energy grants
under contracts DE-FG02-01ER-41172 and DE-FG02-93ER40771.

123



534 Page 20 of 28 Eur. Phys. J. C (2015) 75 :534

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A: Derivation of impulse approximation

Here, we derive the impulse approximation for scattering of a
hard probe H from a nucleus, which is assumed in the convo-
lution approach taken in Eq. (18). We utilize the assumption
that the PDFs of the nucleus factorize as in Eq. (13), We then
proceed to derive the impulse approximation under a model
where the nucleus consists of a system of bound nucleons
on the light cone. Corrections to the impulse approximation
from nuclear shadowing become important at xA � 0.15 [1],
so the derivation to follow assumes xA > 0.15.

The derivation is performed using light cone perturba-
tion theory. The approach taken here is to calculate the for-
ward H A scattering amplitude using the diagram depicted
in Fig. 14, and to use the optical theorem to relate this to
the total inelastic H A cross section. In principle, H A scat-
tering can be accomplished in the impulse approximation by
scattering from any of the bound nucleons, and for the full
amplitude, a sum over i is necessary.

To begin, the diagrammatic rules of light cone perturbation
theory [77] give

MH A→H A =
A∑

i=1

∫ ∏
j �=i

dk−
j d2k jT

2(2π)3

{
ūλA(pA)ūλh (ph)�N/A

×
⎡
⎣∏

j �=i

∑
λ j

uλ j (k j )ūλ j (k j )�(k−
j )

k−
j

⎤
⎦

×
∑

λi
uλi (ki )ūλi (ki )�(k−

i )

k−
i

1∑
init. k

+ −∑
inter. k

+

...

pH pH

pA pA

ki

kj (j = i)

ki

Fig. 14 The impulse approximation diagram for zero-degree H A scat-
tering

× �HN∗→HN∗

∑
λi
uλi (ki )ūλi (ki )�(k−

i )

k−
i

× 1∑
init. k

+ −∑
inter. k

+ �N/Au
λh (ph)u

λA (pA)

}
. (A1)

Here �N/A represents the effective vertex of transition of
the nucleus with mass number A to A nucleons. Since the
nucleus is traveling rapidly in the −z direction, it is x− that
is taken as the “time” coordinate, and thus k+ is taken as
the “energy”. Note that we have used uλ(p) to denote the
part of a particle’s wave function that transforms under a
representation of the Lorentz group, even if the particle in
question (e.g., a spin-zero nucleus) is not a fermion.

The factors of
(∑

init. k
+ −∑

inter. k
+)−1 in Eq. (A1) rep-

resent intermediate states in the diagram, which are cut in
Fig. 14 by dashed (green) lines. All light cone energies are
defined to be on shell, so each k+ is determined by the on-
shell relation k+k− = m2 + k2

T . For the initial and interme-
diate states, this means:

∑
init.

k+ = p+
A + p+

h (A2)

∑
inter.

k+ = p+
h +

A∑
j=1

k+
j (A3)

∑
init.

k+ −
∑
inter.

k+ = p+
A −

A∑
j=1

k+
j

= 1

p−
A

⎛
⎝M2

A −
A∑
j=1

m2
N + k2

jT

α j/A

⎞
⎠ . (A4)

Accordingly, the intermediate state factors can be rewritten
as

1∑
init. k

+ −∑
inter. k

+ = p−
A

M2
A −∑A

j=1
m2

N+k2
jT

α j /A

. (A5)

This, together with helicity conservation at the HN∗ vertex
and some reshuffling of terms, allows the full amplitude to
be rewritten as

MH A→H A =
A∑

i=1

∑
{λ j }

∫ ∏
j �=i

dk−
j d2k jT

2k−
j (2π)3

{(
p−
A

k−
i

)2

×
ūλA (pA)�N/A

[∏A
j=1 u

λ j (k j )
]

M2
A −∑A

j=1
m2

N+k2
jT

α j /A
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× [
ūλh (ph)ū

λi (ki )�HN∗→HN∗uλi (ki )u
λh (ph)

]

×
[∏A

j=1 ū
λ j (k j )

]
�N/AuλA(pA)

M2
A −∑A

j=1
m2

N+k2
jT

α j /A

}
. (A6)

This can be simplified by using the subprocess amplitude

MHN∗→HN∗(αi ,kiT )

= [
ūλh (ph)ū

λi (ki )�HN∗→HN∗uλi (ki )u
λh (ph)

]
(A7)

which depends on the momentum of the nucleon that was
struck. Using this amplitude and the A-body light cone
nuclear wave function, defined by

ψ
{λ j }
N/A({α j }, {k jT }) = − 1√

A

(√
1

2(2π)

)(A−1)

×
[∏A

j=1 ū
λ j (k j )

]
�N/AuλA (pA)

M2
A −∑A

j=1
m2

N+k2
jT

α j /A

, (A8)

for the H A forward amplitude one obtains

MH A→H A =
A∑

i=1

∫ ∏
j �=i

dα jd2k jT

α j

×
{
A

α2
i

∣∣∣ψ {λ j }
N/A({α j }, {k jT })

∣∣∣2MHN∗→HN∗(αi ,kiT )

}
.

(A9)

The line over the nuclear light cone wave function squared
signifies a sum over nucleon spins and an average over
nucleus spin.

To proceed further, a completeness (containing momen-
tum conservation) relation is used:

1 =
∫ A

0
dαi

∫
d2kiT δ(1)

⎛
⎝A −

A∑
j=1

α j

⎞
⎠ δ(2)

⎛
⎝ A∑

j=1

k jT

⎞
⎠ ,

(A10)

giving

MH A→H A =
A∑

i=1

∫ A∏
j=1

dα jd2k jT

α j

⎧⎨
⎩δ(1)

⎛
⎝A −

A∑
j=1

α j

⎞
⎠

× δ(2)

⎛
⎝ A∑

j=1

k jT

⎞
⎠× A

αi

∣∣∣ψ {λ j }
N/A({α j }, {k jT })

∣∣∣2

×MHN∗→HN∗(αi ,kiT )

⎫⎬
⎭ . (A11)

Using optical theorem, applied the H A and HN scattering
amplitudes in Eq. (A11):

Im(MH A→H A) = sH AσH A (A12)

Im (MHN∗→HN∗(αi ,kiT )) = sHN∗(αi )σHN∗(αi ,kiT )

= αi

A
sH AσHN∗(αi ,kiT ), (A13)

one obtains for the H A inelastic cross section

σH A =
A∑

i=1

∫ A∏
j=1

dα jd2k jT

α j

⎧⎨
⎩δ(1)

⎛
⎝A −

A∑
j=1

α j

⎞
⎠

×δ(2)

⎛
⎝ A∑

j=1

k jT

⎞
⎠×

∣∣∣ψ {λ j }
N/A({α j }, {k jT })

∣∣∣2σHN∗ (αi ,kiT )

⎫⎬
⎭ . (A14)

Furthermore, inserting the relation relation

1 =
∫ A

0

dα

α

∫
d2pTαiδ

(1)(α − αi )δ
(2)(pT − kiT ), (A15)

into Eq. (A16) gives

σH A =
∫ A

0

dα

α

∫
d2pT

⎡
⎣∫ A∏

j=1

dα jd2k jT

α j

×
⎧⎨
⎩δ(1)

⎛
⎝A −

A∑
j=1

α j

⎞
⎠ δ(2)

⎛
⎝ A∑

j=1

k jT

⎞
⎠

×
(

A∑
i=1

αiδ
(1)(α − αi )δ

(2)(pT − kiT )

)

×
∣∣∣ψ {λ j }

N/A({α j }, {k jT })
∣∣∣2
⎫⎬
⎭ σHN∗(α,pT )

⎤
⎦ , (A16)

which, using the definition of the light cone density matrix
ρN/A(α,pT ) [cf. Eq. (19) and note that fN/A(α,pT ) =
1
α
ρN/A(α,pT )], gives

σH A =
∫ A

0

dα

α

∫
d2pT ρN/A(α,pT )σHN∗(α,pT ). (A17)

From here, we make use of the assumption that the HN∗
inclusive scattering cross section factorizes in terms of uni-
versal PDFs, namely

σHN∗ =
∑
j

∫ 1

0
dxN∗ f j/N∗(xN∗ , Q2, α,pT )σH j , (A18)

where σH j is the hard cross section for inclusive scatter-
ing of the hard probe H from a parton with flavor j , and
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where xN∗ is the light cone momentum fraction of the
parton in the bound nucleon. In general, the the bound
nucleon is off its light cone energy shell, so a priori, its
PDF f j/N∗(xN∗ , Q2, α,pT ) depends on the degree of off-
shellness. This fact is signified in the dependence of the
bound nucleon PDF on α and pT .

Using now Eq. (A18) one arrives at:

σH A =
∑
j

∫ A

0

dα

α

∫
d2pT ρN/A(α,pT )

×
∫ 1

0
dxN∗ f j/N∗(xN∗ , Q2, α,pT )σH j . (A19)

The integration over xN∗ can be converted into integration
over xA, with limits of 0 and A, provided xA < α, which can
be satisfied by setting the lower integration limit of α to xA.
This results in the expression:

σH A =
∑
j

∫ A

0
dxA

[∫ A

xA

dα

α2

×
∫

d2pT ρN/A(α,pT ) f j/N∗(xN∗ , Q2, α,pT )

]
σH j .

(A20)

Under the assumption that the H A inclusive scattering cross
section factorizes, the quantity in the square brackets of
Eq. (A20) is equal to the nuclear PDF, thus giving Eq. (18).

Appendix B: Light cone densities for short range
correlations

In this Appendix, we will derive the functional forms of
the light cone density matrices for two-nucleon and three-
nucleon short range correlations. These can be related to
the light cone fraction distributions through fN/A(α,pT ) =
1
α
ρN/A(α,pT ). In the following calculations, the direction

of z axis is defined by the nuclear momentum. Therefore the
“+” component of the nucleus momentum is a large param-
eter.

Appendix B1: 2N correlations

The light cone density matrix for two-nucleon correlations
is calculated using a cut diagram, Fig. 15. The rules for cal-
culating a cut diagram are similar to the Feynman rules for
perturbation theory, but contain additional terms, namely a
vertex V̂2N (α,pT ) for the probed nucleon in the SRC, and
an on-mass-shell factor (2π)δ(1)(p2

2 −m2
N ) for the spectator

nucleon. This approach can be seen as a relativistic gener-
alization of the method of Ref. [78] (see also Ref. [3] for

p2N p2N

p1 p1

p2

V̂

Fig. 15 Cut diagram for calculating 2N SRCs

application to the light cone). In this case, for the unpolar-
ized density matrix, we have

V̂2N (α,pT ) =
∑
λ

a†
N (p, λ)α2δ(1)(α − α1)

×δ(2)(pT − p1T )aN (p, λ), (B1)

where a†
N (p, λ) and aN (p, λ) are creation and annihilation

operators defined so that

aN (p, λ)uλ′
1(p1) = δλλ′

1
ūλ1(p1)a

†
N (p, λ) = δλλ1 . (B2)

The operator V̂2N (α,pT ) essentially picks a nucleon with
light cone fraction α and transverse momentum pT out of the
2N SRC. Additionally, the vertices �dpn are accompanied
by a factor of 1√

2
in this derivation, since we are deriving

the distribution of a single nucleon within a 2N SRC. This
requires each NN vertex be accompanied by division by the
square root of the number of baryons involved.

First, the application of Feynman rules to the diagram of
Fig. 15 gives

ρ2N (α,pT ) = 1

3

∑
λd

∫
dp+

2 dp−
2 d2p2T

2(2π)4

×
⎡
⎣χ

†(λd )
d (p2N )

�dpn(α1,p1T )√
2

×
⎛
⎝∑

λ2

uλ2 (p2)ū
λ2 (p2)�(p+

2 )

⎞
⎠((2π)δ(1)(p2

2 − m2
N )
)

×
∑

λ1
uλ1 (p1)ūλ1 (p1)�(p+

1 )

p+
1 D2N

V̂2N (α,pT )

×
∑

λ′
1
uλ′

1 (p1)ūλ′
1 (p1)�(p+

1 )

p+
1 D2N

�dpn(α1,p1T )√
2

χ
(λd )
d (p2N )

⎤
⎦ , (B3)

where χ
(λd )
d (p2N ) is the spin wave function of the deuteron,

the factor of 1
3 comes from assuming the short-range 2N

configuration is in a spin-one state, �dpn(α1,p1T ) is a d →
pn transition vertex, and D2N is an intermediate state factor,
given by
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D2N =
∑
init.

p− −
∑
inter.

p−. (B4)

The next step is to rewrite the intermediate state factors:

∑
init.

p− = p−
2N = m2

2N + p2
2N ,T

p+
2N

(B5)

∑
inter.

p− = p−,on
1 + p−,on

2

= m2
N + p2

1T

p+
1

+ m2
N + (p2N ,T − p1T )2

p+
2

(B6)

∑
init.

p− −
∑
inter.

p−

= 1

p+
2N

[
m2

2N − 4
m2

N + (
p1T − α1

2 p2N ,T
)2

α1α2

]

≡ D2N , (B7)

where α1 and α2 are the light cone momentum fractions of
the probed and spectator nucleons respectively. In the case
that p2N ,T = 0,

D2N = 1

p+
2N

(
m2

2N − 4
m2

N + p2
1T

α1α2

)
. (B8)

Using Eq. (B7) we can, in analogy with Eq. (A8), introduce
the light-cone wave function of an NN correlation in the form:

ψ
(λ1,λ2;λd )
2N (α1, α2,p1T ,p2T , p2N ) = − 1√

2
√

2(2π)3

× ūλ1(p1)ūλ2(p2)�dpn(α1,p1T )χ
(λd )
d (p2N )

1
2

[
m2

2N − 4
m2

N+(p1T − α1
2 p2N ,T

)2
α1α2

] , (B9)

giving (where we assume the 2N correlation has negligible
center-of-mass motion and note p2 = p2N − p1, making
α1 and p1T the only independent parameters in the wave
function),

ρ2N (α, pT ) = 1

3

∑
λd ,λ1,λ′

1,λ2

∫
dp+

2 dp−
2 d2p2T

2(2π)4

×
[

2(2π)3

α2
1

ψ
†(λ1,λ2;λd )
2N (α1, p1T )ūλ1 (p1)V̂2N (α, pT )

× uλ′
1 (p1)ψ

(λ1,λ2;λd )
2N (α1, p1T )

(
(2π)δ(1)(p2

2 − m2
N )
) ]

, (B10)

where the �(p+
1/2) are now implicit. Next, the on-mass-shell

condition (2π)δ(1)(p2
2 −m2

N ) is eliminated through the inte-
gration over p−

2 . In particular, since p+
2 > 0,

(2π)δ(1)(p2
2 − m2

N )
dp+

2 dp−
2 d2p2T

2(2π)4 = dp+
2 d2p2T

2p+
2 (2π)3

= dα2d2p2T

2α2(2π)3 .

Now, we replace the integration variables (α2,p2T ) with
(α1,p1T ), obtaining

δ(1)(α − α1)δ
(2)(pT − p1T )

dα2d2p2T

2α2(2π)3

= δ(1)(α − α1)δ
(2)(pT − p1T )

dα1d2p1T

2α2(2π)3 = 1

2(2π)3α2
,

with α1 = α and p1T = pT by virtue of the delta functions.
With the integrations eliminated, and by using Eq. (B2), one
obtains

ρ2N (α,pT ) = 1

2 − α

1

3

∑
λd ,λ1,λ2

∣∣∣ψ(λ1,λ2;λd )
2N (α,pT )

∣∣∣2 . (B11)

We proceed by further introducing the light cone relative
momentum k through the relation

α = 2
Ek + kz

2Ek
, (B12)

which allows one to represent the denominator D2N in
Eq. (B7) in the one-parameter form:

m2 + p2
T

α(2 − α)
= m2 + (α − 1)2m2 + p2

T

α(2 − α)
≡ m2 + k2. (B13)

Based on the requirement that the light cone equation for
the NN interaction leads to the rotationally invariant on-
shell NN scattering amplitude, one can demonstrate that
�dpn(α,pT ) = �dpn(k2(α,pT)), which allows one to write
the NN wave function in terms of a single parameter k with
the normalization condition [1]:

∫
d3k

|ψ2N (k)|2
Ek

= 1. (B14)

It is straightforward to show that such a wave function will
satisfy also the momentum sum rule:

∫ A

0

dα

α

∫
d2pTαρ2N (α,pT ) =

∫
d3k

|ψ2N (k)|2
Ek

+
∫

d3k
kz
Ek

|ψ2N (k)|2
Ek

= 1 + 0. (B15)

Another advantage of assuming rotational invariance is that
with it, one can show [3,33] that a Weinberg-type equa-
tion for the 2N bound system reduces to the non-relativistic
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Lippmann-Schwinger equation with the light-cone relative
momentum k. This results in the relation:

|ψ2N (k)|2 = |ψN R(k)|2 Ek, (B16)

where ψN R(k) represents the non-relativistic wave function
of NN system.

In further discussions, we introduce the light-cone momen-
tum fraction distribution

fN/2N (α,pT ) = 1

α
ρ2N (α,pT ), (B17)

which is analogous to a parton distribution for a two-parton
system, but for a nucleon in a two-nucleon SRC instead.
It’s worth noting that fN/2N (α,pT ) is symmetric when α is
substituted with (2 − α), since it represents a two “parton”
composite system.

Appendix B2: 3N correlations

In this section, we derive the functional form of the three-
nucleon SRC density, namely Eq. (31).

A similar approach is taken here as in Appendix B1. How-
ever, unlike with 2N SRCs, the 3N SRC does not correspond
to a scaled version of an A = 3 nucleus. In particular, the
spin and isospin state of a 3N SRC are not a priori known,
and at most behave only like a particular, short-range config-
uration that an A = 3 nucleus (which also has a mean field
and a 2N SRC part) can take. However, the approach of cal-
culating ρ3N (α,pT ) through cut diagrams will still be taken,
with the caveat that each diagram should be multiplied by an
unknown constant.

As described in Sect. 3.1.3, we use a model in which a
3N SRC is generated by a sequence of two short-range 2N
interactions. Since we consider 2N SRCs to be dominated
by pn pairs, this schematic calculation for 3N SRCs takes
into account only ppn and nnp configurations, which can be
mediation through two consecutive pn interactions. A typi-
cal diagram of such a process is given in Fig. 16. While there
are several other topologies for this generation mechanism
(depicted in Fig. 17), it can be shown, within an approxima-
tion where the three nucleons are collinear before the SRC
generation mechanism, that the results of all diagrams con-
tain the same functional dependence on α and pT , so can
at most differ in unknwon isospin factors multiplying them.
Accordingly, these constants factor out and can be absorbed
into an overall normalization factor. In particular, we define
ρ3N (α,pT ) to satisfy the normalization condition:

∫
dα

α
d2pT ρ3N (α,pT ) = 1. (B18)

3

ki pi 1
2

p2

D12 D23

V̂

Fig. 16 Characteristic cut diagram for three-nucleon SRC

Another difference between 3N SRCs and 2N SRCs will
present itself in the momentum threshold for 2N SRCs to
occur. For two-nucleon SRCs, it is sufficient to multiply
ρ2N (α,pT ) by �(k−kF ). However, for three-nucleon SRCs,
one requires that the relative light-cone momentum entering
into each NN vertex exceeds kF .

With this in mind, ρ3N (α,pT ) should be related to
ρ

(3)
N/A(α,pT ) by

ρ
(3)
N/A(α,pT ) = {a2(A)}2 ρ3N (α,pT )�3N , (B19)

where �3N indicates the constraints mentioned above on the
relative momenta at the NN vertices. For large nuclei, within
the considered model of 3N SRCs, the overall scaling factor
is approximately proportional to the square of the proba-
bility for finding a 2N SRC in the nucleus. Due to surface
effects, isospin asymmetry, and the combinatorics of select-
ing several nucleons, Eq. (B19) is not exact, but should have
corrections on the order of 1

A that can be neglected for large
nuclei.

Now, we proceed to calculate the cut diagram Fig. 16. We
have V̂3N = V̂2N , with V̂2N given in Eq. (B1). Besides the
on-shell specators, Fig. 16 has two (off-shell) intermediate
states on each side of V̂3N . The energy denominators of these
states are defined by D12 and D23, with the notational details
given in Fig. 16. The nucleons’ initial and final momenta
are denoted ki , and light cone fractions are given by βi =
3

k+
i

p+
3N

. We will work in an approximation where the initial

nucleons are collinear, so βi = 1 andkiT = 0. The innermost

momenta are denoted pi and their fractions αi = 3
p+
i

p+
3N

. The

intermediate momentum of nucleon “2” between k2 and p2

is denoted p′
2, and its light cone fraction is α′

2 = 3
p′

2
+

p+
3N

. σi

and λi are helicities of nucleons with momenta ki and pi ,
while λ′

i and λ′′
i are helicities at intermediate states.

In the calculation that follows, we use an approximation
where the off-shell NN to of-shell NN transition depends
only on the larger off-shellness, which in principle requires
the smaller off-shellness to be much smaller than the larger
one.
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3

ki pi 1
2

p2

V̂

3

ki pi 1
2

p1

V̂

(a) (b)

Fig. 17 Alternate topologies for cut diagrams for 3N SRCs

Applying Feynman rules for light-cone perturbation the-
ory, one obtains:

ρ3N (α,pT ) = 1

8

∑
σ1,σ2,σ3

∫
dp+

2 dp−
2 d2p2T

2(2π)4

dp+
3 dp−

3 d2p3T

2(2π)4

×
[
ūσ1(k1)ū

σ2(k2)ū
σ3(k3)

�
(2,3)
pn√

2

×
⎛
⎝∑

λ3

uλ3(p3)ū
λ3(p3)�(p+

3 )

⎞
⎠((2π)δ(1)(p2

3 − m2
N )
)

×
∑

λ′
2
uλ′

2(p′
2)ū

λ′
2(p′

2)�(p′
2
+
)

p′
2
+D23

× �
(1,2)
pn√

2

1

D12

⎛
⎝∑

λ2

uλ2(p2)ū
λ2(p2)�(p+

2 )

⎞
⎠

×
(
(2π)δ(1)(p2

2 − m2
N )
)

×
∑

λ1
uλ1(p1)ūλ1(p1)�(p+

1 )

p+
1

V̂3N (α,pT )

×
∑

λ′
1
uλ′

1(p1)ūλ′
1(p1)�(p+

1 )

p+
1

1

D12

�
(1,2)
pn√

2

×
∑

λ′′
2
uλ′′

2 (p′
2)ū

λ′′
2 (p′

2)�(p′
2
+
)

p′
2
+D23

�
(2,3)
pn√

2

×uσ1(k1)u
σ2(k2)u

σ3(k3)

]
. (B20)

First, we examine the intermediate state denominators. For
D23 one has:

D23 = (
k−

1 + k−
2 + k−

3

)−
(
k−

1 + p′
2
− + p−

3

)
= k−

2 + k−
3 − p′

2
− − p−

3

= m2
N

k+
2

+ m2
N

k+
3

− m2
N + p2

3T

p′
2
+ − m2

N + p2
3T

p+
3

, (B21)

where we used the fact that p′
2T = −p3T . We define the total

momentum of the two-nucleon pair (2, 3)

p+
23 = p′

2
+ + p+

3 = k+
2 + k+

3 , (B22)

and two relative light cone fractions

γ ′
2 = 2

p′
2
+

p+
23

= 2 − α3 (B23)

γ3 = 2
p+

3

p+
23

= α3. (B24)

Using the collinear approximation, in which case
k+

2
p+

23
=

k+
3
p+

23
= 1

2 , one obtains

D23 = 1

p+
23

(
m2

N

1/2
+ m2

N

1/2
− m2

N + p2
3T

γ ′
2/2

− m2
N + p2

3T

γ3/2

)

= 1

p+
23

(
4m2

N − 4

[
m2

N + p2
3T

γ ′
2γ3

])
. (B25)

Except for the factor of 1
p+

23
, this is part of the denominator

of the two-nucleon wave function, and in analogy to the two-
nucleon SRC we introduce the light-cone relative momentum
of the “23” nucleon pair as

k2
23 ≡ (γ ′

2 − 1)2m2
N + p2

3T

γ ′
2γ3

= (1 + α3)
2m2

N + p2
3T

α3(2 − α3)
. (B26)

For the energy denominator of “12” state one has:

D12 = (
k−

1 + k−
2 + k−

3

)− (
p−

1 + p−
2 + p−

3

)
= m2

N

(
1

k+
1

+ 1

k+
2

+ 1

k+
3

)

−
(
m2

N +p2
1T

p+
1

+m2
N + [

p1T + p3T
]2

p+
2

+m2
N +p2

3T

p+
3

)
. (B27)

Introducing the total momentum of the pair (1, 2)

p+
12 = p+

1 + p+
2 = k+

1 + p′
2
+
, (B28)

and relative light cone fractions

γ1 = 2
p+

1

p+
12

= 2
α1

3 − α3
(B29)
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γ2 = 2
p+

2

p+
12

= 2
3 − α1 − α3

3 − α3
, (B30)

a similar derivation to that for the “23” energy denominator
result in:

D12 = 1

p+
12

(
m2

12 − 4

[
m2

N + [
p1T + γ1

2 p3T
]2

γ1γ2

])
, (B31)

where m2
12 is the invariant mass squared of the 2N system,

given by:

m2
12 = m2

N

(
9p+

12

p+
3N

− p+
12

p+
3

)
− p2

3T

(
p+

12

p+
3

+ 1

)

= m2
N

(
9

3 − α3

3
− 3 − α3

α3

)
− p2

3T
p+

3N

p+
3

=
[

10 − 3

(
α3 + 1

α3

)]
m2

N − 3

α3
p2

3T = 4m2
N − �, (B32)

where

� = 3

[
α3 + 1

α3
− 2

]
m2

N + 3

α3
p2

3T ≥ 0. (B33)

The term � accounts for the off-shellness of the 2N pair
in the intermediate state and decreases its invariant mass. If
m2

12 ≈ 4m2
N , then Eq. (B31) can be interpreted as the denom-

inator of a 2N wave function [cf. Eq. (B9)], with −p3T as
the total transverse momentum of the 2N pair. Its momentum
argument can be defined as

k2
12 = (γ1 − 1)2m2

N + [
p1T + γ1

2 p3T
]2

γ1γ2
= (3 − α3)

2

4

×
⎡
⎢⎣
(

2α1
3−α3

− 1
)2

m2
N +

(
p1T + α1

3−α3
p3T

)2

α1(3 − α1 − α3)

⎤
⎥⎦ . (B34)

The ability to interpret D12 as the denominator of a two-
nucleon wave function is dependent on k2

12  �, so that the
difference between 4m2

N − 4(k2
12 +m2

N ) and m2
12 − 4(k2

12 +
m2

N ), which is �, is negligible compared to the scales con-
sidered. This approximation is valid for large k2

12, which is
the domain of relevance of three-nucleon SRCs.

Using the intermediate state denominators, and Eq. (B9)
for the two-nucleon wave function, we have

ρ3N (α,pT ) = 1

8

∑
σ1,σ2,σ3

∑
λ1,λ

′
1,λ2

λ′
2,λ′′

2 ,λ3

∫
dp+

2 dp−
2 d2p2T

2(2π)4

× dp+
3 dp−

3 d2p3T

2(2π)4

[
(2π)6(p+

12 p
+
23)

2

4(p+
1 p′

2
+
)2

× ψ†(λ′
2,λ3;σ2,σ3)(γ ′

2,−p3T )

× ψ†(λ1,λ2;σ2,λ′
2)
(
γ1,p1T + γ1

2
p3T

)
× ūλ1(p1)V̂3N (α,pT )uλ′

1(p1)

× ψ(λ′
1,λ2;σ2,λ′′

2)
(
γ1,p1T + γ1

2
p3T

)
× ψ(λ′′

2 ,λ3;σ2,σ3)(γ ′
2,−p3T )

×
(
(2π)δ(1)(p2

2 − m2
N )
) (

(2π)δ(1)(p2
3 − m2

N )
) ]

. (B35)

Next, the delta functions available are used to eliminate sev-
eral of the integrations. In particular,

(
(2π)δ(1)(p2

2 − m2
N )
) dp+

2 dp−
2 d2p2T

2(2π)4 = dp+
2 d2p2T

2p+
2 (2π)3

= dα2d2p2T

2α2(2π)3 ,

and likewise for nucleon “3.” Additionally,

δ(1)(α − α1)δ
(2)(pT − p1T )

dα2d2p2T

2α2(2π)3

= δ(1)(α − α1)δ
(2)(pT − p1T )

dα1d2p1T

2α2(2π)3 = 1

2α2(2π)3 .

Applying also the rules for creation and annihilation opera-
tors according to Eq. (B2), and noticing that integrands with
λ′

2 �= λ′′
2 diminish, one arrives at

ρ3N (α,pT ) =
∫

dα3d2p3T

α2α3

×
[

α2(p+
12 p

+
23)

2

16(p+ p′
2
+
)2

|ψ2N (k12)|2 |ψ2N (k23)|2
]
, (B36)

where initial spins have been averaged over and final spins
have been summed. Finally, using the relation

α2(p+
12 p

+
23)

2

16(p+ p′
2
+
)2

=
{

3 − α3

2(2 − α3)

}2

,
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one obtains

ρ3N (α,pT ) =
∫

dα3d2p3T

α2α3

×
[{

3 − α3

2(2 − α3)

}2

|ψ2N (k12)|2 |ψ2N (k23)|2
]
. (B37)

We find numerically that ρ3N (α,pT ) satisfies the required
normalization condition of Eq. (B18). Thus, through Eq. (B19),
and the threshold conditions k12 > kF and k23 > kF , we have

ρ
(3)
N/A(α,pT ) = {a2(A)}2

∫
dα3d2p3T

α2α3

{
3 − α3

2(2 − α3)

}2

× |ψd(k12)|2 �(k12 − kF )

× |ψd(k23)|2 �(k23 − kF ). (B38)

Eq. (31) now follows by using the relation f (3)
N/A(α,pT ) =

1
α
ρ

(3)
N/A(α,pT ).
A more detailed account of the derivation of the 3N SRC

density matrix can be found in an upcoming work [79].

Appendix C: Relationship between two- and three-fold
differential cross sections

Here, we present a brief derivation of the relationship
between d2σ/dmJ Jdy∗ used in Ref. [72] and d3σ/dp2

T
dη3dη4 used here.

Reference [72] distinguishes between rapidity y and
pseudo-rapidity η, but calculations in this work are done at
leading order, for which y = η. Using this equality, we denote
rapidity using η instead of y. With jet rapidities η3 and η4, η̄

is the rapidity of the dijet as a whole, and η∗ is the rapidity
of an individual jet in the dijet center-of-mass frame, where

η̄ = η3+η4
2 (C1)

η̄∗ = η3−η4
2 . (C2)

The Jacobian for the transformation from (η3, η4) to (η̄, η∗)
gives us dη3dη4 = 2dη̄dη∗. In addition to the rapidity in the
center-of-mass frame η∗, Ref. [72] uses the dijet mass mJ J ,
which is given by

m2
J J = (p3 + p4)

2 = 4p2
T cosh2(η∗), (C3)

or mJ J = 2pT cosh(η∗). We note that the overall Jacobian
is given by dp2

T dη3dη4 = 2pT
cosh(η∗)dmJ Jdη̄dη∗, and thus the

two-fold differential cross section given in Ref. [72] can be

written as

2d2σ

dmJ Jdη∗ = 4pT
cosh(η∗)

∫
dη̄

d3σ

dη3dη4dp2
T

. (C4)

References

1. L.L. Frankfurt, M.I. Strikman, Phys. Rep. 160, 235 (1988)
2. M. Sargsian, J. Arrington, W. Bertozzi, W. Boeglin, C. Carlson

et al., J. Phys. G29, R1 (2003). arXiv:nucl-th/0210025 [nucl-th]
3. L.L. Frankfurt, M.I. Strikman, Phys. Rep. 76, 215 (1981)
4. L. Frankfurt, M. Strikman, D. Day, M. Sargsian, Phys. Rev. C 48,

2451 (1993)
5. J.L. Aclander, J. Alster, D. Barton, G. Bunce, A. Carroll et al., Phys.

Lett. B 453, 211 (1999)
6. A. Tang, J. Watson, J.L. Aclander, J. Alster, G. Asryan et al., Phys.

Rev. Lett. 90, 042301 (2003). arXiv:nucl-ex/0206003 [nucl-ex]
7. K. Egiyan, et al. ( CLAS Collaboration), Phys. Rev. C 68, 014313

(2003). arXiv:nucl-ex/0301008 [nucl-ex]
8. K. Egiyan, et al. (CLAS Collaboration), Phys. Rev. Lett.96, 082501

(2006). arXiv:nucl-ex/0508026 [nucl-ex]
9. E. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman, J. Watson,

Phys. Rev. Lett. 97, 162504 (2006). arXiv:nucl-th/0604012 [nucl-
th]

10. R. Shneor et al. ( Jefferson Lab Hall A Collaboration), Phys. Rev.
Lett. 99, 072501 (2007). arXiv:nucl-ex/0703023 [nucl-ex]

11. R. Subedi, R. Shneor, P. Monaghan, B. Anderson, K. Aniol et al.,
Science 320, 1476 (2008). arXiv:0908.1514 [nucl-ex]

12. L. Frankfurt, M. Sargsian, M. Strikman, Int. J. Mod. Phys. A 23,
2991 (2008). arXiv:0806.4412 [nucl-th]

13. N. Fomin, J. Arrington, R. Asaturyan, F. Benmokhtar, W. Boeglin
et al., Phys. Rev. Lett. 108, 092502 (2012). arXiv:1107.3583 [nucl-
ex]

14. J. Arrington, D. Higinbotham, G. Rosner, M. Sargsian, Prog. Part.
Nucl. Phys. 67, 898 (2012). arXiv:1104.1196 [nucl-ex]

15. J. Arrington, A. Daniel, D. Day, N. Fomin, D. Gaskell et al., Phys.
Rev. C 86, 065204 (2012). arXiv:1206.6343 [nucl-ex]

16. I. Korover, N. Muangma, O. Hen, R. Shneor, V. Sulkosky et al.,
Phys. Rev. Lett. 113, 022501 (2014). arXiv:1401.6138 [nucl-ex]

17. A. Benvenuti et al. BCDMS Collaboration, Z. Phys. C 63, 29 (1994)
18. M. Vakili et al. (CCFR Collaboration), Phys. Rev. D 61, 052003

(2000). arXiv:hep-ex/9905052 [hep-ex]
19. P.E. Bosted, A. Lung, L. Andivahis, L. Stuart, J. Alster et al., Phys.

Rev. C 46, 2505 (1992)
20. N. Fomin, J. Arrington, D. Day, D. Gaskell, A. Daniel et al., Phys.

Rev. Lett. 105, 212502 (2010). arXiv:1008.2713 [nucl-ex]
21. J. Dudek, R. Ent, R. Essig, K.S. Kumar, C. Meyer et al., Eur. Phys.

J. A 48, 187 (2012)
22. J. Arrington et al., Jefferson lab experiment 12-06-105: inclu-

sive scattering from nuclei at x 1 in the quasielastic and
deeply inelastic regimes. http://www.jlab.org/exp_prog/proposals/
06/PR12-06-105.pdf

23. J. Collins, Foundations of perturbative QCD (2011)
24. R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and collider physics,

vol. 8 (1996) pp. 1–435
25. K. Eskola, V. Kolhinen, C. Salgado, Eur. Phys. J. C 9, 61 (1999).

arXiv:hep-ph/9807297 [hep-ph]
26. D. de Florian, R. Sassot, Phys. Rev. D 69, 074028 (2004).

arXiv:hep-ph/0311227 [hep-ph]
27. M. Hirai, S. Kumano, T.-H. Nagai, Phys. Rev. C 76, 065207 (2007).

arXiv:0709.3038 [hep-ph]
28. K. Eskola, H. Paukkunen, C. Salgado, JHEP 0904, 065 (2009).

arXiv:0902.4154 [hep-ph]

123

http://arxiv.org/abs/nucl-th/0210025
http://arxiv.org/abs/nucl-ex/0206003
http://arxiv.org/abs/nucl-ex/0301008
http://arxiv.org/abs/nucl-ex/0508026
http://arxiv.org/abs/nucl-th/0604012
http://arxiv.org/abs/nucl-ex/0703023
http://arxiv.org/abs/0908.1514
http://arxiv.org/abs/0806.4412
http://arxiv.org/abs/1107.3583
http://arxiv.org/abs/1104.1196
http://arxiv.org/abs/1206.6343
http://arxiv.org/abs/1401.6138
http://arxiv.org/abs/hep-ex/9905052
http://arxiv.org/abs/1008.2713
http://www.jlab.org/exp_prog/proposals/06/PR12-06-105.pdf
http://www.jlab.org/exp_prog/proposals/06/PR12-06-105.pdf
http://arxiv.org/abs/hep-ph/9807297
http://arxiv.org/abs/hep-ph/0311227
http://arxiv.org/abs/0709.3038
http://arxiv.org/abs/0902.4154


534 Page 28 of 28 Eur. Phys. J. C (2015) 75 :534

29. D. de Florian, R. Sassot, P. Zurita, M. Stratmann, Phys. Rev. D85,
074028 (2012). arXiv:1112.6324 [hep-ph]

30. H. Honkanen, M. Strikman, V. Guzey, (2013). arXiv:1310.5879
[hep-ph]

31. M. Arneodo, Phys. Rep. 240, 301 (1994)
32. D.F. Geesaman, K. Saito, A.W. Thomas, Ann. Rev. Nucl. Part. Sci.

45, 337 (1995)
33. L. Frankfurt, M. Strikman, Nucl. Phys. B 148, 107 (1979)
34. E. Moniz, I. Sick, R. Whitney, J. Ficenec, R.D. Kephart et al., Phys.

Rev. Lett. 26, 445 (1971)
35. M.V. Zverev, E.E. Saperstein, Yad. Fiz. 43, 304 (1986)
36. M. McGauley, M.M. Sargsian, (2011). arXiv:1102.3973 [nucl-th]
37. H. Feldmeier, W. Horiuchi, T. Neff, Y. Suzuki, Phys. Rev. C 84,

054003 (2011). arXiv:1107.4956 [nucl-th]
38. M.M. Sargsian, Phys. Rev. C 89, 034305 (2014). arXiv:1210.3280

[nucl-th]
39. O. Hen, M. Sargsian, L. Weinstein, E. Piasetzky, H. Hakobyan

et al., Science 346, 614 (2014). arXiv:1412.0138 [nucl-ex]
40. M. Alvioli, C. Ciofi Degli Atti, L.P. Kaptari, C.B. Mezzetti, H.

Morita, Int. J. Mod. Phys. E 22, 1330021 (2013). arXiv:1306.6235
[nucl-th]

41. R. Wiringa, R. Schiavilla, S.C. Pieper, J. Carlson, (2013).
arXiv:1309.3794 [nucl-th]

42. M.M. Sargsian, J. Phys. Conf. Ser. 496, 012007 (2014).
arXiv:1312.2263 [nucl-th]

43. M. Vanhalst, W. Cosyn, J. Ryckebusch (2014). arXiv:1405.3814
[nucl-th]

44. M. Lacombe, B. Loiseau, J. Richard, R. Vinh,Mau, J. Cote et al.,
Phys. Rev. C 21, 861 (1980)

45. M. Sargsian, T. Abrahamyan, M. Strikman, L. Frankfurt, Phys. Rev.
C 71, 044615 (2005). arXiv:nucl-th/0501018 [nucl-th]

46. D.W. Higinbotham, O. Hen, (2014). arXiv:1409.3069 [nucl-ex]
47. Y. Bayukov, V. Efremenko, S. Frankel, W. Frati, M. Gazzaly et al.,

Phys. Rev. C 20, 764 (1979)
48. J. Aubert et al. European Muon Collaboration, Phys. Lett. B 123,

275 (1983)
49. G.A. Miller, J.R. Smith, Phys. Rev. C 65, 015211 (2002).

arXiv:nucl-th/0107026 [nucl-th]
50. J.R. Smith, G.A. Miller, Phys. Rev. C 65, 055206 (2002).

arXiv:nucl-th/0202016 [nucl-th]
51. J. Seely, A. Daniel, D. Gaskell, J. Arrington, N. Fomin et al., Phys.

Rev. Lett. 103, 202301 (2009). arXiv:0904.4448 [nucl-ex]
52. P. Norton, Rept. Prog. Phys. 66, 1253 (2003)

53. K. Rith, (2014). arXiv:1402.5000 [hep-ex]
54. L. Frankfurt, M. Strikman, Nucl. Phys. B 250, 143 (1985)
55. S.A. Kulagin, G. Piller, W. Weise, Phys. Rev. C 50, 1154 (1994).

arXiv:nucl-th/9402015 [nucl-th]
56. W. Melnitchouk, M. Sargsian, M. Strikman, Z. Phys. A 359, 99

(1997). arXiv:nucl-th/9609048 [nucl-th]
57. M. Frank, B. Jennings, G. Miller, Phys. Rev. C 54, 920 (1996).

arXiv:nucl-th/9509030 [nucl-th]
58. J. Gomez, R. Arnold, P.E. Bosted, C. Chang, A. Katramatou et al.,

Phys. Rev. D49, 4348 (1994)
59. R. Arnold, P.E. Bosted, C. Chang, J. Gomez, A. Katramatou et al.,

Phys. Rev. Lett. 52, 727 (1984)
60. A. Bodek, M. Breidenbach, D. Dubin, J. Elias, J.I. Friedman et al.,

Phys. Rev. D20, 1471 (1979)
61. A. Bodek, J. Ritchie, Phys. Rev. D 23, 1070 (1981)
62. A. Bodek, J. Ritchie, Phys. Rev. D 24, 1400 (1981)
63. L. Frankfurt, M. Strikman, Int. J. Mod. Phys. E 21, 1230002 (2012).

arXiv:1203.5278 [hep-ph]
64. J. Arrington, R. Ent, C. Keppel, J. Mammei, I. Niculescu, Phys.

Rev. C73, 035205 (2006). arXiv:nucl-ex/0307012 [nucl-ex]
65. J. Gao, M. Guzzi, J. Huston, H.-L. Lai, Z. Li et al., Phys. Rev. D89,

033009 (2014). arXiv:1302.6246 [hep-ph]
66. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)
67. V. Gribov, L. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)
68. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)
69. L. Frankfurt, V. Guzey, M. Strikman, Phys. Rep. 512, 255 (2012).

arXiv:1106.2091 [hep-ph]
70. B.L. Combridge, J. Kripfganz, J. Ranft, Phys. Lett. B70, 234 (1977)
71. R.K. Ellis, J. Sexton, Nucl. Phys. B269, 445 (1986)
72. G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 86, 014022

(2012). arXiv:1112.6297 [hep-ex]
73. M. Cacciari, G.P. Salam, G. Soyez, JHEP 0804, 063 (2008).

arXiv:0802.1189 [hep-ph]
74. D. Perepelitsa, private communication
75. G. Aad et al. (ATLAS), (2014). arXiv:1412.4092 [hep-ex]
76. A. Accardi, J. Albacete, M. Anselmino, N. Armesto, E. Aschenauer

et al. (2012). arXiv:1212.1701 [nucl-ex]
77. S.J. Brodsky, H.-C. Pauli, S.S. Pinsky, Phys. Rep. 301, 299 (1998).

arXiv:hep-ph/9705477 [hep-ph]
78. C. Ciofi degli Atti, S. Simula, Phys.Rev. C 53, 1689 (1996).

arXiv:nucl-th/9507024 [nucl-th]
79. O. Artilles, A. Freese, M. Sargsian, in progress

123

http://arxiv.org/abs/1112.6324
http://arxiv.org/abs/1310.5879
http://arxiv.org/abs/1102.3973
http://arxiv.org/abs/1107.4956
http://arxiv.org/abs/1210.3280
http://arxiv.org/abs/1412.0138
http://arxiv.org/abs/1306.6235
http://arxiv.org/abs/1309.3794
http://arxiv.org/abs/1312.2263
http://arxiv.org/abs/1405.3814
http://arxiv.org/abs/nucl-th/0501018
http://arxiv.org/abs/1409.3069
http://arxiv.org/abs/nucl-th/0107026
http://arxiv.org/abs/nucl-th/0202016
http://arxiv.org/abs/0904.4448
http://arxiv.org/abs/1402.5000
http://arxiv.org/abs/nucl-th/9402015
http://arxiv.org/abs/nucl-th/9609048
http://arxiv.org/abs/nucl-th/9509030
http://arxiv.org/abs/1203.5278
http://arxiv.org/abs/nucl-ex/0307012
http://arxiv.org/abs/1302.6246
http://arxiv.org/abs/1106.2091
http://arxiv.org/abs/1112.6297
http://arxiv.org/abs/0802.1189
http://arxiv.org/abs/1412.4092
http://arxiv.org/abs/1212.1701
http://arxiv.org/abs/hep-ph/9705477
http://arxiv.org/abs/nucl-th/9507024

	Probing superfast quarks in nuclei through dijet production  at the LHC
	Abstract 
	1 Introduction
	2 Basic formalism
	2.1 Jet kinematics
	2.2 Dijet cross section

	3 Nuclear PDFs
	3.1 Light cone distribution and SRCs
	3.1.1 Mean field distribution
	3.1.2 Two-nucleon correlations
	3.1.3 Three-nucleon correlations

	3.2 Medium modifications
	3.2.1 Correctly defining x
	3.2.2 Color screening model of the EMC effect
	3.2.3 Evolution of medium modifications


	4 Hard subprocesses
	5 Numerical estimates
	5.1 Kinematics considered
	5.2 Three-fold differential cross section
	5.3 Partially integrated cross section
	5.4 Jet resolution

	6 Conclusions
	Acknowledgments
	Appendix A: Derivation of impulse approximation
	Appendix B: Light cone densities for short range correlations
	Appendix B1: 2N correlations
	Appendix B2: 3N correlations

	Appendix C: Relationship between two- and three-fold differential cross sections
	References




