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Abstract From the world-sheet point of view we com-
pute three, four and five point BPS and non-BPS scat-
tering amplitudes of type IIA and IIB superstring theory.
All these mixed S-matrix elements including a Ramond–
Ramond closed string (RR) in the bulk and a scalar/gauge
or tachyons with all different pictures (including an RR in
asymmetric and symmetric pictures) have been carried out.
We have also shown that in asymmetric pictures various equa-
tions must be kept fixed. More importantly, by direct calcu-
lations on the upper half plane, it is realised that some of
the equations (which must be true) for BPS branes cannot be
necessarily applied to non-BPS amplitudes. We also derive
the S-matrix elements of 〈V−2

C V 0
φ V

0
AV

0
T 〉 and clarify the fact

that in the presence of the scalar field and an RR, the terms
carrying momentum of an RR in the transverse directions
play an important role in the entire form of the S-matrix and
their presence is needed in order to have gauge invariance
for the entire S-matrix elements of type IIA (IIB) superstring
theory.

1 Introduction

In a very important paper [1], it has been extensively clari-
fied that the sources for all different kinds of D-branes are
Ramond–Ramond (RR) fields. It is worthwhile looking at
some concrete references regarding RR fields [2,3]. Besides
them, RR fields play a very crucial effect in understanding
the phenomenon of dielectric branes which was first demon-
strated by Myers in [4]. Having employed several RR cou-
plings of [5], we could explore and interpret the N 3 entropy
of M5 branes as well.

a e-mail: ehsanhatefi@gmail.com

It is also well known that if one wants to work with the
effective actions of type IIA, IIB string theory, then one needs
to deal with DBI and Chern–Simons effective actions, which
can be accordingly found in [6–9].1

By making use of the scattering theory of D-branes in the
world volume of BPS branes in type II string theory we have
also explored various new Chern–Simons couplings includ-
ing their all order α′ corrections to the low energy effective
actions of D-branes. In fact it is explained in detail that for
BPS (non-BPS) branes all the corrections to D-brane effec-
tive actions can just be derived by having the entire form
of S-matrix and not by any other tools like T-duality trans-
formation. The reason for this sharp conclusion is that by
having the S-matrix we are able to actually fix all the coef-
ficients of the effective field theory couplings (and also their
higher order α′ corrections) without any ambiguities (see
[11,12] for BPS and [13,14] for non-BPS branes). In fact,
all the three different ways of obtaining the couplings in the
effective field theory involving pull-back, Taylor expansions
and new Wess–Zumino terms (the generalisation to Myers
action) have also been explained in [11].

It is emphasised in [15–17] that to get to the effective the-
ory of non-supersymmetric cases or non-BPS branes one has
to integrate out all the massive modes and needs to effectively
work just with the massless strings such as scalar and gauge
fields and also employ the real components of tachyon fields.

There are various motivations to perform scattering theory
of all BPS and non-BPS branes; basically one of the main
reasons to employ it, is to actually have the entire form of
S-matrix elements which is a physical quantity; and the other
motivation would be to deal with its strong potential of gain-

1 Some of the new curvature corrections of type II have been recently
obtained in [10].
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ing new terms including their corrections (of course without
any ambiguity) to string theory’s effective actions.

Having set up this formalism, one may end up obtaining
several new couplings for all BPS branes in the RNS formal-
ism [18–23] and eventually one could investigate a proposal
for the corrections to some of the couplings [24]. In particular
it is shown that some of these couplings must be employed
to be able to work with some of the applications of either
M-theory [25,26] or gauge–gravity duality [27].

One might look for various applications in the world vol-
ume of non-BPS branes as some of them were comprehen-
sively pointed out in [13,14], but for concreteness we high-
light some of them again.

As an instance in [28] it has been illustrated that as long as
the effective field theory description holds, in the large vol-
ume case (despite having the non-supersymmetric cases), the
AdS minima are indeed stable vacua. Not only the phenom-
ena of the production of the branes are investigated in [29–34]
but also inflation in the language of D-brane and anti-D-brane
systems in string theory was shown to occur [35–38]. It is
also worth mentioning that tachyons of type IIA (IIB) super-
string theory (with odd-parity) have been taken into account
to gain various insights in some holographic QCD models
[39,40] as well.

In [41] various issues on the scattering amplitudes have
been extensively discussed, however, one has to be concerned
about some other issues on the mixed amplitudes involving
an RR and some other open strings for which some of them
have been empirically addressed in [24]. The content of this
paper is beyond what has been appeared in those references.
Indeed we would like to understand in the presence of a sym-
metric and an asymmetric picture of an RR, a scalar field and
some other open strings what happens to the terms that carry
momentum of an RR in the transverse directions, arguing
that the S-matrices that satisfy the Ward identity do involve
all the contact interactions, which are definitely the correct
S-matrices.

The paper organised as follows. In the next section, first
we try address the full details of a three point2 scattering com-
putations of an RR in an asymmetric picture (C−2 picture,
in terms of its potential; not its field strength) and a scalar
field. Then we carry out the same S-matrix in a symmetric
picture of an RR (the C−1 picture, in terms of the RR’s field
strength) and the scalar picture in the (−1) picture. Finally,
we compare both S-matrices and make remarks on a Bianchi
identity that must be true to get to picture independent result.
For completeness we address CT,CA amplitudes as well.

The four point correlation function of 〈T (0)T (0)C (−2)〉
in the world volume of a D-brane–anti-D-brane system has
also been carried out to show that the result is the same as

2 The three point function from the world-sheet point of view and two
point function from the space-time prospective.

〈T (−1)T (0)C (−1)〉 [42]. This clearly confirms that there is
not any issue as of the picture being dependent on the mixed
closed string RR and strings that move on the world volume
space, such as gauge fields or tachyons (but not scalar fields).3

Hence due to momentum conservation along the world
volume of the branes and as long as we are dealing with
world volume gauge fields and/or tachyons in the presence
of an RR, there is not any issue about choosing the picture
of an RR (in a symmetric or an asymmetric case).4

However, because there is a non-zero correlation function
between an RR and scalar in the zero picture and also due to
the fact that the terms carrying momentum of an RR in the
transverse directions (pi , p j ) cannot be derived by any dual-
ity transformations [11,13,14,43], one has to be concerned
about various issues. In the following we leave various sub-
tleties that have to be considered for the mixed amplitudes
involving an RR, a scalar and some arbitrary numbers of
gauges or tachyons in the world volume of BPS, brane–anti-
brane and non-BPS systems.

We then start calculating all the four point non-BPS func-
tions of type II in their all different pictures 〈T (−1)φ(0)C (−1)〉,
〈T (0)φ(−1)C (−1)〉, and 〈T (0)φ(0)C (−2)〉. In the case of 〈T (−1)

φ(0)C (−1)〉 we see the term that carries momentum of an
RR in the transverse direction disappears after applying a
Bianchi identity equation, however, we claim that one has
to be careful about these transverse (pi , p j ) terms in higher
point functions as their presence plays a crucial role in the
gauge invariance of the higher point mixed amplitudes. There
is a non-zero correlation function between an RR and the
first part of the vertex operator of the scalar field in the
zero picture and therefore one needs to think about those
terms that carry momentum of an RR in the transverse
direction (pi , p j ) as they cannot be derived by any dual-
ity transformation [11]. Indeed by direct computations of
scattering amplitudes of BPS branes, we observe that sev-
eral Bianchi identities must hold for the BPS cases, whereas
we show that these equations cannot be necessarily true for
non-BPS branes (say for 〈T (0)T (0)T (0)C (−2)〉), otherwise
the whole non-supersymmetric S-matrix vanishes. For com-
pleteness we perform 〈φ(0)A(0)C (−2)〉, 〈φ(−1)A(0)C (−1)〉
and 〈φ(0)A(−1)C (−1)〉 as well.

We also would like to go over to some of the mixed RR,
scalar and tachyon five point functions of either brane/anti-
brane or non-BPS branes to see what happens, if we carry
them out in both a symmetric and an asymmetric picture of

3 This is so because the polarisation of the scalar field is in the bulk and
there is a non-zero correlator between an RR and the first term of the
scalar vertex operator in the zero picture as 〈ei p.x(z)∂i x i (x1)〉 is non-
zero. Basically one needs to be concerned about the terms that carry
momentum of the RR in the transverse directions (pi ’s terms).
4 In fact in order to get the final answer for these S-matrices as fast as
possible, one could put an RR and a gauge field in the (−1) picture and
the other tachyons/gauges in the zero picture.
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an RR accordingly. In fact for a scattering amplitude of the
brane–anti-brane system (including a scalar, tachyons and
an RR), we have three different choices.5 Indeed for these
particular amplitudes there is no Ward identity and a priori
one does not know which specific picture gives us the correct
S-matrix, where we claim and establish the fact that already
at the level of S-matrix for a brane/anti-brane, one needs
to know some generalised Bianchi identities to be able to
produce all the effective field theory couplings.

Most importantly, we show that the terms that carry
momentum of an RR in the transverse directions (pi , p j ),
which are singular in 〈φ(0)T (−1)T (0)C (−1)〉 and 〈φ(0)T (0)T (0)

C (−2)〉 amplitudes remain after taking integrations prop-
erly on the upper half plane, while these terms are absent
in 〈φ(−1)T (0)T (0)C (−1)〉. Hence in order to remove all the
apparent singularities of the brane/anti-brane, we introduce
new Bianchi identities at the level of the world-sheet.

We then move on to obtain the 〈T (0)T (0)T (0)C (−2)〉 S-
matrix and determine the fact that if we apply some of the
Bianchi identities of BPS branes to this non-BPS amplitude
then the whole S-matrix disappears; so this clearly confirms
that those Bianchi equations of BPS branes must not be true
for non-BPS amplitudes. The reason is that there are non-zero
field theory couplings in the world volume of non-BPS branes
that have to be produced by a non-zero S-matrix of an RR
and three tachyons. We will also mention several subtleties
that potentially have something to do with some of the issues
on the perturbative string theory that are left and have been
pointed out in a series of papers by Witten [44–47].

The five point correlations of 〈V−1
C V−1

φ V 0
T V

0
A〉 have been

computed in [48]. In order to see what happens to the gauge
invariance of the amplitudes we address the same amplitude
but with a different picture of a scalar, 〈V−1

C V 0
φ V

−1
A V 0

T 〉.
Given the fact that the vertex operator of a scalar field in the

zero picture carries two different terms and in particular its
first part has a non-zero correlation function with an RR, we
see that here the terms carrying momentum of an RR (all p.ξ
terms) survive after performing an integration on the upper
half plane. In fact due to all non-vanishing p.ξ terms the
final form of the S-matrix does not satisfy the Ward identity
associated to gauge field unless we introduce new Bianchi
identities. Since we cannot give up gauge invariance of the
S-matrix, we need to come up with some ideas. That is why
we look at the same S-matrix in an asymmetric picture of an
RR 〈V−2

C V 0
φ V

0
T V

0
A〉, where in this picture upon considering

the known Bianchi identities not only will we observe that
the amplitude respects the Ward identity associated to the
gauge field, but also we are able to obtain the whole contact
interactions of the related S-matrix.

5 We have 〈φ(−1)T (0)T (0)C (−1)〉, 〈φ(0)T (−1)T (0)C (−1)〉 and
〈φ(0)T (0)T (0)C (−2)〉.

We may wonder why we cannot see the term that carries
momentum of an RR in the transverse direction in four point
functions, say 〈V−1

C V 0
φ V

−1
A 〉. The answer is that in these func-

tions we do have that particular term, however, after gauge
fixing the integral should be taken on the whole space-time
(from −∞ to ∞) and since the integrand (including the pi

term) is odd, the final result naturally is zero. But this does
not happen for five point functions any more; basically, for
five and higher point functions after fixing SL(2, R) invari-
ance we need to take the integrals on the position of closed
string and the remaining terms involving (pi , p j ) terms are
not vanishing. Even these terms might not satisfy the Ward
identity. The resolution to this is to either introduce some new
Bianchi identities or calculate all of the mixed S-matrices in
symmetric/asymmetric pictures. Let us address the technical
parts by computing three point functions.

2 The φ(0) − C(−2) amplitude

In this section we are going to derive the full S-matrix ele-
ments of one scalar field and one RR in type IIA (IIB) string
theory, where for some reasons we would like to keep an
RR in its asymmetric picture. That is, we consider its vertex
operator in terms of its potential (not its field strength) so we
deal with an RR in the C−3/2,−1/2 picture.

The motivation for doing this computation in different
pictures is that there is no Ward identity for the mixed RR
and a scalar field, and one might wonder what happens in
higher point functions of all mixed amplitudes including an
RR, scalar field and tachyons (but not gauge fields), or one
might ask which particular picture is going to give us the
complete S-matrix elements including all the infinite contact
interactions of string theory.

Note that our notations are such that μ, ν, . . . run over
the whole space-time, a, b, c, . . . and i, j, k, . . . are world
volume and transverse directions, respectively.

Thus, this four point function from the world-sheet point
of view (three point function, from the space-time point of
view) of one scalar and an asymmetric RR closed string is
given by the following correlation function:

AC(−2)φ(0) ∼
∫

dxdzdz̄〈V (−2)
RR (z, z̄)V (0)

φ (x)〉. (1)

Note that the vertex of an RR in an asymmetric picture
has been first proposed by [49] so the vertices can be read
off as follows:

V (0)
φ (x) = ξ1i (∂

i X (x) + iα′k.ψψ i (x))eα′ik.X (x),

V (−2)
RR (z, z̄) = (P−C/ (n−1)Mp)

αβe−3φ(z)/2,

Sα(z)ei
α′
2 p·X (z)e−φ(z̄)/2Sβ(z̄)ei

α′
2 p·D·X (z̄).
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We are considering the disk level amplitude so the RR has
to be put in the middle of the disk, while the scalar field needs
to be replaced just in its boundary. On-shell conditions for
scalar and RR are6

k2 = p2 = 0, k.ξ1 = 0.

For simplicity it is really useful to just make use of the
world-sheet’s holomorphic elements, which means that we
employ some useful change of variables as follows:

X̃μ(z̄) → Dμ
ν Xν(z̄), ψ̃μ(z̄) → Dμ

ν ψν(z̄), φ̃(z̄) → φ(z̄),

and S̃α(z̄) → Mα
β Sβ(z̄).

Some definitions might be important to highlight as well.7

Applying those vertex operators and the Wick theorem,
our desired S-matrix can be written down:∫

dx1dx4dx5(P−C/ (n−1)Mp)
αβ(x45)

−3/4ξ1i

× (I1 + (2ik1a)I2)I,

so that x4 = z = x + iy, x5 = z̄ = x − iy and

I = |x14x15| α′2
2 k1.p|x45| α′2

4 p.D.p, (3)

with

I1 = i pi (x54)
−5/4C−1

αβ

x54

x14x15
. (4)

It is also important to address the following correlator,
which can be obtained by generalising the Wick-like rule
[50,51]:

I2 = 〈: Sα(x4) : Sβ(x5) : ψaψ i (x1) :〉
= 2−1(x14x15)

−1(x45)
−1/4(	iaC−1)αβ.

If we would replace the above correlators inside the
amplitude then we could see that our S-matrix does respect

6 The definition of projector and the field strength of closed string is

P− = 1
2 (1 − γ 11), H/ (n) = an

n! Hμ1...μnγ
μ1 . . . γ μn

where for type IIA (type IIB) n = 2, 4, an = i (n = 1, 3, 5, an = 1)
with (P−H/ (n))

αβ = Cαδ(P−H/ (n))δ
β notation for a spinor.

7 We have

D =
( −19−p 0

0 1p+1

)
,

and Mp =
{ ±i

(p+1)!γ
i1γ i2 . . . γ i p+1εi1...i p+1 for p even,

±1
(p+1)!γ

i1γ i2 . . . γ i p+1γ11εi1...i p+1 for p odd,

where now the propagators for all world-sheet fields are

〈Xμ(z)Xν(w)〉 = −α′

2
ημν log(z − w),

〈ψμ(z)ψν(w)〉 = −α′

2
ημν(z − w)−1,

〈φ(z)φ(w)〉 = − log(z − w). (2)

the SL(2, R) invariance. We gauge fix it as (x1, z, z̄) =
(∞, i,−i), so that the final result of our S-matrix in this
certain picture is

Aφ0,C−2 = [−i piTr(P−C/ (n−1)Mp)

+ik1aTr(P−C/ (n−1)Mp	
ia)]ξ1i . (5)

As can be seen from the above S-matrix, it seems to have
two different terms in our amplitude, while below we show
that some crucial subtleties are needed. Note that after the
derivation of the S-matrix, one could start writing all its field
theory couplings to be compared with the amplitude, while
before doing so, we claim that one has to know the correct
form of the S-matrix. Hence let us carry out this amplitude
in the other picture 〈C (−1)φ(−1)〉 in the next section and get
back to the subtlety associated to Eq. (5) afterwards.

It is also worth to derive the S-matrix of one RR and a
gauge field in the asymmetric picture of an RR.8

3 The C−1 − φ−1 amplitude

The three point function from the world-sheet perspective
(two point function from the space-time point of view) of
one RR and a real tachyon of type II super string in their
different pictures has been done.9

This three point function from the world-sheet perspective
with both RR and scalar field in the (−1) picture is given by

Aφ,RR ∼
∫

dxd2z〈V (−1)
φ (x)V (−1)

RR (z, z̄)〉. (6)

8 Let us just mention the final answer

AA0,C−2 = ξ1a[−i paTr(P−C/ (n−1)Mp) + ik1bTr(P−C/ (n−1)Mp	
ab)].

Note that the first term in the above S-matrix makes definitely no contri-
bution to the amplitude, because if we apply momentum conservation
along the world volume of the brane, (k1 + p)a = 0, and the on-shell
condition for the gauge field gives rise to the vanishing of the first part
of the S-matrix. Indeed the second part of the S-matrix can be pro-
duced by the 2πα′ ∫ Cp−1 ∧ F coupling, as the three point function of
a symmetric RR and one gauge field in the (−1) picture was given by

V (−1)
A (x) = e−φ(x)ξaψ

a(x)e2iq·X (x)

AC−1 A−1 ∼ 2−1/2ξ1aTr(P−H/ (n)Mpγ
a).

9 We have

AC−1T−1 ∼ −2iTr(P−H/ (n)Mp)

and also

AC−2T 0 ∼ 21/2(2ik1a)Tr(P−C/ (n−1)Mpγ
a);

now if we apply momentum conservation along the world volume of
the brane (k1 + p)a = 0, extract the trace and use pC/ = H/ (up to
a normalisation constant) we get the same S-matrix in both pictures,
where this S-matrix can be generated with a 2iπα′β ′μ′

p

∫
Cp ∧ DT

coupling in field theory.
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The vertices are written down so that an RR is considered
in terms of its field strength in the symmetric picture. They
are presented as follows:

V (−1)
φ (x) = e−φ(x)ξiψ

i (x)e2iq·X (x),

V (−1)
RR (z, z̄) = (P−H/ (n)Mp)

αβe−φ(z)/2,

Sα(z)ei
α′
2 p·X (z)e−φ(z̄)/2Sβ(z̄)ei

α′
2 p·D·X (z̄).

Obviously all the previous definitions of the first section
for projector, holomorphic components and the other field
contents have been kept here as well. Once more we substitute
the defined vertex operators into Eq. (6) and the amplitude
reduces to∫

dx1dx4dx5(P−H/ (n)Mp)
αβ(x14x15)

−1/2(x45)
−1/4ξ1i I

×〈: Sα(x4) : Sβ(x5) : ψ i (x1) :〉
where the result for the following correlation function is
needed:

〈: Sα(x4) : Sβ(x5) : ψ i (x1) :〉 = 2−1/2(x14x15)
−1/2

(x45)
−3/4(γ iC−1)αβ.

The SL(2, R) invariance of the S-matrix can be readily
checked and we did gauge fixing as (∞, i,−i).10 The final
result of the S-matrix of one scalar and one RR closed string
in this symmetric picture is

AC−1φ−1 = 2−1/2Tr(P−H/ (n)Mpγ
i )ξ1i . (7)

One should pay particular attention to the conservation of
momentum along the world volume of the brane as ka1 + pa =
0. Let us first reproduce the field theory of the above S-
matrix. The amplitude might be normalised by a coefficient
of (21/2πμp/8) such that μp is the Ramond–Ramond charge
of the brane. The trace is done as follows11:

Tr(H/ (n)Mpγ
i )δp+2,n = ± 32

(p + 2)!ε
a0···ap Hia0···apδp+2,n .

Eventually this S-matrix (7) can be precisely produced
with the following field theory coupling:

μp(2πα′)
∫

�p+1

(Tr(∂iCp+1φ
i )) (8)

10 We set α′ = 2.
11 By the trace with γ 11 it can be shown that all the above results are
kept even for the following case:

p > 3, Hn = ∗H10−n, n ≥ 5.

where we have used the so-called Taylor expansion of a scalar
field; meanwhile, in the other picture, the S-matrix was found
to be

Aφ0,C−2 = [−i piTr(P−C/ (n−1)Mp)

+ik1aTr(P−C/ (n−1)Mp	
ia)]ξ1i .

Let us compare Eq. (5) with (7). We know that piC = Hi ,
so up to a normalisation constant the first term of Eq. (5)
does exactly produce the same S-matrix as the one of Eq.
(7); therefore we claim that the second term of Eq. (5) has
no contribution to the S-matrix of one scalar and one RR at
all. Hence the prescription for removing or getting rid of the
second term of Eq. (5) is as follows.

We first apply the momentum conservation along the
world volume of the brane to the second term (ka1 + pa = 0)
and then extract its trace as follows:

Tr(C/ (n−1)Mp	
ia)δp+2,n = ± 32

(p + 1)!ε
a0···ap−1a

Cia0···ap−1δp+2,n,

and more importantly, in order to get to the same S-matrix as
Aφ−1,C−1

, we understand that the following Bianchi identity
must hold for the BPS branes:

paεa0···ap−1a = 0. (9)

However, this is not the full story; as we will see in the
next sections for the higher point functions of string ampli-
tudes, one has to generalise all the Bianchi identities.12 Let
us now turn to some of the four point functions and obtain
new Bianchi identities.

4 The T−1 − φ0 − C−1 amplitude

The four point function from the world-sheet perspective
(three point function from the space-time point of view) of
one closed string RR and two real tachyons of type II super
string with their all different pictures can been done.13

The four point function of one tachyon, a scalar and one
RR from the world-sheet point of view has been performed

12 In particular in order not to miss any contact interactions, one might
need to look at the other pictures of the higher point functions of string
theory amplitudes as well.
13 Indeed after performing the gauge fixing as (x1, x2, z, z̄) =
(x,−x, i,−i) with u = − α′

2 (k1 + k2)
2 the S-matrix is

V (−1)
T (y) = e−φ(y)e2ik·X (y) ⊗ σ2

AC−1T−1T 0 ∼ 23/2π
	[−2u]

	[1/2 − u]2 Tr(P−H/ (n)Mpγ
a)k2a (10)

where one can use momentum conservation along the brane
−ka1 − pa = ka2 and apply the Bianchi identity paεa0...ap−1a = 0, to
show that the S-matrix is antisymmetric with respect to interchanging
the two tachyons, whereas this S-matrix in an asymmetric picture is.

123
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in detail in [48]. Indeed both the S-matrix and its field theory
part in the following picture T 0 − φ−1 − C−1 have already
been computed. Truly, after carrying out the gauge fixing as
(x1, x2, z, z̄) = (x,−x, i,−i) the S-matrix is given by14

4k1aξi

∫ ∞

−∞
dx(2x)−2u−1/2((1 + x2))−1/2+2u

(Tr(P−H/ (n)Mp	
ia)).

Thus the result of this non-supersymmetric amplitude is
read off as

AT 0,φ−1,C−1 = (πβ ′μ′
p)2

√
π

	[−u + 1/4]
	[3/4 − u]

Tr(P−H/ (n)Mp	
ai )k1aξiTr(λ1λ2), (11)

where (πβ ′μ′
p/2), β ′ and μ′

p are defined as normalisation
constants, WZ and the RR charge of the brane. In effective
field theory it was shown that this S-matrix can be precisely
reproduced by the following coupling of type II string theory:

2iβ ′μ′
p(2πα′)2

∫
�p+1

(Tr(∂iCp ∧ DTφi )), (12)

and all its infinite corrections were derived in [48].15

Let us carry it out in the other picture so if we use the
above vertex operators and perform all the correlators with
the same techniques as have been explained in the previous
section, then one explores the final form of the S-matrix in
this picture thus:

Footnote13 continued

AC−2T 0T 0 ∼ 4k1ak2b

∫ ∞

−∞
dx(2x)−2u−1((1 + x2))2u

[
Tr(P−C/ (n−1)Mp	

ba) − 2ηab
1 − x2

4xi
Tr(P−C/ (n−1)Mp)

]
.

Here evidently the second term has no contribution to the S-matrix,
because the integration must be taken over the whole space-time and
the integrand is an odd function so the result for the second term is zero.
Now if we apply momentum conservation to the first term of the above
S-matrix and more significantly in order to make sense of the non-zero
S-matrix in this asymmetric picture, we believe that

paε
a0...ap−2ba

must be non-zero, otherwise the whole S-matrix vanishes.
Notice that all u channel poles with infinite higher derivative cor-

rections to (2πα′)2β ′μ′
p

∫
Cp−1 ∧ DT ∧ DT coupling can also be

derived.
14 With u = − α′

2 (k1 + k2)
2 and (ka1 + ka2 + pa = 0).

15 We have

2β ′μ′
p

p! (2πα′)2εa0...ap∂iCa0...ap−1 ∧ Tr

( ∞∑
m=−1

cm(α′)m+1Da1 · · · Dam+1 Dap T Da1 ...Dam+1φi

)
. (13)

AC−1φ0T−1 ∼ 4ξ1i

∫ ∞

−∞
dx(2x)−2u−1/2((1 + x2))2u−1/2

×[k1aTr(P−H/ (n)Mp	
ia) − piTr(P−H/ (n)Mp)]. (14)

Now in order to get to the same S-matrix element for this
four point world-sheet amplitude as appeared in Eq. (11), one
has to apply the momentum conservation (k1 +k2 + p)a = 0
and keep in mind the following Bianchi identity as well:

piεa0...ap Ha0...ap + paεa0...ap−1aHi
a0...ap−1

= 0. (15)

Finally let us calculate this S-matrix in an asymmetric
picture of an RR and make some essential comments about
this four point function.

Notice that there is a non-zero coupling between two
gauge fields and one RR in the world volume of BPS branes
of type II string theory.16

5 The T0 − φ0 − C−2 amplitude

The four point function of an asymmetric RR, a scalar and
an open string tachyon can be investigated by the following
correlation function:

AT 0φ0C−2 ∼
∫

dx1dx2d2z〈V (0)
φ (x1)V

(0)
T (x2)V

(−2)
RR (z, z̄)〉

(16)

where the tachyon, scalar field and RR vertex operators are
given as17

V (0)
T (y) = α′ik1·ψ(y)eα′ik1·X (y)λ ⊗ σ1,

V (0)
φ (x) = ξ1i (∂

i X (x) + iα′k.ψψ i (x))eα′ik.X (x)λ ⊗ I,

V (−2)
RR (z, z̄) = (P−C/ (n−1)Mp)

αβe−3φ(z)/2Sα(z)ei
α′
2 p·X (z)

e−φ(z̄)/2Sβ(z̄)ei
α′
2 p·D·X (z̄)λ ⊗ σ3σ1.

Applying the Wick theorem, the amplitude can be explored
as follows:∫

dx1dx2dx4dx5(P−C/ (n−1)Mp)
αβ(x45)

−3/4(4ik2a)ξ1i

× (I3 + (2ik1c)I4)I5

16 In [52] it is shown that

AC−1 A−1 A0 ∼ 2−3/2ξ1aξ2b

∫ ∞

−∞
dx(2x)−2u((1 + x2))2u−1

{
4k2cTr(P−H/ (n)Mp	

bca) +
(

1 − x2

x

)
[k1bTr(P−H/ (n)Mpγ

a)

+k2c(−ηacTr(P−H/ (n)Mpγ
b) + ηabTr(P−H/ (n)Mpγ

c))]
}

where obviously the last three terms of the S-matrix make no contri-
bution to the amplitude, because the integration must be taken over the
whole space and the integrand is odd.
17 For the Chan–Paton factors see [48].
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with

I5 = |x12|α′2k1.k2 |x14x15| α′2
2 k1.p|x24x25| α′2

2 k2.p|x45| α′2
4 p.D.p,

I3 = i pi2−1/2(x24x25)
−1/2(x45)

−3/4(γ aC−1)αβ

x54

x14x15
.

(17)

Now using Wick-like rule one gets to the following cor-
relator:

I4 = 〈: Sα(x4) : Sβ(x5) : ψcψ i (x1) : ψa(x2) :〉
= 2−3/2(x24x25)

−1/2(x14x15)
−1(x45)

1/4

×
[
(	aicC−1)αβ + 2

Re[x14x25]
x12x45

ηac(γ iC−1)αβ

]
.

By applying the above correlators to this four point ampli-
tude we can easily observe that the integrand or S-matrix
is SL(2, R) invariant. We do the proper gauge fixing as
(x1, x2, z, z̄) = (x,−x, i,−i), and takingu = −α′

2 (k1+k2)
2

we obtain the S-matrix as

AT 0φ0C−2 = A1 + A2,

such that

AT 0φ0C−2

1 = 23/2ξ1i k2a p
iTr(C/ (n−1)Mpγ

a)

×
∫ ∞

−∞
(2x)−2t−1/2(x2 + 1)2t−1/2

= 23/2ξ1i4k2a p
iTr(C/ (n−1)Mpγ

a)
√

π
	[−u + 1/4]
	[3/4 − u] .

(18)

Now if we use the momentum conservation (k1 + k2 +
p)a = 0 and the Bianchi identity paεa0···ap−1a = 0, then we
come to the point that up to a coefficient of 23/2 this part of
the S-matrix exactly produces (11). The second part of the
S-matrix is found to be

AT 0φ0C−2

2 = 23/2ξ1i k1ck2a

∫ ∞

−∞
(2x)−2t−1/2(x2 + 1)2t−1/2

×
[

2ηacTr(C/ (n−1)Mpγ
i )

1 − x2

4xi
+ Tr(C/ (n−1)Mp	

aic)

]

(19)

where the first term in (19) is indeed zero, because the inte-
gration is taken over the whole space, while the integrand is
odd, so naturally the answer for the first term of Eq. (19) is
zero18

18 We have

23/2ξ1i (−u − 1/4)Tr(C/ (n−1)Mpγ
i )

∫ ∞

−∞

(
(1 + x2)2

(4x2)

)1/4+u 1 − x2

(x2 + 1)(4xi) = 0. (20)

However, clearly, the result for the second term of Eq. (19)
is non-zero, that is,

AT 0φ0C−2

2 = 23/2ξ1i4k1ck2aTr(C/ (n−1)Mp	
aic)

×√
π

	[−u + 1/4]
	[3/4 − u] . (21)

Therefore we might think of this term as the extra contact
interaction to the S-matrix; however, after applying momen-
tum conservation along the world volume of the brane and
using Bianchi identities,19 it becomes clear for us that this
term has a zero contribution to the S-matrix of an asymmetric
RR, a scalar and a tachyon.20

6 The φ0 − A0 − C−2 amplitude

The four point function of an asymmetric RR, a scalar and
a gauge field can be carried out by the following correlation
function:

Aφ0A0C−2 ∼
∫

dx1dx2d2z〈V (0)
φ (x1)V

(0)
A (x2)V

(−2)
RR (z, z̄)〉

(22)

where the scalar field and RR vertex operators are given in
the previous sections, and for the gauge field we have

V (0)
A (x) = ξ2a(∂

a X (x) + iα′k.ψψa(x))eα′ik.X (x).

Having set the Wick theorem, the amplitude may have
been written down as∫

dx1dx2dx4dx5(P−C/ (n−1)Mp)
αβ(x45)

−3/4ξ1iξ2a

×(J1 + J2 + J3 + J4)I5

and also

I5 = |x12|α′2k1.k2 |x14x15| α′2
2 k1.p|x24x25| α′2

2 k2.p|x45| α′2
4 p.D.p,

(23)

where by applying the generalisation of a Wick-like rule one
can obtain all the correlators as follows:

J1 = i pi
x54

x14x15
(la)(x45)

−5/4(C−1)αβ

la = −ik1a

[
x14

x12x24
+ x15

x12x25

]

J2 = −pi k2c
x54

x14x15
(x24x25)

−1(x45)
−1/4(	acC−1)αβ

J3 = (la)ik1b(x14x15)
−1(x45)

−1/4(	ibC−1)αβ

19 We have paεa0···ap−2ca = pcεa0···ap−2ca = 0.
20 It is important to point out that this term by itself without applying
any Bianchi identity equation could be meant to be non-zero and might
have been confused in that it plays the role of the whole infinite contact
interactions/surface terms or total derivatives where clearly it does not
make any contribution to the whole S-matrix.
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J4 = −k1bk2c(x14x15x24x25)
−1(x45)

3/4

×
[
(	acibC−1)αβ + (2ηbc(	aiC−1)αβ

−2ηab(	ciC−1)αβ)
Re[x14x25]
x12x45

]
. (24)

If we now apply Eq. (24) into this four point ampli-
tude we can easily determine that the S-matrix is SL(2, R)

invariant. We do the proper gauge fixing as (x1, x2, z, z̄) =
(x,−x, i,−i), taking t = −α′

2 (k1 + k2)
2 to actually get to

the entire S-matrix as

Aφ0A0C−2 = −ξ1iξ2a

∫ ∞

−∞
dx(1 + x2)2t−1(2x)−2t

[
1 − x2

x
(−i pi k1aTr(P−C/ (n−1)Mp)

+k1bk1aTr(P−C/ (n−1)Mp	
ib)

+ ηbcTr(P−C/ (n−1)Mp	
ai )

− ηabTr(P−C/ (n−1)Mp	
ci ))

+ 2ik2c p
iTr(P−C/ (n−1)Mp	

ac)

− 2ik1bk2cTr(P−C/ (n−1)Mp	
acib)

]
(25)

where the first, second, third and fourth term do not make
any contribution to the S-matrix because the integration is
taken on the whole space and the integrand is odd. If we use
the momentum conservation (k1 + k2 + p)a = 0 and the
Bianchi identity pbεa0···ap−3bac = 0, then we see that the
sixth term makes also no contribution to the amplitude, so
only the fifth term has a non-zero contribution to the S-matrix
of an asymmetric RR, a scalar and a gauge field.

Hence, the final result is

Aφ0A0C−2 = −ξ1iξ2a2ik2c p
iTr(P−C/ (n−1)Mp	

ac)π1/2

× 	[−t + 1/2]
	[1 − t] (26)

where the expansion of the amplitude is non-zero for the
p = n case and it does not include any poles as is clear from
Eq. (26), because the low energy expansion is the t → 0
limit and all the infinite contact interactions of this S-matrix
have already been derived in [43]. Given the closed form of
the above correlation functions one can find Aφ−1A0C−1

as
well;

Aφ−1A0C−1 = 2−3/2ξ1iξ2a

∫ ∞

−∞
dx(1 + x2)2t−1(2x)−2t

×
[

1 − x2

x
(k1aTr(P−H/ (n)Mpγ

i )

−2ik2bTr(P−H/ (n)Mp	
abi )

]

where again the first term makes no contribution and the
second term (up to a coefficient of 23/2) precisely produces

(26). Finally one explores this amplitude in its last picture as
follows:

Aφ0A−1C−1 = 21/2ξ1iξ2a

∫ ∞

−∞
dx(1 + x2)2t−1(2x)−2t

×[k1bTr(P−H/ (n)Mp	
bai )

−piTr(P−H/ (n)Mpγ
a)] (27)

where in Eq. (27), one has to apply momentum conservation
to its first term and use the Bianchi identity

pbε
a0···ap−2baHi

a0···ap−2
+ piεa0···ap−1aHa0···ap−1 = 0 (28)

to actually get to the entire S-matrix as appeared in (26).
Therefore in this particular picture, again we are just

left with one term for the final answer of the RR, a
gauge and a scalar field and this term is necessary because
this S-matrix has to be produced by a non-zero coupling,
(2πα′)2μp

∫
H+ ∂iCa0..ap−2 , Fap−1apφ

i of effective field the-
ory where the scalar field comes from a Taylor expansion.

Note that by comparing this S-matrix with field theory,
we begin to understand that there should not be any other
term in effective field theory coming from the pull-back of
the brane.

Now in order to obtain the other non-trivial Bianchi iden-
tities, we are going to consider one of the simplest five point
functions and deal with more subtleties as regards perturba-
tive string theory.

7 The five point world-sheet S-matrix
of the brane–anti-brane system

It is known that the world volume of the brane–anti-brane
system must have two real tachyon fields.21 The complete
form of the amplitude of a gauge, two real tachyons and
an RR of a brane–anti-brane system for the various p, n

cases 〈V (−1)
A (x1)V

(0)
T (x2)V

(0)
T (x3)V

(− 1
2 ,− 1

2 )

RR (z, z̄)〉 has been
derived in [54].

For completeness we have done this amplitude in the fol-
lowing picture as well:

〈V (0)
A (x1)V

(−1)
T (x2)V

(0)
T (x3)V

(− 1
2 ,− 1

2 )

RR (z, z̄)〉,
and the final result for the amplitude is exactly the same as
appeared in [54] so that it satisfies the Ward identity asso-
ciated to the gauge field. It is also worth explaining that the
S-matrix elements of one RR field, one scalar field and two
tachyons on the world volume brane–anti-brane system in

21 We have in [53] it is discussed in detail that brane–anti-brane system
should be investigated by means of the effective field theory techniques,
which seems to be the proper way of realising the classical case, or
even the case for loop divergences for which anti-brane dynamics in the
presence of some of background fields may play a major role.
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the following picture have also been computed in detail in
[55]22

〈V (−1)
φ (x1)V

(0)
T (x2)V

(0)
T (x3)V

(
− 1

2 ,− 1
2

)
RR (z, z̄)〉. (31)

The final form of this S-matrix in this particular picture is
given as

AC(−1)φ(−1)T (0)T (0) = A1 + A2 (32)

where

A1 ∼ −8ξ1i k2ak3b2−3/2Tr(P−H/ (n)Mp	
bai )L1,

A2 ∼ 8ξ1i2
−3/2{Tr(P−H/ (n)Mpγ

i )}L2, (33)

where L1, L2 are written down below just in terms of Gamma
functions (no hypergeometric function is needed):

L1 = (2)−2(t+s+u)−1π

× 	(−u)	(−s + 1
4 )	(−t + 1

4 )	(−t − s − u)

	(−u − t + 1
4 )	(−t − s + 1

2 )	(−s − u + 1
4 )

,

L2 = (2)−2(t+s+u+1)π

× 	(−u + 1
2 )	(−s + 3

4 )	(−t + 3
4 )	(−t − s − u − 1

2 )

	(−u − t + 1
4 )	(−t − s + 1

2 )	(−s − u + 1
4 )

(34)

where in [55] all the infinite u channel gauge poles of L1

and the t + s′ + u′ channel scalar poles of this S-matrix
have been precisely produced, in addition to all the infinite
higher derivative corrections to two scalars–two tachyons of
the world volume of the brane–anti-brane, which have also
without any ambiguity been discovered.

Now let us deal with this S-matrix in the other pictures
of both closed–open strings to see what happens to the com-
plete form of the S-matrix and also explore all its contact
interactions.

22 The following vertices with their correct Chan–Paton factors of D-
brane–anti-D-brane are kept:

V (−1)
φ (x) = ξiψ

i (x)e2iq.X (x)e−φ(x) ⊗ σ3,

V (0)
T (y) = 2ik.ψ(y)e2ik·X (y),⊗σ1,

V

(
− 1

2 ,− 1
2

)
RR (z, z̄) = (P−H/ (n)Mp)

αβe−φ(z)/2Sα(z)ei p·X (z)e−φ(z̄)/2

Sβ(z̄)ei p·D·X (z̄) ⊗ σ3, (29)

so that k2 = 1/4 is the condition for tachyons in type II string theory;
the following definitions for the Mandelstam variables are used:

s = −α′

2
(k1 + k3)

2, t = −α′

2
(k1 + k2)

2, u = −α′

2
(k2 + k3)

2. (30)

8 C(−2)φ(0)T (0)T (0)

The S-matrix element of an asymmetric RR field, one scalar
field and two tachyons on the world volume of the brane–
anti-brane system can be found as follows.23 Replacing the
vertex operators and performing all the correlators by using
the Wick theorem, one can investigate the whole of the ampli-
tudes as follows:

AC(−2)φ(0)T (0)T (0) ∼
∫

dx1dx2dx3dx4dx5 (P−C/ (n−1)Mp)
αβ

ξ1i x
−3/4
45 (−8k2bk3c)I

((
i pi

x54

x15x14

)
I cb1 + 2ik1a I

cbia
2

)

(36)

where xi j = xi − x j ,

I = |x12|4k1.k2 |x13|4k1.k3 |x14x15|2k1.p|x23|4k2.k3

× |x24x25|2k2.p|x34x35|2k3.p|x45|p.D.p. (37)

Note that we have already generalised the Wick theorem
to get to the fermionic correlations in the presence of currents
so that one can find the following correlators:

I cb1 = 〈: Sα(x4) : Sβ(x5) : ψb(x2) :: ψc(x3) :〉
= 2−1x−1/4

45 (x24x25x34x35)
−1/2

×
(

(	cbC−1)αβ − 2ηbc
Re[x24x35]
x23x45

(C−1)αβ

)

and also

I cbia2 = 〈: Sα(x4) : Sβ(x5) : ψaψ i (x1) : ψb(x2) :: ψc(x3) :〉
= 2−2x3/4

45 (x24x25x34x35)
−1/2(x14x15)

−1

×
{
(	cbiaC−1)αβ + 2ηab

Re[x14x25]
x12x45

(	ciC−1)αβ

−2ηac
Re[x14x35]
x13x45

(	biC−1)αβ

−2ηbc
Re[x24x35]
x23x45

(	iaC−1)αβ

}
.

If we substitute all the above correlations in the amplitude,
then one can show that the property of SL(2, R) invariance
is in order in our investigation. Here we are working with a
five point function and to the best of our knowledge the best

23 The following vertices with their correct Chan–Paton factor for D-
brane–anti-D-brane are taken into account:

V (0)
φ (x) = ξ1i (∂

i X (x) + iα′k.ψψ i (x))eα′ik.X (x)λ ⊗ I,

V (0)
T (y) = 2ik.ψ(y)e2ik·X (y),⊗σ1,

V

(
− 3

2 ,− 1
2

)
RR (z, z̄) = (P−C/ (n−1)Mp)

αβe−3φ(z)/2Sα(z)ei p·X (z)e−φ(z̄)/2

Sβ(z̄)ei p·D·X (z̄) ⊗ I, (35)

with the same definitions for the Mandelstam variables.

123



517 Page 10 of 16 Eur. Phys. J. C (2015) 75 :517

gauge fixing for this amplitude is to fix the locations of all
three open strings as follows:

x1 = 0, x2 = 1, x3 → ∞.

If we do so, then we get the entire form of the S-matrix
in terms of some integrations on the upper half plane, so
that the following integrations for various cases need to be
performed:
∫

d2z|1 − z|a |z|b(z − z̄)c(z + z̄)d , (38)

with d = 0, 1, 2, and a, b, c must be just given in terms of
the Mandelstam variables. Notice that the result of the above
integrations for d = 0, 1 is got from [54,56], while for d = 2
the result is given in [13,14].

If we do gauge fixing, make use of various pure algebraic
simplifications and most particularly make use of the results
of the integrals that are pointed out in [13,14,54,56] then we
can write down the final result of the amplitude (36) in this
asymmetric picture as follows:

AC−2φ0T 0T 0 = A1 + A2 + A3 + A4 (39)

where

A1 ∼ i piξ1i (4k2bk3c)Tr(P−C/ (n−1)Mp	
cb)L1,

A2 ∼ 4i piξ1i {Tr(P−C/ (n−1)Mp)}L2,

A3 ∼ −4iξ1i k1ak2bk3c{Tr(P−C/ (n−1)Mp	
cbia)}L1,

A4 ∼ 4iξ1i {Tr(P−C/ (n−1)Mp	
bi )}L2(k1b + k2b + k3b)

(40)

where the functions L1, L2 are given in (34).
Note that here in (40) we have dealt with the five point

world-sheet scattering of the brane–anti-brane in an asym-
metric picture and in this particular picture we found the
terms that carry momentum of an RR in the transverse direc-
tions. These terms no longer vanish and indeed these terms
potentially have something to do with some of the issues on
the perturbative string theory on the upper half plane. We
believe that these terms are related to taking the integration
on different moduli space as has been pointed out in a series
of papers [44–47].

Now if we compare the S-matrix in this asymmetric pic-
ture (40) with (33), then we might think of the fact that the
last two terms of Eq. (40) are extra singularities. Indeed if
we do not apply the Bianchi identity and momentum con-
servation along the brane to (40) as a matter of fact these
two terms would be extra terms by themselves. However, if
we compare (40) with (33), simultaneously extract the trace
in the last term of Eq. (40) and make use of the momentum
conservation along the world volume of the brane as follows:

(k1 + k2 + k3)
a = −pa, (41)

we come to the conclusion that the last term in (40) is an
apparent singularity and this should be removed, in the other
words, upon applying the Bianchi identity

pbεa0···ap−1bCi
a0···ap−1

= 0 (42)

the last term of Eq. (40) vanishes.
Note that below we show that the above Bianchi identity

cannot be applied to the correlators,

〈V (0)
T (x1)V

(0)
T (x2)V

(0)
T (x3)V

(
− 3

2 ,− 1
2

)
RR (z, z̄)〉,

of non-BPS branes. Indeed after gauge fixing, (x1, x2, z, z̄) =
(0, 1,∞, z, z̄), we obtain the following non-BPS amplitude:

AC−2T 0T 0T 0 = −16i(2−3/2k1ak2bk3c)(P−C/ (n)Mp)
αβ

∫
d2z|1 − z|2t+2u |z|2t+2s(z − z̄)−2(t+s+u+1)

×
[
(	cbaC−1)αβ + (z + z̄)

2(z − z̄)

× ((2ηac(γ bC−1)αβ) − (2ηab(γ cC−1)αβ)

−(2ηbc(γ aC−1)αβ)) + (2ηbc(γ aC−1)αβ)
1

(z − z̄)

+(2ηab(γ cC−1)αβ)
|z|2

(z − z̄)

]
.

We make use of various pure algebraic simplifications to
write down the final result for the above amplitude in this
asymmetric picture as follows:

AC−2T 0T 0T 0 = A1 + A2

where

A1 ∼ −16i(2−3/2k1ak2bk3c)Tr(P−C/ (n−1)Mp	
cba)N1

A2 ∼ −16i(2−3/2)Tr(P−C/ (n−1)Mpγ
a)N2(k1a+k2a + k3a)

where the functions N1, N2 are given as

N1 = (2)−2(t+s+u+1)π

	(−u)	(−s)	(−t)	
(−t − s − u − 1

2

)
	(−u − t)	(−t − s)	(−s − u)

,

N2 = (2)−2(t+s+u)−3π

	
(−u + 1

2

)
	

(−s + 1
2

)
	

(−t + 1
2

)
	(−t − s − u − 1)

	(−u − t)	(−t − s)	(−s − u)
.

(43)

Note that if we use momentum conservation pa = −(k1+
k2 + k3)

a for both the first and the second part of the above
non-BPS S-matrix we see that

paεa0···ap−3cbaCa0···ap−3 , p
cεa0···ap−3cbaCa0···ap−3 ,

paεa0···ap−1aCa0···ap−1

are not zero. In particular in order to make sense of non-
supersymmetric amplitudes in the world volume of non-BPS
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branes, the equations

paεa0···ap−3cba, paεa0···ap−1a (44)

must be non-zero.
Hence for non-supersymmetric amplitudes first we must

extract the traces and keep in mind the above points, that is,
the equations that we found for some of the BPS branes can-
not be applied to non-BPS amplitudes in the presence of a
scalar field and an RR. Indeed we expect to see that behaviour
because the equations that hold for the BPS cases not neces-
sarily obtain for the non-supersymmetric cases, whereas for
the BPS branes the equations seem to be more manifest, while
this may have been changed after symmetry breaking. The
lesson is that for scattering of the mixed scalars–tachyons in
the presence of an RR (in its asymmetric picture), one needs
to break several identities that necessary hold for BPS branes.

What about the third term of Eq. (40)? One might add it
to the first term of Eq. (40) and find that

k2bk3cξ1i (p
iεa0···ap−2cbCa0···ap−2 + paεa0···ap−3cbaCi

a0···ap−3
)

should vanish; however, from (33) we know that the first
term of Eq. (40) holds and plays a crucial role in effective
field theory. Thus we need to explore a new Bianchi identity
for the third term of Eq. (40). In fact if we actually apply
momentum conservation to the third term of Eq. (40) and
because of the antisymmetric property of ε we conclude that
the equation paεa0···ap−3cbaCi

a0···ap−3
must vanish for brane–

anti-brane amplitudes.
Therefore, the lesson we have learnt is as follows. In the

presence of an asymmetric RR, a scalar and some tachyons,
one needs to find new Bianchi identities to get the same S-
matrix elements as obtained by a symmetric RR, a scalar
and some tachyons. This is because we have no gauge field
to check the gauge invariance of the amplitude and, more
accurately, there is no Ward identity for the scalar field.

Now let us address the same S-matrix of a symmetric
RR, two tachyons and a scalar field in the zero picture,
〈C (−1)φ(0)T (−1)T (0)〉.

9 C(−1)φ(0)T (−1)T (0)

Finally this S-matrix element of a symmetric RR field, one
scalar in the zero picture and two tachyons on the world
volume of the brane–anti-brane system can be written down:

AC(−1)φ(0)T (−1)T (0) ∼
∫

dx1dx2dx3d2z

×〈V (0)
φ (x1)V

(−1)
T (x2)V

(0)
T (x3)V

(
− 1

2 ,− 1
2

)
RR (z, z̄)〉

with the following vertices

V (−1)
T (y) = e−φ(y)e2ik·X (y) ⊗ σ2

V

(
− 1

2 ,− 1
2

)
RR (z, z̄) = (P−H/ (n)Mp)

αβe−φ(z)/2

Sα(z)ei p·X (z)e−φ(z̄)/2Sβ(z̄)ei p·D·X (z̄) ⊗ σ3; (45)

we just write down the amplitude in its compact form as

AC(−1)φ(0)T (−1)T (0) ∼
∫

dx1dx2dx3dx4dx5

(P−H/ (n)Mp)
αβξ1i (4k3b)x

−1/4
45 (x24x25)

−1/2 I

×
((

i pi
x54

x15x14

)
I b1 + 2ik1a I

bia
2

)

where xi j = xi − x j ,

I = |x12|4k1.k2 |x13|4k1.k3 |x14x15|2k1.p|x23|4k2.k3

×|x24x25|2k2.p|x34x35|2k3.p|x45|p.D.p

where the following correlators need to be replaced inside
the amplitude

I b1 = 〈: Sα(x4) : Sβ(x5) : ψb(x3) :〉
= 2−1/2x−3/4

45 (x34x35)
−1/2(γ bC−1)αβ

and also

I bia2 = 〈: Sα(x4) : Sβ(x5) : ψaψ i (x1) : ψb(x3) :〉
= 2−3/2x1/4

45 (x34x35)
−1/2(x14x15)

−1

×
{
(	biaC−1)αβ + 2ηab

Re[x14x35]
x13x45

(γ iC−1)αβ

}
.

Notice that, given the above correlations, one may easily
investigate the SL(2, R) transformation of the S-matrix. We
performed gauge fixing by just fixing the location of the open
strings so that the final integration needs to be done over
the closed string RR ’s position on the upper half complex
plane.24

Once more after gauge fixing one finds the same sort of
integration as we discussed earlier on.25

Having calculated all the desired integrals, one could
explore the result for the S-matrix in its particular picture
as follows:

AC(−1)φ(0)T (−1)T (0) = A1 + A2 + A3 (47)

in such a way that all its components are given by

A1 ∼ −2i21/2 piξ1i k3bTr(P−H/ (n)Mpγ
b)L1,

A2 ∼ −2i21/2ξ1i {Tr(P−H/ (n)Mp	
bia)}k1ak3bL1

24 We have

x1 = 0, x2 = 1, x3 → ∞, dx1dx2dx3 → x2
3 .

25 We have
∫

d2z|1 − z|a |z|b(z − z̄)c(z + z̄)d . (46)

123



517 Page 12 of 16 Eur. Phys. J. C (2015) 75 :517

A3 ∼ −2i21/2ξ1i {Tr(P−H/ (n)Mpγ
i )}L2 (48)

where the L1, L2 functions are already given in (34). If we
compare (48) with (33), then we might wonder whether the
first term of AC(−1)φ(0)T (−1)T (0)

is an extra term, because it is
also related to all infinite singularities. However, it is worth-
while pointing out that we have already produced all the
infinite u channel gauge poles by taking into account the
second term of Eq. (48). Therefore one has to find or gener-
alise new Bianchi identities to actually remove the first extra
term of Eq. (48). Hence we apply momentum conservation,
k1a = −k2a − k3a − pa , to the second term of (48), extract
the traces, use the antisymmetric property of the ε tensor
and eventually add the first and second components of the
amplitude to derive the following Bianchi identity:

ξ1i k3b(−paε
a0···ap−2abHi

a0···ap−2

+piεa0···ap−1bHa0···ap−1) = 0. (49)

Thus by holding (49) and keeping in mind momentum
conservation along the world volume of the brane we are
precisely able to obtain the same S-matrix as appeared in
(33), so we find the following crucial fact as regards this five
point function of the brane–anti-brane system.

If we consider an RR in the asymmetric pictureC−3/2,−1/2

and a scalar field in the zero picture with some other open
string tachyons then we must find all new Bianchi identities
to be able to remove all the extra apparent singularities of
asymmetric picture of the brane–anti-brane systems.

In the next section we will reveal some features for non-
BPS branes to actually restore the Ward identity associated
(gauge invariance) to the gauge field and also we derive all
the precise contact interactions of mixed RR, scalar/gauge
and tachyon string amplitudes. Namely we show that if we
consider the scalar field in the zero picture and the RR in an
asymmetric picture (C−3/2,−1/2) then in this particular case
there is no need to explore new Bianchi identities to the S-
matrix of non-BPS amplitudes and more importantly those
amplitudes independently respect the Ward identity associ-
ated to the gauge field.

10 C−1φ0A−1T0 S-matrix

In [48] the five point world-sheet amplitude of a symmet-
ric RR with one scalar, a gauge field and a tachyon in the
world volume of non-BPS branes of type II string theory
〈C−1φ−1A0T 0〉 was achieved and all the correlators were
found.26

26 We have

AC−1φ−1 A0T 0 ∼
∫

dx1dx2dx3dzdz̄

The final result in this symmetric picture was read off as

AC−1φ−1A0T 0 = A1 + A2 (51)

where

A1 ∼ 2ξ1iξ2ak3ck2dTr(P−H/ (n)Mp	
cadi )L ′

1,

A2 ∼ (2L ′
3){−tTr(P−H/ (n)Mpγ.ξ2γ.ξ1)u

′

−2tk3.ξ2Tr(P−H/ (n)Mpγ.k2γ.ξ1)

+Tr(P−H/ (n)Mpγ.k3γ.ξ1)(−2t (k3.ξ2) + 2u′k1.ξ2)}.
(52)

It was also shown that one needs to use the momen-
tum conservation, s + t + u = −pa pa − 1

4 , applying
t → 0, s → − 1

4 , u → − 1
4 to the S-matrix to be able to

derive all infinite u′, t channel tachyon and scalar poles of
the non-super symmetric amplitudes accordingly. Note that
L ′

1 has just infinite contact interactions.
It is of high importance to note that this particular

AC−1φ−1A0T 0
amplitude does respect all the symmetries and

most importantly it does satisfy the Ward identity associated
to the gauge field. Indeed if we replace ξ2a → k2a inside (52),
then the first term of Eq. (52) is automatically zero because

k2ak2dk3cε
a0···ap−2cad = 0;

replacing ξ2a → k2a inside the second, third, fourth and fifth
term of Eq. (52) we also get a zero result for the whole S-
matrix27 so gauge invariance is satisfied. Thus based on just
replacing ξ2a → k2a of the gauge field, the whole S-matrix
vanishes.

Having explained all the needed ingredients of the S-
matrices, in the following we would like to change the vertex
of the scalar field and see what happens to the gauge invari-
ance of a mixture of five point world-sheet amplitudes of a

〈V (−1)
φ (x1)V

(0)
A (x2)V

(0)
T (x3)V

(
− 1

2 ,− 1
2

)
RR (z, z̄)〉, (50)

with the following vertex operators:

V (−1)
φ (y) = ξ1iψ

i (y)eα′ik.X (y)e−φ(y) ⊗ σ3,

V (0)
A (x) = ξ2a(∂

a X (x) + iα′q.ψψa(x))eα′iq.X (x) ⊗ I,

and u′ = (−u − 1
4 ) and also

L ′
1 = (2)−2(t+s+u)π

	
(−u+ 1

4

)
	

(−s+ 1
4

)
	

(−t+ 1
2

)
	

(−t−s−u+ 1
2

)
	

(−u−t+ 3
4

)
	

(−t−s+ 3
4

)
	

(−s−u+ 1
2

) ,

L ′
3 = (2)−2(t+s+u)−1π

	
(−u− 1

4

)
	

(−s+ 3
4

)
	(−t)	(−t−s−u)

	
(−u−t+ 3

4

)
	

(−t−s+ 3
4

)
	

(−s−u+ 1
2

) .

27 We have

k2aξ1i (u
′ − u′)Tr(P−H/ (n)Mpγ

aγ i ) = 0,

k3aξ1i (tu
′ − tu′)Tr(P−H/ (n)Mpγ

aγ i ) = 0.

.
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symmetric RR with one scalar in the zero picture, a gauge
field and a tachyon in the world volume of non-BPS branes
of type II string theory. This 〈C−1φ0A−1T 0〉 amplitude is
given by the following correlation functions:

AC−1φ0A−1T 0 ∼
∫

dx1dx2dx3dzdz̄

×〈V (0)
φ (x1)V

(−1)
A (x2)V

(0)
T (x3)V

(
− 1

2 ,− 1
2

)
RR (z, z̄)〉. (53)

Let us write down the rest of the vertex operators, includ-
ing their CP factors,

V (−1)
A (y) = ξ2aψ

a(y)eα′iq.X (y)e−φ(y) ⊗ σ3,

V (0)
φ (x) = ξ1i (∂

i X (x) + iα′k.ψψ i (x))eα′ik.X (x) ⊗ I (54)

where the on-shell conditions for scalar, gauge, RR and
tachyon hold.28

Once more we deal with just the holomorphic elements
of all fields involving Xμψμ, φ, so that the S-matrix is now
given by

AC−1φ0A−1T 0 ∼
∫

dx1dx2dx3dx4dx5 (P−H/ (n)Mp)
αβ

× ξ1iξ2a(α
′ik3c)x

−1/4
45 (x24x25)

−1/2

× (I1 + I2)ITr(λ1λ2λ3)Tr(σ3σ1 Iσ3σ1), (55)

where29 xi j = xi − x j . Let us find all the fermionic and
bosonic correlators:

I1 = 〈: ∂Xi (x1)e
α′ik1.X (x1) : eα′ik2.X (x2) : eα′ik3.X (x3)

: e
α′
2 i p.X (x4) : e

α′
2 i p.D.X (x5) :〉

×〈: Sα(x4) : Sβ(x5) : ψa(x2) : ψc(x3)〉,
I2 = 〈: eα′ik1.X (x1) : eα′ik2.X (x2) : eα′ik3.X (x3)

: e
α′
2 i p.X (x4) : e

α′
2 i p.D.X (x5) :〉

α′ik1d〈: Sα(x4) : Sβ(x5) :ψdψ i (x1) : ψa(x2) :: ψc(x3) :〉.
(57)

We need to use the Wick-like rule [50] to get all the gen-
eralisations of the correlation functions of two spin and two
fermion operators such as the following:

28 We have

k2 = q2 = p2 = 0, k2
3 = 1/4, q.ξ1 = k2.ξ1 = 0.

29 We have

I = |x12|α′2k1.k2 |x13|α′2k1.k3 |x14x15| α′2
2 k1.p|x23|α′2k2.k3 |x24x25| α′2

2 k2.p

|x34x35| α′2
2 k3.p|x45| α′2

4 p.D.p. (56)

I ca5 = 〈: Sα(x4) : Sβ(x5) : ψa(x2) : ψc(x3) :〉
= 2−1x−1/4

45 (x24x25x34x35)
−1/2

×
{
(	caC−1)αβ − 2

Re[x24x35]
x23x45

ηac(C−1)αβ

}
.

Now we need to make use of [12] to obtain the final answer
of the correlation function in ten dimensions,

I caid6 = 〈: Sα(x4) : Sβ(x5) :ψdψ i (x1) :ψa(x2) :: ψc(x3) :〉
=

{
(	caidC−1)αβ + Re[x14x25]

x12x45
(2ηda(	ciC−1)αβ)

−2
Re[x14x35]
x13x45

ηdc(	aiC−1)αβ

−2
Re[x24x35]
x23x45

ηac(	idC−1)αβ

}
2−2x3/4

45

× (x24x25x34x35)
−1/2(x14x15)

−1. (58)

Now we are allowed to replace all the correlators inside
(55) to obtain the compact form of the desired S-matrix as
follows:

AC−1φ0A−1T 0∼
∫

dx1dx2dx3dx4dx5(P−H/ (n)Mp)
αβ I ξ1iξ2a

× (−2α′ik3c)x
−1/4
45 (x24x25)

−1/2

× (ai2 I
ca
5 + α′ik1d I

caid
6 )Tr(λ1λ2λ3), (59)

so that

ai2 = i pi
(

x54

x14x15

)
. (60)

We are now able to investigate whether the amplitude sat-
isfies the SL(2, R) invariance, and we also did gauge fixing
by just fixing the positions of three open strings.30

The solutions for all the integrals on the upper half plane
have been released and the ultimate result of the S-matrix
will be obtained as

AC−1φ0A−1T 0 = A1 + A2, (63)

where

A1 ∼(2ξ1iξ2ak3ck1dTr(P−H/ (n)Mp	
caid)

−ξ1.p(2k3cξ2a)Tr(P−H/ (n)Mp	
ca))L ′

1,

30 We have

x1 = 0, x2 = 1, x3 → ∞, (61)

we lead to
∫

d2z|1 − z|a |z|b(z − z̄)c(z + z̄)d , (62)

with the following Mandelstam variables:

s = −α′

2
(k1 + k3)

2, t = −α′

2
(k1 + k2)

2, u = −α′

2
(k2 + k3)

2.

See [56].
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A2 ∼
{
tξ1.p(4k3.ξ2)Tr(P−H/ (n)Mp)

+ 4

(
u + 1

4

)
k3cξ1iTr(P−H/ (n)Mp	

ci )k1.ξ2

− 4tk3.ξ2k1bξ1iTr(P−H/ (n)Mp	
ib)

−2t

(
u + 1

4

)
ξ1iξ2aTr(P−H/ (n)Mp	

ai )

}
L ′

3. (64)

Note that we have already analysed all infinite u′ tachyon
and massless t channel scalar poles of the amplitude in [48].

In this picture after replacing ξ2a → k2a (due to the terms
ξ1.p) the amplitude does not satisfy the Ward identity asso-
ciated to the gauge field and indeed the second and third
terms would remain whereas L ′

3 cannot be removed by L ′
1.

Let us compare the result of this amplitude (63) with (52)
to make a statement on mixed closed and open string ampli-
tudes including one scalar and one RR and some other open
tachyons. The last term in (64) is exactly the second term of
Eq. (52), the fourth term in (64) is exactly the last term of
Eq. (52). Note that if we add the third and fourth term of (52)
and use the momentum conservation along the world volume
of the brane, then the result is precisely equivalent with the
fifth term of Eq. (64). Once more by using momentum con-
servation in the world volume direction the first term of Eq.
(64) is exactly equivalent with the first term in (52).

However, the second and the third terms of Eq. (64) are
extra terms and in particular if we use anti-commutator rela-
tion of γ matrices these two terms cannot cancel each other
due to the fact that L ′

3 is different from L ′
1.

Indeed if we replace ξ2a → k2a inside (64) and use
momentum conservation along the brane, the first term is
automatically zero because

k2ak3ck1dε
a0···ap−2cad = 0

By replacing ξ2a → k2a inside the fourth, fifth and sixth
terms of Eq. (64) appropriately we also get zero result as
follows

−2tu′ξ1i (k2a + k1a + k3a)ε
a0···ap−1a = 0

Thus the second and third terms give rise the amplitude
not to be gauge invariant unless one finds some new Bianchi
identities.31

In the next section we show that by considering the asym-
metric RR and a scalar, a gauge and one tachyon in the zero

31 The resolution for this problem (to get satisfied gauge invariance of
the above S-matrix) is to add up the third term of (64) with the other
terms in A2 of (64) and also to add the first and second term of Eq. (64)
together to actually get the so-called new identities as follows:

ξ1i (p
i εa0···ap Ha0···ap − pcε

a0···ap−1cHi
a0···ap−1

) = 0

ξ1i k3ck2a(−pdε
a0···ap−3cad Hi

a0···ap−3
+ pi εa0···ap−2ca Ha0···ap−2 ) = 0.

(65)

picture of non-BPS branes, the S-matrix automatically satis-
fies a Ward identity without the need to introduce any new
Bianchi identities.

10.1 C−2φ0A0T 0 S-matrix

One can do the same CFT methods to actually derive the
entire S-matrix of the above strings in the asymmetric pic-
ture. Hence the final answer for the five point world-sheet
amplitude of a RR (in an asymmetric picture) with one scalar,
a gauge field and a tachyon in the world volume of non-BPS
branes of type II string theory 〈C−2φ0A0T 0〉 is

AC−2φ0A0T 0 = A1 + A2 + A3 + A4 (66)

where

A1 ∼ 23/2iξ1iξ2ak3ck2bL
′
1(p

iTr(P−C/ (n)Mp	
cab)

−k1dTr(P−C/ (n)Mp	
cabid)

A2 ∼ 23/2iξ1.pL
′
3Tr(P−C/ (n)Mpγ

c)(2tk3.ξ2[−k3c − k2c]
+2k1.ξ2u

′k3c − tu′ξ2c)

A3 ∼ 23/2iξ1i L
′
3Tr(P−C/ (n)Mp	

cid)

×[−2k1.ξ2u
′k3c(k1d + k2d) + 2tk3.ξ2k1d(k3c + k2c)]

A4 ∼ 23/2iξ1i L
′
3tu

′ξ2aTr(P−C/ (n)Mp	
cai )

× (k3c + k1c + k2c) (67)

with u′ = (−u − 1
4 ) and the same introduced L ′

1, L
′
3. L ′

1 has
infinite contact interactions and L ′

3 has infinite t, u′ scalar–
tachyon channel poles accordingly.

The nice thing about this asymmetric S-matrix is that with-
out introducing any further Bianchi identity this amplitude
automatically satisfies the Ward identity associated to the
gauge field, which means that if we replace ξ2a → k2a

the whole S-matrix vanishes where the following points are
needed. In the first term of A2 one has to apply momen-
tum conservation along the world volume of the brane
−k3c − k2c = pc + k1c and apply the following identity:

pcε
a0...ap−1c = 0.

We need to apply momentum conservation in A3’s first
term, that is, −k1d − k2d = pd + k3d and then draw
particular attention to the fact that this part of the S-
matrix involves k3dk3cε

a0...ap−2dcCi
a0...ap−2

, which is zero
because of the antisymmetric property of the ε tensor. Like-
wise, we need to replace k3c + k2c = −pc − k1c and
k1dk1cε

a0...ap−2dcCi
a0...ap−2

= 0. Finally, we apply momen-
tum conservation to the last term of Eq. (67) and note that
pcεa0...ap−2caCi

a0...ap−2
= 0 plays the crucial role in checking

the Ward identity.
The last remark about the asymmetric picture of the S-

matrices is that one finds all the entire contact interactions of
string theory amplitudes properly. For instance this amplitude
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includes several contact interaction terms like the first term
and the last terms of Eq. (67), which could be missed in its
symmetric picture of (64).

11 Conclusion

We have derived scattering amplitudes of all three, four
and five point BPS and non-BPS mixture of a closed string
Ramond–Ramond, a scalar field, gauge and tachyons in all
their different pictures of both world volume and transverse
directions (for the general p, n cases) of type IIA (IIB) string
theory.

In particular we have shown that if we carry out the cal-
culations of higher point functions in an asymmetric picture
of Ramond–Ramond (taking its vertex operator in terms of
its potential C−2) and scalar field in the zero picture, then
various equations must be kept fixed for BPS branes, the
entire contact interactions can be definitely obtained and,
most importantly, the Ward identity associated to the gauge
field is also satisfied.

More accurately, by direct calculations on the upper half
plane, we have also observed that some of the Bianchi iden-
tities (which must be true) for BPS branes cannot be neces-
sarily applied to non-BPS amplitudes, otherwise the whole
S-matrix might vanish. Indeed in the presence of the scalar
field and RR, the terms carrying momentum of an RR in the
transverse directions (pi , p j ) play an important role in the
entire form of the S-matrix and one has to keep them in five
point functions.

We expect it to be true for higher point functions of string
theory amplitudes and it would be nice to check it directly.
It would also be important to deal with some other subtleties
of perturbative string theory [44–47].
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