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Abstract In this paper we continue our program to con-
struct a model for high energy soft interactions that is based
on the CGC/saturation approach. The main result of this
paper is that we have discovered a mechanism that leads
to large long range rapidity correlations and results in large
values of the correlation function R (y1, y2) ≥ 1, which is
independent of y1 and y2. Such a behavior of the correla-
tion function provides strong support for the idea that at high
energies the system of partons that is produced is not only
dense but also has strong attractive forces acting between the
partons.
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1 Introduction

The large body of experimental data on soft interactions
at high energy [1–14], presently, cannot be comprehended
in terms of theoretical high energy QCD (see [15] for the
review).

In this paper we continue our effort [16–18] to compre-
hend such interactions, by constructing a model that incor-
porates the advantages of two theoretical approaches to high
energy QCD.

The first one is the CGC/saturation approach [19–38],
which provides a clear picture of multi particle production at
high energy that proceeds in two stages. The first stage is the
production of a mini-jet with a typical transverse momen-
tum Qs . Here Qs , the saturation scale, is much larger than
the soft scale. This stage is under full theoretical control.
The second stage is when the mini-jet decays into hadrons,
which we have to treat phenomenologically, using data from
hard processes. Such an approach leads to a good descrip-
tion of the experimental data on inclusive production, both for
hadron–hadron, hadron–nucleus, and nucleus–nucleus colli-
sions, and the observation of some regularities in the data,
such as geometric scaling behavior [39–54]. The shortcom-
ing of this approach is the fact that it is disconnected from
diffractive physics.

On the other hand, there exists a different approach to
high energy QCD: the BFKL Pomeron [55–58] and its inter-
actions [19,59–79], which is suitable to describe diffractive
physics. The BFKL Pomeron calculus turns out to be close to
the old Reggeon theory [80], so, for calculating the inclusive
characteristics of multiparticle production, we can apply the
Mueller diagram technique [81]. The relation between these
two approaches has not yet been established, but they are
equivalent [74–77] for the rapidities (ln (s/s0)), such that
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Y ≤ 2
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(1.1)

where �BFKL denotes the intercept of the BFKL Pomeron.
As we have discussed [16], the parameters of our model are
such that for Y ≤ 36, we can trust our approach, based on
the BFKL Pomeron calculus.

This paper is the next step in our program to build a model
for high energy soft scattering, based on an analytical calcu-
lation, without using a Monte Carlo simulation. We discuss
the correlation function:

R (y1, y2; Y ) = 1

σNSD

d2σ

dy1dy2

/ (
1

σNSD

dσ

dy1

1

σNSD

dσ

dY2

)
− 1

(1.2)

where Y denotes the total rapidity (Y = ln (s/s0) and s =
W 2, W is the energy in c.m.f.) and y1 and y2 are the rapidi-
ties of the produced hadrons. σNSD = σtot − σel − σsd − σdd

where σtot(σel, σsd, σdd) are the total, elastic, single, and dou-
ble diffraction cross sections.

The paper is organized as follows. In the following section
we discuss the main features of our approach, concentrating
on the description of diffractive processes. In Sect. 3, we
derive the main formulas for the correlation functions in our
approach, while in Sect. 4 we compare our predictions with
the available experimental data.

2 Our model: generalities, elastic amplitude, and
inclusive production

In this section we briefly review our model, which success-
fully describes diffractive [16,17] and inclusive cross sec-
tions [18]. The main ingredient of our model is the BFKL
Pomeron Green’s function, which we determined using the
CGC/saturation approach [16,78]. We determined this func-
tion from the solution of the non-linear Balitsky–Kovchegov
equation [25,26,29], using the MPSI approximation [79,82–
85] to sum enhanced diagrams shown in Fig. 1a. It has the
following form:

Gdressed (T ) = a2(1 − exp (−T )) + 2a(1 − a)
T

1 + T

+ (1 − a)2G (T ) with

G (T ) = 1 − 1

T
exp

(
1

T

)
�0

(
1

T

)
(2.1)

T (s, b) = φ0S (b,m) e0.63λ ln(s/s0) with

S (b,m) = m2

2π
e−mb (2.2)

In these formulas we take a = 0.65; this value was chosen
so as to obtain the analytical form for the solution of the BK

equation. The parameters λ and φ0 can be estimated in the
leading order of QCD, but due to large next-to-leading order
corrections we treat them as parameters of the fit. m is a non-
perturbative parameter, which characterizes the large impact
parameter behavior of the saturation momentum, as well as
the typical sizes of the dipoles that take part in the interac-
tions. The value of m = 5.25 GeV in our model justifies our
main assumption that BFKL Pomeron calculus based on a
perturbative QCD approach is able to describe soft physics,
since m � μsoft, where μsoft denotes the natural scale for
soft processes (μsoft ∼ �QCD and/or the pion mass).

Unfortunately, since the confinement problem is far from
being solved, we assume a phenomenological approach for
the structure of the colliding hadron. We use a two chan-
nel model, which also allows us to calculate the diffractive
production in the region of small masses. In this model, we
replace the rich structure of the diffractively produced states
by a single state with the wave function ψD , à la Good and
Walker [86]. The observed physical hadronic and diffractive
states are written in the form

ψh = αψ1 + βψ2; ψD = −βψ1 + αψ2;
where α2 + β2 = 1. (2.3)

The functionsψ1 andψ2 form a complete set of orthogonal
functions {ψi } which diagonalize the interaction matrix T

Ai ′k′
i,k = 〈ψi ψk |T|ψi ′ ψk′ 〉 = Ai,k δi,i ′ δk,k′ . (2.4)

The unitarity constraints take the form

2 Im Ai,k (s, b) = |Ai,k (s, b) |2 + G in
i,k(s, b), (2.5)

where G in
i,k denotes the contribution of all non-diffractive

inelastic processes, i.e. it is the summed probability for these
final states to be produced in the scattering of a state i off a
state k. In Eq. (2.5)

√
s = W denotes the energy of the collid-

ing hadrons, and b the impact parameter. A simple solution
to Eq. (2.5) at high energies, has the eikonal form with an
arbitrary opacity ik , where the real part of the amplitude is
much smaller than the imaginary part. We have

Ai,k(s, b) = i
(
1 − exp

(−i,k(s, b)
))

, (2.6)

G in
i,k(s, b) = 1 − exp

(−2 i,k(s, b)
)
. (2.7)

Equation (2.7) implies that PS
i,k = exp

(−2 i,k(s, b)
)
, is

the probability that the initial projectiles (i, k) reach the final
state interaction unchanged, regardless of the initial state re-
scatterings.

Note that there is no factor 1/2; its absence stems from
our definition of the dressed Pomeron.
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Table 1 Fitted parameters of the model. The values are taken from Ref. [17]

Model λ φ0 (GeV−2) g1 (GeV−1) g2 (GeV−1) m(GeV) m1(GeV) m2(GeV) β aPP

Two channel 0.38 0.0019 110.2 11.2 5.25 0.92 1.9 0.58 0.21

=

(a) (b)

G3P

g (b)i

Fig. 1 a The set of the diagrams in BFKL Pomeron calculus. The
wavy double lines denote the resulting (dressed) Green’s function of
the Pomeron in the framework of high energy QCD, while the single
wavy lines describe the BFKL Pomerons. b We show the net diagrams
that include the interaction of BFKL Pomerons with colliding hadrons

In the eikonal approximation we replace i,k(s, b) by

i,k(s, b) =
∫

d2b′ d2b′′ gi
(
b′)Gdressed(

T
(
s, 
b′′))

× gk
(
b − 
b′ − 
b′′). (2.8)

We propose a more general approach, which takes into
account new small parameters, which come from the fit to
the experimental data (see Table 1 and Fig. 1):

G3P

/
gi (b = 0) � 1; m � m1 and m2. (2.9)

The second equation in Eq. (2.9) leads to the fact that b′′
in Eq. (2.8) is much smaller than b and b′; therefore, Eq. (2.8)
can be re-written in a simpler form:

i,k(s, b) =
(∫

d2b′′ Gdressed(
T

(
s, 
b′′)))

×
∫

d2b′gi
(
b′) gk(
b − 
b′)

= G̃dressed(
T̄

) ∫
d2b′gi

(
b′) gk(
b − 
b′).
(2.10)

Selecting the diagrams using the first equation in Eq. (2.9)
indicates that the main contribution stems from the net dia-
grams shown in Fig. 1b. The sum of these diagrams [17] leads
to the following expression for i,k(s, b):

(Y ; b)

=
∫

d2b′ gi
(
b′) gk(
b − 
b′) G̃dressed (T )

1 + G3P G̃dressed (T )
[
gi

(
b′) + gk
(
b − 
b′)] ;

(2.11)

G3P

g (b)i

Fig. 2 A typical example of ‘fan’ diagrams that are summed in
Eq. (2.13)

gi (b) = gi Sp (b;mi ) , (2.12)

where

Sp (b,mi ) = 1

4π
m3

i b K1 (mib)

G̃dressed (
T̄

) =
∫

d2b Gdressed (T (s, b))

where T (s, b) is given by Eq. (2.2).
Note that G̃dressed(T̄ ) does not depend on b and is a

function of T̄ = T (s, b = 0) = φ0 e0.63 λY .
In all previous formulas, the value of the triple BFKL

Pomeron vertex is known: G3P = 1.29 GeV−1.
To simplify the further discussion, we introduce the nota-

tion

NBK(Gi
P(Y, b)) = a(1 − exp(−Gi

P(Y, b)))

+ (1 − a)
Gi

P(Y, b)

1 + Gi
P(Y, b)

, (2.13)

with a = 0.65. It should be stressed that Eq. (2.13) with
this value of a is an analytical approximation to the numer-
ical solution for the BK equation [16,17,78]. Therefore,
a is not a fitting parameter, as it has been determined
from CGC/saturation effective theory. We have Gi

P(Y, b) =
gi (b) G̃dressed(T̄ ). We recall that the BK equation sums the
‘fan’ diagrams shown in Fig. 2.

For the elastic amplitude we have

ael(b) = (
α4A1,1 + 2α2 β2 A1,2 + β4A2,2

)
. (2.14)

To determine the correlation function (given in Eq. (1.2)),
we need to know the single inclusive cross sections. We have
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g (b)i

aPP

Fig. 3 Mueller diagram for the single inclusive cross section. The
double wavy lines describe the resulting Green function of the BFKL
Pomerons (G̃dressed). The blobs stand for the vertices which are the
same as in Fig. 1

discussed these cross sections in Ref. [18]; for the sake of
completeness we give the formula that describes the Mueller
diagram of Fig. 3.

We have

dσ

dy
=

∫
d2 pT

dσ

dy d2 pT
= aPP ln (W/W0)

×
{
α4 I n(1)

(
1

2
Y + y

)
I n(1)

(
1

2
Y − y

)

+ α2β2
(
I n(1)

(
1

2
Y + y

)
I n(2)

(
1

2
Y − y

)

+ I n(2)

(
1

2
Y + y

)
I n(1)

(
1

2
Y − y

))

+ β4 I n(2)

(
1

2
Y + y

)
I n(2)

(
1

2
Y − y

)}
(2.15)

where Y denotes the total rapidity of the colliding particles,
and y is the rapidity of produced hadron. I n(i) is given by

I n(i) (y) =
∫

d2b NBK
(
G̃i

P (y, b)
)

. (2.16)

aPP is a fitted parameter that was determined in Ref. [18]
(see Table 1).

3 Two particle correlations

3.1 Correlations between two parton showers

The Mueller diagram for the correlations between two par-
ton showers is shown in Fig. 4. Examining this diagram, we
see that the contribution to the double inclusive cross section
differs from the product of two single inclusive cross sec-
tions. There are two reasons for this; the first is that in the
expression for the double inclusive cross section, we inte-
grate the product of the single inclusive cross sections, over
b, at fixed b. The second is that the summation over i and k
for the product of single inclusive cross sections is for fixed
i and k.

Introducing the following new function enables us to write
the analytical expression:

I (i,k(y, b) = aPP ln (W/W0)

×
∫

d2b′ NBK
(
g(i) S

(
mi , b

′) G̃dressed
(

1

2
Y + y

))

× NBK
(
g(k) S

(
mk, 
b − 
b′)

G̃dressed
(

1

2
Y − y

))
.

(3.1)

Using Eq. (3.1) we can write the double inclusive cross
section in the form

d2σ2 parton showers

dy1 dy2

=
∫

d2b
{
α4 I (1,1) (y1, b) I (1,1) (y2, b)

× α2 β2
(
I (1,2) (y1, b) I (1,2) (y2, b)

+ I (2,1) (y1, b) I (2,1) (y2, b)
)

+ β4 I (2,2) (y1, b) I (2,2) (y2, b)
}

. (3.2)

a   ln(W/W )PP 0

g   (b)(k)

G3P

Y

0

Y/2+ y1

Y/2+ y2

i

k

Y

0

Y/2+ y1

Y/2+ y2

i

k

(b)(a)

Fig. 4 The Mueller diagram for the rapidity correlation between two
particles produced in two parton showers. a The first Mueller diagram,
while b indicates the structure of general diagrams. The double wavy

lines describe the dressed BFKL Pomerons. The blobs stand for the
vertices as shown in the legend
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Comparing Eq. (3.2) with Eq. (2.15) squared, we note the
different powers of α and β, which reflect the different sum-
mation over i and k, as well as different integration over b.

3.2 Correlations in one parton shower: semi-enhanced
diagrams

The main theoretical assumption that we make in calculating
the correlation in a one parton shower, is that the Mueller
diagram technique [81], and the AGK cutting rules [87] are
valid. We should note, however, that even if the Mueller dia-
grams provide the correct description of inclusive processes
in QCD, the AGK cutting rules are not valid for calculations
of the correlations in QCD [88–90]. Nevertheless, we believe
that we can neglect the AGK cutting rules violating contri-
butions since, first, they do not lead to long range rapidity
correlations, which are the main subject of our concern, and
second, as we will show below, the correlations in one parton
shower turn out to be negligibly small.

It is instructive to write the expression for the first Mueller
diagram in the following form (see Fig. 6a):

d2σ
one parton shower
senh

dy1 dy2
= (aPP ln (W/W0))

2

×
2∑

i=1,k=1

α2
i α2

k

∫ Y

max
(

1
2Y−y1,

1
2Y−y2

)dY ′

×
∫

d2b gi (b) G̃
(
Y − Y ′) G3P G̃

×
(
Y ′ − 1

2
Y − y1

)
G̃

(
Y ′ − 1

2
Y − y2

)

×
∫

d2b′NBK
(
gk (b) G̃

(
1

2
Y − y1

))

×
∫

d2b′NBK
(
gk (b) G̃

(
1

2
Y − y2

))
. (3.3)

The expression for the first Mueller diagram for two parton
showers correlation (see Fig. 4a) has the form

d2σ
2 parton showers
senh

dy1 dy2

=
∫

d2b
d2σ2 parton showers

dy1 dy2 d2b

= (aPP ln (W/W0))
2

2∑
i=1,k=1

α2
i α2

k

∫
d2b (gi (b))

2 G̃

×
(
Y ′ − 1

2
Y − y1

)
G̃

(
Y ′ − 1

2
Y − y2

)

×
∫

d2b′NBK
(
gk (b) G̃

(
1

2
Y − y1

))

×
∫

d2b′NBK
(
gk (b) G̃

(
1

2
Y − y2

))
. (3.4)

Comparing Eq. (3.3) with Eq. (3.4) one can see that

d2σ
one parton shower
senh

dy1 dy2
= H (Y, y1, y2)

×
∫

d2b
G3P

g1 (b)

d2σ2 parton showers

dy1 dy2 d2b

H (Y, y1, y2) =
∫ Y

max( 1
2Y+y1,

1
2Y+y2)

dY ′

× G̃
(
Y − Y ′) G̃

(
Y ′ − 1

2Y − y1
)
G̃

(
Y ′ − 1

2Y − y2
)

G̃
( 1

2Y − y1
)
G̃

( 1
2Y − y2

) .

(3.5)

For large values of y G̃ (y) → Const and H (Y, y1, y2)

are proportional to 1
2Y − y1(y1 > y2). At small y G̃ (y) →

T̃ (y) = φ0
∫

d2b S (b,m) exp (�y), and the ratio of the G̃ in
Eq. (3.5) is equal toφ0

∫
d2 S (b,m)

∫
dY ′ exp

(
�

(
Y ′ − Y

))
= ∫

d2b T (Y = 0, b) /� where � = 0.63λ (see Eq. (2.2)).
Therefore, we could expect that the semi-enhanced diagrams
give a larger contribution to the double inclusive cross sec-
tion than the production from two parton showers. How-
ever, Fig. 5 shows that both the value and the increase
turn out to be small in the kinematic region accessible to
experiment. Even at ultra high energies, shown in Fig. 5b,
H (Y, y1, y2) ≤ 0.012.

On the other hand, the contribution of Eq. (3.5) is small
and is proportional to G3P/gi � 1. Bearing in mind that
G3P = 1.29 in our approach, one can see that the maximum
value for max (H) ≈ 0.012 and we have the values of

max (H)
G3P

g1 (0)
≈ 1.4 10−4;

max (H)
G3P

g2 (0)
≈ 1.4 10−3. (3.6)

Therefore, we expect that the contribution of the correla-
tions due semi-enhanced diagrams is negligibly small.

The general expression for the double inclusive cross sec-
tion (see Fig. 6b) can be written using two new functions
Si (y1, y2) and Sk (y1, y2) defined as

Si (y1, y2)

=
∫

d2b′ NBK
(
g(i) S

(
mi , b

′) G̃dressed
(

1

2
Y + y1

))
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Fig. 5 a The function H (Y, y1, y2) versus Y = ln
(
W 2/W 2

0

)
for

y1 = y2 = 0. The curve 1 shows H (Y, y1, y2) in which all G̃ are
replaced by the first order of its expansion with respect to T (Y, b); line

2 is the exact calculation. b is the same as a but for a large region of Y .
cH (Y, y1, y1) is plotted versus Y at different values of y1. H (Y, 0, y2)

is shown in d as a function of |y2| at different energies W

a   ln(W/W )PP 0

g   (b)(k)

G3P

Y

0

i

k

Y/2+ y2

Y/2+ y1

Y

0

Y/2+ y1

Y/2+ y2

i

k

(a) (b)

Y’

Fig. 6 Mueller diagrams for the rapidity correlation between two parti-
cles produced in one parton showers: semi-enhanced diagrams. aShows
the first Mueller diagram, while b gives the structure of general dia-

grams. The double wavy lines describe dressed BFKL Pomerons. The
blobs stand for the vertices shown in the legend

× NBK
(
g(i) S

(
mi , b

′) G̃dressed
(

1

2
Y + y2

))

×
(

G3P

g(i) S (mi , b′)

)
(3.7)

Si (y1, y2)

=
∫

d2b′ NBK
(
g(i) S

(
mi , b

′) G̃dressed
(

1

2
Y − y1

))

× NBK
(
g(i) S

(
mi , b

′) G̃dressed
(

1

2
Y − y2

))
. (3.8)

It takes the form

d2σ
1 parton shower
semi-enhanced

dy1 dy2
= H (Y, y1, y2) (aPP ln (W/W0))

2

×
{

2 α4 S1 (y1, y2) S1 (y1, y2) + α2 β2(S1(y1, y2)

× S2(y1y2) + S1(−y1,−y2) S
2(−y1,−y2)

+ 2 β4 S2 (y1, y2) S2 (y1, y2)
}

. (3.9)
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Y

0

i

k

Y/2+ y2

Y/2+ y1

Y

0

Y/2+ y1

Y/2+ y2

i

k

(a) (b)

a   ln(W/W )PP 0

g   (b)(k)

G3P

Y’

Y’’

Fig. 7 Mueller diagrams for the rapidity correlation between two par-
ticles produced in one parton showers: enhanced diagrams. a shows the
first Mueller diagram, while b indicates the structure of general dia-

grams. The double wavy lines describe dressed BFKL Pomerons. The
blobs stand for the vertices which are shown in the legend

3.3 Correlations in one parton shower: enhanced diagrams

The first Mueller diagram for the correlations from the
enhanced diagram is shown in Fig. 7a, and it has the fol-
lowing form:

d2σ
one parton shower
enh

dy1 dy2
= (aPP ln (W/W0))

2

×
2∑

i=1,k=1

α2
i α2

k

∫ Y

max
(

1
2 Y+y1, 1

2 Y+y2

)dY ′
∫ min

(
1
2 Y−y1, 1

2 Y−y2

)
0

dY ′′

×
∫

d2b gi (b) G̃
(
Y − Y ′) G3P G̃

×
(
Y ′ − 1

2
Y − y1

)
G̃

(
Y ′ − 1

2
Y − y2

)

×
∫

d2b′ gk
(
b′) G̃ (

1

2
Y + y2 − Y ′′

)
G̃

×
(

1

2
Y + y1 − Y ′′

)
G3P G̃

(
Y ′′) ; (3.10)

this can be re-written as

d2σ
one parton shower
enh

dy1 dy2

=
∫

d2b
G3P

gi (b)

G3P

gk (b)

d2σ2 parton showers

dy1 dy2 d2b
. (3.11)

An example of typical diagrams is shown in Fig. 7. The
formula, summing all diagrams shown in Fig. 7b takes the
form

d2σ
1 parton shower
enhanced

dy1 dy2
= K (aPP ln (W/W0))

2

× H (Y, y1, y2) H (Y,−y1,−y2) (3.12){
α4 S1 (y1, y2) S1 (−y1,−y2) + α2 β2[S1 (y1, y2)

× S2 (−y1,−y2) + S2 (y1, y2) S1 (−y1,−y2)
]

+ β4 S2 (y1, y2) S2 (−y1,−y2)
}

(3.13)

where

K =
∫

d2b(Gdressed(Y, b))2
/ (∫

d2b Gdressed(Y, b)

)2

(3.14)

where Gdressed (Y, b) is determined by Eqs. (2.1) and (2.2).
The contributions of enhanced diagrams are proportional to
the square of the ratios given by Eq. (3.6) and, therefore, they
are negligibly small.

3.4 Correlation function

The correlation function R (y1, y2) is defined as

R (y1, y2) = σNSD

×
⎧⎨
⎩d2σ2 parton showers

dy1 dy2
+ d2σ

1 parton shower
semi-enhanced

dy1 dy2

+ d2σ
1 parton shower
enhanced

dy1 dy2

⎫⎬
⎭

/ {
dσ

dy1

dσ

dy2

}
− 1. (3.15)

3.5 Kinematic corrections

In all our previous equations we assumed that Y =
ln

(
W 2/W 2

0

)
with W0 = 1 GeV. This assumption appears

natural for the elastic amplitude and the cross section of the
single inclusive production, but it should be re-examined for
the correlation function. For this observable, the definition of
Y has to be modified to account for the fact that the energy
of the parton shower is not equal to W = √

s (s = W 2)
but smaller than or equal to s̃ = W̃ 2 = x1x2s = x1x2W 2

(see Fig. 8, where we show the diffractive cut of the Mueller
diagram of Fig. 4a). The simplest way to find x1 and x2 is to
assume that both p2

1 = p2
2 = −Q̄2 � μ2

soft, where μsoft
is the scale of the soft interactions, μsoft ∼ �QCD . In our
approach the scale of the hardness for the BFKL Pomeron is
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P1

P2

p2

p1

x2P2

x1P1
P1

P2

p2

p1

MM

MM

s~s~

Fig. 8 The Mueller diagram for the rapidity correlation between two
particles produced in two parton showers: the diffractive cut of the
diagram. The double wavy lines describe dressed BFKL Pomerons.
The blob stands for aPP

0.2 0.4 0.6 0.8 1.0
x10.0

0.5

1.0

1.5

R Y , 0, 0

W 13 TeV

W 7 TeV

W 1.8 TeV

CMS data

Fig. 9 R (Y, 0, 0) versus x1 for Y = ln
(
x2

1W
2/W 2

0

)
for different ener-

gies W . The red line indicates the moment C2 = 〈|n2|〉/ (〈|n2|〉) = 2
for the window in rapidity −0.5 < y < +0.5, measured by the CMS
experiment [13]

Q̄ = m � μsoft. Bearing this in mind, the energy variable
x1 (x2) for gluon–hadron scattering is equal to

0 = (x1 P1 + p1)
2 = −Q̄2 + x1 2 p1 · P1;

p2
1 = −Q̄2 x1 = Q̄2

M2 + Q̄2
. (3.16)

p1, P1, and x1P1 are the momenta of the gluon, the hadron,
and the parton (quark or gluon) with which the initial gluon
interacts. From Eq. (3.16) one has

s̃ = x1x2s = s Q̄4

M4 (3.17)

g (b)i

Y

=
aPP

aPP Y/2+y2

Y/2+y1
aPP

aPP Y/2+y2

Y/2+y1
1

1

2

Fig. 10 Mueller diagram for emission of particles from one BFKL
Pomeron

where M denotes the mass of produced hadron in the diffrac-
tive process. Equation (3.17) is written for small xi , where
M2 � Q̄2. For the two channel model, it is the mass of
the diffractive state. We can use the quark structure function
to estimate the typical value of x1 = x2, as is suggested in
Ref. [91,92]. Using the structure functions at Q2 ≈ 25 GeV2,
one finds that 〈|x1|〉 ≈ 0.3 ÷ 0.5. In Fig. 9 the values of
R (Y, 0, 0) are plotted for Y = ln

(
x2

1W
2/W 2

0

)
as a function

of x1.

3.6 Correlation in one parton shower: emission from one
BFKL Pomeron

In addition to the sources of correlation that have been dis-
cussed above, we need to take into account the correlation
between two gluons emitted from one BFKL Pomeron (see
Fig. 10). At large y12 = |y1 − y2| the diagram of Fig. 10
induces long range correlations in rapidity, however, at small
y12 this emission is suppressed, and we do not expect a large
contribution from this source.

The contribution of this diagram can be written in the form

CBFKL (y1, y2) = σNSD

∑2
i,k=1 αiαk�i

( 1
2Y − y1

)
G̃dressed (y12) �k

( 1
2Y + y2

)
∑2

i,k=1 αiαk�i
( 1

2Y − y1
)

�k
( 1

2Y + y1
) ∑2

i,k=1 αi αk�i
( 1

2Y − y2
)

�k
( 1

2Y + y2
) (3.18)

where

�i (y) =
∫

d2b NBK(
gi (b)G̃

dressed(y)). (3.19)

For small values of the argument �i (y)
y�1−−→ ∫

d2

b gi (b) G̃dressed (y) Eq. (3.18), has no dependence on y12,
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leading to long range rapidity correlations. However, it turns
out that the exact computation, leads to very small values of
CBFKL (y1, y2): approximately 0.2 ÷ 0.4 % of the contri-
butions from the sources discussed above.

3.7 Short range rapidity correlation

Besides long range rapidity correlations, the emission from
one BFKL Pomeron, as well as the hadronization in one gluon
jet, can lead to short range correlations in rapidity. Unfor-
tunately, at present, this contribution cannot be treated on
pure theoretical grounds, as it involves confinement effects.
To estimate this contribution, we introduce the Mueller dia-
gram shown in Fig. 11, where we describe this correlation
by the phenomenological constant aPR, and introduce the
correlation length � ≈ 2. In the diagram of Fig. 11 for the
zigzag line we have a2

PR exp
(− y12

�

)
(y12 = |y1 = y2|).

Our estimate for � stems from Reggeon phenomenology, in
which the zigzag line describes the contribution of the sec-
ondary Reggeon, with a propagator exp (−(1 − αR(0))y12)

and αR(0) ≈ 0.5. At first sight such a parametrization of the
short range correlations neglects the contributions of reso-
nances, which are an essential part of these correlations. Due
to the duality between the Reggeon exchange and the reso-
nance contributions, we believe that the Reggeon description

g (b)i

Y

=
aPR

Y/2+y2

Y/2+y1

2

aPR

Y/2+y2

Y/2+y1

1

aPR aPR

Fig. 11 Mueller diagram for the short range rapidity correlations.
Wavy double lines denote BFKL Pomerons, zigzag lines describe the
exchange of the secondary Reggeon trajectory

of the short range correlations takes in consideration the main
part of the resonance contributions. However, a more detailed
description of the short range correlation should include the
production of resonances.

The contribution of this diagram takes the form

Cshort range (y1, y2) =
(
aPR

aPP

)2

σNSD

∑2
i,k=1 αi αk �i

( 1
2Y − y1

)
e− y12

� �k
( 1

2Y + y2
)

∑2
i,k=1 αi αk �i

( 1
2Y − y1

)
�k

( 1
2Y + y1

) ∑2
i,k=1 αi αk �i

( 1
2Y − y2

)
�k

( 1
2Y + y2

) .

(3.20)

4 Predictions and comparison with the experiment

Figure 9, shows that the correlation function increases with
energy and becomes rather large (of the order of 1) at
W = 7 TeV. This qualitative feature is in agreement with
the experimental data from the LHC. The first set of data is
the multiplicity distribution measured by the CMS collabo-
ration [13]. In particular, the value of C2 = 〈|n2|〉/ (〈|n2|〉)
turns out to be very close to 2, for the window in rapidities
−0.5 < η < 0.5. Since C2 = R (0, 0) + 1 + 1/dN/dη|η=0

where dN/dηη=0 denotes the multiplicity at η = 0, and at
W = 7 TeV, it is equal to 5.8, while R (0, 0) = 0.82.1

The second set of the data is the measurement of the double
parton interaction (DPI) [93–98]. In the LHC experiments,
the double inclusive cross sections of two pairs of back-to-
back jets with momenta pT,1 and pT,2 were measured with
rapidities of two pairs (y1 and y2) close to each other (y1 ≈
y2). These pairs can only be produced from two different
parton showers. The data were parameterized in the form

dσ

dy1d2 pT,1dy2d2 pT,2
= m

2σeff

dσ

dy1d2 pT,1

dσ

dy2d2 pT,2

(4.1)

where m = 2 for pairs of different jets, and m = 1 for identi-
cal pairs. One can calculate the rapidity correlation function
using Eq. (4.1),

R
(
y1, y2, pT,1, pT,2

) =
1

σin

dσ
dy1d2 pT,1dy2d2 pT,2

1
σin

dσ
dy1d2 pT,1

1
σin

dσ
dy2d2 pT,2

− 1

= σin

σeff
− 1 ≈ 2. (4.2)

For the above the estimates we use σeff = 12 − 15 mb (see
Refs. [93–98]) and σin = σtot −σel −σsd −σdd ≈ 50 mb for

1 In this section we use the pseudo rapidity η instead of the rapidity y,
since this variable is used to display data from LHC experiments. We
recalculate η = h (y) where the function h is taken from Ref. [18].
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1 2 3 4 5 6 7

n
n10 5

10 4

0.001

0.01

0.1

W 13 TeV

W 7 TeV

Fig. 12 σn/σ versus multiplicity n/n̄ at different energies W in the
rapidity window −0.5 < y < 0.5. The curves are normalized by∑

n
σn
σ

= n̄
∑

n/n̄(
σn
σ

) = 1. Hence, at fixed n/n̄, the data at W =
13 TeV with higher multiplicity is above the data at W = 7 TeV

the energy W = 7 TeV (see Ref. [17] and references therein).
These data confirm that at high energies we are dealing with
a system of partons that have a large mutual attraction. The
fact that we predict a smaller correlation than we have in
this experiment does not discourage us, since the correlation
function in Eq. (4.2) differs from the one that we calculate
(see Eq. (1.2)).

The forward–backward correlation has been measured by
the ATLAS collaboration in Ref. [14]. The observable that

was used in Ref. [14] differs from the correlation function
R (η1, η2), and it can be re-written as

ρn
f b = R (η1, η2)√

R (η1, η1) R (η2, η2)
. (4.3)

The value of ρn
f b ∼ 0.666 [14] indicates large correla-

tions, but it is difficult to compare ρn
f b with our estimates,

since ATLAS introduced a specific selection: the pT of all
produced particles should be larger than 100 MeV, while
R (η1, η2) is defined as integrated over all momenta.

Using R (0, 0), we estimate the values for C2 for W =
13 TeV, and using the formula for the negative binomial dis-
tribution,

σn

σ
=

(
r

n̄ + r

)r
� (n + r)

n! � (r)

(
n̄

n̄ + r

)n

, (4.4)

we obtain the multiplicity distribution in the rapidity win-
dow −0.5 < η < 0.5 shown in Fig. 12. In Eq. (4.4)
n̄ = dN/dη|η=0, which was calculated in Ref. [18]. From
Fig. 12 we expect a violation of the KNO scaling behav-
ior [99]. Accordingly to KNO scaling σn/σ = F (n/n̄) with
n̄ = ∫ 0.5

−0.5 dη dN/dη = dN/dη|η=0.
It turns out that R (y1, y2) at fixed energy depends nei-

ther on y1 nor on y2, giving a perfect example of long range
correlations in rapidity. To understand why we have these
features, it is instructive to start from Fig. 4a at small values
of Y . In this kinematic region we can replace G̃dressed →
G̃bare = T̃ (Y ) and NBK (Y, b) → gi (b) G̃bare. After sim-
ple algebra, the correlation function is equal to

R (y1, y2) = 1

α4 σNSD

×
∫

d2b
(∫

d2b′g1
(
b) g1

(
b − 
b′))2

(∫
d2b d2b′ g1

(
b) g1
(
b − 
b′))2 − 1.

(4.5)

In Eq. (4.5) we use the fact that in our model g1 � g2.
Equation (4.5) leads to a correlation function that does not
depend on y1 and y2.

On the other hand, at very large Y , NBK (Y, b) →
�(R (Y ) − b), where �(b) is a step function. Plugging in
this simple expression, we obtain

R (y1, y2) = σNSD

×
∫

d2b�
(
R

( 1
2Y − y2

) − b
)

�
(
R

( 1
2Y − y1

) − b
)
R2

( 1
2Y − y1

)
R2

( 1
2Y − y2

)
π2 R4

( 1
2Y − y1

)
R4

( 1
2Y − y2

) − 1

→ σNSD

πR2
( 1

2Y − y1
) ∣∣∣

y1<y2

− 1. (4.6)

R (Y ) in Eq. (4.6) denotes a typical impact parameter at large
Y , which is proportional toY .2 Recall that at high energies, all
components of the wave functions in the two channel model,
give the same contribution. This is the reason why we do not
have an extra factor, depending on α and β.

Equation (4.6) shows the logarithmic dependence on y1.
Using Eq. (4.6) we can estimate the y1(y2) dependence of
R (y1, y2)), calculating

〈|b2 (Y ) |〉 =
∫
b2 d2b NBK

(
gi (b) G̃dressed (Y )

)
∫

d2b NBK
(
gi (b) G̃dressed (Y )

) . (4.7)

2 We trust that our use of the same notation for the correlation function
and typical b will not confuse the reader.
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10 15 20 25
Y

10

11

12

13

b2

Fig. 13 〈|b2 (Y ) |〉, defined in Eq. (4.7), versus Y

From Fig. 13, in which we plot the results of our calcula-
tion, one can see that only at large Y > 11 does 〈|b2 (Y ) |〉
start showing visible Y dependence. Two vertical dotted
lines mark the widow in rapidity, which is essential in the
calculation of the correlation function at W = 7 TeV for
−2 < y1, y2 < 2. We can expect a change of R by 2 %.
The actual calculation gives even less. Using NBK (Y, b) →
�(R (Y ) − b) gives R2 (Y ) = 2〈|b2 (Y ) |〉. Using this rela-
tion, we estimate R (y1, y2) as

R (y1, y2) = 1

α4

σNSD

2π〈|b2
( 1

2Y − y1
) |〉 − 1. (4.8)

At W = 7 TeV from Eq. (4.8) we find that R (y1, y2) =
1.647, while the exact calculation give 1.437 (see Fig. 9). At
W = 13 TeV this simple formula leads to R (y1, y2) = 1.72,
versus 1.64 from the exact calculations (see Fig. 9).

The correlations, measured by the ATLAS collabora-
tion [14], at first sight contradict both our estimate and the
CMS data, regarding the multiplicity distribution. We first
check Eq. (4.3). The measured observable has the form [14]

ρn
f b = 〈(n f − 〈n f 〉

)
(nb − 〈nb〉)〉√

〈(n f − 〈n f 〉
)2〉 〈(nb − 〈nb〉)2〉

. (4.9)

The numerator of Eq. (4.9) can be written as R (y1, y2) �y1

�y2, where �yi is the interval of rapidities where the
hadrons are measured. However, at the same value of rapidity
R (y1, y1) (�y1)

2 corresponds to 〈n(n − 1)〉 − 〈n〉2. There-
fore, we have the expression

〈(n f − 〈n f 〉
)2〉 =

(
R (y1, y1) + 1

dN
dy1

�y1

)
(�y1)

2 ,

which leads to the following formula for ρn
f b:

ρn
f b = R (y1, y2)√(

R (y1, y1) + 1
dN
dy1

�y1

) (
R (y2, y2) + 1

dN
dy2

�y2

) .

(4.10)

Taking �y1 = 0.5, we see that the first element of the Table
2 is equal to 0.7, which is in good agreement with the exper-
imental value 0.666 ± 0.011.

To describe our results given in Table 2, we also need to
take short range rapidity correlations into account. In this
table, in parentheses we have our estimates, which we obtain
describing the correlation function in the form

R (y1, y2) = Rlong range (y1, y2)

+ (
Cshort range (y1, y2) − Cshort range(0, 0)

);
Cshort range (y1, y2) = a

× �1
( 1

2Y − y1
)
e− y12

� �1
( 1

2Y + y2
)

�1
( 1

2Y − y1
)

�1
( 1

2Y + y1
)

�1
( 1

2Y − y2
)

�1
( 1

2Y + y2
)

(4.11)

with a = 0.7 and � = 2. In Eq. (4.11) y12 = |y1 − y2|
and we restrict ourselves to the contribution of the state
”1” in Eq. (3.20), since g1 � g2. We assumed that
Cshort range(0, 0) = 0 since at y12 = 0 Eq. (3.20) leads
to the long range correlations which we have calculated in
Sect. 3.4. One can see that the agreement is not perfect, but
it demonstrates that the ATLAS data can be reproduced, by
including the short range correlations.

5 Conclusions

The main result of this paper, is that in our model, which is
based on the CGC/saturation approach, we have discovered
a mechanism that produces large, long range rapidity corre-
lations at high energies. The large values of the correlation
function R (y1, y2) ≥ 1 at high energies, lends strong sup-
port to the idea that at high energies the system of partons that
is produced, is not only dense, but also has strong attractive
forces acting between the partons.

Another interesting result is that this mechanism, leads
to long range rapidity correlations that are independent of
y1,2, and stems from the correlation between two parton
showers, i.e., we found that in our approach the contribution
from enhanced and semi-enhanced diagrams that describe
the interaction inside a single parton shower, turns out to be
negligibly small. It should be stressed that the contribution of
the same diagrams in the process of diffraction dissociation
in the region of large mass is essential, as they are responsi-
ble for the experimental measured diffraction in the region
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Table 2 Multiplicity correlations for events at
√
s = 7 TeV for events

with a minimum of two charged particles in the kinematic interval
pT > 100 MeV and |η| < 2.5 for different combinations of forward

and backward pseudorapidity interval. The data is take from Ref. [14].
The numbers in parentheses are our estimates

Forward η interval 0.0–0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–2.5
Backward η interval

0.0–0.5 0.666(0.70) ± 0.011 0.624(0.643) ± 0.011 0.592(0.599) ± 0.011 0.566(0.565) ± 0.012 0.540(0.539) ± 0.013

0.5–1.0 0.624(0.667) ± 0.011 0.596(0.618) ± 0.011 0.574(0.580) ± 0.012 0.553(0.550) ± 0.013 0.530(0.527) ± 0.014

1.0–1.5 0.594(0.640) ± 0.011 0.576(0.596) ± 0.012 0.560(0.563) ± 0.013 0.540(0.537) ± 0.014 0.518(0.516) ± 0.014

1.5–2.0 0.571(0.615) ± 0.012 0.557(0.577) ± 0.013 0.544(0.548) ± 0.014 0.526(0.525) ± 0.014 0.503(0.508) ± 0.016

2.0–2.5 0.551(0.593) ± 0.013 0.540(0.560) ± 0.014 0.527(0.535) ± 0.014 0.507(0.515) ± 0.016 0.487(0.499) ± 0.018

of large mass [17]. This feature, is in direct contradiction to
the soft Pomeron-based models for the soft scattering ampli-
tude, suggest should cancel (see Ref. [92]). In these models,
the correlations from one parton shower are larger than from
two parton showers, and they led to the y1,2 dependence. In
other words, in the soft Pomeron based model, the contri-
bution of semi-enhanced and enhanced Pomeron diagrams
that describe large mass diffraction, is sufficiently large to
induce considerable (actually dominant) contributions to the
two particle correlation. Scrutinizing our formulas, we found
that the main reason for the small size of the correlation in
one parton showers that we observed in our approach, stems
from the most theoretically reliable part of our model: from
the expression for the dressed BFKL Pomeron Green func-
tion.

Another result, our model predicts is the probability of
two parton showers production without introducing new phe-
nomenological parameters,3 which is able to describe the
long range rapidity correlations.

We demonstrated that our model is able to describe the
LHC data, eminating from the CMS and ATLAS collabo-
rations. These data are certainly insufficient for a thorough
analysis of the details of our approach, but they confirm that
the long range rapidity correlations are large at high ener-
gies. Our prediction for W = 13 TeV is shown in Fig. 9. The
correlations should increase with the energy, and the mea-
surements at W = 13 TeV should clarify the situation.

It worthwhile mentioning that the main contributions to
the correlation function in terms of Mueller diagrams, has
been known from 1970s, as well as the fact that non-enhanced
diagrams (production of two and more parton showers) led
to long range rapidity correlations, and were needed to
describe the correlation at ISR and TEVATRON energies.
However, the problem of the contributions of semi-enhanced
and enhanced diagrams in the framework of the soft Pomeron
calculus, has not been solved theoretically. This, as well as

3 Actually we introduce a new parameter: x1, from the kinematic cor-
rections, but its value only influences the exact value of the correlation
function, not the fact that the correlation turns out to be of the order of
the experimental one.

the estimates of the value of the contribution of these dia-
grams from the experimental data, are very dependent on
the model of the Pomeron interactions. From the first paper
on CGC/saturation approach [19], it became clear that hard
processes could give a considerable contribution to the cor-
relation function. However, it was not clear whether such
correlations will be enough to reproduce the experimental
data.

It was already appreciated in 1987 that taking into account
the perturbative QCD sub-collisions in the Monte Carlo mod-
els is not sufficient to reproduces the correlation data from
the UA5 experiment [100], and that multiple sub-collisions
should be added. In the language of Ref. [100], our main
result can be formulated as the statement that only hard and
soft processes from two sub-collisions contribute to the cor-
relation function.

In closing, we suggest that the investigation of short range
rapidity correlations in MC models, which do not depend
on Pomeron interactions and on the contributions of the
enhanced and semi-enhanced diagrams, can provide more
insight, as such estimates will be complementary to our
Reggeon motivated description of short range rapidity cor-
relations.
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